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ABSTRACT

We analyze the complexity of evaluating information rewards
for measurement selection in sparse graphical models under
the assumption that measurements are drawn from a limited
number of nodes subject to a finite budget. Previous analy-
ses [1, 2, 3] exploit the submodular property of conditional
mutual information to demonstrate that greedy measurement
selection come with near-optimal guarantees As noted in [4]
typical formulations assume oracle value models. However,
[1, 2, 5] allude to a more significant source of complexity,
namely computing the measurement reward. Here, we fo-
cus on Gaussian models and show that by exploiting spar-
sity in the measurement model, the complexity of planning
is substantially reduced. We also demonstrate that by utiliz-
ing the information form additional significant reductions in
complexity may be realized.

Index Terms— active learning, Gaussian HMMs, Kalman
filtering and smoothing, experimental design, belief propaga-
tion

1. INTRODUCTION
There is a significant history on the use of information mea-
sure as a reward function for Bayesian experimental design,
e.g., [6, 7]. More recently [8, 9, 10, 11, 12] formulate such
measures in the sequential inference setting subject to selec-
tion constraints where the complexity is combinatorial in the
number of sensing actions and exponential in the planning
horizon. As observed in [2], mutual information (MI), is
submodular [13] when measurements are independent condi-
tioned on the quantity of interest. Consequently, the results of
[14] provide that tractable greedy selection guarantees infor-
mation rewards to be within a factor of the optimal (though,
intractable) selection.

The analysis of [3] provides more general guarantees
for greedy selection in the case (applicable to probabilistic
graphical models) where measurement subsets combined with
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Fig. 1. Sparsity and different walks. (a) Measurements of
Xk depend only on a few components of Xk. Dashed rectan-
gles represent vectors of latent variables, Xk,Xk+1. (b) This
structure can be represented as an HMM. Two walks are visu-
alized. Arrows with a circle in one end denote the beginning
of the walk. Different walks visit each observation set the
same number of times, but in different orders.

subset selection constraints and for which the latent variable
structure may not be fully specified à priori (e.g., inference in
Markov chains for streaming data). We stress that the analysis
addresses planning sensing actions in contrast to inference (or
data fusion). The latter follows the former as a consequence
of a resulting choice of sensing actions. The distinction lies
in the the difference between the measurement and its value.
Planning considers the expected utility of a set of measure-
ments while inference incorporates their values. Evaluation
of information rewards across different measurement plans is
a key component to any planning method.

An important, often neglected, aspect of information-
based approaches, is the computational complexity of evalu-
ating a given plan. In realistic settings, it can be a source of
significant computational complexity. For Gaussian models,
complexity primarily depends on the dimension of the latent
variables, the number of measurements to be explored and
the order in which different observation sets are visited. Here,
we consider the computational complexity of evaluating the
information rewards in active inference problems described
by Markov chains, trees, and poly-trees. We show how to
reduce the computational load substantially by taking advan-
tage of sparsity in the measurement process and by utilizing
the information form. This analysis allows one to trade off
the computational complexity of exploring additional plans
with the probability of achieving a higher information reward.



Consider the problem of selecting an optimal k-element
subset (measurements for our purposes) from a ground set V
of size N that maximizes some reward f . Due to combina-
torial complexity, optimal solutions are intractable for even
moderately large problems. However, [14] shows that if the
function f is submodular, i.e., it is monotone and has the
property of “diminishing returns”, then a greedy selection al-
gorithm with O(kN) complexity achieves a reward that is a
factor no worse than (1 − 1/e) of the optimal reward. How-
ever, this result implicitly assumes an oracle value model, i.e.,
that the reward function for any given subset can be computed
in constant time. Specifically, the oracle value model assumes
a universal “oracle” that provides the function value for any
input set. Subsequent work [15], which generalizes [14] to
matroidal structures, also assumes an oracle value model.

There have been a number of methods utilizing the pre-
ceding. As noted, [1, 2] consider information planning in the
batch setting while [5] considers influential subset selection
in social networks. The original bound is improved upon in
[16]. Online resource allocation networks [17, 18], stochastic
submodular maximization [19] , the study of the submodular
welfare problem. [20], and additional extensions to submod-
ular maximization [21, 22, 23] comprise just a small sam-
pling of approaches and analyses which exploit the results of
[14, 15]. All assume oracle value models.

However, as we discuss, evaluation of rewards presents
a significant computational challenge. As such, [1] proposes
truncation methods as an approximation for Gaussian mod-
els. Similarly, [2] notes that the evaluation of conditional en-
tropies, intrinsic to greedy selection, can be prohibitive, while
[5] acknowledge the complexity in evaluating the underlying
influence function that guides the selection of the most influ-
ential nodes. We are not aware of previous results that exploit
the structure of the latent graph to reduce the complexity of
reward evaluations. Despite the inherent computational bot-
tleneck, it is often overlooked. Here, we show for Gaussian
models that exact computations are feasible by taking advan-
tage of the graph structure and utilizing a variant of belief
propagation (BP) [24] more suited for active learning settings.

2. INFORMATION PLANNING IN GAUSSIAN HMMS
For simplicity, we restrict ourselves to hidden Markov Mod-
els (HMMs). However, the results extend easily to trees and
poly-trees. A Gaussian HMM can be described by the follow-
ing dynamical system

Xt = At−1Xt−1 + Vt−1 (1)
Yt = CtXt + Wt, (2)

where Xt,Yt are the respective latent and observed variables,
and Vt ∼ N (0, Qt), Wt ∼ N (0, Rt), are the respective pro-
cess and measurement noise. Rt is assumed block-diagonal.
Let X = {X1, . . . ,XT } be the set of latent variables up to
time T . Each Xt is a d-dimensional vector. For each Xt, we
define an observation set, Vt, where |Vt| = Nt (Nt compa-

rable to d). Each measurement Yt,u from set Vt is an m-
dimensional vector. Yt represents all Nt measurements of set
Vt. As such, Ct is an Ntm × d matrix. As depicted in Fig.
1(a), we assume that a measurement depends at most on q
elements of vector Xt. Consequently, Ct is a sparse matrix
with non-zero row elements at locations corresponding to the
q elements of Xt upon which a measurement depends. The
assumption of sparsity is common in realistic settings (e.g.,
in tracking applications, where noisy position measurements
depend only upon a subset of the full kinematic state).
Constrained Selection over Measurement Subsets. We
frame the problem as follows: given multiple subsets of
measurements and constraints on the total number of mea-
surements that can be selected from each subset (note that the
constraint may differ for each subset), we wish to select the
set of measurements which maximizes the expected informa-
tion gain with respect to the full set of latent variables. This
(generally intractable) combinatorial optimization problem is
stated more formally as:

O ∈ arg max
{S||S∩Vt|≤kt,∀t}

f(S), (3)

where f(·) is a set function representing the reward of a
set and kt are the selection constraints for the t-th set. We
restrict ourselves to monotonic functions. A walk w =
{w1, . . . , wM} denotes the particular order in which ob-
servation sets are visited, which corresponds to a feasible
solution of the above problem. That is, the walk defines an
order that satisfies the selection constraints at all times as
defined in Eq. (3). Greedy methods sequentially select el-
ements that maximize the incremental value of the reward
function conditioned on the previous selection. The incre-
mental reward of a measurement u given set S is defined as
f(u | S) , f({u} ∪ S) − f(S). Greedy selection for a
particular walk w is defined as

gj = arg max
u∈Vwj

\Gj−1

f(u | Gj−1), (4)

where wj is the observation set index corresponding to the
j-th element of the walk and Gj−1 is the greedy set obtained
up to the previous iteration. The incremental reward of incor-
porating measurement u is f(u | Gj−1) = f({u} ∪ Gj−1) −
f(Gj−1). Here, we use MI as the reward function, f(S) =
I(X ;YS). The resulting incremental reward takes the form
f(u | Gj−1) = I(X ;Yu | YGj−1

). W.l.o.g., we assume that
each observation set has the same size Nt = N and identical
selection constraints kk = k.

To give an indication of the hardness of problem (3),
there are

∏
t

(
Nt

kt

)
= ( N !

(N−k)!k! )
T feasible solutions (that

satisfy the selection constraints), which is an extremely large
number as N, k and T grow. On the contrary, the com-
plexity of determining a greedy solution for a given walk
is only O(

∑
t Ntkt) = O(kTN) assuming an oracle value

model. In addition, there are
( ∑

t kt

k1,...,kt

)
= (kT )!

k!T
different

walks. For every such walk, there are
∏

t Nt!/(Nt − kt)! =



(N !/(N − k)!)
T permutations of measurements that form

feasible solutions. One such permutation (for a given walk)
corresponds to the greedy solution as dictated by Eq. (4).
Therefore, there are (kT )!

k!T
greedy solutions, one for each dif-

ferent walk. Remarkably, Williams et al. [3] showed that
the greedy solution as dictated by Eq. (4) results in a reward
which is no worse than half of the optimal for any walk.
While the performance guarantee holds for all feasible walks,
it is the case that some walks may yield significantly better
information rewards than others. Additionally, as our analy-
sis shows, the complexity of evaluating information rewards
cannot be done in constant time and varies considerably for
different walks. This motivates developing efficient meth-
ods for evaluating different walks in order to obtain higher
information rewards.
Gaussian HMMs. The information reward for Gaussian
models are expressed as a function of the covariance ma-
trix of the underlying process. In this case, the incremental
reward of a measurement u is

f(u | Gj−1) = H(X | YGj−1
)−H(X | Yu,YGj−1

). (5)

=
1

2
log

|ΣX |Gj−1
|

|ΣX |{u}∪Gj−1
|

=
1

2
log
|JX |{u}∪Gj−1

|
|JX |Gj−1

|
.

(6)

Covariance updates in Gaussian HMMs are computed as:

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 + Qt−1 (7)

Σt|t = Σt|t−1 −GtCtΣt|t−1 (8)

Gt = Σt|t−1C
T
t (CtΣt|t−1C

T
t + Rt)

−1,

where Σt|t−1 = cov(Xt | Y1:t−1), Σt|t = cov(Xt | Y1:t).
We refer to Eqs. (7), (8) as the propagation and update steps,
respectively. It is important to note that pursuant to propaga-
tion, the incremental reward depends only on the local update
to Σt|t. That is, marginal covariance (equivalently precision)
updates are sufficient for quantifying the accumulated infor-
mation reward with respect to the full set of latent variables.

3. COMPLEXITY REDUCTION VIA SPARSITY
There are two primary sources of computational complexity
that arise when evaluating the information reward of a given
walk: (i) exploration, in which the information rewards of
the remaining measurements of the current observation set
are computed; and (ii) update, in which the selected mea-
surement is incorporated into the marginal covariance of the
latent variable representing the current element of the walk.
Greedy algorithms proceed as follows; (i) propagate uncer-
tainty given the existing selections to the variable correspond-
ing to the next walk element, (ii) evaluate the remaining can-
didate measurements in the observation set of the current walk
element, choosing the one with maximum incremental re-
ward, and lastly (iii) update the uncertainty at that variable
after having selected the measurement. The complexity of the
exploration and update steps depend on the structure of matri-

ces Ct. We assume that the dimension of each measurement
vector is much smaller than the latent dimension at all time
points, i.e., m � d. We denote the m-row portion of matrix
Ct corresponding to measurement Yt,u as Ct(u, :). For nota-
tional consistency with the analysis later in the text, we will
denote the greedily selected measurement gj by u.

In Eq. (8), the complexity of the update step is O(md2),
as computation is dominated by Cwj

(u, :)Σwj |Gj−1
. A total of

kT updates yields overall update complexity of O(kTmd2).
Exploration of a single measurement as indicated by Eq. (6),
takes O(d3) time since it requires the computation of a d× d
matrix determinant. Combined with the number of measure-
ments that should be considered, which is O(kTN), the ex-
ploration component of greedy selection results in total com-
plexity of O(kTNd3). When m � N, d, exploration dom-
inates the complexity of greedy selection with d3 being the
most significant term. However, the preceding ignores the
sparsity of matrices Ct. Evaluation complexity can be re-
duced dramatically by taking advantage of this sparsity. Let
Ic denote the indicator matrix of the non-zero elements of Ct.
While the sparsity pattern defined by Ic may differ with t,
we omit additional notation to account for that. Computation
of Ic requires O(Nmd) time or O(TNmd), if time-varying.
Reductions during updates. For a measurement u of di-
mension m, Iu represents the nodes of latent graph X upon
which u depends. If Σ′ (equivalently J ′) represents the up-
dated covariance (equivalently precision) after the incorpora-
tion of measurement u and Σ ( equivalently J) the prior, Eq.
(8) becomes:

Σ′ = Σ− ΣC(u, :)T (C(u, :)ΣC(u, :)T + R(u, u))−1C(u, :)Σ

J ′ = Σ′−1 = Σ−1︸︷︷︸
J

+C(u, :)TR(u, u)−1C(u, :), (9)

where we have made use of the Woodbury matrix identity. We
denote by Ĉu the m× q matrix, Ĉu = R(u, u)−1/2C(u, Iu).
The matrix square root, R(u, u)−1/2 and Ĉu can be recovered
in O(m3) and O(m2q) time, respectively. Therefore, Eq. (9)
can be rewritten as

J ′ = J+

[
ĈT

u

0T

][
Ĉu 0

]
⇒ J ′(Iu, Iu) = J(Iu, Iu)+ĈT

u Ĉu,

(10)
since only the block of J dictated by Iu will be affected by
ĈT

u Ĉu. The above calculations are dominated by the term
O(mmax{m, q}2). Compare this to the complexity of the
standard calculation, O(md2), where d � m, q, translating
to a speedup on the order of O(( d

max{m,q} )
2).

Reductions during exploration. Greedy selection for Gaus-
sian models simplifies to

gj = arg max
u∈Vwj

\Gj−1

I(Xwj ;Ywj ,u | YGj−1)︸ ︷︷ ︸
log(|Jwj |{u}∪Gj−1

|/|Jwj |Gj−1
|)

, (11)

where Jwj |Gj−1
, Jwj |{u}∪Gj−1

is the precision of Xwj before
and after the incorporation of measurement u, respectively.
By substituting J ′ = Jwj |{u}∪Gj−1

and J = Jwj |Gj−1
in Eq.



(10), we have:

Jwj |{u}∪Gj−1
= Jwj |Gj−1

+

[
ĈT

wj ,u

0T

] [
Ĉwj ,u 0

]
.

As we observe in Eq. (11), the greedy step only requires ratios
of determinants. Therefore, if we use the Matrix Determinant
Lemma on Jwj |{u}∪Gj−1

in Eq. (11), we obtain

gj = arg max
u∈Vwj

log |Im×m + Ĉwj ,uΣwj |Gj−1
(Iu, Iu)ĈT

wj ,u|.

(12)
The above computation takes O(mmax{m, q}2) time and is
orders of magnitude faster than the standard calculation with
complexity O(d3).

4. SINGLE NODE DECOMPOSITIONS
Upon incorporating a measurement in the current walk ele-
ment Xwj−1 , one must propagate uncertainty Σwj |Gj−1

to the
next element, Xwj , as shown by Eq. (12). The standard ap-
proach is via Kalman filtering and smoothing with complex-
ity linear in T , per greedy step. We obtain further complexity
reductions utilizing the information form of belief propaga-
tion (BP) [24, 25] where at each step we propagate messages
solely from the current to the next walk element. We refer to
this variant of BP as incremental BP. The result is that only
the latent variables which are necessary to compute informa-
tion rewards are updated with cost relative to the distance
between consecutive elements, rather than the width of the
Markov chain, as shown in Fig. 2(b).

5. EXPERIMENTAL RESULTS
The primary goal of our experiment is to demonstrate the
utility of the method from a computational perspective.
We consider 200 moving objects with different degrees of
correlated motion. Each object has a 6-dimensional state,
px, py, pz, vx, vy, vz representing the positions and veloci-
ties along the three axes. The problem is modeled with the
following linear state-space model:

Xt = At−1Xt−1 + Vt−1,∀t ∈ {1, . . . , 20}
Yt = CtXt + Wt ,

where Xt = [ p1:200t,(x,y,z) v1:200t,(x,y,z) ]T , At−1 captures lin-
ear dynamics, Vt−1 ∼ N (0, Qt−1) is driving and Wt ∼
N (0, Rt) measurement noise. Potential measurements are
available for each latent variable (position, velocity), account-
ing to Nmax

t = 1200 measurements per time point (6 per
object) of which we may select kt = 6 (per point). The la-
tent dimension is d = 1200. We consider different observa-
tion sizes, constituting {10%, 25%, 50%, 75%, 100%} of the
latent dimension and different degrees of sparsity in the mea-
surement model. Fig. 2(a) shows the gain as a function of
sparsity and observation size when. Lastly, we examine the
advantage of working with the information form of BP. We
construct multiple walks with specified average distance be-
tween consecutive walk elements: (1–5, 5–10, 15–20, 50–60)
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Fig. 2. Speedups from sparsity and single node decom-
positions. (a) We explore the speedup for different degrees
of sparsity defined as 1 − q/d and different ratios of obser-
vation size to latent dimension N/d. As expected, gains are
more imminent as observation size and sparsity grow. (b) The
figure shows how gains change as the average distance be-
tween consecutive walk elements increases. As expected, we
see that when the average distance between consecutive walk
elements is low, we gain significant speedups.

for a chain of length T = 100 and compare against stan-
dard Kalman filtering and smoothing. As the average distance
between consecutive walk elements decreases, the computa-
tional advantage of incremental BP is much greater.

6. CONCLUSION
We have considered the problem of efficient evaluation of
information rewards in Gaussian HMMs. We argue that
the assumption of oracle value models to such problems is
questionable due to the considerable computational costs of
reward evaluations. We showed that the major computational
bottleneck of the greedy process is in the exploration step,
which is quartic on the observation size, Nt (assuming Nt

and d are comparable). We further demonstrated that by
using sparsity and proper manipulation of the covariance
formulas, we can evaluate the exact reward while substan-
tially reducing the computational cost from O(kTNd3) to
O(kTNmmax{m, q}2), which is only linear in N – the
largest parameter along with d.
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