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Abstract
Information planning addresses the problem of determining the optimal set of mea-
surements that would reduce the uncertainty over latent variables of interest under a
set of constraints. A commonly used reward for quantifying the expected reduction
in uncertainty is mutual information (MI). One application of information planning
can be found in object tracking where a network of sensors generate noisy measure-
ments of a moving object’s position and we are interested in selecting the set of sensors
that would maximally reduce the uncertainty of predicting the object’s track. Optimal
measurement selection can be combinatorially complex and intractable for large-scale
problems; interestingly, it has been shown that simple greedy algorithms that choose
the best measurement at each time step given past selections, provide nearly optimal
solutions for submodular monotone rewards.

In this thesis, we examine several challenges that arise when performing real-world
information planning. Our contributions are three-fold: (i) we provide theoretical guar-
antees for the greedy algorithm used in the submodular monotone case when it is applied
to different problem settings: (1) non-monotone rewards, (2) budget constraints, (3)
settings where only a set of latent variables is of relevance; (ii) we demonstrate how
to substantially reduce the complexity of evaluating MI in Gaussian models by taking
advantage of sparsity in the measurement process; and (iii) we propose a variant of
belief propagation that is suitable for adaptive inference settings.

In the first part, we present conditions under which open-loop is equivalent to closed-
loop information planning. Furthermore, we provide bounds on the greedy performance
for submodular non-monotone functions. We also consider the case when measurements
are valued based on their relative information content and explore the conditions under
which the known bounds for the submodular monotone case apply to this modified
setting. Lastly, we provide bounds for budgeted and focused planning. In the former,
each measurement induces a cost and there is a limited budget constraint, while in the
latter only a set of latent variables is of interest.

In the second part of the thesis, we propose a method for reducing the complexity of
function evaluations that take place during information planning. Previous works have
assumed oracle-value models, where the informational value of any set of measurements
is provided in constant time, an assumption which is often unrealistic. We focus on
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Gaussian models and MI and show that we can substantially reduce complexity by
exploiting sparsity in the measurement process.

In the third part, we propose a variant of belief propagation (BP) that is well-suited
to adaptive inference settings and is exact on trees. During information planning we
need to update the marginal distribution of only one latent variable at each step of
the greedy algorithm. This task can be achieved näıvely, where inference is performed
from scratch at every step, or by taking advantage of repeating calculations. Adaptive
inference is concerned with the latter approach. We suggest a minimal messaging
schedule, where only the necessary messages are sent at every step to guarantee the
correct marginal distributions at the nodes of interest. We also provide extensions to
Gaussian loopy graphs and to the problem of finding the most likely sequence of hidden
variables.

Thesis Supervisor: John W. Fisher III
Title: Senior Research Scientist of Electrical Engineering and Computer Science



Acknowledgments

I would like to extend my deepest thanks to my thesis committee, John Fisher, Jon How
and Costis Daskalakis for their valuable comments and suggestions during my thesis
writing. This thesis would not have been possible without the guidance and support
by John. John trusted me by welcoming me to his group during a critical transitional
period for me (from Masters to PhD) when I was looking for an advisor who would
not have only been able to guide me with his technical expertise, but would also be
fun to work with. John’s mentoring and great insights helped me to not only advance
my knowledge in the area of information theory and probabilistic inference, but also
led me through the entire process of my PhD. It has been remarkable to listen to
John’s intuition about different topics in group meetings and then go back and see on
paper that these claims were true.1 Another great characteristic of John is the relative
freedom he gives to his students to pursue their passion and develop abstract ideas to
promising research directions. It is not an exaggeration to say had there not been for
John and Sensing, Learning, and Inference (SLI) group, in general, the PhD experience
would have been a much poorer experience.

Different aspects of this thesis were supported by the Office of Naval Research and
the Army Research Office Multidisciplinary Research Initiative programs as well as Shell
through the MIT Energy Initiative. I would like also to thank the Alexander Onassis
Foundation for their financial support during the first years of my PhD. Special mention
goes to to Mrs. Roula and Mr. Leuteris Kanellakis, whom I owe my deepest gratitude.
Mrs. and Mr. Kanellakis created the Paris Kanellakis Fellowship in memory of their
son that supported me during the first year of my studies. Both these kind people have
embraced me like their own child and filled me with advice of wisdom before I embark
on my adventure to MIT. I thank them for giving me the opportunity to be one of the
Kanellakis fellows and hope will prove to be an exceptional ambassador of their son’s
legacy.

The everyday routine would be much more different and uneventful had there not
been for my wonderful labmates; Randi Cabezas, Sue Zheng, Jason Chang, Zoran
Dzunic, Julian Straub, Chris Dean, Vadim Smolyakov, David Hayden, Dahua Lin and
our postdocs Guy Rosman, Oren Freifeld and Hossein Mobahi. Especially, some of

1With a few exceptions of course...

v



vi

them had not only been great colleagues, but amazing friends as well. Sue’s placid
personality, Chris’ amazing sense of humor and Randi’s nagging would be just a few of
the things I would remember dearly from this group. A special mention goes to Randi,
whom I got to know a little more. Randi has been one of the most caring people I
happened to meet in CSAIL. It takes some time to get used to him, but he is really
a guy who would help everyone even at his own expense. To support this claim, he
read a full draft of my thesis on his own initiative and provided me with really useful
comments. Besides that, he has been a great -yet tough- gym buddy and friend!

Life in the office would be boring without the engaging conversations with constant
hints of sarcasm by Adrian Dalca, the cryptic one-sentence phrases by George Chen,
the sound of Zoran eating nuts and Ramesh’s high volume laughters and abundant
energy. Jokes aside, it would not be an exaggeration to say that I have spent maybe
most of my PhD life around these guys and I am thankful to them for being such a
great company and source of information. Special thanks go to Christian Wachinger
for his ever resourceful teases and Kayhan Batmanghelich for his dear company.2

Switching gears to people outside my group, I would like to sincerely thank from the
bottom of my heart Nikos Trichakis (the Spaceman) and Eleni Malliou. Nikos and Eleni
have served as my older siblings, who gave me great advice throughout this process and
helped me in every possible way. Especially, Nikos was the first guy I talked to before
making the decision coming to MIT, and Nikos and Eleni were the first people who
helped me settle in when I moved to Boston. Nikos’ advice has always been and will
be of special weight to me.

I’d like to thank all my friends who have filled my life with great moments all
these years; Dimitris Chatzigeorgiou, Kimon Drakopoulos, Gerasimos Skaltsas, Yannis
Bertsatos, Nikos Legbelos,3 Dimitris Bisias, Manolis Kasseris, Spiros Lekkakos, Van-
gelis Sfakianakis, George Christou, Giorgos Angelopoulos, Penelope Pani, Iro Palaska,
Aristeidis, Tim, Yola, Michos, Eva, Theodora and so many others that I am possi-
bly forgetting right now. A special mention goes to Dimitris Tzeranis and Angelos
Tsoukalas. Despite the heated conversations we might have had at times, they were
one of the most genuine and generous persons I’ve met in Boston. I’d always be grateful
for their company and the really great moments we had.

This acknowledgments section would be incomplete without commemorating my
basketball team and all the wonderful and bitter (mostly wonderful) moments we have
had. The following people will always bring the sweetest memories to my mind; Giorgos
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Chapter 1

Introduction

MANY estimation problems, both sequential and non-sequential, can be formulated
as inference in graphical models. Here we propose to investigate such problems

in the context of distributed information gathering subject to limited resources by
representing the stochastic part of the problem as a graphical model. A graphical
model is a probabilistic model that represents the conditional independencies between
random variables. We will assume that the graph is comprised of a set of hidden (latent)
variables X and a set of observed variables Y . Estimation theory is concerned with the
usage of an appropriate set of observations to increase our confidence about the hidden
states. Applications are seen in a wide range of areas such as object tracking, flight
control, medical diagnosis, water pollution monitoring, temperature control monitoring
and influence in social networks. For example, in object tracking we are often interested
in choosing the measurements under limited resources that would be the most crucial in
improving the posterior belief of a quantity of interest, e.g., location of a moving object.
In medical diagnosis, we often need to select the tests that are most “orthogonal” to
each other to better predict a patient’s condition. In water pollution monitoring, we
need to select the sensors that would give us better detection accuracy of polluted areas.
In social networks, we are interested in finding the users that are most influential to
other users.

Providing an optimal solution for the above problems is intractable as the number of
variables grow. Therefore, there is need for approximate techniques that provide nearly
optimal solutions in an efficient way, which usually translates to polynomial complexity
in the number of hidden variables and the size of observation sets. Many previous
works have approached the above problems with so-called myopic approaches, where
the reward of the next step is being optimized based on what has been seen in the past.
Most of the non-myopic extensions of these methods are either appropriate to very
specific problems (e.g., observation models, dynamics models) or are limited to two or
three time intervals (longer planning horizons are typically computationally prohibitive)
[101]. Sensor management problems involving multiple time steps (in which decisions at
a particular stage may utilize information received in all prior stages) can be formulated
and conceptually solved using dynamic programming. However, the optimal solution
of these problems often requires computation and storage of continuous functions with
no finite parameterization, hence even problems involving small numbers of objects,

1
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sensors, control choices and time steps may be intractable. In general, finding the
optimal set that maximizes the reward may result in time and space complexity that
makes it intractable even in problems with small number of hidden states, sensors,
control modes and time steps. Finding greedy approaches that achieve nearly optimal
solutions is an alternative that has been extensively used in the past [54, 55, 57, 102].

The aforementioned works focus on problems with selection constraints, in other
words, in problems where we can select up to a fixed number of measurements for
optimizing a predefined reward function. Determining a solution becomes even more
challenging when the constraint set is more complicated. For example, in more realistic
scenarios, different measurements have different costs and there is a certain budget.
In addition to that, costs of measurements might change over time depending on the
relative information content of measurements as we proceed in the planning process.
Lastly, a commonly used metric in information planning is mutual information which
measures the average reduction in the uncertainty of an underlying process of inter-
est given measurements. When the mild condition of independence of measurements
given the underlying process holds, a simple polynomial-time greedy algorithm gives
nearly optimal solutions for the problem of maximizing mutual information under se-
lection constraints. Another equally interesting problem though is what happens when
conditional independence among measurements breaks.

The above formulations usually view the complexity of information planning in
terms of the total number of feasible plans that satisfy a given set of constraints and
neglect the complexity of evaluating the reward of each set of measurements. In other
words, the evaluation of a set’s information content, which is used for building the
measurement plan, is assumed to be given in constant time. In many realistic settings
though, the computational load of evaluating rewards cannot be ignored, since it de-
pends on the size of latent graph, the number of measurements and size of constraint
sets. In fact, as these parameters grow larger, the complexity of evaluating rewards
becomes a really daunting task, which can make the application of even simple greedy
techniques prohibitive.

� 1.1 Motivation

Many active sensing problems are formulated as Bayesian inference. The problem of
determining a set of measurements from an available set that maximizes an objective
with respect to an underlying quantity of interest subject to constraints is known as
experimental design [56]. In the context of distributed sensor networks, the idea of using
information measures as an objective for Bayesian experimental design is a well-studied
problem. Previous works [30, 40, 58, 103, 107] have considered the use of information
rewards in sensor selection problems. Zhao et al. [107] suggests an one-step look-
ahead approach in which the most informative sensor is chosen at each step and where
information is quantified by the well-known mutual information measure. Kreucher
et al. [58] suggest Rényi entropy [85] as a criterion for tasking sensors for multi-target
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tracking. Both methods are characterized as myopic and greedy in the sense that they
look one time-step ahead and select the single best measurement available. Resource
constraints are implicit in these formulations.

Williams et al. [103] formulated active sensing as an approximate dynamic program
also using mutual information, resulting in a tractable information-driven approach
that allowed for multiple measurements and looking ahead for multiple time steps. The
problem for multiple time steps is that the expected mutual information depends on
previous selections. They overcome this by linearizing the measurement model about
the state and approximating the uncertainty as Gaussian. This way they exploit the
well known property that the information provided by jointly Gaussian measurement
models is independent on the value of the measurement. This was shown to work well
in practice when the spread of the state distribution is narrow with respect to the
smoothness of the measurement model. As a consequence, sensor selection does not
require simulation. It remains an open question if only Gaussian models satisfy this
property.

Furthermore, in realistic settings, constraints on resources, such as energy and com-
munication, preclude the use of all measurement actions and as such result in a combi-
natorial subset selection problem. These constraints are linked with poor link qualities
between sensors, presence of obstacles, battery consumption, communication costs and
in a more abstract level with the quality of the conveyed information. The result is a
stochastic optimization problem whose complexity grows exponentially with the number
of sensing actions. In the past, simpler greedy approaches have been proposed that at-
tain near-optimal solutions. Some of the previous work determine bounds compared to
the optimal solution in unit-cost settings where all measurements are available [53, 54],
in sequential settings where measurement sets are assigned to different hidden states
[102] and in budgeted settings where there is a cost associated with each measurement
and a total budget b [52, 57]. All of the cited works rely on the assumption of non-
decreasing reward functions. Also, greedy heuristics had to be modified ad hoc to take
into account cost constraints. In addition, bounds in budgeted problems seemed to be
much lower than those in the unit-cost case [52]. We are not aware of any extensive
treatment of theoretical guarantees for the budgeted sequential setting. Existing lit-
erature has considered fixed cost settings [38, 52, 53, 54, 57]. An interesting alternative
scenario would be when costs change based on the state of the world of each requesting
party. Previous research that touches upon these issues has been conducted by Kempe
et al. In [86], they consider problems where items can be allocated to many bidders,
and the valuation of each individual bidder decreases as the items get allocated to ad-
ditional bidders and derive sufficient conditions for truthful allocations. In essence, a
player would be willing to pay less for a piece of information when it is shared with
others. Kempe et al. [48] study the impact of budgets. They consider a scenario where
not only the bidders’ willingness to buy information is taken into account, but also their
ability to pay.

Previous works have often made the assumption of oracle value models [51]. That is,
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the reward corresponding to a set of measurements can be provided in constant time.
In many realistic settings though such an assumption does not hold. For instance,
we know that when mutual information is chosen as the reward function in Gaussian
models, the complexity of information planning depends on the hidden dimension, on
the size of a set of measurements under consideration and the available measurements.
As such, Guestrin et al. [38] propose approximating truncation methods for Gaussian
models. They also note the prohibitive costs of evaluating conditional entropies in [54],
while Kempe et al. [47] acknowledge the complexity in evaluating the underlying influ-
ence function that guides the selection of the most influential nodes in a social network
problem. The simply one-step look-ahead technique that has been proposed in previous
works can be summarized as finding the best measurement at each step in some defined
sense given past selections. To judge the contribution of a measurement, we compare
the reward that a set of measurements conveys before and after the incorporation of
that measurement. The sequential incorporation of new measurements into the model
during the greedy selection process can be considered as a special case of adaptive infer-
ence. Adaptive inference refers to the problem of handling changes to the model more
efficiently than performing inference from scratch. Adaptive inference is encountered
not only in information planning problems, but in several other areas such as tempera-
ture monitoring, computational biology, when there is sequential changes in the model,
either in the form of updates in the parameters or in the form of structural changes.
These settings require repeated inference on variations of essentially the same model.
It is therefore desirable to re-use as much information as we can from the previous
computation while repeatedly solving the inference tasks.

� 1.2 Contributions and thesis outline

This thesis makes contributions in two main areas. It studies the performance of greedy
algorithms on a different variety of problems in information planning spanning from
problems where the reward is non-monotone, to ones with finite budget allocation, with
changing costs, or when a small part of the underlying process is of interest. Our goal
is to not only design efficient algorithms, but also provide worst-case guarantees with
respect to the (intractable) optimal solution that would justify their usage. Secondly, we
will analyze the complexity of information planning in Gaussian models when mutual
information is chosen as the reward function. We will show that sparsity can reduce
substantially the computational load. The last task can be seen as a special case of
adaptive inference, where the sufficient statistics of the underlying (hidden) process need
to be updated at every step of the greedy algorithm. We will present a variation of belief
propagation that is more suited to adaptive settings than standard belief propagation
and can also be applied for information planning. We will provide below an overview
of the thesis and summarize the problems and specific contributions.
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� 1.2.1 Chapter 2: Background

In Chap. 2, we include a discussion of background material. We begin the chapter by
describing Hidden Markov Models (HMMs), which are a simple type of graphical models
with applications to several different areas. We continue the chapter by describing
Gaussian HMMs, which have been extensively used in information planning and sensor
selection problems. We present two standard inference techniques used in this setting,
the Kalman filter and smoother. We expand the discussion to information measures
that can be used as rewards in information planning problems. We continue with
presenting essential elements of matroid theory and submodularity, two key properties
for the existence of theoretical bounds when using greedy algorithms. The chapter
continues by outlining the greedy algorithms that are typically used in such settings
and presents worst-case bounds with respect to the optimal solution. Lastly, we discuss
graphical models and how they can be represented, we present the exponential family
of distributions, which holds a few very interesting properties and forms a broad group
under which common distributions such as gaussian, uniform, poisson among others fall
into. An extension to Gaussian graphical models is provided as Gaussian models are
the subject of Chap. 4 and the chapter concludes by presenting typical algorithms that
are suitable for inference in graphical models.

� 1.2.2 Chapter 3: Theoretical Guarantees of Greedy Algorithms

Chap. 3 begins by discussing value independent models and continues by providing
necessary and sufficient conditions for existence of such models. Value independent
models are models where knowledge of the value of measurements does not change the
measurement plan. We show that since Gaussian models satisfy the sufficiency condi-
tions, they can be considered as value independent models. We continue the chapter by
presenting worst-case guarantees of greedy algorithms for several different settings. We
first prove lower bounds for the case where we have multiple observation sets and the
reward function is not monotone. The results of the above analysis can be used in infor-
mation settings with constraints, where a penalized form of mutual information is more
appropriate for incorporating both the information content and cost of a measurement.
We also consider the case of varying costs of measurements depending on their relative
information content. We show that under certain conditions, the bounds derived for
the monotone unit-cost case can be extended to the varying-cost case. We continue
the chapter by presenting upper bounds for the optimal solution in the Submodular
Knapsack Maximization (SKM) problem. Submodular knapsack maximization is en-
countered when measurements have different costs and there is a limited budget. We
additionally explore the case of focused inference, where only a small part of the latent
graph is of interest. In this case, conditional independence between measurements given
the latent graph breaks, which is a necessary condition for the existing bounds to hold.
We show that by providing an extended latent superset (of the set of interest), which
guarantees conditional independence between measurements, we can still apply the fa-
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miliar myopic one-step look-ahead approaches and obtain worst-case bounds under mild
conditions. We further show a method to obtain approximately minimal extended sets.
We conclude the chapter by presenting an example, where measurements induce differ-
ent costs and show that with the selection of penalized mutual information as a reward
function, the generated greedy solution can have higher cumulative informational value
than the solution generated when mutual information as selected as the objective.

� 1.2.3 Chapter 4: Complexity Reduction of Information Planning in Gaus-
sian Models

The chapter commences by outlining the hardness of information planning problems.
We continue the chapter by highlighting the complexity of evaluating mutual informa-
tion rewards, a fact that has been underestimated or even ignored in previous works.
We present related work, which mostly has assumed the existence of oracle value mod-
els. That is, models where answers to queries about rewards of sets of measurements are
provided in constant time. We cite previous works that hint upon the inappropriateness
of such value models in certain settings. We propose a different approach to perform
greedy planning by taking sparsity between measurements and latent variables into ac-
count. Under the assumption that observation set sizes are large and each measurement
depends only on a few latent variables, this analysis provides speedups several orders
of magnitude larger than the standard approach. Another computational bottleneck
during the greedy procedure is the propagation of uncertainty after the incorporation
of a measurement at the end of each iteration. The standard approach is to use Kalman
filtering and smoothing techniques that propagate the uncertainty to the node that is
of interest at each iteration. We propose a variant of belief propagation that sends only
the absolutely necessary messages to update the covariance at the end of interest at
each iteration. Our analysis focuses on Gaussian HMMs for simplicity of exposition.
We show later extensions to trees, loopy graphs as well as to non-linear models. We ad-
ditionally suggest further reductions in complexity by ignoring measurements that are
not valuable to planning. We do this by using the notion of submodularity. Lastly, we
show synthetic experiments that show the tremendous speedups that we obtain through
sparsity and by using our proposed variant of belief propagation instead of standard
Kalman filtering approaches. The significant computational reductions in evaluating in-
formation rewards allow for consideration of more visitation orders of observation sets
that satisfy the constraints. As such, we can find better measurement plans suggested
by the greedy algorithm and better upper bounds for the optimal solution. As a last
result, we show an example where the value of measurement sets is decoupled from
the complexity they incur during the greedy process. This latter property can help us
guide the selection process and characterize the number of different visitation orders
that needs to be explored before we arrive at a satisfying greedy solution.
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� 1.2.4 Chapter 5: Adaptive Belief Propagation

Chap. 5 focuses on adaptive inference settings, that is, in settings where there are
sequential changes in the parameters of the graphical model. In such settings, sufficient
statistics need to be computed without performing inference from scratch. We will
additionally concentrate in focused inference settings, where only a few marginals are
of interest. We present a variant of BP, termed adaptive BP, that is well-suited for
such settings. We show that the algorithm is exact for trees and it applies both to
discrete and Gaussian variables. Interestingly, we demonstrate that this algorithm is
exact for Gaussian loopy graphs as well, when combined with the method by Liu et al.
[64]. We provide a thorough complexity analysis and show that adaptive BP is always
faster than standard BP in adaptive inference settings. We include extensions when
multiple nodes are of interest or multiple nodes arrive at a time and extend the method
to the MAP sequence problem, where the inference problem concerns finding the most
likely sequence of the full latent graph. Furthermore, we consider the reverse problem,
when we only have constraints on the number of measurements we can obtain from each
set and our goal is to minimize the complexity of performing inference at every step.
Lastly, we present experiments on both synthetic and real data. We show that our
method is orders of magnitude faster than standard BP in the average case and provide
conditions under which it outperforms state-of-the-art method by Sümer et al. [89]. We
demonstrate the applicability of our method in two real datasets, on computational
biology and temperature monitoring data, where we observe similar findings.

� 1.2.5 Chapter 6: Conclusion

In Chap. 6, we summarize the work and contributions of this thesis. We conclude by
providing future directions.

� 1.2.6 Appendix

Derivations that would detract from the natural flow of the narrative have been included
in the appendix.
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Chapter 2

Background

IN this chapter, we review relevant background material that we utilize to demonstrate
our results. The primary problem of interest is that of determining a nearly optimal

measurement plan. As a related problem, we are interested in sequential inference,
where we make inference over latent parts of the graph as new measurements arrive.
Both problems require the understanding of several related topics. One should be
familiar with the most common approaches of modeling underlying physical phenomena
as well as constructing estimators for conducting inference. For purposes of information
planning, one should also select the objective under which valuable measurements would
be chosen and therefore a discussion of different information measures is necessary. In
addition, knowledge of the approximating methods that are used for planning is also
crucial in understanding the theoretical guarantees and complexities that come with
them. Lastly, a discussion of the most common inference algorithms is useful to become
familiar with some of the different approaches used that provide solutions to different
inference problems.

In Sec. 2.1, we discuss Hidden Markov Models (HMMs), a commonly used model
for describing object tracking problems as well as other problems that can be seen as
applications of information planning. We provide a special treatment of HMMs for
the Gaussian case in Sec. 2.2, where we present the Kalman filter and smoother used
for estimation of sufficient statistics at the latent nodes. In Sec. 2.3, we provide the
most common information measures that are used as objectives in information planning.
We present the entropy and mutual information, discuss their properties and outline
generalizations of them such as the Kullback-Leibler divergence and f -divergences. In
Sec. 2.4, we present the matroid theory which applies to the structures that we consider.
In Sec. 2.5, we discuss submodularity, a necessary property that the chosen objectives
should have such that the approximating methods have desirable theoretical guarantees.
In Sec. 2.6, we present (approximating) greedy heuristics for different settings that
come with nearly optimal lower bounds with respect to the optimal solutions. We are
interested in two settings; a batch one where all measurements are available at all times
and a sequential one, where all measurements might not be available at every step during
the greedy selection process but may arrive at different points in time. Also, we deal with
two types of constraints, one where there is constraint on the number of measurements
and one where there is a budget constraint assuming that measurements have different

9
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costs. In Sec. 2.7, we present graphical models and introduce the necessary language for
describing stochastic phenomena. In Sec. 2.8, we give a quick overview of exponential
families, which capture a large spectrum of known distributions, where inference is done
in closed form, since posterior parameters can be derived in closed form. In Sec. 2.9,
we focus on Gaussian graphical models, since they present special graph properties and
derive the entropy and mutual information forms in the Gaussian case. We conclude
with Sec. 2.10, where we present one of the most common algorithms for performing
inference in graphical models; belief propagation. We outline the algorithm both for
discrete and Gaussian models and discuss a new algorithm by Liu et al. [64], which
provides exact results for Gaussian loopy graphs.

� 2.1 Hidden Markov Models

Hidden Markov models (HMMs) are a generalization of a Markov chain. A Markov
chain is a memoryless random process. In a first-order Markov chain, the next state
depends only on the previous state (see Fig. 2.1a). The “memorylessness” property is
known as Markov property [8]. Mathematically, the Markov property is expressed as

P (Xt+1 = j | Xt = i,Xt−1 = it−1, . . . ,X1 = i1) = P (Xt+1 = j | Xt = i).

A Markov chain is homogeneous/stationary, when the conditional distribution is not
time dependent. That is,

P (Xt+1 = j | Xt = i) = P (Xt+s+1 = j | Xt+s = i) = pij ,∀s.

The joint distribution of a Markov chain of length T is given by

p(x1, . . . , xT ) = p(x1)

T∏

t=2

p(xt | xt−1).

In a hidden Markov model, the state is not directly visible but rather indirectly ob-
served through a (usually) noisy measurement. Intuitively, the variables denoted by X
represent a process evolving over time that we do not directly observe. This process
forms a Markov chain. We refer to the variables of this process as hidden variables.
The variables denoted by Y (depicted as gray nodes in Fig. 2.1b) depend on the hidden
variable of the same time step and are usually referred to as observed nodes. HMMs
have numerous applications in several fields such as speech recognition [43], handwrit-
ing [75], gesture recognition [104], cryptanalysis [45] and bioinformatics [25]. The joint
distribution in an HMM is given by

p(x1, . . . , xT , y1, . . . , yT ) = p(x1)

T∏

t=2

p(xt | xt−1)

T∏

t=1

p(yt | xt).

A common task under consideration is the posterior probability of a hidden state given
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...X1 X2 X3 X4 XT

(a) Markov chain

...X1 X2 X3 X4 XT

Y1 Y3 YT

(b) HMM

Figure 2.1: Markov chain and HMM. (a) A Markov chain is a memoryless random
process, where future values do not depend on past history given present. Here, we
show an example of a first order Markov chain, where next state depends only on the
current state and not on the sequence of events that preceded it. (b) A Hidden Markov
model (HMM) is a model comprising of a latent stochastic process modeled by a Markov
chain, and a series of observations that are generated by the hidden states.

all the observations, P (Xt = xt | Y1:T = y1:T ) There are certain algorithms that make
inference rather easy for this type of problems. One of them is the forward-backward
algorithm [84], which is a dynamic programming algorithm that uses two types of
messages to determine the posterior marginal at every node. The forward (or alpha)
message proceeds forward in time and represents the probability αt(xt) = p(xt, y1:t),
while the backward (beta) message goes backwards and represents probability βt(xt) =
p(yt+1:T | xt). The posterior marginal is proportional to

p(xt | y1:T ) ∝ αt(xt)βt(xt).
The forward–backward algorithm constitutes a special case of a more general algorithm
known as sum-product or belief propagation. We will delay the discussion of the latter
method to Sec. 2.10.1.

� 2.2 Gaussian Hidden Markov Models

In the previous section, we considered the case when the hidden variables are discrete
and the observed ones are either discrete or continuous. A Gaussian HMM is a state
space model, when both the hidden and observed variables follow a multivariate Gaus-
sian distribution and are given by the following dynamics:

Xt+1 = AtXt + Vt (2.1)

Yt = CtXt + Wt, (2.2)

where At ∈ Rd×d, Ct ∈ Rm×d, Vt ∼ N (vt; 0, Qt), Wt ∼ N (wt; 0, Rt), X1 ∼ N (x1; 0,Σ1).
Eq. (2.1) represents the dynamics of the underlying process, while Eq. (2.2) the
measurement generating process. Variables Vt,Wt represent the white Gaussian noises
added in the dynamics and measurement processes. Here, we consider them to be zero-
mean, but they can easily be generalized to non-zero Gaussians. When At, Ct, Qt, Rt
do not change w.r.t. time, the model is time-invariant.
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� 2.2.1 Kalman Filter

The Kalman filter was introduced in 1960 by R. Kalman [44]. It is the minimum mean
squared estimator (MMSE) for the quadratic loss objective

x̂(y1:T ) = arg min
x̂

E[(x̂− X )T (x̂− X ) | y1:T ],

where X is the true (unknown) underlying stochastic process. It turns out that MMSE
is x̂(y1:T ) = E[X | y1:T ], which is exactly the output of the Kalman filter. Kalman
filter is also the optimal estimator to other criteria such as the mean absolute error and
uniform cost, when the noise processes are Gaussian [101].

When the underlying system is a Gaussian HMM, the Kalman filter updates re-
turn the posterior mean and covariance of the hidden process X1, . . . ,XT given the
measurements. It is comprised of two steps, a propagation step

x̂t|t−1 = E[Xt | y1:t−1] = At−1x̂t−1|t−1 (2.3)

Σt|t−1 = cov(Xt | y1:t−1) = At−1Σt−1|t−1A
T
t−1 +Qt−1, (2.4)

where the current state is predicted given the past history of measurements, and an
update step

x̂t|t = E[Xt | y1:t] = x̂t|t−1 +Gt(yt − Ctx̂t|t−1) (2.5)

Σt|t = cov(Xt | y1:t) = Σt|t−1 −GtCtΣt|t−1 (2.6)

Gt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1, (2.7)

where the belief of the current hidden state is updated after the incorporation of the
measurement at the same time point.

Since variables X1, . . . ,XT ,Y1, . . . ,YT are jointly Gaussian, the expectations gen-
erated by the Kalman filter correspond to the MAP estimate of hidden process given
the observations. It is worth noting that the covariance estimates do not depend at
all on the measurement values. This is an observation which will prove critical later
for determining the measurement schedule since commonly used information measures
(entropy, mutual information) depend only on the covariance in Gaussian models. This
allows for planning in advance that is no different from online planning that is taking
place as new measurements are incorporated into the model.

� 2.2.2 Extended Kalman Filter

Kalman filter applies to linear Gaussian models. Extended Kalman filter (EKF) is
the non-linear extension which linearizes about the current estimate value [28]. EKF
linearizes about a working point by using multivariate Taylor expansions.

The non-linear model is given by:

Xt+1 = ft(Xt) + Vt (2.8)

Yt = ht(Xt) + Wt, (2.9)
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where ft, ht are differentiable functions. In this case too, Vt, Wt are uncorrelated white
noise processes.

The EKF propagation and update equations take the following form:

Propagation x̂t|t−1 = ft−1(x̂t−1|t−1) (2.10)

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Qt−1 (2.11)

Update x̂t|t = x̂t|t−1 +Gt(yt − ht(x̂t|t−1)) (2.12)

Σt|t = Σt|t−1 −GtCtΣt|t−1 (2.13)

Gt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1, (2.14)

where At−1 = ∇ft−1(x̂t−1|t−1), Ct = ∇ht(x̂t|t−1). Higher order EKFs retain more terms
of the Taylor expansion and tend to provide benefits when the measurement noise is
small. The estimated covariance tends to underestimate the true one and, in general,
the estimates of an EKF can be far from the true value if the underlying model is highly
non-linear.

� 2.2.3 Kalman Smoother

The Kalman filter provides the estimate of the hidden variable at the current time point
given the past history of measurements. A more interesting quantity of interest is the
belief of Xt given all the observations, y1:T . This is accomplished with the so-called
Kalman smoothing. The Rauch-Tung-Striebel (RTS) smoother is an efficient two-pass
algorithm that outputs the posterior belief of each hidden variable given all the acquired
measurements [26]. It starts with a forward pass, where the Kalman filter estimates are
obtained and proceeds with a backward pass using the following recursive equations:

x̂t|T = x̂t|t + Ft(x̂t+1|T − x̂t+1|t) (2.15)

Σt|T = Σt|t + Ft(Σt+1|T − Σt+1|t)F
T
t (2.16)

Ft = Σt|tA
T
t Σ−1

t+1|t. (2.17)

� 2.3 Information Measures

An essential part in a planning problem is to define a reward/cost function that deter-
mines the order of actions as well as the particular types of actions taken for a particular
problem. In some settings, the choice of a reward function is tied to the task at hand.
For example, in a supply-chain problem, the cost might be the distance between loca-
tions. The objective would be to choose the optimal order to visit a fixed set of locations
that minimizes the distance traveled. In a medical decision problem, the reward might
be the probability of a patient’s survival and the objective to maximize this probability
by choosing a number of medical tests to run (as there are limited resources). In finance,
the cost might be the risk of an investor’s portfolio as expressed by the covariance of
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the financial assets constituting this portfolio and the objective to choose the particular
assets (and their relative weighting) that would minimize this risk. It is evident that
to determine a choice of actions, it is necessary to define a reward (or cost) linked to
them. In a more abstract formulation, not tied to a particular problem, rewards can be
defined in terms of the bits of information gained by choosing a particular set of items
(measurements) to refine our belief over an underlying hidden process.

In information theory, objectives that are commonly used for this purpose are en-
tropy, mutual information (MI), Kullback-Leibler (KL) divergence as well as the gen-
eralization of the previous measures known as f–divergences (or Ali–Silvey distances).
We will continue by presenting definitions and basic properties of these quantities.

� 2.3.1 Entropy

Entropy is a measure of uncertainty in a random variable [20]. The term usually refers
to Shannon entropy, which quantifies the expected value of information contained in a
message. In other words, it is the amount of information required on average to fully
describe the random variable.

It is defined as
H(X ) = E[− logP (X )]. (2.18)

For a discrete variable, Eq. (2.18) expands to

H(X ) = −
∑

x∈X
pX (x) log pX (x). (2.19)

When X is continuous, we simply replace the sum with an integral

H(X ) = −
∫

x
pX (x) log pX (x) dx. (2.20)

The joint entropy of two variables X ,Y is defined as

H(X ,Y ) = E[− logP (X ,Y )]. (2.21)

In the discrete case, the joint entropy of X ,Y takes the form

H(X ,Y ) = −
∑

x∈X

∑

y∈Y
pX ,Y (x, y) log pX ,Y (x, y). (2.22)

It is defined similarly for the continuous case. Lastly, the conditional entropy is defined
as

H(X | Y ) = E[− logP (X | Y )], (2.23)

which boils down to

H(X | Y ) = −
∑

y∈Y
pY (y)

∑

x∈X
pX |Y (x | y) log pX |Y (x | y) (2.24)
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in the discrete case.
We define the pointwise conditional entropy

H(X | Y = y) = −
∑

x∈X
pX |Y (x | y) log pX |Y (x | y). (2.25)

It is connected to the conditional entropy with the following formula

H(X | Y ) = EY [H(X | Y = y)]. (2.26)

We continue by presenting two important properties of entropy, the non-negativity
for discrete variables and the chain rule.

Lemma 2.3.1 (Non-negativity of entropy of a discrete r.v.). For a discrete variable X ,
we have that

H(X ) ≥ 0. (2.27)

Proof. We have

H(X ) = −
∑

x∈X
pX (x) log pX (x) =

∑

x∈X
pX (x) log

1

pX (x)
≥ 0,

since pX (x) ≥ 0, we have log 1
pX (x) ≥ 0,∀x. �

The same holds true for pointwise conditional entropy and hence for conditional
entropy as well.

Theorem 2.3.1 (Chain rule of entropy). Joint entropy, entropy and conditional entropy
are related as

H(X ,Y ) = H(X | Y ) +H(Y ). (2.28)

Proof. We have

H(X ,Y ) = −
∑

x∈X

∑

y∈Y
pX ,Y (x, y) log pX ,Y (x, y)

= −
∑

x∈X

∑

y∈Y
pX ,Y (x, y) log pX |Y (x | y)−

∑

x∈X

∑

y∈Y
pX ,Y (x, y) log pY (y)

= H(X | Y ) +H(Y ).

�

It trivially holds that

H(X ,Y ) = H(Y | X ) +H(X ).

Corollary 2.3.1 (Chain rule of conditional entropy). Let X ,Y ,Z be random variables.
It holds that

H(X ,Y | Z ) = H(X | Y ,Z ) +H(Y | Z ). (2.29)
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Corollary 2.3.2 (Chain rule of entropy for multiple variables). Let X1, . . . ,XN be
drawn according to pX1,...,XN

(x1, . . . , xN ). Then, the join entropy can be decomposed as

H(X1, . . . ,XN ) =

N∑

i=2

H(Xi | X1, . . . ,Xi−1) +H(X1). (2.30)

Theorem 2.3.2 (“Information never hurts” principle for entropy). Let X ,Y be random
variables. Conditioning on Y , the uncertainty over X reduces on average.

H(X | Y ) ≤ H(X ). (2.31)

Proof. We will defer the proof for this theorem until the introduction of mutual infor-
mation in Sec. 2.3.2. �

It is important to note that this inequality is true on average. In other words, it
might not hold for a particular instance of pointwise entropy, but it holds on average.

Example 2.3.1. Let X ,Y be binary random variables with the following joint distri-
bution.

X
Y 0 1

0 0 ε
1 1− 2ε ε

We have that

H(X ) = −ε log2(ε)− (1− ε) log2(1− ε)
H(X | Y = 0) = −(1− 2ε) log2(1− 2ε)

H(X | Y = 1) = −2ε log2(ε)

H(X | Y ) = −4ε2 log2(ε)− (1− 2ε)2 log2(1− 2ε).

If we set ε = 1/4, we have H(X ) = 2 − 3
4 log2(3) ≈ 0.8113, H(X | Y = 0) = 1/2,

H(X | Y = 1) = 1, H(X | Y ) = 3/4. Even though we have H(X ) < H(X | Y = 1), it
holds on average that H(X ) ≥ H(X | Y ).

� 2.3.2 Mutual Information

Mutual information (MI), I(X ;Y ), is a measure of distance between the joint distribu-
tion pX ,Y (·, ·) and the product distribution pX (·)pY (·).

I(X ;Y ) = E
[
log

P (X ,Y )

P (X )P (Y )

]
. (2.32)

For a discrete variable, it expands to

I(X ;Y ) =
∑

x∈X

∑

y∈Y
pX ,Y (x, y) log

pX ,Y (x, y)

pX (x)pY (y)
. (2.33)
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We also define the pointwise mutual information as

I(X ;Y = y) =
∑

x∈X
pX |Y (x | y) log

pX |Y (x | y)

pX (x)
. (2.34)

MI is the mean of pointwise mutual information over distribution pY (·):

I(X ;Y ) = EY [I(X ;Y = y)]. (2.35)

From Eq. (2.35), we can see that MI is the gain of information on average (reduction
in bits of uncertainty), that is achieved by incorporating observation Y to update our
belief over X ’s distribution.

The conditional mutual information of variables X ,Y given Z is defined as

I(X ;Y | Z ) = E
[
log

P (X ,Y | Z )

P (X | Z )P (Y | Z )

]
. (2.36)

We will present now a few key properties of MI that will prove useful for later.

Theorem 2.3.3 (MI and entropy). MI is linked to entropy with the following equivalent
relations

I(X ;Y ) = H(X )−H(X | Y ) = H(Y )−H(Y | X ) (2.37)

= H(X ) +H(Y )−H(X ,Y ). (2.38)

Theorem 2.3.4 (Symmetry of MI). Let X ,Y be random variables. The MI between
X ,Y is symmetric.

I(X ;Y ) = I(Y ;X ). (2.39)

In other words, the reduction in uncertainty that Y brings to X ’s posterior belief on
average is the same with the reduction that X brings to Y ’s posterior belief on average.

Corollary 2.3.3 (Symmetry of conditional MI). Let X ,Y ,Z be random variables. The
MI between X ,Y given Z is symmetric.

I(X ;Y | Z ) = I(Y ;X | Z ). (2.40)

Theorem 2.3.5 (Non-negativity of MI). MI is non-negative, in other words, it never
hurts to obtain an observation on average.

I(X ;Y ) ≥ 0. (2.41)

Proof. We have

−I(X ;Y ) = EX ,Y

[
log

P (X )P (Y )

P (X ,Y )

]
.
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Let Z = P (X )P (Y )
P (X ,Y ) , then

−I(X ;Y ) = EZ [logZ ]
(a)

≤ log (EZ [Z ])
(b)
= log 1 = 0,

where (a) is due to Jensen’s inequality. The second equality (b) holds, because xx

EZ [Z ] =
∑

z pZ (z)z =
∑

x,y pX ,Y (x, y)pX (x)pY (y)
pX ,Y (x,y) =

∑
x,y pX (x)pY (y) = 1. Therefore,

I(X ;Y ) ≥ 0. If X ,Y are continuous, sums are replaced with integrals. �

Corollary 2.3.4 (Non-negativity of conditional MI). It holds that

I(X ;Y | Z ) ≥ 0, (2.42)

with equality if and only if X and Y are conditionally independent given Z .

Thm. 2.3.2 holds trivially, since I(X ;Y ) ≥ 0 and I(X ;Y ) = H(X )−H(X | Y ).

The equivalent of “information never hurts” principle for MI is the following

Theorem 2.3.6 (“Information never hurts” principle for MI). Let X ,Y ,Z be random
variables. Then, the following inequality holds

I(X ;Y ) ≤ I(X ;Y ,Z ). (2.43)

That is, the gain is always bigger the more observations we add to update the
posterior belief of a variable of interest (here, X ).

Theorem 2.3.7 (Chain rule of MI). Let X1, . . . ,XN be drawn according to pX1,...,XN
(x1, . . . , xN ).

Then, it holds that

I(X1, . . . ,XN ;Y ) = I(Y ;X1, . . . ,XN ) =
N∑

i=2

I(Xi;Y | X1, . . . ,Xi−1) + I(X1;Y ). (2.44)

The chain rule holds for conditional MI as well. That is, the MI of X1, . . . ,XN ,Y
given Z can be decomposed as

I(X1, . . . ,XN ;Y | Z ) =

N∑

i=2

I(Xi;Y | X1, . . . ,Xi−1,Z ) + I(X1;Y | Z ). (2.45)

Theorem 2.3.8 (Data-processing inequality). Let X ,Y ,Z form the following Markov
chain, X → Y → Z . That is, Z directly depends on Y and Y depends on X . Then, the
following inequality holds

I(X ;Y ) ≥ I(X ;Z ). (2.46)
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Proof. By the chain rule, we have

I(X ;Y ,Z ) = I(X ;Y | Z ) + I(X ;Z ) = I(X ;Z | Y ) + I(X ;Y ).

Since X ⊥⊥ Z | Y , I(X ;Z | Y ) = 0. Therefore,

I(X ;Y ) = I(X ;Y | Z ) + I(X ;Z )

and since I(X ;Y | Z ) ≥ 0, we have that

I(X ;Y ) ≥ I(X ;Z ).

�

Corollary 2.3.5 (Data-processing inequality for conditional MI). Let X ,Y ,Z form the
following Markov chain, X → Y → Z . Then, the following inequality holds

I(X ;Y ) ≥ I(X ;Y | Z ). (2.47)

Proof. The proof is exactly the same with that of Thm. 2.3.8. �

Obviously, if Z = g(Y ), that is, if Z is a function of Y , the Markovianity assumption
of Thm. 2.3.8 is satisfied and the inequality I(X ;Y ) ≥ I(X ; g(Y )) holds. It is worth
noting that the dependencies can be reversed and the data-processing inequalities would
still hold. In other words, we could have X ← Y ← Z , while inequalities (2.46), (2.47)
would still be in place. Lastly, as in the entropy case, these inequalities hold on average.
In other words, for a particular pointwise quantity, the inequality might be violated,
but it is satisfied on average.

Example 2.3.2. Let X ,Y ,Z be binary random variables with the following joint dis-
tribution.

X = 0

Y
Z 0 1

0 1
3 − 2ε 2

3ε

1 2
3 − 4ε 4

3ε

X = 1

Y
Z 0 1

0 ε ε
1 ε ε

We have

pX (x) =

{
1− 4ε, x = 0

4ε, x = 1
, pY (y) =

{
1
3 + 2

3ε, y = 0
2
3 − 2

3ε, y = 1
, pZ (z) =

{
1− 4ε, z = 0

4ε, z = 1

pX |Y (x | y = 0) =

{
1−4ε
1+2ε , x = 0

6ε
1+2ε , x = 1

, pX |Y (x | y = 1) =

{
1−4ε
1−ε , x = 0
3ε

1−ε , x = 1
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pX |Z (x | z = 0) =

{
1−6ε
1−4ε , x = 0

2ε
1−4ε , x = 1

, pX |Z (x | z = 1) =

{
1
2 , x = 0
1
2 , x = 1

pZ |Y (z | y = 0) =

{
1−3ε
1+2ε , z = 0

5ε
1+2ε , z = 1

, pZ |Y (z | y = 1) =

{
2−9ε
2−2ε , z = 0

7ε
2−2ε , z = 1

pX |Y ,Z (x | y = 0, z = 0) =

{
1−6ε
1−3ε , x = 0

3ε
1−3ε , x = 1

, pX |Y ,Z (x | y = 0, z = 1) =

{
2
5 , x = 0
3
5 , x = 1

pX |Y ,Z (x | y = 1, z = 0) =

{
2−12ε
2−9ε , x = 0
3ε

2−9ε , x = 1
, pX |Y ,Z (x | y = 1, z = 1) =

{
4
7 , x = 0
3
7 , x = 1

We can easily show that Y ⊥⊥ Z | X , since

pZ |X (z | x = 0) = pZ |X ,Y (z | x = 0, y = 0) = pZ |X ,Y (z | x = 0, y = 1) =

{
1−6ε
1−4ε , z = 0

2ε
1−4ε , z = 1

pZ |X (z | x = 1) = pZ |X ,Y (z | x = 1, y = 0) = pZ |X ,Y (z | x = 1, y = 1) =

{
1
2 , z = 0
1
2 , z = 1

Therefore, X ,Y ,Z form the Markov chain, Z ↔ X ↔ Y and Cor. 2.3.5 should hold. In
order to show that Cor. 2.3.5 holds only on average, we need to evaluate the quantities
I(X ;Y ), I(X ;Z | Y = 0), I(X ;Z | Y = 1), I(X ;Z | Y ):

I(X ;Y ) =
∑

y

pY (y)
∑

x

pX |Y (x | y) log
pX |Y (x | y)

pX (x)

I(X ;Z | Y = 0) =
∑

z

pZ |Y (z | y = 0)
∑

x

pX |Y ,Z (x | y = 0, z) log
pX |Y ,Z (x | y = 0, z)

pX |Y (x | y = 0)

I(X ;Z | Y = 1) =
∑

z

pZ |Y (z | y = 1)
∑

x

pX |Y ,Z (x | y = 1, z) log
pX |Y ,Z (x | y = 1, z)

pX |Y (x | y = 1)

I(X ;Z | Y ) = pY (y = 0)I(X ;Z | Y = 0) + pY (y = 1)I(X ;Z | Y = 1),

which are depicted in the following figure for ε ∈ [0.01, 0.1]. We observe that I(X ;Z |
Y = 0) ≥ I(X ;Z ), but on average I(X ;Z ) ≥ I(X ;Z | Y ).

� 2.3.3 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence or relative entropy is a measure of distance be-
tween two distributions. It is defined as

D(p‖ q) = Ep
[
log

p(X )

q(X )

]
. (2.48)
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Submodularity holds on average: I(X;Z) ≥ I(X;Z|Y)

I(X;Z)
I(X;Z|Y)
I(X;Z|Y = 0)
I(X;Z|Y = 1)

For example, if X is a discrete random variable, the above relation takes the form

D(p‖ q) =
∑

x∈X
p(x) log

p(x)

q(x)
.

KL-divergence is not symmetric, in other words, D(p‖ q) 6= D(q‖ p) in general.

Theorem 2.3.9 (Non-negativity of KL-divergence). KL is non-negative,

D(p‖ q) ≥ 0, (2.49)

with equality if and only if p(x) = q(x),∀x.

Proof. The proof follows the same logic to that of Thm. 2.3.5. �

� 2.3.4 f–divergences

f–divergence (or else known as Ali-Silvey distance) is a generalization of KL-divergence.
It measures the difference between two probability distributions p, q weighted by a
function f [2]. It is defined as

Df (p‖ q) = Eq
[
f

(
p(X )

q(X )

)]
, (2.50)

where f is a convex function. For example, if X is a discrete random variable, the above
relation transforms to

Df (p‖ q) =
∑

x∈X
q(x)f

(
p(x)

q(x)

)
.

It degenerates to KL-divergence, if we set f(t) = t log(t):

Dt log(t)(p‖ q) =
∑

x∈X
q(x)

p(x)

q(x)
log

p(x)

q(x)
=
∑

x∈X
p(x) log

p(x)

q(x)
= D(p‖ q).
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� 2.4 Matroid Theory

Matroids are an abstraction of the notion of linear independence in vector spaces [36].
They are very important because they correspond to a rich class of combinatorial opti-
mization problems that can be solved rather efficiently. Before we proceed in defining
what a matroid is, we will first present the notions of set system and an independence
system.

Definition 2.4.1 (Set system). A (finite) ground set V and a set of subsets of V,
I ⊆ 2V is called a set system, denoted by (V,I ).

Set V can represent the full set of measurements, a subset of which needs to be se-
lected under a particular optimization objective to update the belief over an underlying
process. More generally, V can represent a set of items.

Definition 2.4.2 (Independence system). A set system (V,I ) is an independence
system, if ∅ ∈ I (emptyset containing) and ∀I ∈ I ,J ⊂ I, it holds that J ∈ I
(down-closed or subclusive).

Example 2.4.1. Let V = {1, 2, 3, 4} be the ground set of measurements and I =
{∅, {1}, {1, 2}, {1, 2, 4}}. (V,I ) is not an independence system, since even though
{1, 2, 4} ∈ I and {1, 4} ⊂ {1, 2, 4}, {1, 4} /∈ I . However, if I = {∅, {1}, {2}, {4},
{1, 2}, {1, 4}, {2, 4}, {1, 2, 4}}, then (V,I ) is an independence system.

Essentially, for a set system to be independent, every subset of a set belonging to the
independence system should belong to the system as well.

Definition 2.4.3 (Maximal set). A maximal set A ∈ I is a set such that adding any
other element from ground set V makes A no longer a member of the independence
system. More formalistically, A ∈ I is maximal if A ∪ {e} /∈ I ,∀e ∈ V \ A.

Example 2.4.2. Suppose we have the independence system (V,I ) = ({1, 2, 3, 4}, {∅, {1},
{2}, {3}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}}). Singleton set {1} is not maximal since we
can add elements {2} or {4} to it that would belong to the independence system as well.
However, {3} is a maximal set since by adding any other element, the concatenation
will not belong to I anymore. The same holds for set {1, 2, 4}.
Definition 2.4.4 (Maximal independent subsets of A). Assume we have the indepen-
dence system (V,I ). The maximal independent subsets or bases of set A is a collection
of subsets of A that are maximal sets of the independence system (V,I ). In other
words,

maxInd(A) = {I | I ⊆ A, I ∈ I and ∀e ∈ A \ I, I ∪ {e} /∈ I }.
Matroids are a particular type of an independence system for which efficient optimiza-
tion algorithms exist for certain problems. They represent a generalization of algebraic
linear independence. Matroids are independence systems with the additional property
that ∀I,J ∈ I with |I| = |J | + 1, there exists an element e ∈ I \ J such that
J ∪ {e} ∈ I . In more detail, a matroid is defined as follows:
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Definition 2.4.5 (Matroid). A set system M = (V,I ) is a matroid, if

(a) ∅ ∈ I (emptyset containing)

(b) ∀I ∈ I ,J ⊂ I, J ∈ I (down-closed or subclusive).

(c) ∀I,J ∈ I with |I| = |J |+ 1, there exists e ∈ I \ J such that J ∪ {e} ∈ I .

Equivalent conditions for (c) are:

(c′) ∀I,J ∈ I with |I| > |J |, there exists e ∈ I \ J such that J ∪ {e} ∈ I .

(c′′) Let A ⊆ V. For all I1, I2 ∈ maxInd(A), |I1| = |I2|. In other words, all maximal
subsets (bases) of A have the same size.

Definition 2.4.6 (Rank of matroid). The rank function rM : 2V 7→ N of a matroid
M = (V,I ) for a set I ⊆ V is defined as the cardinality of the maximal subset of I
that is still a member of the independence system I :

rM (I) = max{|J | | J ⊆ I,J ∈ I }.

It obviously holds that 0 ≤ rM (I) ≤ |I|.

� 2.4.1 Examples

There are numerous mathematical structures which satisfy the properties of a matroid.
Below we outline a few of them.

Linear Matroid

Let A be an M ×N matrix and V = {1, . . . , N}. Also, let I be the collection of sets
such that if I = {i1, . . . , ik} ∈ I , then the column vectors Ai1 , . . . , Aik are linearly
independent. The system M = (V,I ) forms a linear matroid.

Graphic Matroid

Let G = (V, E) be a graph, with V , E representing the node and edge sets, respectively.
Define E as the ground set and I the collection of subsets of E that do not form a
cycle. That is, if Es ∈ I and covers the set of nodes Vs, then graph Gs = (Vs, Es) is
either a forest or a tree. In other words, a graphic matroid contains all the forests and
trees for a given graph G. The system M = (E ,I ) is a graphic matroid.

Uniform Matroid

Let V = {1, . . . , N}. For any non-negative integer k ≤ N , we define I = {I | I ⊆
V, |I| ≤ k}. Then, M = (V,I ) is a uniform matroid of rank k. It is usually denoted
by Mk,N .
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Partition Matroid

Let V = V1 ∪ · · · ∪ VT be a partition of V into T disjoint sets. We define I = {I |
I ⊆ V, |I ∩ Vt| ≤ kt,∀t = 1, . . . , T}, where k1, . . . , kT are fixed parameters. Then,
M = (V,I ) is a partition matroid. Partition matroid is a generalization of a uniform
matroid.
The last two structures would be of most interest to us in this thesis. The rank of the
uniform matroid is rM (I) = min{|V ∩I|, k}, while it is rM (I) =

∑T
t=1 min{|Vt∩I|, kt}

for a partition matroid.

� 2.5 Submodularity

Submodular functions is a special case of set functions that when applied on matroidal
structures in a greedy fashion can give nice theoretical guarantees with respect to the
optimal value. They have been important in several fields, such as combinatorics [92],
social networks [72], computer vision [6, 12], finance [7] and economics [27]. Below, we
define formally the notions of a set function, normalized function, non-negative function,
monotone function and submodular function. We present a few key properties of the
latter.

A set function f : 2V 7→ R is a real-valued function that takes a set as an input
and returns a real number. It can be thought of as utility measure that quantifies the
value/cost of a set of items (measurements) over some defined metric.

Definition 2.5.1 (Normalized function). A set function f is normalized if f(∅) = 0.

Definition 2.5.2 (Non-negative function). A set function f is non-negative if f(A) ≥
0, ∀A ⊆ V.

Definition 2.5.3 (Non-decreasing (monotone) function). A set function f is non-
decreasing (monotone) if f(A) ≤ f(B),∀A ⊆ B.

Corollary 2.5.1 (Non-negativity for monotone functions). If for a monotone function
holds that f(∅) ≥ 0, then f(A) ≥ 0, ∀A.

Definition 2.5.4 (Submodular function). A set function f is submodular if

f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B),∀A,B ⊆ V. (2.51)

If the inequality sign in Eq. (2.51) is reversed, that is, f(A∪B)+f(A∩B) ≥ f(A)+
f(B),∀A,B ⊆ V, the function is called supermodular. When Eq. (2.51) is satisfied
with equality for every pair A,B, the function is called modular. Obviously, a modular
function is both submodular and supermodular. Usually, certain function properties are
more easily identifiable through an alternative definition, that of, increment function.

Definition 2.5.5 (Increment function). Increment function f(A | B) is defined as
f(A | B) , f(A ∪ B)− f(B).
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If A = {e}, in other words, it is a single element, it represents the marginal gain we
have by adding element e to set B. We can usually check more easily for monotonicity
and submodularity of a function via its incremental definition.

Definition 2.5.6 (Non-decreasing (monotone) function - alternative). A set function f
is non-decreasing (monotone) if f(j | A) ≥ 0, ∀j,A, where j a single element of ground
set V.

Definition 2.5.7 (Submodular function - alternative). A set function f is submodular
if

f(j | A) ≥ f(j | B), ∀A ⊆ B, j /∈ B. (2.52)

Eq. (2.52) embodies the notion of “diminishing returns”. In other words, an item
(observation) is worth more, when we have obtained fewer rather than more items.
Below are some equivalent definitions of submodularity that might as well prove useful
depending on the problem setting.

(i) f(C | A) ≥ f(C | B),∀A ⊆ B, C ⊆ V \ B.
(ii) f(j | A) ≥ f(j | A ∪ {e}),∀A ⊆ V, j ∈ V \ (A ∪ {e}).
(iii) f(B) ≤ f(A) +

∑

j∈B\A

f(j | A),∀A ⊆ B.

(iv) f(A) ≤ f(B)−
∑

j∈B\A

f(j | B \ {j}), ∀A ⊆ B.

A non-negative, normalized submodular function is subadditive:

f(A ∪ B) ≤ f(A) + f(B). (2.53)

Lastly, submodularity is closed under the operations of non-negative addition, re-
striction and conditioning [10].

Lemma 2.5.1 (Submodularity closed under conic combination). Given submodular
functions f1, f2, . . . , fn, their conic combination (non-negative addition) is submodular.

f(A) =

n∑

i=1

αifi(A), (2.54)

where αi ≥ 0.

Proof. Since every function fi is submodular, and αi ≥ 0,∀i we have

fi(j | A) ≥ fi(j | B)⇒
n∑

i=1

αifi(j | A) ≥
n∑

i=1

αifi(j | B)⇒ f(j | A) ≥ f(j | B),∀A ⊆ B.

�
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Lemma 2.5.2 (Submodularity closed under restriction/marginalization). If function
g is submodular, then

f(A) = g(A ∩ C). (2.55)

is submodular for every fixed set C as well.

Proof. For every pair A,B such that A ⊆ B and for a fixed set C we consider the
following two cases: j ∈ V \ (B ∪ C), j ∈ C \ B.

For j ∈ V \ (B ∪ C), we have that

f(j | A) = f(j ∪ A)− f(A) = g((j ∪ A) ∩ C)− g(A ∩ C) = g((A ∩ C) ∪ (j ∩ C))− g(A ∩ C)
= g((A ∩ C) ∪ ∅)− g(A ∩ C) = g((A ∩ C))− g(A ∩ C) = 0.

Similarly, f(j | B) = 0. Therefore, f(j | A) ≥ f(j | B),∀A ⊆ B, j ∈ V \ (B ∪ C).
For j ∈ C \ B, we have

f(j | A) = f(j ∪ A)− f(A) = g((j ∪ A) ∩ C)− g(A ∩ C) = g((A ∩ C) ∪ (j ∩ C))− g(A ∩ C)
= g((A ∩ C) ∪ j)− g(A ∩ C) = g(j ∪ (A ∩ C))− g(A ∩ C) = g(j | A ∩ C).

It holds that f(j | A) = g(j | A∩C) ≥ g(j | B ∩C) = f(j | B), due to g’s submodularity
and because A ⊆ B and consequently A ∩ C ⊆ B ∩ C as well. �

Lemma 2.5.3 (Submodularity closed under contraction/conditioning). If function g
is submodular, then

f(A) = g(A ∪ C)− g(C) (2.56)

is submodular for every fixed set C as well.

Proof. For every A ⊆ B, j ∈ V \ B and for a fixed set C, we have

f(j | A) = f(j ∪ A)− f(A) = g(j ∪ A ∪ C)− g(C)− g(A ∪ C) + g(C) = g(j | A ∪ C).

Similarly, f(j | B) = g(j | B ∪ C). Therefore, f(j | A) = g(j | A ∪ C) ≥ g(j | B ∪ C) =
f(j | B), since g is submodular and for A ⊆ B, it holds that A∪ C ⊆ B ∪ C as well. �

Lemma 2.5.4 (Submodularity closed under composition). Given functions f : R 7→ R,
g : 2V 7→ R, the composition h = f ◦ g is non-decreasing submodular, if f is non-
decreasing concave and g is non-decreasing submodular.

Proof. It is clearly non-decreasing, because for A ⊆ B, we have that g(A) ≤ g(B), since
g is non-decreasing. In addition, f(g(A)) ≤ f(g(B)) since f is non-decreasing as well.
To prove submodularity, we initially observe that due to g’s monotonicity, it holds that
g(A ∩ B) ≤ g(B) ≤ g(A ∪ B). Then, there exists some number λ ∈ [0, 1], such that

g(B) = λg(A ∩ B) + (1− λ)g(A ∪ B). (2.57)
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Due to g’s submodularity it holds that g(A) + g(B) ≥ g(A∪B) + g(A∩B). Therefore,

g(A) ≥ g(A ∪ B) + g(A ∩ B)− g(B)
f ’s monotonicity⇒

f(g(A)) ≥ f(g(A ∪ B) + g(A ∩ B)− g(B))
Eq.(2.57)⇒

≥ f(λg(A ∪ B) + (1− λ)g(A ∩ B))
f ’s concavity⇒

≥ λf(g(A ∪ B)) + (1− λ)f(g(A ∩ B))

= f(g(A ∪ B)) + f(g(A ∩ B))− (λf(g(A ∩ B)) + (1− λ)f(g(A ∪ B)))
f ’s concavity⇒

≥ f(g(A ∪ B)) + f(g(A ∩ B))− f(λg(A ∩ B) + (1− λ)g(A ∪ B))
Eq.(2.57)⇒

= f(g(A ∪ B)) + f(g(A ∩ B))− f(g(B))⇒
f(g(A)) + f(g(B)) ≥ f(g(A ∪ B)) + f(g(A ∩ B)).

�

� 2.5.1 Entropy

Entropy can be seen as a set function. In other words, if we denote by A a set of random
variable indices, then entropy can be defined as

f(A) , H(XA). (2.58)

Lemma 2.5.5 (Monotonicity of entropy for discrete random variables). In the case of
discrete random variables, entropy is a non-decreasing function.

Proof. For all A ⊆ B, H(XB) = H(X(B\A)∪A) = H(XB\A | XA) + H(XA) ≥ H(XA),
since H(XB\A | XA) ≥ 0, for discrete variables. �

Lemma 2.5.6 (Submodularity of entropy [54]). Entropy is a submodular function.

Proof. For all A,B ⊆ V,

I(XA\B;XB\A | XA∩B)
(a)

≥ 0

H(XA\B | XA∩B) +H(XB\A | XA∩B)−H(X(A\B)∪(B\A) | XA∩B) ≥ 0, (2.59)

where (a) is due to MI’s non-negativity. We additionally have that

H(XA\B | XA∩B) = H(X(A\B)∪(A∩B))−H(XA∩B) = H(XA)−H(XA∩B)

H(XB\A | XA∩B) = H(X(B\A)∪(A∩B))−H(XA∩B) = H(XB)−H(XA∩B)

H(X(A\B)∪(B\A) | XA∩B) = H(X(A\B)∪(B\A)∪(A∩B))−H(XA∩B) = H(XA∪B)−H(XA∩B)

Therefore, Eq. (2.59) becomes

H(XA) +H(XB) ≥ H(XA∪B) +H(XA∩B).

�
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� 2.5.2 Mutual Information

MI can be expressed as a set function as follows

f(A) , I(X ;YA). (2.60)

Here, we make the distinction between latent variables (X ) and observed variables (Y ).
For any pair I,J ⊆ V such that I ∩ J = ∅, we assume that YI ⊥⊥ YJ | X . In that
case, MI is both non-decreasing and submodular [54].

Lemma 2.5.7 (Monotonicity of MI). MI is a non-decreasing function.

Proof. For all j,A, f(j | A) = I(X ;Yj∪A) − I(X ;YA) = I(X ;Yj | YA) ≥ 0, due to the
monotonicity of MI. �

Lemma 2.5.8 (Submodularity of MI). MI is a submodular function if observed vari-
ables are conditionally independent given the latent state.

Proof. For all A ⊆ B, j ∈ V \ B, we have

I(Yj ;YB\A | YA)
(a)

≥ 0

H(Yj | YA)−H(Yj | Y(B\A)∪A) ≥ 0

H(Yj | YA) ≥ H(Yj | YB)

H(Yj | YA)−H(Yj | X ) ≥ H(Yj | YB)−H(Yj | X )

H(Yj | YA)−H(Yj | X ,YA)
(b)

≥ H(Yj | YB)−H(Yj | X ,YB)

I(Yj ;X | YA) ≥ I(Yj ;X | YB)

I(X ;Yj | YA) ≥ I(X ;Yj | YB),

where (a) is due to MI’s monotonicity and (b) due to the conditional independency
assumption of observations given the latent state X . �

� 2.6 Greedy Heuristics

In this thesis, we focus on open-loop control structures. In other words, on structures
where the value of future actions is averaged over all values of current observations. In
this framework, planning is done completely in advance and does not take into account
realizations of observations. In addition, we focus on two types of selection problems,
one where all measurements are available and another one where different measurements
might be available at different times. In the latter setting, measurements might belong
to different sets of observations, where different constraints are applied to them. We
will call the first setting, batch setting and the second one, sequential setting. The goal
is to select the set of measurements that maximizes some predefined reward f under
certain constraints. For the batch setting, we will examine both the selection constraint
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problem, where there is a constraint on the number of measurements we can obtain and
the budget constraint problem where measurements have different costs and there is a
finite budget b. For the selection constraint version of batch setting, we have a set V of
N observations/items and we are interested in selecting up to k of them that maximize
some predefined reward, while for the budget constraint problem each measurement u
has some fixed cost c(u) and there is a certain budget b that we cannot exceed.

Similarly, for the sequential setting, we will consider the selection constraint and the
budget constraint problem. In the sequential setting, the observation set is split into
T disjoint observation sets, V = ∪Tt=1Vt, where Vi ∩ Vj = ∅,∀i 6= j and |Vt| = Nt,∀t.
Each of these observation sets is generated from a different part of the hidden state
X . In the selection constraint version, the task is to select up to kt observations from
each set Vt. In the budgeted version, the task is to select measurements with varying
costs that would maximize some specified reward of interest under finite budget bt for
each observation set Vt. The budgeted problem is also known as submodular knapsack
maximization (SKM) problem.

For the batch setting, the selection problem can be cast as a combinatorial opti-
mization problem

O ∈ arg max
{S⊆V| |S|≤k}

f(S), (2.61)

while the budgeted problem can be cast as

O ∈ arg max
{S⊆V| c(S)≤b}

f(S), (2.62)

where c(S) =
∑

u∈S c(u) is the cost of set S, which is additive and b is the budget.
To get an indication of the hardness of problems (2.61), (2.62), we need to take into
account all

(
N
k

)
combinations of sets of size k to find the optimal solution for problem

(2.61), while we need to consider all 2N sets from size 1 to N to find the optimal solution
of problem (2.62).

The selection version of the sequential setting is similar to the batch one

O ∈ arg max
{S⊆V| |S∩Vt|≤kt}

f(S), (2.63)

while the budgeted one
O ∈ arg max

{S⊆V| c(S∩Vt)≤bt}
f(S). (2.64)

Assuming Nt = N, kt = k,∀t, finding the optimal solutions for problems (2.63), (2.64)

would require the consideration of
(
N
k

)T
and 2NT sets of measurements for the first and

second problem, respectively.
It becomes evident that solving the above problems optimally becomes intractable

as the number of observation sets T and observation set sizes N grow. However, we
often resort to greedy approximate techniques that choose the current action based on
one-step horizon policies and run in polynomial time. Usually, these methods come with
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no guarantees and can be far from the optimal value. Fortunately, when the objective f
is non-decreasing and submodular, there are lower-bound guarantees compared to the
optimal solution. We will additionally assume that f is normalized, f(∅) = 0.

� 2.6.1 Batch setting - Selection problem

Nemhauser et al. [77] proposed the following greedy algorithm for the batch setting

Algorithm 2.1 Batch Selection Greedy Heuristic

Initialization
Set G0 = ∅.
Iteration
for j in 1 : k do

Select gj s.t. gj ∈ arg maxu∈V f(u | Gj−1).
Set Gj = Gj−1 ∪ {gj}.
Set V = V \ {gj}.

end for
G = Gk is the greedy solution.

That is, at every stage we select the observation gj that maximizes the incremental
reward based on the observations that have been selected so far, Gj−1. The collection
of greedy sets {G1,G2,G3, . . .} at every stage form a uniform matroid. The value of
greedy solution is at least 63.2% close to the optimal in addition to reward f being
non-decreasing and submodular. The complexity of this approach is O(Nk) as at every
step we need to explore at most N measurements and there is a total of k steps. Since
k ≤ N , we can also argue that the running time is O(N2).

Theorem 2.6.1 (Performance bounds in the batch setting [77]). If the greedy method
described in Alg. 2.1 is applied to problem max|S|≤k f(S) under a non-decreasing sub-
modular reward f , it achieves a value no worse than 1 − 1/e ≈ 0.632 of the optimal
solution.

Proof. We start by observing that since f is non-decreasing the selection constraint
would be satisfied with equality as it does not hurt to acquire more measurements.
Therefore, the cardinality of the greedy G and optimal set O would be k, |G| = |O| = k.
In addition, let us denote the greedy set at stage j by Gj . It obviously holds that
G1 ⊆ G2 ⊆ · · · ⊆ Gk ≡ G. We have that

f(O) ≤ f(O ∪ Gj−1) ≤ f(Gj−1) +
∑

u∈O\Gj−1

f(u | Gj−1). (2.65)

The first and second inequalities hold due to monotonicity and submodularity of f ,
respectively.1

1We have made use of definition (iii) of submodularity (see Sec. 2.5).
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Eq. (2.65) becomes

f(O) ≤ f(Gj−1) +
∑

u∈O\Gj−1

f(u | Gj−1)
(a)

≤ f(Gj−1) +
∑

u∈O\Gj−1

f(gj | Gj−1)

≤ f(Gj−1) + |O \ Gj−1|f(gj | Gj−1)
(b)

≤ f(Gj−1) + kf(gj | Gj−1), (2.66)

where inequality (a) comes from the definition of greedy method presented in Alg. 2.1
and (b) because |O \ Gj−1| ≤ k.

We additionally have

f(Gj−1) = f(Gj−1)− f(Gj−2)︸ ︷︷ ︸
f(gj−1|Gj−2)

+ f(Gj−2)− f(Gj−3)︸ ︷︷ ︸
f(gj−2|Gj−3)

+ · · ·+ f(G2)− f(G1)︸ ︷︷ ︸
f(g2|G1)

+ f(G1)︸ ︷︷ ︸
f(g1|∅)

=

j−1∑

i=1

f(gi | Gi−1),

where G1 = {g1},G0 = ∅, f(g1 | ∅) = f(g1) since f(∅) = 0.
Therefore, Eq. (2.66) becomes

f(O) ≤
j−1∑

i=1

f(gi | Gi−1) + kf(gj | Gj−1). (2.67)

Inequality (2.67) holds for every j = 1, 2, . . . , k. One natural question to ask is how
close is the worst-case greedy solution to the optimal one. In other words, what is

min
f(g1),f(g2|G1),...,f(gk|Gk−1)

f(G) =
k∑

j=1

f(gj | Gj−1)

s.t. f(O) ≤
j−1∑

i=1

f(gi | Gi−1) + kf(gj | Gj−1), ∀j = 1, 2, . . . , k,

since any greedy solution as described in Alg. 2.1 needs to satisfy the above constraints.
Here, G = {g1, g2, . . . , gk}.

The above problem can be easily cast as a linear optimization problem by setting
yj , f(gj | Gj−1):

min
y1,...,yk

k∑

j=1

yj

s.t. f(O) ≤
j−1∑

i=1

yi + kyj , ∀j = 1, 2, . . . , k.
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By taking the dual of the above problem, we have

max
x1,...,xk

f(O)
k∑

j=1

xj

s.t. kxj +
k∑

i=j+1

xi = 1,∀j = 1, 2, . . . , k,

which leads to the unique (maximizing) solution

x∗j =
1

k

(
1− 1

k

)k−j
,∀j = 1, 2, . . . , k.

It can be easily seen that
∑k

j=1 x
∗
j is a geometric series with constant ratio 1− 1/k and

therefore
∑k

j=1 x
∗
j = 1 −

(
1− 1

k

)k
. Since the optimization problem is linear, there is

no duality gap and hence the maximizing value of the dual problem is the minimizing
value of the original one

k∑

j=1

y∗j = f(O)

(
1−

(
1− 1

k

)k)
.

As a small reminder,
∑k

j=1 y
∗
j represents the worst (minimum) value that the greedy

solution can take. Therefore, any greedy solution obtained from Alg. 2.1 is greater
equal to it

f(G) ≥
k∑

j=1

y∗j =

(
1−

(
1− 1

k

)k)
f(O). (2.68)

Finally, note that

1−
(

1− 1

k

)k
≥ lim

k→∞

(
1−

(
1− 1

k

)k)
= 1− 1/e.

Therefore, inequality (2.68) becomes

f(G) ≥ (1− 1/e) f(O).

�

� 2.6.2 Batch setting - Budgeted problem

In the budgeted case, we assume that each measurement u has a fixed cost c(u) ≥ 0
and there is a finite budget b. The problem we wish to solve is finding the set of
measurements that maximizes some specified reward f under the budget constraint b.

O ∈ arg max
c(S)≤b

f(S).
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Algorithm 2.2 Batch Budgeted Greedy Heuristic - Sviridenko

Determining best set of cardinality one or two
Select G[1,2] s.t. G[1,2] ∈ arg max{S⊆V||S|≤2,c(S)≤b} f(S).

Determining best set of cardinality three or more
Set G[3] = ∅ and f(G[3]) = −∞.
for each S s.t. |S| = 3 do

Set Gs0 = S, Is0 = V, i = 1.
while Isi−1 \ Gsi−1 6= ∅ do

Select gi s.t. gi ∈ arg maxu∈Isi−1\Gsi−1
f(u | Gsi−1)/c(u).

if c(Gsi−1) + c(u) ≤ b then
Set Gsi = Gsi−1 ∪ {gi} and Isi = Isi−1.

else
Set Gsi = Gsi−1 and Isi = Isi−1 \ {gi}.

end if
end while
if f(GsN−3) > f(G[3]) then

Set G[3] = GsN−3.
end if

end for
G = G[1,2], if f(G[1,2]) ≥ G[3] or G = G[3], otherwise.

Sviridenko [90] proposed Alg. 2.2. The algorithm works in two phases. In the first
phase, we determine the feasible set G[1,2] of cardinality one or two that has the largest
value of the objective function f . In the second phase, the algorithm considers all
feasible sets of cardinality three. For each such set Gs0 = S such that |S| = 3, the method
adds new elements that correspond to the maximum ratio of marginal value f(u | Gsi−1)
to cost c(u) as long as they correspond to a feasible solution: c(Gsi−1) + c(u) ≤ b.
Otherwise, this measurement is exempted from further consideration. At the end, we
keep the set G[3] with the largest value f . The greedy solution would be G = G[1,2], if
f(G[1,2]) ≥ G[3] or G = G[3], otherwise. The complexity of this approach is O(N5) as
for each set of cardinality three, we need to explore at most O(N2) measurements and
there are

(
N
3

)
possible combinations of sets of size 3. Feige [31] showed that no such

algorithm exists with better guarantees unless P = NP.
Krause and Guestrin [52] proposed a technique that gives a lower approximating

ratio (1 − 1/
√
e) ≈ 0.394, but runs only in O(N2) time. The algorithm works in two

phases just like Sviridenko’s method. In the first phase, it determines the single feasible
element with the highest reward and stores in set G[1]. In the second phase, it starts
by setting the greedy set G[2] = ∅ and the exploration set I = V. Then, as long as
there are still elements in the exploration set I, it determines the one with the highest
incremental reward f(g | G[2]) to cost c(g) ratio. If the solution with the addition of
element g remains feasible, g is added to the existing greedy set G[2]. At the end of
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the current iteration, element g is removed from the exploration set I. At the end, we
select greedy set G[1] if f(G[1]) ≥ G[2] or G[2], otherwise. A summary of this method is
given in Alg. 2.3.

Algorithm 2.3 Batch Budgeted Greedy Heuristic - Krause et al.

Determining best set of cardinality one
Select G[1] s.t. G[1] ∈ arg max{u∈V|c(u)≤b} f(u).
Determining best set of cardinality two or more
Set G[2] = ∅, I = V.
while I 6= ∅ do

Select g s.t. g ∈ arg maxu∈I f(u | G[2])/c(u).
if c(G[2]) + c(u) ≤ b then

Set G[2] = G[2] ∪ {g}.
end if
Set I = I \ {g}.

end while
G = G[1], if f(G[1]) ≥ G[2] or G = G[2], otherwise.

The selection problem can be thought of a special case of the budgeted problem,
as someone can assign unit costs to all measurements and set the budget to be b = k.
Lee et al. [61] provide also a 1/5 bound for the case when the reward function f is not
monotone.

� 2.6.3 Sequential setting - Selection problem

As we showed in Sec. 2.6.1, in the batch setting we have a universal set of measurements
and a maximum number of measurements that can be selected. This structure complies
with the uniform matroidal structure that Nemhauser et al. [77] studied earlier. In a
more general setting, there is no need to have a single, universal set of measurements
neither all measurements need to be available at all times. One example is an HMM
that represents temporal progress of a stochastic process. In this scenario, each group
of measurements is linked to a latent (multidimensional) variable from the stochastic
process and is available only at the time that the latent variable is generated. We
assume we have T groups of measurements (observation sets) V = {V1, . . . ,VT }, one
for each latent variable Xt, and they are disjoint. The selection constraint in this case
is to select up to kt measurements from each set Vt. This structure corresponds to a
partition matroid. Fisher et al. [34] studied the following problem

max f(S)

s.t. S ∩ Vt ∈ It,∀t ∈ {1, . . . , T},

where V = ∪Tt=1Vt and Vi ∩ Vj = ∅, ∀i 6= j. Each matroid M = (Vt,It) can be thought
of as a uniform matroid Mkt,Nt . They proposed a greedy approach described in Alg.
2.4, which comes with the following guarantees.
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Algorithm 2.4 Sequential Selection Greedy Heuristic - Fisher et al.

Initialization
Set G0 = ∅.
Label the T observation sets arbitrarily as V1, . . . ,VT .

Iteration
for t in 1 : T do

Set At = ∅.
while Vt 6= ∅ do

Select g s.t. g ∈ arg maxu∈Vt f(u | Gt−1 ∪ At).
if {g} ∪ Gt−1 ∪ At ∈ It then

Set At = At ∪ {g}.
end if
Set Vt = Vt \ {g}.

end while
Set Gt = Gt−1 ∪ At.

end for
G = GT is the greedy solution.

Theorem 2.6.2 (Performance bounds in the sequential setting [34]). If the greedy
method described in Alg. 2.4 is applied to problem max{S∩Vt∈It|t=1,...,T} f(S) under
a non-decreasing submodular reward f , it achieves a value no worse than half of the
optimal solution.

Proof. The interested reader can refer to [34] for a proof of this theorem. �

Williams et al. [102] showed that the same guarantee applies for a more general
greedy algorithm. For this, they introduced the notion of a walk, which is the particular
order that observation sets are visited to greedily select a measurement at each iteration.
This order has to correspond to a feasible solution, in other words, it has to satisfy the
constraints of every observation set. In more detail, they studied the problem

max f(S)

s.t. S ∩ Vt ≤ kt, ∀t ∈ {1, . . . , T},

where f is a non-decreasing submodular function. Since f is non-decreasing, all the
selection constraints are met with equality, since it never hurts to obtain more measure-
ments/items. A walk w is any order comprising of k1 items from observation set V1, k2

items from observation set V2, . . ., kT items from observation set VT . In other words,
w = {w1, . . . , wM}, where M =

∑T
t=1 kt and

∑M
j=1 1(wj = t) = kt,∀t = 1, . . . , T .

Williams et al. [102] proposed the following greedy algorithm which comes with the
following guarantees.
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Algorithm 2.5 Sequential Selection Greedy Heuristic - Williams et al.

Initialization
Set G0 = ∅.
Define a visit walk w = {w1, . . . , wM} such that

∑M
j=1 1(wj = t) = kt, ∀t.

Iteration
for j in 1 : M do

Select gj s.t. gj ∈ arg maxu∈Vwj
f(u | Gj−1).

Set Gj = Gj−1 ∪ {gj}.
Set Vwj = Vwj \ {gj}.

end for
G = GM is the greedy solution.

Theorem 2.6.3 (Performance bounds in the sequential selection setting [102]). If the
greedy method described in Alg. 2.5 is applied to problem max{|S∩Vt|≤kt,t=1,...,T} f(S)
under a non-decreasing submodular reward f , it achieves a value no worse than half of
the optimal solution.

Proof. Let us denote the optimal and greedy solutions by O = {o1, . . . , oM},G =
{g1, . . . , gM}, respectively. The optimal and greedy solutions have the same length, that
is, M =

∑T
t=1 kt and the same number of elements from each observation set, since f is

a non-decreasing function. We choose a shuffling of the optimal elements {s1, . . . , sM}
such that osj ∈ Vwj . This is possible since there are kt elements in the optimal set from
observation set Vt,∀t. Obviously, f(o1, . . . , oM ) = f(os1 , . . . , osM ) = f(O). Therefore,
we have

f(O)
(a)

≤ f(O ∪ G)
(b)

≤ f(G) +
∑

u∈O\G

f(u | G) ≤ f(G) +
∑

u∈O
f(u | G)

(c)
= f(G) +

M∑

j=1

f(osj | G)

(d)

≤ f(G) +

M∑

j=1

f(osj | Gj−1)
(e)

≤ f(G) +

M∑

j=1

f(gj | Gj−1) = f(G) + f(G) = 2f(G),

where (a) is due to monotonicity of f , (b) due to submodularity, (c) since elements
os1 , . . . , osM constitute the optimal set O, (d) due to submodularity, and (e) due to the
definition of the greedy heuristic. �

The complexity of the above two algorithms isO(kTN) assumingNt = N, kt = k, ∀t,
while the approximation ratio is 1/2. Recently, there have been approaches which
achieve the familiar 1− 1/e optimal ratio that we saw in the batch setting [14, 32, 94].
However, they all result in complexities involving high order terms of the observation set
size N and the number of observation sets T and hence make these methods impractical
for more complex problems. For example, the algorithm of Filmus and Ward [32] runs in
O(r7T 2N2), where r is the rank of the matroid. For a partition matroid that conforms
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to the sequential setting, we have that r = kT , as discussed in Sec. 2.4. Therefore, the
complexity boils down to O(k7T 9N2). Similarly, the method by Buchbinder et al. [14]

gives a (1− 1/e− ε) approximating ratio in O
(
r
√

NT
ε5

log
(
NT
ε

)
+ NT

ε5
log2 (NT )

)
time.

For r = kT and ε ∼ 1
NT , the complexity simplifies to O

(
T 6N6 log2 (NT )

)
.

� 2.6.4 Sequential setting - Budgeted problem

The T -knapsack problem is defined as follows. Given a T -dimensional budget vector

b =
[
b1 · · · bT

]T
and a ground set of measurements V, the subset S is sought

that maximizes a specified reward f whose cost satisfies all budget constraints. In
this setting, each measurement u has T different costs c(t, u), ∀t ∈ {1, . . . , T}. So, the
problem is collectively represented as

O ∈ arg max
{S⊆V|c(t,S)≤bt,∀t}

f(S).

We can easily convert the sequential budgeted problem to a T -knapsack one by choosing
a partition of measurements in T observation sets V1, . . . ,VT . Then, if a measurement
u belongs to observation set Vt, we can just set the costs of this measurement for the
remaining observation sets to zero, c(s, u) = 0, ∀s 6= t, since in the sequential setting a
measurement has effect only on the budget of the observation set it belongs to. With
this approach the sequential budgeted problem has been converted to a T -knapsack
one.

Kulik et al. [59, 60] proposed the following algorithm which consists of two main
phases and gives a 1 − 1/e approximation ratio with respect to the optimal solution.
The first phase known as profit enumeration phase guesses (by enumeration) a constant
number of elements of highest value in some optimal solution. Then, the algorithm pro-
ceeds to the randomized procedure taking the value residual problem with respect to
the guessed subset. The randomized procedure uses randomized rounding in order to
attain an integral solution from a fractional solution returned by the continuous greedy
algorithm as described in [93]. However, simple randomized rounding may not guar-
antee a feasible solution, as some of the knapsack constraints may be violated. Lastly,
the algorithm enumerates on the elements with high costs, something that enables the
bounding of the variance of the cost in each dimension, and hence the event of dis-
carding an infeasible solution occurs with small probability. Second, a fixing procedure
is applied, in which a nearly feasible solution is converted to a feasible solution, with
small harm to the objective function. The problem with this approach is that it is
very difficult to implement and involves high order terms with respect to the number
of budgets T and the total number of measurements NT , which makes it inappropriate
for large problems.

� 2.6.5 Remarks

We should note that in the batch setting all measurements need to be available at all
times. On the contrary, in the sequential setting, only the observation set that the
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greedy method dictates at every iteration needs to be available. In the selection prob-
lem, the method by Fisher et al. [34] considers measurements from a new observation
set after all the required measurements have been greedily obtained from another ob-
servation set. Williams et al. [102] relax this requirement by allowing the consideration
of measurements from different observation sets at every iteration as long as selection
constraints are met at all times.

� 2.6.6 Unconstrained Submodular Maximization (USM)

Lastly, for reasons that would become apparent in Sec. 3.4, we are interested in the
problem of unconstrained maximization of a submodular non-monotone function f .
Buchbinder et al. [13] proposed a really elegant algorithm that runs in just O(N) time,
where N = |V| and provides a 1/2 bound to the optimal solution on average. The
problem they are solving is known as Unconstrained Submodular Maximization (USM)
and is formulated as

O ∈ arg max
S⊆V

f(S),

where f is a submodular but non-monotone function.
They use a doubly-greedy technique whose main idea is to accept a new measurement

depending on how beneficial it would be if added to the existing greedy set G or discard
a measurement if it is harmful to the existing exploration set I. The algorithm chooses
an arbitrary order of measurements V = {u1, . . . , uN} and initializes the greedy and
exploration set to G0 = ∅ and I0 = V, respectively. Each measurement ui is valued
on how beneficial it is if added in the existing greedy set Gi−1 or how harmful it is if
retained in the existing exploration set Ii−1 by the following metrics f(ui | Gi−1) and
−f(ui | Ii−1 \ ui), respectively. Since f is non-monotone, these two quantities can be
negative, so we truncate them to zero if they become negative. We set ai = max{f(ui |
Gi−1), 0} and bi = max{−f(ui | Ii−1 \ ui), 0} and decide whether to add measurement
ui in the existing greedy set Gi−1 with probability ai/(ai+bi). Otherwise, measurement
ui is discarded from the exploration set Ii−1 and as a consequence is guaranteed to not
be part of the final greedy solution. A summarized description of their methodology is
provided in Alg. 2.6. When a new measurement is accepted with probability ai/(ai+bi),
greedy set Gi increases by one element, since it incorporates measurement ui, while
exploration set Ii stays the same. When measurement ui is discarded with probability
bi/(ai + bi), greedy set Gi stays the same, while exploration set Ii decreases by one
element, since measurement ui is removed. This protocol guarantees that a new greedy
set Gi would be a superset of the previous one Gi ⊇ Gi−1, a new exploration set Ii
would be a subset of the previous one Ii ⊆ Ii−1 and that a greedy set would always
be a subset of an exploration set. Summarizing the above information, it holds that
∅ = G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ GN = IN ⊆ · · · ⊆ I2 ⊆ I1 ⊆ I0 = V. It is noteworthy that
in the final iteration N , greedy and exploration sets completely coincide GN = IN .

Theorem 2.6.4 (Performance bounds for USM). If the greedy method described in
Alg. 2.6 is applied to problem maxS⊆V f(S) under a submodular reward f , it generates



Algorithm 2.6 Randomized USM Greedy Heuristic – Buchbinder et al.

G0 = ∅, I0 = V
for i = 1, . . . , N do
ai = max{f(ui | Gi−1), 0}, bi = max{−f(ui | Ii−1 \ {ui}), 0}.

(Gi, Ii) =

{
(Gi−1 ∪ {ui}, Ii−1) ,with probability ai/(ai + bi)

(Gi−1 , Ii−1 \ {ui}) , otherwise.
end for

G0

I0

(a) Initialization

G1

I1 = I0

(b) First iteration

I1 = I0

I2
G2 = G1

(c) Second iteration

I1 = I0

I3 = I2

G2 = G1

G3

(d) Third iteration

I1 = I0

I3 = I2

G2 = G1 G4 = G3

I4

(e) Fourth iteration

I1 = I0

G2 = G1

G3

GN = IN

I3 = I2… …

(f) Last iteration

Figure 2.2: Randomized USM flow. In this particular example for exposition purposes,
we assume that measurements u1, u3 are added, while measurements u2, u4 are dis-
carded. (a) During initialization, greedy and exploration sets are initialized to G0 = ∅
and I0 = V, respectively. (b) Measurement u1 is accepted with probability a1/(a1 + b1)
and so greedy set becomes G1 = {u1}, while exploration set stays the same I1 = V. (c)
In the second iteration, measurement u2 is discarded with probability b2/(a2 + b2)
and so greedy set stays the same, while exploration set decreases by one element,
G2 = G1 = {u1}, I2 = V \ {u2}. (d) At iteration three, measurement u3 is accepted
and therefore G3 = {u1, u3}, I3 = I2. (e) In the fourth iteration, measurement u4 is
discarded and so G4 = G3, I4 = V \ {u2, u4}. (f) After the end of the last iteration,
greedy and exploration sets completely coincide, GN = IN .
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a solution that on average is no worse than half of the optimal solution.

Proof. The interested reader can refer to [13] for a proof of this theorem. �

� 2.7 Graphical models

Probabilistic graphical models provide a framework for describing the statistical de-
pendencies among random variables. The richness of representation allowed them to
be extensively used in various disciplines such as statistics, applied mathematics, ma-
chine learning, information theory, statistical physics, computational biology, signal
processing, and computer vision [95]. There two types of graphical models; directed
and undirected. The two most common types of undirected models are Markov Ran-
dom Fields (MRFs) and factor graphs. We will focus on MRFs as it can be shown that
one type can be converted to another easily [11, 106]. Before proceeding to describing
MRFs, we will give a brief overview of graph theory.

� 2.7.1 Graph Theory

A graph G = (V, E) is specified as a collection of vertices (or nodes), V , with a collection
of edges, E ⊂ V × V . Unless stated otherwise, all edges are assumed to be undirected.
We will refer to an (undirected) edge connecting vertex i to vertex j as (i, j). The
neighborhood of vertex i is the set N(i) = {j ∈ V |(i, j) ∈ E}. In other words, it is the
set of all vertices that vertex i is connected directly with an edge. The degree of vertex
i is the number of its neighbors |N(i)|. A subgraph of G is a graph Gs = (Vs, Es),
where Vs ⊂ V , and Es ⊂ Vs × Vs. In other words, G is a supergraph of Gs and Gs
is embedded in G. A clique C of graph G is a fully connected subgraph of G, i.e.,
C = (Vs, Es) with every pair of vertices connected: i, j ∈ Vs ⇒ (i, j) ∈ Es. A maximal
clique is a clique that is not contained within another clique. In other words, no other
vertex can be added while still retaining full connectivity. A walk w = (w0, w1, . . . , w`)
of length ` is a sequence of vertices w0, . . . , w` ∈ V , where each pair of consequent
vertices is connected with an edge. A path is a walk with distinct vertices and edges.
A graph is connected if there is a path between any two vertices. The diameter of a
graph, diam(G), is the maximum distance between any pair of vertices, where distance
is defined as the length of the shortest path between the pair of vertices. A cycle is a
connected graph, where each vertex has exactly two neighbors. A tree is a connected
graph with no cycles. A graph is called chordal if every cycle of the graph of length
4 or more contains a chord (an edge between two non-adjacent vertices of the cycle).
The treewidth of a graph G is the smallest size of the largest clique minus one over all
chordal graphs containing G. The treewidth of a graph serves as a lower bound on the
complexity of exact inference [68].



Sec. 2.7. Graphical models 41

� 2.7.2 Markov Random Fields

In Markov Random Fields, the joint distribution can be expressed as a product of
factors (or potentials), where each factor corresponds to a clique in the graph. As a
reminder, cliques are subsets of nodes that are fully connected. In more detail, assume
that we have N random variables X1,X2, . . . ,XN corresponding to N nodes in graph G
and C is a collection of all cliques in G. Also, each random variable Xi is either discrete
or continuous, Xi ∈ X . Then, the joint distribution can be expressed as

p(x) =
1

Z

∏

c∈C

ψc(xc), (2.69)

where Z is a normalizing constant (or partition function), c is a clique comprised of
variables Xc and ψc(·) is the potential for clique c. The partition function is defined as
Z =

∑
x

∏
c∈C ψc(xc).

Each individual node forms a clique with itself by default, called singleton clique,
while every pair of nodes connected with an edge forms a pairwise clique. It is customary
to assign a potential to each node and edge of the graph. In this case, expression (2.69)
simplifies to

p(x) =
1

Z

N∏

i=1

ϕi(xi)
∏

(i,j)∈E

ψij(xi, xj), (2.70)

where ϕi(·) is the node potential and ψij(·, ·) the edge potential.
Even though representation through MRFs might be ambiguous because potentials

might not correspond to maximal cliques, it is very convenient in providing the condi-
tional independence properties of the model and hence enabling the usage of efficient
algorithms for inference purposes. To illustrate the above, we cite the following example:

Example 2.7.1. Suppose we have the model represented by the following graph

X1 X2

X3

This model can receive multiple equivalent representations. One factorization might
include only maximal cliques

p(x) ∝ ψ123(x1, x2, x3),

or it can be expressed in terms of node (ϕ) and edge (ψ) potentials as well

p(x) ∝ ϕ1(x1)ϕ2(x2)ϕ3(x3)ψ12(x1, x2)ψ23(x2, x3)ψ13(x1, x3).
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MRFs that involve only node and edge potentials are referred to as pairwise MRFs.
In this thesis, we will focus on pairwise MRFs as it can be shown that any MRF
can be converted to such by state space augmentation [97, 106]. The mapping from
the conditional independence properties to the structure of the graph comes from the
concept of graph separation. Let the set of nodes V be partitioned in the disjoint sets
(of nodes) A,B,C: V = A∪B∪C. We say that C separates A from B, if any path from
any vertex in A to any vertex in B goes through some vertex in C. Set C is referred to
as vertex cutset. A distribution p(x) is called Markov with respect to undirected graph
G, if for any such partition, XA ⊥⊥ XB | XC .

Theorem 2.7.1 (Hammersley-Clifford [95]). If the joint distribution p of X1, . . . ,XN
factorizes over graph G, then X1, . . . ,XN are Markov with respect to G, meaning that the
graph separation implies conditional independence properties. Conversely, if X1, . . . ,XN
are Markov with respect to G and p(x) > 0,∀x, then p factorizes over the graph.

Proof. An elegant proof of this theorem can be found in p. 11 of [95]. �

Tree-structured MRFs

When MRF is a tree, there are methods such as the belief propagation algorithm that
can provide very efficiently exact solutions to inference problems. Tree-structured MRFs
can either be used directly to model a problem or as an approximation (embedded)
structure for a more general type of graph [68]. In tree-structured MRFs, potentials
can be constructed in such a way that are directly linked to node and edge marginals:

p(x) =
N∏

i=1

pi(xi)
∏

(i,j)∈E

pij(xi, xj)

pi(xi)pj(xj)
, (2.71)

where ϕi(xi) = pi(xi) and ψij(xi, xj) = pij(xi, xj)/(pi(xi)pj(xj)).
Another equivalent representation is by picking an arbitrary node as the root and

continue by considering the conditional probabilities of parent-child pairs as edge po-
tentials. That is, if we arbitrarily let node 1 to be the root, then we can express the
joint distribution as

p(x) = p1(x1)
∏

(i,j)∈E,i>j

p(xi | xj), (2.72)

where i > j indicates that i is a child of j. Here, ϕ1(x1) = p1(x1), ϕi(xi) = 1,∀i 6= 1,
ψij(xi, xj) = p(xi | xj).

� 2.8 Exponential Families

Exponential families are families of distributions where inference can be derived analyt-
ically. In more detail, exponential family is the only family with finite-sized sufficient
statistics, meaning that data can be summarized in a statistic without any loss of in-
formation. Exponential families are also closed under conjugacy. That is, if a prior is
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used in an appropriate form, the posterior distribution will also belong in the expo-
nential family. Lastly, it is very convenient for inference as the posterior parameters
after the incorporation of measurements can be obtained in closed form. Many known
probability distributions can be represented as members of an exponential family. We
give below the definition of an exponential family.

Definition 2.8.1 (Exponential Family [73]). A parameterized family of distributions
p(·; θ) is an exponential family with natural parameter λ(θ), natural statistic φ(x) and
base distribution q(x) if each member of the family is represented as

p(x; θ) = q(x) exp(〈λ(θ), φ(x)〉 −A(θ)) = q(x) exp(λ(θ)Tφ(x)−A(θ)), (2.73)

where 〈·, ·〉 is the dot product of two vectors and A(θ) is called the log-partition function.

The log-partition function is defined as

A(θ) = log

∫
q(x) exp(λ(θ)Tφ(x)) dx. (2.74)

Usually, the base distribution q(x) is a scaling constant. Several distributions (such
as the Bernoulli, Exponential, Laplace, Gaussian, Gamma, Dirichlet) that can be ex-
pressed in the exponential family form, have a constant base distribution. A family
where λ(θ) = θ is called a canonical family. If, furthermore, φ(x) = x, the family is
called a natural family. Lastly, an exponential family is regular if the support of the
variable whose distribution belongs in the exponential family does not depend on the
parameter.

We will focus on canonical families, λ(θ) = θ, as we can always convert to a canonical
family with a transformation of parameters. We will give below of a few examples of
exponential families for further clarification.

Example 2.8.1 (Bernoulli). The Bernoulli distribution Ber(·; p) takes the form:

Ber(x; p) = px(1− p)1−x.

It can be written in exponential form as

Ber(x; p) = exp(log(px(1−p)1−x)) = exp(x log p+(1−x) log(1−p)) = exp(x log
p

1− p).

Therefore, θ = log p
1−p and φ(x) = x. The log-partition function is evaluated as

A(θ) = log
∑

x

exp(θx) = log(1 + exp(θ)).

Example 2.8.2 (Multivariate Gaussian [73]). The multivariate Gaussian is expressed
in information form as

p(x;h, J) ∝ exp(hTx− 1

2
xTJx) = exp(hTx) exp(xT (−1

2
J)x) = exp(hTx) exp(trace(−1

2
JxxT )

∝ exp(〈h, x〉+ ⟪−1

2
J, xxT⟫), (2.75)
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where the dot product of two matrices ⟪·, ·⟫ is defined as the trace of the product of these

two matrices. From Eq. (2.75), θ =

[
θ1

Θ2

]
=

[
h
−1

2J

]
and φ(x) =

[
x
xxT

]
. With a

little bit of algebra, we can show that the log-partition function takes the form

A(θ) = log

∫

x
exp(〈h, x〉+⟪−1

2
J, xxT⟫) dx = −1

4
θT1 Θ−1

2 θ1−
1

2
log |−2Θ2| =

1

2
hTJ−1h−1

2
log |J |.

Example 2.8.3 (Ising model [96]). The Ising model is a widely used graphical model,
which represents a grid graph, where each hidden variable takes two values {−1,+1}.
Each node is connected to four nodes (one on the left, one on the right, one above and
one below) unless the node is on the boundaries of the graph. In that case, it connects
to either 2 or 3 nodes. The joint distribution of variables is represented as

p(x; θ) = exp


∑

s∈V
θsxs +

∑

(s,t)∈E

θstxsxt −A(θ)


 ,

where θs is a potential for node s and θst represents the strength of edge (s, t). The
log-partition function is computed as

A(θ) = log
∑

x∈{0,1}|V |
exp


∑

s∈V
θsxs +

∑

(s,t)∈E

θstxsxt


 .

Interestingly, not all distributions are regular exponential families. For example,
the uniform distribution X ∼ Unif(a, b) is not a regular exponential family, since the
support of X depends on the parameters a and b.

The statistic φ(x) holds particular significance as under some conditions it can
summarize the variable x without any loss of information. In that case, the statistic φ(x)
is called a sufficient statistic, since inference in the distribution pX (x; θ) is equivalent to
inference in the distribution pφ(φ(x); θ). The implication of this is that inference can
be achieved in a much more efficient way (in terms of data storage) without any effect
on the exactness of the solutions.

� 2.8.1 Log-partition function

Log-partition function is important because derivatives of it can be used to generate
cumulants of the sufficient statistics. That is the reason that log-partition function
A(θ) is sometimes called cumulant function as well [73]. As we shall see later in Sec.
3.1, log-partition function also appears in common information measures such as the
entropy. We will show below that the first and second derivatives of the log-partition
function equal the mean E[φ(x)] and covariance cov[φ(x)] of the sufficient statistic φ(x),
respectively.
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If we take the gradient of A(θ) with respect to θ, we have

∇θA = ∇θ
(

log

∫
q(x) exp(θTφ(x)) dx

)
=

∫
φ(x)q(x) exp(θTφ(x)) dx∫
q(x) exp(θTφ(x)) dx

(2.74)
=

∫
φ(x)q(x) exp(θTφ(x)) dx

exp(A(θ))
=

∫
φ(x)q(x) exp(θTφ(x)−A(θ)) dx

= E[φ(x)]. (2.76)

Now, if we take the second derivative with respect to θ, we obtain

∇2
θθA = ∇θ(∇θA) = ∇θ

(∫
φ(x)q(x) exp(θTφ(x)−A(θ)) dx

)

=

∫
φ(x)(φ(x)−∇A(θ))T q(x) exp(θTφ(x)−A(θ)) dx

=

∫
φ(x)φ(x)T q(x) exp(θTφ(x)−A(θ)) dx−

(∫
φ(x)q(x) exp(θTφ(x)−A(θ)) dx

)
∇A(θ)

(2.76)
= E[φ(x)φ(x)T ]− E[φ(x)]E[φ(x)]T = cov(φ(x)). (2.77)

Convexity of log-partition function

Since the second derivative ∇2
θθA equals cov(φ(x)) and we know that covariance is a

positive semidefinite matrix, it follows that the log-partition function A(θ) is convex
with respect to θ.

We present below an example of the properties of first and second derivative of the
log-partition function A for the multivariate Gaussian case.

Example 2.8.4 (Multivariate Gaussian). As we showed in Ex. 2.8.2, the sufficient

statistic φ(x) is defined as φ(x) =

[
x
xxT

]
. We know that E[x] = µ and E[xxT ] =

Σ + µµT . We will confirm below that taking the first derivative ∇θA(θ) will lead us to
the familiar statistics of the Gaussian distribution. From Ex. 2.8.2, we have that

A(θ) = −1

4
θT1 Θ−1

2 θ1 −
1

2
log | − 2Θ2|,

where θ1 = h and Θ2 = −1
2J .

If we take the derivative with respect to θ1, we have

∇θ1A(θ) = ∇θ1
(
−1

4
θT1 Θ−1

2 θ1 −
1

2
log | − 2Θ2|

)
= −1

2
Θ−1

2 θ1 = −1

2
(−2J−1)h = J−1h

= µ = E[x].

Similarly,

∇Θ2A(θ) = ∇Θ2

(
−1

4
θT1 Θ−1

2 θ1 −
1

2
log | − 2Θ2|

)
[83]
= −1

4
(−Θ−T2 θ1θ

T
1 Θ−T2 )− 1

2
Θ−T2 .

(2.78)
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Since Θ2 = −1
2J , it follows that Θ2 is symmetric negative semidefinite and so Θ−T2 =

Θ−1
2 . In addition, θ1 = h, so Eq. (2.78) becomes

∇Θ2A(θ) = −1

4
(−Θ−1

2 θ1θ
T
1 Θ−1

2 )− 1

2
Θ−1

2 = J−1hhTJ−1 + J−1 = µµT + Σ = E[xxT ].

The above derivations agree with our knowledge of the Gaussian moment functions.

� 2.9 Gaussian Graphical models

A Gaussian graphical model is a graphical model representing jointly Gaussian variables.
If we denote by X the random vector X = (X1, . . . ,XN ), then it follows the multivariate
Gaussian distribution, X ∼ N (x;µ,Σ)

N (x;µ,Σ) = (2π)−N/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.79)

Here, µ is the mean and Σ the covariance of X , E[X ] = µ, cov(X ) = Σ. Since, cov(X ) =
E[(X − µ)(X − µ)T ], we can show easily that Σ is positive semidefinite, Σ � 0. Eq.
(2.79) is known as the standard form.

It is often more convenient to work with the canonical (information) form, which
is defined as

N−1(x;h, J) = (2π)−N/2|J |1/2 exp

(
−1

2
hTJ−1h

)
exp

(
hTx− 1

2
xTJx

)
∝ exp

(
hTx− 1

2
xTJx

)
,

(2.80)
where h is the potential vector and J the precision (or else known as information)
matrix. It also holds that J � 0. Standard and canonical form parameters are linked
as Σ = J−1, µ = J−1h.2 If there are N variables and each has dimension d, then h is a
Nd× 1 vector, while J an Nd×Nd matrix. The d× 1 part of the potential vector that
is related to node i is denoted by hi, while Jij is the d× d block of J that is related to
variables Xi,Xj . There is an edge (i, j) between two jointly Gaussian variables Xi,Xj if
and only if Jij = 0. The sufficient statistics in a Gaussian distribution are the mean and
covariance (in standard form) or the potential vector and precision (in canonical form).
In other words, knowledge of these parameters fully characterize the distribution.

It turns out that marginalization is easy in standard form, while conditioning is
easy in canonical form. In more detail, if we have two disjoint sets of variables A,B
such that A ∪ B = {1, . . . , N}, with |A| = N1, |B| = N2 and the joint distribution

X = (XA,XB) is characterized by the parameters µ =

[
µA
µB

]
, Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
,

with ΣBA = ΣT
AB, then

E[XA] = µmA = µA (2.81)

cov(XA) = Σm
A = ΣAA. (2.82)

2 As a reminder, the standard (moment) form is represented as N (x;µ,Σ), while the canonical form
as N−1(x;h, J).
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Similarly, if X = (XA,XB) is given in canonical form as h =

[
hA
hB

]
, J =

[
JAA JAB
JBA JBB

]
,

with JBA = JTAB, and we are interested in characterizing the conditional distribution
XA | XB = xB ∼ N−1(xA;hA|B, JA|B), we have

hA|B = hA − JABxB (2.83)

JA|B = JAA. (2.84)

Conversely, conditioning is hard in the standard form. More specifically, if we are
in standard form and are interested in E[XA | XB = xB], cov(XA | XB = xB), they are
given by

E[XA | XB = xB] = µA|B = µA + ΣABΣ−1
BB(xB − µB) (2.85)

cov(XA | XB = xB) = ΣA|B = ΣAA − ΣABΣ−1
BBΣBA. (2.86)

This operation requires O(max(N1, N2)3) steps. Similarly, if XA,XB are expressed
in canonical form, marginalization is hard. For instance, if we want to recover the
distribution of XA ∼ N−1(xA;hmA , J

m
A ) in canonical form, this would be

hmA = hA + JABJ
−1
BBhB (2.87)

JmA = JAA − JABJ−1
BBJBA, (2.88)

which leads to an O(max(N1, N2)3) operation.
It turns out that the content of precision matrix uniquely determines the graph

structure. To elaborate further, it is useful to remind that zero correlation between
jointly Gaussian variables implies independence and vice versa. Let us define the partial
correlation ρij between variables Xi,Xj given the rest of variables XV \{i,j} = xV \{i,j} as

ρij =
cov(Xi,Xj | XV \{i,j} = xV \{i,j})

var(Xi | XV \{i,j} = xV \{i,j})var(Xj | XV \{i,j} = xV \{i,j})
. (2.89)

The precision for the bivariate distribution of Xi,Xj given XV \{i,j} = xV \{i,j} is

cov(Xi,Xj | xV \{i,j})−1 , Jij|V \{i,j} =

[
Jii Jij
Jji Jjj

]
,

which implies that

cov

([
Xi
Xj

]
| xV \{i,j}

)
, Σij|V \{i,j} =

1

JiiJjj − JijJji

[
Jjj −Jij
−Jji Jii

]
.

Therefore, cov(Xi,Xj | xV \{i,j}) = −Jij/(JiiJjj−JijJji), var(Xi | xV \{i,j}) = Jjj/(JiiJjj−
JijJji), var(Xj | xV \{i,j}) = Jii/(JiiJjj − JijJji). So, Eq. (2.89) becomes

ρij =
−Jij
JiiJjj

. (2.90)
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If Xi,Xj are conditionally independent given the rest of variables, Xi ⊥⊥ Xj | XV \{i,j},
this implies that the partial covariance, cov(Xi,Xj | xV \{i,j}) and partial correlation, ρij
are zero. From Eq. (2.90), we have that

Xi ⊥⊥ Xj | XV \{i,j} ⇒ ρij = 0⇒ Jij = 0. (2.91)

Now, if the joint distribution of X1, . . . ,XN is Markov with respect to graph G, this
means that conditional independence between two variables given the remaining implies
absence of an edge between them. Therefore, for a pair of nodes i, j such that (i, j) /∈ E ,
we have that Jij = 0. In other words, Jij = 0 when nodes i, j have no direct link, a
property indicating conditional independence (given the rest of the graph),

Example 2.9.1. Consider the Gaussian graphical model as depicted by

X2 X3

X1

X4 X5

The edge set E for this model is E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 5)}. The precision
matrix J takes the form:

J =




J11 J12 J13 0 0
J21 J22 J23 J24 0
J31 J32 J33 0 J35

0 J42 0 J44 0
0 0 J53 0 J55



.

As we see, for every i, j ∈ {1, . . . , 5} such that (i, j) /∈ E, we have Jij = 0.

� 2.9.1 Entropy

The entropy of a Gaussian random vector X = (X1, . . . ,XN ) takes the form

H(X ) =
N

2
(1 + log(2π)) +

1

2
log |Σ|, (2.92)

where X ∼ N (x;µ,Σ). As we see entropy in the Gaussian case depends on the deter-
minant of the covariance. We can express the entropy in terms of the precision matrix
J as well

H(X ) =
N

2
(1 + log(2π))− 1

2
log |J |.
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If we were to determine the pointwise conditional entropy, H(X | Y = y), it would
be

H(X | Y = y) =
N

2
(1 + log(2π)) +

1

2
log |ΣX |y|, (2.93)

where ΣX |y = cov(X | Y = y). Remarkably enough, as observed from Eqs. (2.84),
(2.86), conditional covariance or conditional precision do not depend on the specific
value of the conditioning variable. In other words, ΣX |Y = ΣX |y,∀y, where ΣX |Y is
the conditional covariance of X given Y that is the same for all values Y = y. This
has important implications for planning, as it renders open-loop planning equivalent to
closed loop (active planning as new observations are incorporated), when the problem
is modeled with a Gaussian graphical model and the entropy is used as the reward
function.

Since, the conditional covariance is the same for every value of the conditioning
variable, this further implies that the conditional entropy is the same as the pointwise
conditional entropy:

H(X | Y ) = EY [H(X | Y = y)] = EY

[
N

2
(1 + log(2π)) +

1

2
log |ΣX |Y |

]

=
N

2
(1 + log(2π)) +

1

2
log |ΣX |Y |. (2.94)

� 2.9.2 Mutual Information

Similarly, MI takes a simple form in a Gaussian model. The information gain of X from
an observation Y is defined as

I(X ;Y ) = −1

2
log

|Σ|
|ΣX |Y |

= −1

2
log
|JX |Y |
|J | .

As in the entropy case, MI does not depend on the exact value of observations for
Gaussian models. This convenient property makes also MI an excellent candidate as a
reward function for experiment designation.

� 2.10 Inference in Graphical Models

Inference in graphical models often refers to the problem of finding the marginal dis-
tribution of the hidden nodes given observations, pi(xi | y1, . . . , yN ), or retrieving the
most likely hidden sequence (MAP assignment), x∗ ∈ arg maxx p(x | y1, . . . , yN ), where
x = (x1, . . . , xN ). It is often assumed that observations are local, or in other words,
conditionally independent given the hidden variables. We will hold this assumption
throughout this thesis as well. In other words, if we assume that each observation Yi is
obtained from hidden variable Xi, then the data likelihood is factorized as

p(y1, . . . , yN | x1, . . . , xN ) =

N∏

i=1

p(yi | xi).
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If in addition there is a prior on X = (X1, . . . ,XN ), p(x), then the posterior distribution
of X given the observations Y = (Y1, . . . ,YN ) is

p(x | y) ∝ p(x)p(y | x),

where X = x,Y = y.
Assume we have an MRF with the following node and edge potentials, ϕi(xi),

ψij(xi, xj), ξi(xi, yi), where ϕi(xi) is the node potential for hidden variable Xi, ψij(xi, xj)
is the edge potential for any pair of hidden variable neighbors ((i, j) ∈ E) and ξi(xi, yi)
is the edge potential between a hidden variable and its observation. W.l.o.g., we can
assume that ξi(xi, yi) = p(yi | xi). Then, the joint distribution p(x, y) is

p(x, y) = p(y | x)p(x) ∝ p(x)
N∏

i=1

p(yi | xi) =
N∏

i=1

ϕi(xi)
∏

(i,j)∈E

ψij(xi, xj)
N∏

i=1

ξi(xi, yi)

∝
N∏

i=1

(ϕi(xi)ξi(xi, yi))
∏

(i,j)∈E

ψij(xi, xj) (2.95)

Therefore, the conditional distribution p(x | y) takes the form

p(x | y) ∝ p(x, y) ∝
N∏

i=1

(ϕi(xi)ξi(xi, yi))
∏

(i,j)∈E

ψij(xi, xj). (2.96)

Now, consider the following MRF with potentials defined as ϕ̃i(xi) = ϕi(xi)ξi(xi, yi),
∀i = 1, . . . , N , ψij(xi, xj),∀(i, j) ∈ E . The (unconditional) joint distribution p̃(x) would
be

p̃(x) ∝
N∏

i=1

ϕ̃i(xi)
∏

(i,j)∈E

ψij(xi, xj) =
N∏

i=1

(ϕi(xi)ξi(xi, yi))
∏

(i,j)∈E

ψij(xi, xj). (2.97)

By comparing Eqs. (2.96), (2.97) we see that p(x | y) = p̃(x). Therefore, we see that the
problems of finding conditional node marginals or MAP assignments given observations
can be reduced to an unconditional one (containing only the hidden variables) as long as
the node potentials of hidden variables are updated appropriately to take into account
the “local” effect each observation Yi has to its generating variable Xi. Thus, every time
an observation Yi = yi is made corresponding to variable Xi, we just need to multiply the
edge potential ξi(xi, yi) into the existing node potential of Xi, ϕi(xi) := ϕi(xi)ξi(xi, yi).

If we were to evaluate the marginal at a node i näıvely, this would amount to |X |N
operations, where X , is the (common) alphabet of hidden nodes as we would have to
evaluate the following quantity

pi(xi) =
Zi(xi)∑
xi
Zi(xi)

,
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where Zi(xi) =
∑

xV \i

∏N
i=1 ϕi(xi)

∏
(i,j)∈E ψij(xi, xj). For every value xi ∈ X , Zi(xi)

is computed in |X |N−1 steps, resulting in an overall complexity of |X |N (for the de-
termination of one marginal). Same analysis holds for the MAP assignment. For a
Gaussian graphical model of N variables (when we are in canonical form), finding the
node marginals, translates to determining the marginal means and variances, which
requires the inversion of the N ×N precision matrix, an O(N3) operation. If addition-
ally, each hidden variable Xi is a vector of dimension d, the inversion of J would be an
O(d3N3) operation. It is immediately obvious that completing the inference tasks in a
brute-force way is infeasible. Fortunately, there exist algorithms that take into account
the structure of the graph and result in a dramatic reduction in complexity. One such
dynamic programing algorithm, which runs linearly in the number of nodes, N , is the
belief propagation algorithm that we discuss below.

� 2.10.1 Belief Propagation

Belief propagation (BP) is a message passing algorithm for performing inference on
graphical models. The sum-product version of BP calculates the marginal distribution
for each hidden node conditioned on the observed ones [82].3 Two messages are trans-
mitted on each edge (i, j), one from i → j and one from j → i. A message from node
i to node j essentially contains all the information from the subtree rooted at node i,
plus the information enclosed on the node potential, ϕi(xi), and the pairwise potential,
ψij(xi, xj). This message captures the effect of eliminating the subtree rooted at node
i. Once we have all the incoming messages to node i correctly updated, the evaluation
of its marginal is a trivial operation, which is at most linear in the number of nodes in
the graph. A visualization of the above is given in Figs. 2.3a, 2.3b. For clarity of ex-
position, we will consider trees, where the algorithm is exact, but it can be generalized
to any type of MRFs with often very satisfying results. Before we analyze the belief
propagation algorithm further, we introduce a toy example to explain the logic behind
it.

Example 2.10.1. Consider the graphical model

X2 X3

X1

X4

3There is also the max-product version of BP, where the result is the MAP sequence given the
observations.
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specified by the distribution

p(x1, x2, x3, x4) =
1

Z
ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ψ12(x1, x2)ψ13(x1, x3)ψ34(x3, x4),

(2.98)
where Z is the partition function. Let us assume w.l.o.g. that we are interested in the
marginal of node 1. Then , we have

p1(x1) =
1

Z

∑

x2

∑

x3

∑

x4

ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ψ12(x1, x2)ψ13(x1, x3)ψ34(x3, x4)

∝
∑

x2

∑

x3

∑

x4

ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ψ12(x1, x2)ψ13(x1, x3)ψ34(x3, x4).

If we were to evaluate p1(x1) näıvely, this would amount to O(|X |4) operations. How-
ever, if we push every sum operator as deep as possible in the expression, we can induce
a significant reduction in computation. In fact, the marginal can be rewritten as

p1(x1) ∝
∑

x2

∑

x3

∑

x4

ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ψ12(x1, x2)ψ13(x1, x3)ψ34(x3, x4)

∝ ϕ1(x1)
∑

x2

ϕ2(x2)ψ12(x1, x2)

︸ ︷︷ ︸
m2(x1)

∑

x3

ϕ3(x3)ψ13(x1, x3)
∑

x4

ϕ4(x4)ψ34(x3, x4)

︸ ︷︷ ︸
m4(x3)︸ ︷︷ ︸

m3(x1)

.

Notice, that we have pushed furthest sums that correspond to leaves (nodes 2, 4) and
we kept going upwards to the root, which we assumed to be the node of interest, that
is, node 1. Message m4(x3) is essentially the message from node 4 to 3, which is
represented more clearly as m4→3(x3) and conveys the information by the elimination
of node 4 to node 3. For each value of x3, m4(x3) takes O(|X |) to evaluate, thus
amounting to O(|X |2) for all values of X3. Similarly, m3(x1) or else m3→1(x1) transfers
all the information that was generated from the elimination of nodes 3, 4 to node 1
and completes in O(|X |2) time. Same for message m2(x1). Since each message takes
O(|X |2) time and three messages were propagated, the total time would be O(3|X |2)
for the evaluation of one marginal, which is much more efficient than O(|X |4) of the
näıve approach. The same process can be followed for the evaluation of all marginals.
In fact, as we show later, the marginals of all nodes can be retrieved with a more clever
bookkeeping.

As we hinted in the example, in the serial version of BP an arbitrary node is chosen
as a root, then messages are passed from leaves to the root. This is sufficient to provide
the marginal at the root. If we additionally propagate messages from root to the leaves,
this allows for the evaluation of the marginals at all nodes. A message is passed from
node i to node j, once all messages from the other neighbors of i are correctly updated.
This is the intuition behind starting from the leaves and continuing to the root. When
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a message propagates from a leaf to its parent, it is guaranteed to be correct since the
leaf has no other neighbors (other than its parent). Then messages from leaves’ parents
to their parents would also be correct since the messages at the lower level have been
correctly updated in the previous step. Continuing in this fashion, when we reach the
root, which would mark the end of the first pass of the method, all messages pointing
towards the root would be correct. Once all incoming messages to node i are correctly
updated, which would be by the end of the first pass, its marginal can be obtained
in O(|X |) time as pi(xi) ∝ ϕi(xi)

∏
k∈N(i)mk→i(xi). In the second pass, we propagate

messages from the root to the leaves. To see why this guarantees the correctness of
these messages, suppose that the root sends a message to any of its children (for clarity,
name this node j). This message is guaranteed to be correct, since all the incoming
messages to the root from its other neighbors (all other children of the root excluding
j) are correct. The same reasoning follows as we propagate messages towards the lower
layers of the tree. At the end of the second pass, all incoming messages to all nodes
would be correct, and hence the marginals at all nodes can be obtained (in linear time
for each node). Since a tree has N − 1 edges and two passes are required, a total of
2(N − 1) messages are propagated, with each message resulting in O(|X |2) complexity.
Hence, the total complexity of the serial version of BP is O(N |X |2). To summarize the

XjXi

Xk1

Xk2

Xk�

...

(a) Message passing

Xi ...

...

...

...

Xk�

Xk1

Xk2

Xk3

(b) Marginal evaluation

Figure 2.3: Message passing and marginal evaluation. (a) Message mi→j(xj) con-
tains all the information of the subtree rooted at node i. Consequently, node i
gets all the information from the subtrees of its neighbors (except node j) as ex-
pressed in mi→j(xj) =

∑
xi
φi(xi)ψij(xi, xj)

∏
k∈N(i)\jmk→i(xi). Essentially, message

mi→j(·) represents the effect of eliminating the subtree rooted at i. (b) Once all in-
coming messages to node i are correctly updated, its marginal can be evaluated as
pi(xi) ∝ φi(xi)

∏
k∈N(i)mk→i(xi). Each incoming message captures the information

from each subtree rooted at every neighbor of i.

serial version of BP, we provide its algorithm in 2.7.
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Algorithm 2.7 Serial Belief Propagation

Initialization
Choose an arbitrary root r and set all messages to 1:
mi→j(xj) = 1,mj→i(xi) = 1,∀(i, j) ∈ E , xi, xj ∈ |X |.
First pass
Generate messages starting from the leaves and going towards the root:
For every (i, j) such that j = pa(i),

mi→j(xj) =
∑

xi

ϕi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mk→i(xi). (2.99)

The initial i’s are the leaves of the tree.
Second pass
Generate messages starting from the root and going towards the leaves:
For every (i, j) such that j = ch(i),

mi→j(xj) =
∑

xi

ϕi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mk→i(xi). (2.100)

The initial i is the root, i = r.
Marginal evaluation
For every i, evaluate the node and edge marginals as

pi(xi) ∝ ϕi(xi)
∏

k∈N(i)

mk→i(xi)

pij(xi, xj) ∝ ϕi(xi)ϕj(xj)ψij(xi, xj)
∏

k∈N(i)\j

mk→i(xi)
∏

`∈N(j)\i

m`→j(xj),

for every i ∈ {1, . . . , N}, (i, j) ∈ E .

Parallel version

The serial version of BP described above requires that all messages are updated in a
certain manner, so that at the end all messages are correctly updated. However, due
to the inherent locality of the information that each message conveys, the algorithm

can be easily parallelized. More precisely, if we let m
(t)
i→j(xj) to be the message from i

to j at step t, the algorithm described in 2.8 forms the parallel version of BP. It can
be shown that loopy BP converges to the exact solution in trees within a maximum
number of iterations equal to the tree diameter.

Interestingly enough, parallel BP can be used for general loopy graphs, giving
good approximations to hard problems [21, 70, 74, 98]. In the case of graphs with cy-
cles, it is referred as loopy BP. However, loopy BP is not guaranteed to converge in
general neither give correct solutions. Several works have studied the performance
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Algorithm 2.8 Parallel Belief Propagation

Initialization
Initialize all messages to 1:

m
(0)
i→j(xj) = 1,m

(0)
j→i(xi) = 1,∀(i, j) ∈ E , xi, xj ∈ |X |.

Iteration
Apply the following update until convergence:

m
(t+1)
i→j (xj) =

∑

xi

ϕi(xi)ψij(xi, xj)
∏

k∈N(i)\j

m
(t)
k→i(xi). (2.101)

Marginal evaluation
Assuming that the algorithm converges at step T , evaluate the node and edges
marginals as

pi(xi) ∝ ϕi(xi)
∏

k∈N(i)

m
(T )
k→i(xi)

pij(xi, xj) ∝ ϕi(xi)ϕj(xj)ψij(xi, xj)
∏

k∈N(i)\j

m
(T )
k→i(xi)

∏

`∈N(j)\i

m
(T )
`→j(xj),

for every i and (i, j) ∈ E .

of loopy BP and considered the conditions of convergence [42, 69, 71, 99]. Yedidia
et al. [105] showed that when BP converges on a loopy graph, it converges to a
stationary point of an approximate free energy known as Bethe free energy. The
Bethe free energy is defined as F (µ) = −∑x µ(x)E(x) − ∑x µ(x) logµ(x), where

E(x) = −∑N
i=1 ϕi(xi)−

∑
(i,j)∈E ψij(xi, xj) is the energy representing distribution pX (·)

and µ is any valid distribution supported in graph G = (V, E).
With a little algebraic manipulation, F (·) can we be rewritten as

F (µ) = logZ −D(µ‖pX ) ≤ logZ,

where logZ is the log-partition function. We see that if we had a way to find the max-
imizing point for F (·) (that sets the KL-divergence D(µ‖pX ) to zero, thus minimizing
it), we would retrieve the log-partition function: maxµ F (µ) = logZ.4 This point is
exactly µ = pX . However, for complex distributions determining this point is NP-hard.

Therefore, they considered an approximation of the above problem by assuming
only “tree-like” distributions for µ. In other words, distributions that can be expressed
in the form:

µ(x) =
N∏

i=1

µi(xi)
∏

(i,j)∈E

µij(xi, xj)

µi(xi)µj(xj)
,

4Once we know the value of the log-partition function, evaluating node and edge marginals is easy.
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where E is the edge set of the original graph G. They demonstrated the following
connection between the Bethe approximation and the fixed points of loopy BP:

Theorem 2.10.1 (Convergence of loopy BP to stationary points of the Bethe free
energy). The fixed points of belief propagation message updates result in node and edge
marginals that are stationary points of the Bethe variational problem defined as:

max
µ

F (µ) , −
∑

x

µ(x)E(x)−
∑

x

µ(x) logµ(x)

= −
∑

x

µ(x)


−

N∑

i=1

ϕi(xi)−
∑

(i,j)∈E

ψij(xi, xj)


−

∑

x

µ(x) logµ(x)

s.t. µ(x) =

N∏

i=1

µi(xi)
∏

(i,j)∈E

µij(xi, xj)

µi(xi)µj(xj)

∑

xi

µi(xi) = 1

∑

xj

µij(xi, xj) = µi(xi)

∑

xi

µij(xi, xj) = µj(xj)

µi(xi) ≥ 0

µij(xi, xj) ≥ 0.

Proof. A proof of this theorem in given in [105]. �

However, these fixed points may not be unique nor the results would be exact. In
addition, these fixed points might correspond to some other type of stationary points
other than maximizing points. For Gaussian BP, it has been shown that when loopy
BP converges, this results in the right means but generally incorrect variances [99].

Each iteration of the algorithm requires computing the messages associated with
every edge, which leads to a total time of O(TmaxN |X |2), where Tmax is the maximum
number of iterations. For trees, Tmax equals to the tree diameter, which is the length of
the longest path in the tree. It is immediately obvious that for trees, the parallel pro-
cedure entails a significant overhead if implemented sequentially compared to the serial
version. However, its parallelized nature can be exploited to generate a synchronous
message schedule.

Efficient implementation

As we see in Eqs. (2.99)-(2.101), the complexity of each message depends on the number
of neighbors of the source node and consequently on the type of graph. Thus, the worst
case complexity can be linear in the number of nodes per message. For example, in a
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star graph, where a central node is connected to the remaining N − 1 nodes, each node
(excluding the central node) has O(N) neighbors and thus complexity per message is
O(N |X |2) and O(N2|X |2) in total. In fact, we can make the complexity per message
independent of the type of graph by doing some clever bookkeeping. Specifically, we
consider the “pseudo-marginal” bi(xi) as

bi(xi) ∝ ϕi(xi)
∏

k∈N(i)

mk→i(xi).

The computation of all pseudo-marginals takes O(|X |∑N
i=1 |N(i)|) time. For a tree,∑N

i=1 |N(i)| = 2(N − 1) and hence the computation of all pseudo-marginals is linear in
N . Each message can now be expressed as

mi→j(xj) ∝
∑

xi

ψij(xi, xj)
bi(xi)

mj→i(xi)
,

which is always of complexity O(|X |2) for trees and independent of the graph structure.
For loopy graphs, complexity in the worst case per iteration is O (N |X |max(N, |X |)).

Max-Product

We described above the sum-product version of BP, which returns the marginals at
every node and pair of connected nodes. Another problem of interest in inference is the
most likely sequence of hidden states given the observations:

x∗ ∈ arg max
x

p(x | y)︸ ︷︷ ︸
p̃(x)

.

As explained before, this problem is equivalent to an unconditional one as long as the
node potentials of the hidden nodes are updated accordingly to capture the “local”
effect from each observation, ϕi(xi) := ϕi(xi)p(yi | xi). It turns out there is a very
similar algorithm for this problem that runs in time linear to the number of nodes.
More specifically, messages are flowing in both directions of every edge just like the
sum-product version of BP. The only difference is that sums are replaced with max. In
fact, to avoid numerical underflow, we consider the problem

x∗ ∈ arg max
x

log p(x | y)

instead, which is equivalent to the original maximization problem. The algorithm for
max-product is outlined in 2.9.

Obviously, the max-product can be implemented serially or in parallel as in the
sum-product case. We see from Defn. (2.104), that we can recover the maximum
value in O(|X |) time from any max-marginal. However, what is often more useful
is the maximizing point, x∗. For this, we need to introduce an additional type of
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Algorithm 2.9 Max-Product

Initialization
Set all messages to 0: mi→j(xj) = 0,mj→i(xi) = 0, ∀(i, j) ∈ E , xi, xj ∈ |X |.
Messages
For (i, j) ∈ E :

mi→j(xj) = max
xi
{logϕi(xi) + logψij(xi, xj) +

∑

k∈N(i)\j

mk→i(xi)}. (2.102)

Max-marginal
For every i, evaluate the max-marginal as

p̄i(xi) = exp(logϕi(xi) +
∑

k∈N(i)\j

mk→i(xi)), (2.103)

where the max-marginal is defined as

p̄i(xi) , max
xV \i

pX (x). (2.104)

“backtracking” messages, that do not increase the complexity in O terms, and are
defined as

δi→j(xj) = arg max
xi

{logϕi(xi) + logψij(xi, xj) +
∑

k∈N(i)\j

mk→i(xi)}. (2.105)

Message δi→j(xj) provides the value of Xi that maximizes message mi→j(xj), when
Xj = xj . The way to recover the MAP sequence is by choosing arbitrarily a node r as a
root. We find the value x∗r that maximizes p̄r(xr) and then we backtrack by determining
the values of its children that correspond to the maximizing value, x∗r . In other words,

x∗i = δi→r(x
∗
r), ∀i ∈ ch(r).

We recurse until all nodes have been assigned a value.

� 2.10.2 Gaussian Belief Propagation

It turns out, there is a straightforward extension of BP to Gaussian graphical models.
Before we present the algorithm, we can sketch the intuition behind it with an example.

Example 2.10.2. Let us consider the graphical model used in Ex. 2.10.1 and let us
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assume the variables are jointly Gaussian.

p(x1, x2, x3, x4) ∝ exp(hTx− 1

2
xTJx)

∝ exp(hT1 x1 + hT2 x2 + hT3 x3 + hT4 x4 −
1

2
xT1 J11x1 −

1

2
xT2 J22x2

− 1

2
xT3 J33x3 −

1

2
xT4 J44x4 − xT1 J12x2 − xT1 J13x3 − xT3 J34x4),

where h =




h1

h2

h3

h4


, J =




J11 J12 J13 0
J21 J22 0 0
J31 0 J33 J34

0 0 J43 J44


, x1, x2, x3, x4 ∈ Rd.

If we are interested in finding the marginal of X1 this would be:

p1(x1) ∝
∫

x2

∫

x3

∫

x4

exp(hT1 x1 + hT2 x2 + hT3 x3 + hT4 x4 −
1

2
xT1 J11x1 −

1

2
xT2 J22x2

− 1

2
xT3 J33x3 −

1

2
xT4 J44x4 − xT1 J12x2 − xT1 J13x3 − xT3 J34x4) dx2dx3dx4

∝ exp(hT1 x1 −
1

2
xT1 J11x1)

∫

x2

exp((h2 − J21x1)Tx2 −
1

2
xT2 J22x2) dx2

︸ ︷︷ ︸
m2(x1)

·

∫

x3

exp((h3 − J31x1)Tx3 −
1

2
xT3 J33x3

∫

x4

exp((h4 − J43x3)Tx4 −
1

2
xT4 J44x4) dx4

︸ ︷︷ ︸
m4(x3)

) dx3

︸ ︷︷ ︸
m3(x1)

= exp(hT1 x1 −
1

2
xT1 J11x1)m2(x1)m3(x1). (2.106)

Message m4(x3) (or better denoted by m4→3(x3)) equals to

m4(x3) =

∫

x4

exp((h4 − J43x3)Tx4 −
1

2
xT4 J44x4) dx4

= (2π)d/2|J44|−1/2 exp(
1

2
(h4 − J43x3)TJ−1

44 (h4 − J43x3))

∝ exp((−J34J
−1
44 h4)Tx3 +

1

2
xT3 J34J

−1
44 J43x3)

= exp(hT4→3x3 −
1

2
xT3 J4→3x3) ∝ N−1(x3;h4→3, J4→3),

where h4→3 = −J34J
−1
44 h4, J4→3 = −J34J

−1
44 J43.

Therefore, message m3(x1) takes the form

m3(x1) =

∫

x3

exp((h3 + h4→3 − J31x1)Tx3 −
1

2
xT3 (J33 + J4→3)x3) dx3.
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On the same account, m3(x1) simplifies to

m3(x1) ∝ exp((−J13(J33 + J4→3)−1(h3 + h4→3))Tx1 −
1

2
xT1 (−J13(J33 + J4→3)−1J31)x1)

= exp(hT3→1x1 −
1

2
xT1 J3→1x1) ∝ N−1(x1;h3→1, J3→1), (2.107)

where h3→1 = −J13(J33 + J4→3)−1(h3 + h4→3), J3→1 = −J13(J33 + J4→3)−1J31.
Similarly, one can show that m2(x1) equals to

m2(x1) ∝ N−1(x1;h2→1, J2→1), (2.108)

where h2→1 = −J12J
−1
22 h2, J2→1 = −J12J

−1
22 J21.

A careful observer would notice that messages are proportional to Gaussian distri-
butions whose parameters are given by formulas which resemble the BP updates for the
discrete case. That is, hi and on-diagonal element Jii resemble a node potential, while
Jij an edge potential. In addition, parameters of messages (hk→i, Jk→i) pointing to a
source node add up to form the message from node i to j. For example, in order to
evaluate J3→1 all other neighbors of 3 (in this case, node 4) are added to the on-diagonal
term of the source node, J33. A similar operation is needed for the evaluation of h3→1.

The evaluation of marginal at node 1 from Eq. (2.106) due to Eqs. (2.107), (2.108)
becomes

p1(x1) = N−1(x1; ĥ1, Ĵ1) ∝ exp((h1 + h2→1 + h3→1)Tx1 −
1

2
xT1 (J11 + J2→1 + J3→1)x1)⇒

ĥ1 = h1 + h2→1 + h3→1, Ĵ1 = J11 + J2→1 + J3→1.

The computation of each message requires O(d3) time, while the marginal at node 1
O(d2) time. Compare this to the O((4d)3) computation that the matrix inversion of the
full precision matrix J would require to obtain the marginal means and covariances.

After we roughly outlined the BP method for the Gaussian case with an example,
we proceed by giving the full algorithm in 2.10. Gaussian BP can be implemented
either in serial or parallel form as its counterpart for discrete variables. If implemented
serially, a root should be chosen randomly and then messages should flow from leaves
to the root and then backwards from root to the leaves. If implemented in parallel,
messages are exchanged locally until they converge. For trees, the convergence point
would be at most within a number of steps equal to the tree diameter. The complexity
of every message is O(d3), where d is the dimension for every hidden variable Xi.

5 Since
2(N − 1) are transmitted in the serial version, the total complexity would be O(Nd3).6

Therefore, all marginals can be recovered in O(Nd3) time as opposed to O(N3d3) time
that the inversion of the full J matrix would entail.

5We assume all hidden variables are of dimension d.
6It is O(TmaxNd

3) for the parallel version.
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Algorithm 2.10 Gaussian Belief Propagation

Initialization
Set all messages to 0: hi→j = 0, Ji→j = 0, hj→i = 0, Jj→i = 0, ∀(i, j) ∈ E .
Messages
For (i, j) ∈ E :

hi→j = −Jji


Jii +

∑

k∈N(i)\j

Jk→i



−1
hi +

∑

k∈N(i)\j

hk→i


 (2.109)

Ji→j = −Jji


Jii +

∑

k∈N(i)\j

Jk→i



−1

Jij . (2.110)

Marginal
For every i, evaluate its marginal, Xi ∼ N−1(xi; ĥi, Ĵi) as

ĥi = hi +
∑

k∈N(i)

hk→i (2.111)

Ĵi = Jii +
∑

k∈N(i)

Jk→i. (2.112)

In jointly Gaussian variables, the mean is the most likely assignment. Hence, there is
no need to come up with a max-product version for Gaussian models, as the most likely
sequence can be derived by setting each x∗i = Ĵ−1

i ĥi, where Xi ∼ N−1(xi; ĥi, Ĵi) is the
output of Gaussian BP. Lastly, Gaussian BP can also be applied to loopy graphs as well,
but there are no guarantees of convergence. As Weiss and Freeman [99] demonstrated,
loopy Gaussian BP has no convergence guarantees, but when convergence is reached
the estimated means equal to the true ones. However, there is no guarantee for the
estimated covariances and in fact they can be far from the true ones.

� 2.10.3 Feedback Message Passing (FMP)

Liu et al. [64] proposed the Feedback Message Passing (FMP) algorithm that breaks
the potentially loopy graph in two parts; one cycle-free T and a set of nodes, called
the feedback vertex set (FVS) F , whose removal results in the cycle-free graph T . An
example of a graph that becomes acyclic after the removal of FVS nodes is shown
in Fig. 2.4. This method provides a way to evaluate the exact means and variances
in loopy Gaussian MRFs. Let us split the potential vector and information matrix

in two parts corresponding to the FVS F and acyclic graph T as h =

[
hT
hF

]
and
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Figure 2.4: A graph with an FVS F of size 3. (a) Original graph G. (b) Acyclic-graph
T = G \ F after the removal of FVS F = {11, 12, 13}.

J =

2
6666666664

JT T
|

JT p1

|
· · ·

hp

z }| {
|

JT p

|
· · ·

|
JT pK

|
| {z }

JT F

JFT JFF

3
7777777775

Figure 2.5: Potential vector hp for determining “feedback gains” gpi ,∀i ∈ T .

J =

[
JT T JT F
JFT JFF

]
. The FMP algorithm consists of several stages: On the first stage,

an FVS F is determined from one of the existing algorithms. Then, the exact means and
variances are obtained in two rounds. In the first round, BP runs on {hT , JT T }, where
hT , JT T correspond to the part of full potential vector and block of full information
matrix that contains only nodes in T = V \F (the cycle-free graph after the removal of
FVS nodes). This will produce messages hTi→j , J

T
i→j ,∀i, j ∈ T and (i, j) ∈ E . Assuming

the FVS F is of size K, we run BP K more times with parameters {hp, JT T }p∈F , where
hp = JT p. In other words, hp is the column of information matrix J that is relevant
to FV p and nodes in T , as is shown in Fig. 2.5. Obviously, for every i ∈ T \ N(p),
we have [hp]i = 0, since there is no direct link between FV p and i. This will generate
messages hpi→j ,∀i, j ∈ T , (i, j) ∈ E and p ∈ F . After the end of first round, we

are provided with “partial” means and variances µ̂Ti , Σ̂
T
ii , ∀i ∈ T as well as “feedback

gains” gpi ,∀i ∈ T , p ∈ F that will be used in the second round of the method. It is
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worth noting that the “partial” means and variances µ̂Ti , Σ̂
T
ii ,∀i ∈ T do not correspond

to the true means and variances in these nodes as the contribution of feedback vertices
is not taken into account yet.

Then, the feedback nodes collect the gains and partial means from their neighbors
and update correspondingly the potential vector and information matrix at the FVS F
as

[ĴF ]pq = Jpq −
∑

i∈N(p)∩T

Jpig
q
i , ∀p, q ∈ F

[ĥF ]p = hp −
∑

i∈N(p)∩T

Jpiµ̂
T
i , ∀p ∈ F .

The (correct) means and variances of the FV nodes are recovered by solving a small
inference problem

ΣF = Ĵ−1
F

µF = ΣF ĥF .

In the second round, the correct means µF at the FVS are used to revise the potential
vectors at the neighbors of FVS nodes as

h̃i = hi −
∑

j∈N(i)∩F

Jij [µF ]j , ∀i ∈ T . (2.113)

The potential vectors for i ∈ T \N(p), ∀p ∈ F remain the same,

h̃i = hi. (2.114)

We retrieve the exact means on the cycle-free graph T by running BP one more time on
T by propagating messages h̃Tk→i on {h̃T , JT T }, where h̃T is defined by Eqs. (2.113),
(2.114). It is worth noting that messages JTi→j ,∀i, j ∈ T , (i, j) ∈ E do not need to be
recomputed as they are not affected by the revision of potential vectors. The end of
BP provides the true means in T

µi = (J−1
T h̃T ),∀i ∈ T .

Lastly, we estimate the variances in T , Σ̂Tii by adding correction terms computed from
the first round as

Σii = Σ̂Tii +
∑

p∈F

∑

q∈F
gpi [ΣF ]pqg

q
i , ∀i ∈ T .

A detailed description of FMP is provided in Alg. 2.11 and a flow of the algorithm in
Fig. 2.6.

Theorem 2.10.2. The FMP described in Alg. 2.11 outputs the exact means and vari-
ances for all nodes provided F is an FVS.

Proof. A detailed proof can be found in Sec. III.C of [64]. �



Algorithm 2.11 Feedback Message Passing (FMP)

1. Construct K potential vectors: hp = JT p,∀p ∈ F .

2. Run BP K + 1 times on T with parameters {hT , JT T }, {hp, JT T }p∈F , which

will produce messages hTi→j , h
p
i→j , J

T
i→j and marginals µ̂Ti , g

p
i , Σ̂

T
ii ,∀i ∈ T .

3. Obtain graph of size K with updated parameters ĥF , ĴF as

[ĴF ]pq = Jpq −
∑

i∈N(p)∩T

Jpig
q
i , ∀p, q ∈ F (2.115)

[ĥF ]p = hp −
∑

i∈N(p)∩T

Jpiµ̂
T
i , ∀p ∈ F (2.116)

and solve for ΣF = Ĵ−1
F and µF = ΣF ĥF .

4. Revise the potential vector on T as

h̃i = hi −
∑

j∈N(i)∩F

Jij [µF ]j , ∀i ∈ T (2.117)

and obtain the exact means by running BP one more time on the revised po-
tential vector (the corresponding messages will be denoted by h̃Ti→j).

5. Evaluate the means as

ĥTi = h̃i +
∑

k∈N(i)

h̃Tk→i, Σ̂Tii = (Jii +
∑

k∈N(i)

JTk→i)
−1, µi = Σ̂Tii ĥ

T
i .

(2.118)

6. Correct the variances with

Σii = Σ̂Tii +
∑

p∈F

∑

q∈F
gpi [ΣF ]pqg

q
i , ∀i ∈ T . (2.119)
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(c) Feedback from F to T
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(d) Second-round messages

Figure 2.6: Flow of FMP algorithm. (a) In the first round, we run BP on T with
parameters {hT , JT T }. This generates messages hTi→j , J

T
i→j depicted in black color. We

also run BP K more times, where K = |F| with parameters {hp, JT T }p∈F and produce
messages hpi→j , ∀p ∈ F , which are depicted as multi-colored arrows. Each color shade
corresponds to one of the three different FV nodes in this example. (b) After the
messages are computed in the first round, the neighbors of FV nodes send feedback to
the nodes in F in the form of “partial means” µ̂Ti and “feedback gains” gpi . In more
detail, the potential vector hF and information matrix JF at F are revised according
to Eqs. (2.115), (2.116). (c) After we obtain the true means and variances at F , we
send feedback back to T in the form of revising the potential vectors at the neighbors
of FV nodes. Each FV node sends feedback only to its immediate neighbors in T as
illustrated with the choice of different arrow colors. The potential vectors at the FV
neighbors are updated according to Eq. (2.117). The potential vectors at the remaining
nodes in T stay unaffected. (d) In the last round, we run BP one more time on T with
parameters {h̃T , JT T }, where h̃T are the revised potential vectors. Messages JTi→j will
not change from the previous round, since only potential vector hT has been revised,
something that does not affect the JTi→j messages. Thus, in this round, we only need

to propagate h̃Ti→j messages, depicted by blue color. At the end of this step, we can
compute the true means and variances in T by Eqs. (2.118), (2.119).



Sec. 2.10. Inference in Graphical Models 67

Obtaining an FVS

The problem of deciding whether there exists an FVS with size at most K has been
shown to be NP-complete by Karp [46]. In addition, finding the minimum FVS for
general graphs is still an active research area. The fastest algorithm that exists so
far runs in time O(1.7548N ), where N is the graph size [35]. However, approximate
algorithms exist that produce an FVS whose size is only by a factor larger to the
minimum. One of these methods by Bafna et al. [5] briefly works as follows. It starts
by adding to FVS F all nodes with zero weight w(u) and removing them from the
graph G along with their incident edges. A node’s weight is a non-negative number
associated with each node. For example, in maximum flow problems it can relate to the
node’s capacity, or in other words, the maximum flow that can pass through a node.
It continues by cleaning up the graph by recursively removing all edges with degree at
most one along with their incident edges. During the main part of the algorithm, it
finds the node u with the smallest weight to vertex degree ratio. As a reminder, the
degree of a vertex u is the number of its neighbors |N(u)|. Then, it recalculates the
weight of each vertex w(u) as w′(u) = w(u) − γ(|N(u)| − 1), where γ is the smallest
weight to vertex degree ratio γ = minu∈V w(u)/(|N(u)| − 1) and adds the nodes with
zero weight to FVS, while removing them from G and cleaning it up, exactly in the
same manner as in the initialization. The algorithm continues until there are not any
nodes left in G. In the case of probabilistic undirected graphical models, the weights
of nodes are initialized to one. The above algorithm runs in O(min{|E| logN,N2}) and
provides a 2-approximation ratio. In other words, the resulting FVS will not be more
than two times larger than the minimum FVS. For example, a square grid graph with
a side of size

√
N , which results in N hidden variables, has 2(

√
N − 1)

√
N = O(N)

edges. Therefore, finding an FVS with the above procedure takes O((logN)2) time.

Complexity of FMP

In step 2 of Alg. 2.11, we run BP K + 1 times on tree T . The number of messages
sent on each run is O(N −K). Therefore, for K + 1 runs, the complexity is O(K(N −
K)).7 In step 3, the potential vector and information matrix at FVS F are revised
in O(K2 maxp∈F N(p)). Also, the mean and covariance at F are evaluated in O(K3)
time. In step 4, it takes O(K

∑
p∈F N(p)) = O(K(N −K)) time to revise the potential

vectors at the neighbors of FV nodes. It also takes O(N −K) time to run BP one more
time. Step 5 takes also O(N −K) time. Lastly, step 6 takes O(K2(N −K)) time.

The dominant term in the FMP algorithm is the one related to step 6, O(K2(N −
K)), where we compute the variances at all nodes in T . If our interest is knowing
only a few variances in T , then the dominant term comes from step 3 and the overall
complexity is either O(K2 maxp∈F N(p)), if maxp∈F ≤ K or O(K3), otherwise. In

7In this analysis, we ignore the inherent complexity to compute a message, which is O(|X |2) in the
discrete and O(d3) in the Gaussian case, where |X | and d are the alphabet size and hidden dimension,
respectively.
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other words, if the number of FVS nodes, F = K, is larger than the maximum degree
of an FV node, the complexity of FMP is dominated by the inversion of the K × K
revised information matrix ĴF at F .



Chapter 3

Theoretical Guarantees of Greedy
Algorithms

INFORMATION gathering subject to resource constraints for estimation of an under-
lying phenomenon of interest poses several challenges. Information-driven methods

seek to maximize information extraction while limiting resource expenditures via active
control of the measurement process. Recent signal processing methods consider mutual
information as the reward embedded in a dynamic sensing algorithm [30, 103, 107]. The
problem of choosing an optimal subset of measurements is formulated as a combinato-
rial optimization problem which becomes intractable as the number of measurements
grows. Fisher et al. [34], Nemhauser et al. [77] proposed, in their seminal work, ap-
proximating methods that run in polynomial time with nearly optimal guarantees to
the optimal solution which is NP-hard [31]. Their work assumed general submodular
monotone functions.

Krause and Guestrin [52, 54] were able to make use of the existing algorithms with
provable bounds in information planning settings by recognizing that certain informa-
tion rewards, such as the entropy and mutual information (under mild conditions) are
submodular. Williams et al. [102] demonstrated that similar bounds hold for the more
challenging sequential setting, where different constraints apply to disjoint observation
sets. These previous results consider selection of measurements purely on utilizing
monotone information rewards. In cases where measurements have non-uniform costs,
one obvious drawback with choosing such rewards is that these are cost-unaware and
always choose the measurement with the highest informational value regardless of the
induced cost. In this chapter, we derive lower bounds of existing approximating al-
gorithms when the reward is submodular but not necessarily monotone. This enables
the introduction of penalized information rewards that take costs of measurements into
account. In fact, we propose a penalized form of mutual information that takes costs
of measurements into consideration and retains submodularity.

An additional challenge we face is to choose between the open-loop and closed-loop
control policy. In the former, we perform planning based on the expected performance
of measurements which can be done completely prior to accepting any measurements,
while in the latter we perform planning in an online manner, where the next step is

69
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determined upon the acquisition of actual measurement values. Obviously, in the first
setting, there is no need to spend any resources to acquire actual measurements for
proposing a plan, and therefore the generated plan might not reflect accurately the
actual progression of a phenomenon of interest. It is of interest to characterize models
where open-loop is equivalent to closed-loop control, so that the more cost-efficient
open-loop approach is no different than the closed-loop one. It is well-known that
Gaussian models satisfy this as information reward functions in this setting are related
to the uncertainty of the underlying phenomenon of interest, which in turn does not
depend on actual measurement values. In this work, we consider exponential families
and derive sufficient and necessary conditions under which open-loop and closed-loop
are equivalent.

Another interesting problem arises when there is a limited budget under which we
select measurements. Previous works, provide approximating algorithms with either
loose lower bounds [52] or optimal lower bounds that come at the expense of high
complexity [90]. In this work, we derive upper bounds for the optimal solution by
casting the budgeted problem in its dual form and making use of the recent algorithm
by Buchbinder et al. [13], which runs in linear time with respect to the observation set
size.

Lastly, another problem of interest we consider is that of focused planning [63].
Often, only a subset of the latent variables is of interest. In this case, the conditions
under which mutual information is submodular do not hold anymore. We demonstrate
that the use of the same approximating algorithm that applies to the submodular
monotone case can be used in this case too with provable lower bounds under certain
conditions. An earlier version of parts of this work was originally presented in [78].

We begin the chapter with Sec. 3.1 by discussing value independent models, where
open-loop control planning is equivalent to closed-loop control planning and provide
sufficient and necessary conditions for existence of such models. We show in Sec. 3.1.1
that Gaussian distributions satisfies the necessary condition. We continue with Sec.
3.2 where we derive lower bounds for greedy solutions when the reward function is
submodular non-monotone. In Sec. 3.2.1, we introduce a penalized form of mutual
information that takes into account measurement generating costs and is well-suited
for settings where measurements have non-uniform costs. We also explore the case of
varying costs in Sec. 3.3 that is interesting, when different consumers depending on their
knowledge of the world are willing to “pay” different prices for the same measurement.
The chapter continues with Sec. 3.4 by deriving upper bounds for the optimal solution
of the submodular knapsack maximization problem (or in other words the budgeted
batch setting). We resume in Sec. 3.5 by providing lower bounds for focused planning,
where only a set of variables is of relevance R and the choice of reward is mutual
information (MI). In this case, not all measurements are conditionally independent
given the (latent) relevant set, a property that is essential for the submodularity of
MI. Therefore, it is critical to determine an extended set R̂, that is a superset of the
relevant set R, which enforces conditional independence among all measurements so
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that the known approximating algorithms are applied with lower-bound guarantees.
We show in Sec. 3.5.1 how to generate such an extended set. The chapter continues
by showing a synthetic example in Sec. 3.6, where the choice of penalized mutual
information as reward function leads to solutions with higher informational value than
the one generated by the mutual information, which does not consider the induced costs
of measurements. We conclude with an outline of the contributions in Sec. 3.7

� 3.1 Value Independent Models

In closed-loop control settings, the optimal policy is designed as new measurements be-
come available. In more detail, as actual measurement values are drawn, optimal policy
uses this new information to determine the next measurements to be considered. In
open-loop control settings, a plan is devised based on the expected response of available
measurements without utilizing or anticipating the availability of any future informa-
tion (which would be in the form of actual measurement values). In the latter case,
there is no need to actively draw measurement values for the construction of a plan.
We are interested in settings where closed- and open-loop structures are equivalent. In
other words, in settings where the information plan does not depend on the measure-
ment values for a particular choice of reward function. This is the case with Gaussian
models, since when the reward function is entropy or mutual information, it does not
depend on the actual measurement values but rather the number of measurements. We
provide analysis of conditions under which independence on measurement value can be
generalized to exponential families and derive conditions under which an exponential
family does not depend on measurement values. In Eq. (2.73), we presented the general
form of an exponential family

p(x; θ) = q(x) exp(〈θ, φ(x)〉 −A(θ)) = q(x) exp(θTφ(x)−A(θ)). (3.1)

For our analysis, we will assume that the log-base distribution is a linear function of
the natural statistic

log q(x) = γTφ(x), (3.2)

where γ is a vector of constants. The above assumption is not an unrealistic one, since
the log-base distribution is a linear combination of the natural statistic in many well-
known distributions such as the Bernoulli, Exponential, Laplace, Gaussian, Gamma,
Inverse Gamma, Beta, Dirichlet, Categorical, Wishart and Normal-Gamma.1

The independence of information planning on the measurement values is dictated
by the reward function that guides the measurement plan. As we mentioned, we will
focus on two information reward functions, mutual information (MI) and entropy. We
first consider entropy, however, the results largely extend to mutual information since
it can be expressed as a difference of entropies.

1There are, however, other distributions where this assumption does not hold such as the Binomial,
Poisson, Chi-Squared and Lognormal.
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For exponential families, entropy is expressed as a function of θ, γ as follows

H(θ) = −E[log p(x; θ)]
(3.2)
= −E[−A(θ) + (θ + γ)Tφ(x)]

(2.76)
= A(θ)− (θ + γ)T∇A(θ).

(3.3)

It is worth noting that when the log-base distribution log q is a constant2, the entropy
takes the form

H(θ) = − log q +A(θ)− θT∇A(θ), (3.4)

and therefore we can omit the constant term − log q for simplicity.
When new measurements arrive, the parameter θ is updated to incorporate this

new information. A set of these parameters might depend only weakly on the mea-
surements (e.g., dependence on the size of measurements), while the remaining set (of
parameters) might depend strongly on the measurements (e.g., when it is a function of
the measurement values). We denote the set of parameters that depend weakly on the
measurements with θI , while the second subset that depends strongly with θD. There-

fore, parameter θ can be expressed as θ =

[
θI
θD

]
. Now, we will define more formally

parameters θI and θD. Suppose a measurement Y is linked to latent variable X as
follows

pY |X (y | x; η) = ψ(x, y, η),

where η is a set of parameters linking the two random variables. The posterior distri-
bution of X given Y is given by

pX |Y (x | y; η) ∝ pY |X (y | x; η)pX (x; θI , θD)ψ(x, y, η)

= pX (x; θ′I , θ
′
D),

where θ′I = f(θI , η), θ′D = g(θD, y). In other words, θI depends only weakly on the
measurements through the parameters η that link Y with X , while θD depends on the
actual measurement values y. To give a concrete example about the meaning of η,
measurement Y in Gaussian models is usually represented as

Y = CX + W ,

where W ∼ N (w; 0, R) and W ⊥⊥ X . In that case, η = (C,R).
We are interested in characterizing the conditions under which the entropy has

dependence only on θI , since in that case the reward function would be independent of
the actual measurement values resulting in the open-loop and closed-loop policies being
equivalent.

Theorem 3.1.1 (Necessary and sufficient conditions for independence of entropy on
the value of measurements). Given a distribution in the form of an exponential family

p(x; θ) = q(x) exp
(
θTφ(x)−A(θ)

)
,

2For example, log-base distribution is a constant for Gaussian distributions.
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where log q(x) = γTφ(x), log-partition function A(·) twice continuously differentiable,
and two sets of parameters I,D that depend weakly or strongly on the measurement
values, respectively, the following condition is necessary and sufficient

(θI + γI)
T∇2

θIθD
A(θI , θD) + (θD + γD)T∇2

θDθD
A(θI , θD) ≡ 0, (3.5)

such that entropy is independent on the measurement values.

Proof. First, we will prove the “necessary” condition. We separate the parameter θ
into two sets, θI , θD as described above. Similarly, γ is also divided in γI , γD. Using

the fact that θ =

[
θI
θD

]
, γ =

[
γI
γD

]
, Eq. (3.3) becomes

H(θI , θD) = A(θI , θD)−
[
θI + γI
θD + γD

]T [ ∇θIA(θI , θD)
∇θDA(θI , θD)

]
. (3.6)

We see from Eq. (3.6), that the entropy is a function of θI , θD. From these two
sets of parameters, only θD depends strongly on the measurement values. Hence, the
entropy will be independent of the measurement values, if it does not depend on θD.
Formalistically, this means that the first derivative of H with respect to θD would be
zero.

∇θDH(θI , θD) ≡ 0. (3.7)

Due to Eq. (3.6), Eq. (3.7) expands to

(θI + γI)
T∇2

θIθD
A(θI , θD) + (θD + γD)T∇2

θDθD
A(θI , θD) ≡ 0. (3.8)

Now, we will show the “sufficiency” condition. Assume Eq. (3.5) holds. If we take the
derivative of entropy H with respect to θD, Eq. (3.6) gives

∇θDH(θI , θD) = (θI + γI)
T∇2

θIθD
A(θI , θD) + (θD + γD)T∇2

θDθD
A(θI , θD). (3.9)

Combining Eqs. (3.8), (3.9), we obtain

∇θDH(θI , θD) ≡ 0.

Therefore, entropy is independent of θD and consequently of measurement values as
well. �

Corollary 3.1.1 (Constant log-base distribution). In case where log-base distribution
log q(·) is only a constant and exponential family can be expressed as

p(x; θ) ∝ exp
(
θTφ(x)−A(θ)

)
,

the necessary and sufficient condition for independency of entropy on the value of mea-
surements reduces to

θTI∇2
θIθD

A(θI , θD) + θTD∇2
θDθD

A(θI , θD) ≡ 0. (3.10)
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� 3.1.1 Gaussian Models

From Eq. (2.92), we saw that the entropy in Gaussian models is expressed as

H(X ) =
d

2
(1 + log(2π))− 1

2
log |J |, (3.11)

where J is the precision matrix of X .
If a measurement Yi is given by

Yi = CiX + Wi,

where Wi ∼ N (wi; 0, Ri) and Wi ⊥⊥ X , then the posterior precision matrix of X after
the incorporation of N measurements Y1, . . . ,YN , becomes

JX |Y1,...,YN
= J +

N∑

i=1

CTi R
−1
i Ci, (3.12)

where J is the prior precision matrix of X . It becomes evident that the posterior
entropy does not depend on the measurement values Yi = yi, but rather the parameters
that define the relationship between the measurements Yi and the latent variable X .
Consequently, as we see from Eq. (3.11), entropy will not depend on the measurement
values either. Therefore, Eq. (3.10) should hold as a necessary condition. As a reminder,
we saw in Ex. 2.8.4 that the log-partition function of the multivariate Gaussian is equal
to

A(θ) = −1

4
θT1 Θ−1

2 θ1 −
1

2
log | − 2Θ2|, (3.13)

where θ1 = h and Θ2 = −1
2J .

If we incorporateN measurements Y1, . . . ,YN , the posterior potential vector hX |Y1,...,YN

becomes

hX |Y1,...,YN
= h+

N∑

i=1

CTi R
−1
i yi, (3.14)

where h is the prior potential vector. By observing Eqs. (3.12), (3.14), we see that
only the potential vector h depends on the measurement values yi. Since θ1 = h, we
immediately see that θ1 plays the role of θD, while Θ2 plays the role of θI . Cor. 3.1.1
should be satisfied as a necessary condition, since the entropy in Gaussian models is
independent on the measurement values.

Corollary 3.1.2 (Satisfiability of necessary condition for independency on the mea-
surement values in Gaussian models). For a Gaussian variable X ∼ N−1(x;h, J) that
is expressed in the form of an exponential family as

p(x;h, J) ∝ exp(hTx− 1

2
xTJx) = exp(〈θ1, x〉+ ⟪Θ2, xx

T⟫−A(θ1,Θ2)),
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where θ1 = h,Θ2 = −1
2J and A(θ) = A(θ1,Θ2) = −1

4θ
T
1 Θ−1

2 θ1 − 1
2 log | − 2Θ2|, the

following relationship holds

ΘT
2∇2

Θ2θ1A(θ1,Θ2) + θT1∇2
θ1θ1A(θ1,Θ2) ≡ 0. (3.15)

Proof. Since θI = Θ2, θD = θ1, the following expression can be written as

θTI∇2
θIθD

A(θI , θD) + θTD∇2
θDθD

A(θI , θD) = ΘT
2∇2

Θ2θ1A(θ1,Θ2) + θT1∇2
θ1θ1A(θ1,Θ2).

(3.16)

Since A(θ) = −1
4θ
T
1 Θ−1

2 θ1 − 1
2 log | − 2Θ2|, we have that

∇θ1A(θ) = −1

2
Θ−1

2 θ1.

Therefore,

∇2
θ1θ1A(θ) = −1

2
Θ−1

2 , (3.17)

∇2
Θ2θ1A(θ) =

1

2
Θ−T2 θT1 Θ−T2 , (3.18)

where the last property is obtained from [83].
Since Θ2 = −1

2J is symmetric, we have that ΘT
2 = Θ2,Θ

−T
2 = Θ−1

2 and so∇2
Θ2θ1

A(θ)
becomes

∇2
Θ2θ1A(θ) =

1

2
Θ−1

2 θT1 Θ−1
2 . (3.19)

Due to Eqs. (3.17), (3.19), the RHS of (3.16) becomes

ΘT
2∇2

Θ2θ1A(Θ2, θ1) + θT1∇2
θ1θ1A(Θ2, θ1) = ΘT

2 (
1

2
Θ−1

2 θT1 Θ−1
2 ) + θT1 (−1

2
Θ−1

2 ) ≡ 0.

�

Unfortunately, the only known distribution whose entropy is independent of the
measurement values is the Gaussian distribution.

� 3.2 Bounds on submodular non-monotone functions

In this section, we are going to discuss theoretical guarantees for the batch and se-
quential selection settings when the reward function is submodular and non-monotone.
Nemhauser et al. [77] showed that by using a slightly modified version of Alg. 2.1
to solve problem O ∈ arg max|S|≤k f(S), when f is submodular and non-monotone, it
holds that

f(G) ≥
(

1−
(

1− 1

k

)k)
f(O)− k

(
1− 1

k

)k
θ, (3.20)
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where θ is a non-negative number defined as f(u | V \ {u}) ≥ −θ. We observe from
Eq. (3.20) that as θ grows, the bound becomes more pessimistic. In case where θ = 0
(monotone case), we obtain the familiar 1−1/e that applies to the submodular monotone
case. The only necessary modification to Alg. 2.1 for the case of non-monotone f is that
once we find a greedy element gj , such that f(gj | Gj−1) ≤ 0, the algorithm terminates,
since by submodularity any future elements would result in smaller incremental reward.
The above algorithm also runs in O(kN) time.

More recently, Lee et al. [61] provided a 1
(1+ε)(R+2+1/R) approximation algorithm for

maximizing a non-negative non-monotone submodular function subject to R matroid
constraints. For the batch selection problem, which corresponds to a uniform matroid
or the sequential selection problem, which corresponds to a partition matroid, R = 1
and so the approximating ratio is 1/4. In that respect, they present an algorithm
suitable for a much more generic set of problems, but one of the issues is that it runs
in O(1

ε (R+ 1)N4 logN) time. Therefore, even when 1
ε is at most polynomial in N , the

resulting complexity can be prohibitive even for moderate-sized observation sets.
In this section, we will attempt to generalize Alg. 2.5 by Williams et al. [102] for

the case of non-monotone rewards. In more detail, we are interested in finding an
approximation algorithm for the following problem

O ∈ arg max
|S∩Vt|Tt=1

f(S),

where f is a submodular function.3 We will assume, w.l.o.g. that each set Vt has kt
copies of a “slack” measurement e such that f(e | S) = 0 for any set S. We can think of
measurement e as representing the option to take no measurement, if the incremental
reward of the greedily selected element is non-positive. The approach that we propose
is outlined in Alg. 3.1.

Theorem 3.2.1 (Performance bounds in the sequential selection setting). If the greedy
method described in Alg. 3.1 is applied to problem max{|S∩Vt|≤kt,t=1,...,T} f(S), where f
is a submodular function, the following bound holds

f(G) ≥ 1

2
(f(O)−Mθ), (3.21)

where M =
∑T

t=1 kt and θ is a non-negative number such that f(u | V \ {u}) ≥ −θ, for
any u ∈ V = ∪Tt=1Vt.

Proof. Let us denote the optimal and greedy solutions by O = {o1, . . . , oM},G =
{g1, . . . , gM}, respectively. The optimal and greedy solutions have the same length,
that is, M =

∑T
t=1 kt, since we can always add as many copies of the “slack” measure-

ment e, where f(e | S) = 0 for any set S to both solutions such that they both attain
size M . We consider the function f ′(S) = f(S) + |S|θ. One can easily show that the

3As a reminder, Williams et al. [102] assumed that f is submodular monotone.
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Algorithm 3.1 Sequential Selection Greedy Heuristic for Non-Monotone
Functions

Initialization
Set G0 = ∅.
Define a visit walk w = {w1, . . . , wM} such that

∑M
j=1 1(wj = t) = kt, ∀t.

Iteration
for j in 1 : M do

Select gj s.t. gj ∈ arg maxu∈Vwj
f(u | Gj−1).

if f(gj | Gj−1) > 0 then
Set Gj = Gj−1 ∪ {gj}.

else
Set Gj = Gj−1 ∪ {e}.

end if
Set Vwj = Vwj \ {gj}.

end for
G = GM is the greedy solution.

function retains submodularity. That is, for any measurement u /∈ B and A ⊆ B, it
holds that

f ′(u | A) = f(u | A) + θ
(a)

≥ f(u | B) + θ = f ′(u | B),

where (a) holds by submodularity of f .
Interestingly, f ′ is also monotone. For any u /∈ S, we have

f ′(u | S) = f(u | S) + θ ≥ 0,

where the last inequality holds since f(u | S) ≥ f(u | V \ {u}) ≥ −θ.
Since f ′ is submodular and monotone, the bound by Williams et al. [102] applies

(to f ′)

f ′(G) ≥ 1

2
f ′(O)⇔ f(G) + |G|θ ≥ 1

2
(f(O) + |O|θ)⇔ f(G) +Mθ ≥ 1

2
(f(O) +Mθ)

f(G) ≥ 1

2
(f(O)−Mθ).

�

It is worth mentioning that the bound in Thm. 3.2.1 is a pessimistic one, since it
depends on the maximum negative reward for any measurement u, −θ. As θ grows,
the bound becomes looser and does not have any practical implications for really large
values of θ or kt,∀t. However, for smaller values of θ, the bound basically says that the
value of the submodular reward f for the greedy solution G cannot be worse than 50%
of the optimal solution minus some quantity, which has to do with the worst (negative)
contribution that a measurement can have in the existing set of chosen measurements.
In fact, for θ = 0 (monotone case), we have that f(G) ≥ 1

2f(O), which is the familiar
bound by Williams et al. [102].
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� 3.2.1 Penalized Mutual Information

In information planning, acquiring measurements usually induces costs. Costs may
be generated from a variety of different sources depending on the problem of interest.
For example, costs can represent processing or communication costs. One may also be
subject to limited budget b in many settings, under which measurements can be selected.
This budget can be related, for example, to limited bandwidth of the channel through
which measurements are transmitted. However, solely relying on MI as the reward
function does not account for heterogeneous measurement costs. It would be better to
just motivate the idea that accounting for heterogeneous measurement costs necessitate
consideration of an alternative reward that incorporates both value of information and
the cost of acquiring that information. We define the penalized mutual information
(PMI) for this purpose as

Definition 3.2.1 (Penalized Mutual Information).

f(A) = I(X ;YA)− λc(A),

where λ ≥ 0 is a regularization parameter transforming cost to information units.

The incremental reward of PMI is defined as

f(u | A) = I(X ;Yu | YA)− λc(u).

Lemma 3.2.1. The penalized mutual information f(A) = I(X ;YA)− λc(A) is a sub-
modular function.

Proof. For every A,B ⊆ V such that A ⊆ B, we have

I(X ;Yu | YA) ≥ I(X ;Yu | YB)

I(X ;Yu | YA)− λc(u) ≥ I(X ;Yu | YB)− λc(u)

f(u | A) ≥ f(u | B).

�

We can easily show that PMI is not monotone. A common selection scheme would
be to select the measurement with the maximum incremental reward as it is dictated
by standard greedy approaches we revised in the previous chapter. The issue with
this approach, however, is that the plan might end up adopting measurements, which
have negative incremental reward and thus reduce the total reward. A more natural
approach is to be able to opt out from selecting a measurement if this measurement has
non-positive incremental reward. We formulate this as

gj =

{
arg maxu∈Vwj

f(u | Gj−1) , f(u | Gj−1) > 0

∅ , otherwise.
(3.22)
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The above greedy rule, with slight abuse of notation, can be written as

gj ∈ arg max
u∈Vwj

{f(u | Gj−1), 0}. (3.23)

The problem with this reward though is that it is neither monotone nor submodular,
therefore none of the previously presented bounds apply. To overcome this limitation,
we can introduce kt copies of a “slack” measurement e in each observation set Vt such
that f(e | S) = 0 for any set S. This “slack” measurement plays the role of not
selecting a measurement at a greedy step, if the greedily selected measurement results
in non-positive incremental reward. Therefore, by choosing the submodular function
f(A) = I(X ;YA)−λc(A) as the reward and using the “slack” measurements to represent
the option of not selecting a measurement, we can apply Alg. 3.1. Therefore, the bounds
presented in Thm. 3.2.1 apply.

� 3.3 Bounds on Varying Costs

In the previous section, we considered fixed costs for measurements. A more interesting
scenario is when measurement costs change proportionally to the relative informational
value they carry. From the perspective of an information consumer, one might be willing
to obtain a measurement Yu with a cost which is analogous to the relative information
that the measurement conveys with respect to a specific consumer. We denote the
existing knowledge of information consumer by A. We can formulate the above as

c(u | A) = ruI(X ;Yu | YA), (3.24)

where ru ≥ 0 is a parameter related to the informational value of measurement u and
I(X ;Yu | YA) captures the relative informational value of measurement u based on the
consumer’s current knowledge as depicted byA. WhenA = ∅, we have c(u) = c(u | ∅) =
ruI(X ;Yu). It would be natural to assume that an information consumer is only willing
to incur a cost proportional to the informational utility of the measurement. Since
this depends on A and A varies, the cost that one is willing to incur for a particular
measurement will also vary and in fact decrease as A gets larger. This is captured from
the fact that ∀A ⊆ B,

c(u | B) = ruI(X ;Yu | YB) ≤ ruI(X ;Yu | YA) = c(u | A), (3.25)

where the last inequality holds from the submodularity of MI. The inequality (3.25)
also indicates that the cost function (as we define it in (3.24)) is submodular.

We can generalize Eq. (3.24), which considers the relative cost of a single measure-
ment u, to sets of measurements S. The relative cost of a set of measurements S given
knowledge of A would be similarly defined as

c(S | A) = rSI(X ;YS | YA). (3.26)
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The PMI is defined in the same way for the case of varying costs as well. That is,

f(A) = I(X ;YA)− λc(A)

f(u | A) = I(X ;Yu | YA)− λc(u | A),

where c(u | A) is defined in Eq. (3.24).

Lemma 3.3.1. There cannot be a set function c(· | ·) satisfying (3.26) with non-equal
r.

Proof. Consider the reward of set S ∪ {u}

f(S ∪ {u}) ≡ f(S ∪ {u})
f(S ∪ {u})− f(S)︸ ︷︷ ︸

f(u|S)

+ f(S)− f(∅)︸ ︷︷ ︸
f(S|∅)

= f(S ∪ {u})− f(u)︸ ︷︷ ︸
f(S|u)

+ f(u)− f(∅)︸ ︷︷ ︸
f(u|∅)

I(X ;Yu | YS)− λc(u | S) + I(X ;YS)− λc(S) = I(X ;YS | Yu)− λc(S | u) + I(X ;Yu)− λc(u)

I(X ;Yu | YS) + I(X ;YS)− λ(c(u | S) + c(S)) = I(X ;YS | Yu) + I(X ;Yu)− λ(c(S | u) + c(u))

I(X ;Yu,YS)− λ(c(u | S) + c(S)) = I(X ;Yu,YS)− λ(c(S | u) + c(u)).
(3.27)

From Eq. (3.27), we immediately see that

c(u | S) + c(S) = c(S | u) + c(u). (3.28)

Using the fact that c(u | S) = ruI(X ;Yu | YS) and c(S | u) = rSI(X ;YS | Yu), Eq.
(3.28) becomes

ruI(X ;Yu | YS) + rSI(X ;YS) = rSI(X ;YS | Yu) + ruI(X ;Yu). (3.29)

Now, if we add terms ruI(X ;YS)+rSI(X ;Yu) in both sides of Eq. (3.29), we obtain

ruI(X ;Yu,YS) + rS(I(X ;YS) + I(X ;Yu)) = rSI(X ;Yu,YS) + ru(I(X ;YS) + I(X ;Yu))

(ru − rS)I(X ;Yu,YS) = (ru − rS)(I(X ;YS) + I(X ;Yu)).

Suppose ru 6= rS , then we would have

I(X ;Yu,YS) = I(X ;YS) + I(X ;Yu),∀S ⊆ V, u /∈ S. (3.30)

Due to submodularity of MI, we know that

I(X ;Yu) ≥ I(X ;Yu | YS)⇔
I(X ;Yu) + I(X ;YS) ≥ I(X ;Yu | YS) + I(X ;YS) = I(X ;Yu,YS),

which contradicts (3.30). Eq. (3.30) holds only in the special case when X ,YS ,Yu are
independent. So, it must be that: ru = rS = r, ∀S ⊆ V, u /∈ S. �
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Since, f(u | A) = (1 − λr)I(X ;Yu | YA), f is trivially submodular. For it to be
monotone as well, we need to have r ≤ 1

λ . In this case

f(u | A) = I(X ;Yu | YA)− λc(u | A) = (1− λr)I(X ;Yu | YA) ≥ 0.

When r ≤ 1
λ , the known bounds presented in Sec. 2.6 for the submodular monotone

case apply in the case of varying costs as well.

� 3.4 Bounds on Submodular Knapsack Maximization

In Sec. 2.6, we explored approximation algorithms whose performance is nearly optimal
compared to the optimal solution. We focused on two problems; the selection and bud-
geted setting. In the first one, we are interested in determining the measurements that
maximize some specified reward under a constraint on the number of measurements
that can be selected. In the second problem, each measurement is assigned a cost and
we are interested in choosing the measurements that maximize a reward function sub-
ject to a budget constraint. The latter problem is also known as submodular knapsack
maximization (SKM). In this section, we revisit the SKM problem and determine upper
bounds for the optimal solution by reducing the problem to an unconstrained submod-
ular maximization (USM) one and using the bounds provided by Buchbinder et al.
[13]. Even though previous methods have addressed this problem, they either propose
algorithms whose complexity include high order terms of the observation set size, N
or derive loose upper bounds for the optimal [52, 90]. In more detail, Sviridenko [90]
proposes a heuristic that runs in O(N5) time and provides a 1−1/e approximating ratio
to the optimal, while Krause and Guestrin [52] present a method that runs in O(N2)
time with an approximating ratio of (1 − 1/

√
e) ≈ 0.394. The first method can be

impractical even for problems with moderately-sized observation sets, while the second
one provides a loose upper bound for the optimal. In other words, if we denote by G the
greedy solution generated by [52], the optimal solution cannot exceed 1

1−1/
√
e
≈ 2.542

times the greedy one.
Here, we will provide an upper bound for the optimal solution of the SKM problem

by working on the dual domain and taking advantage of the algorithm by Buchbinder
et al. [13], which runs in linear time with respect to the observation set size, N . In
more detail, we consider the problem

O ∈ arg max
c(S)≤b

f(S),

where f is monotone, submodular and c is a modular function. That is, c(S) =∑
u∈S c(u). We are interested in providing upper bounds for f(O). Let us additionally,

denote by h the penalized form of f as

h(S;λ) = f(S)− λc(S),

where λ is a non-negative penalty parameter. The larger λ is, the bigger role the
cost (of a measurement) has in the designation of a measurement schedule. It can be
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trivially shown that h is submodular but non-monotone. For a particular value of λ,
the algorithm by Buchbinder et al. [13] provides a solution GUSM in O(N) time which is
on average at least 50% close to the optimal, E[h(GUSM)] ≥ 0.5 maxS⊆V h(S;λ).

Theorem 3.4.1 (Upper bound for SKM). If we denote by O the optimal solution to
the SKM problem

O ∈ arg max
c(S)≤b

f(S),

where c(S) =
∑

u∈S c(u), the value of the optimal solution is upper bounded by

f(O) ≤ min
λ≥0

λb+ 2E[h(GUSM;λ)], (3.31)

where h(S;λ) = f(S)− λc(S), b > 0 and GUSM is the randomized greedy solution for the
problem maxS⊆V h(S;λ) generated by Alg. 2.6.

Proof. By Lovász extension [65], we can transform the combinatorial problem to a
convex optimization problem as

max
c(S)≤b

f(S) = max
xi∈{0,1}

min
λ≥0

fc(x)− λ(

n∑

i=1

cixi − b) = max
xi∈{0,1}

min
λ≥0

fc(x)− λ(cTx− b),

where fc is the convex extension of submodular function f and xi ∈ {0, 1} is an indicator
variable determining whether item (measurement) i will be in the final solution.

Let us denote by L(x, λ) = fc(x) − λ(cTx − b) the Lagrange function of the above
problem. From the minimax inequality, we have that for any function L

max
xi∈{0,1}

min
λ≥0

L(x, λ) ≤ min
λ≥0

max
xi∈{0,1}

L(x, λ)

max
xi∈{0,1}

min
λ≥0

fc(x)− λ(cTx− b) ≤ min
λ≥0

max
xi∈{0,1}

fc(x)− λ(cTx− b).

Since fc, c
Tx− b are convex with respect to x and there is a feasible solution, which is

x = 0, belonging to the relative interior of fc, c
Tx− b, then Slater’s condition holds and

the above inequality becomes tight (strong duality).
Namely, we have

max
xi∈{0,1}

min
λ≥0

fc(x)− λ(cTx− b) = min
λ≥0

max
xi∈{0,1}

fc(x)− λ(cTx− b). (3.32)

Therefore, we have

max
c(S)≤b

f(S) = min
λ≥0

max
xi∈{0,1}

fc(x)− λ(cTx− b) = min
λ≥0

λb+ max
xi∈{0,1}

fc(x)− λcTx. (3.33)

The last term maxxi∈{0,1} fc(x)− λcTx is equivalent to maxS f(S)− λc(S)︸ ︷︷ ︸
h(S;λ)

. If we de-

note by OUSM ∈ arg maxS⊆V h(S) the optimal solution of this unconstrained submodular



Sec. 3.5. Bounds for Focused Planning 83

maximization problem, the application of Alg. 2.6 by Buchbinder et al. [13] generates
a greedy solution GUSM, which is on average at least 50% close to h(OUSM;λ):

E[h(GUSM;λ)] ≥ 1

2
h(OUSM;λ)⇒ h(OUSM;λ) = max

S⊆V
h(S;λ) ≤ 2E[h(GUSM;λ)]. (3.34)

Due to Eq. (3.34), Eq. (3.33) becomes

f(O) = max
c(S)≤b

f(S) = min
λ≥0

λb+ max
S⊆V

h(S;λ) ≤ min
λ≥0

λb+ 2E[h(GUSM;λ)].

�

Finding a GUSM for a specific λ takes O(N) time. We can upper-bound f(O) by
discretizing λ to N values and choosing the λ that corresponds to the minimum upper
bound. The total running time for determining an upper-bound would be O(N2).

� 3.5 Bounds for Focused Planning

It is often the case that only a specific set of latent variables is of interest. We will denote
this set by R and call it relevant set. The remaining variables of the latent graph act
as nuisances and are often used for modeling purposes. If we are interested in designing
a plan with respect only to this relevant set R, one solution is to marginalize the
irrelevant latent variables. The issue with this approach is that marginalization would
result in very expensive computations, since it would introduce direct dependencies
between variables. Namely, every variable that is marginalized, introduces a clique
between all the variables that directly connects to. Therefore, marginalization would
result in a clique comprised of all the variables that are directly connected to the
marginalized variables, thus making inference much harder. Another issue which is
specific to information planning when the reward of choice is MI is that the conditional
independency of measurements given XR may no longer hold and, as such, preclude
the use of submodular analysis and associated bounds. In this section, we will propose
an approximating method for selecting informative measurements with respect to the
relevant latent variables XR, that under mild assumptions provides lower bounds to the
optimal.

In more detail, we will consider the following problem

max
|S|≤k

I(XR;YS). (3.35)

In Fig. 3.1, we see a graphical model with T observation sets and T latent variables
X1, . . . ,XT . The relevant set R is the one filled with light green color. Unfortunately,
if we apply Alg. 2.1 in problem (3.35), there are no guarantees that the greedy so-
lution would be close to the optimal, since I(XR;YS) is monotone but not submod-
ular anymore. As a reminder, function f(S) = I(XR;YS) would be submodular, if
Yi ⊥⊥ Yj | XR,∀i 6= j ∈ V. One key idea introduced by Levine and How [62, 63]
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Y1,1

Y1,2

Y1,N1
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. . .
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Figure 3.1: Focused inference setting. In this example, latent nodes 1 and 2 form
the relevant set R, which is depicted by light green color. There is at least one pair
of measurements Yi,Yj such that Yi 6⊥⊥ Yj | XR. For example, the red dashed line
outlines a path between all measurements of observation set V3 and all measurements
of observation set V4.

is the notion of extended set R̂ of R. Extended set R̂ is a superset of R such that
Yi ⊥⊥ Yj | XR̂,∀i 6= j ∈ V. In this case, the bounds for the selection problem presented
in Sec. 2.6 would hold for the function I(XR̂;YS). We will show below, how we can
generalize the bounds to the reward of interest I(XR;YS). As in Alg. 2.1, we select the
measurement gj at each step such that

gj ∈ arg max
u∈V\Gj−1

I(XR;Yu | YGj−1) (3.36)

Theorem 3.5.1 (Relation between greedy and optimal solution in the focused setting).
Let us denote by R the relevant set, and by R̂ the extended set, that is, the set such
that Yi ⊥⊥ Yj | XR̂,∀i 6= j ∈ V. If the greedy method described in Alg. 2.1 is applied to
problem max|S|≤k f(S), where f(S) = I(XR;YS), then the greedy solution is related to
the optimal solution as follows

f(G) = I(XR;YG) ≥ f(O)

(
1−

(
1− 1

k

)k)
−

k∑

j=1

fUj

(
1− 1

k

)k−j
, (3.37)

where fUj = maxu∈V\Gj−1
I(XR̂\R;Yu | XR,YGj−1).

Proof. Let us denote by O the optimal solution for the problem max|S|≤k I(XR;YS)
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and by G the greedy solution of Alg. 2.1 under the reward f(S) = I(XR;YS). We have

I(XR;YO)
(a)

≤ I(XR;YO,YGj−1) = I(XR;YGj−1) + I(XR;YO\Gj−1
| YGj−1)

(b)
=

j−1∑

i=1

I(XR;Ygi | YGi−1) + I(XR;YO\Gj−1
| YGj−1)

(c)

≤
j−1∑

i=1

I(XR;Ygi | YGi−1) + I(XR̂;YO\Gj−1
| YGj−1)

(d)

≤
j−1∑

i=1

I(XR;Ygi | YGi−1) +
∑

u∈O\Gj−1

I(XR̂;Yu | YGj−1)

=

j−1∑

i=1

I(XR;Ygi | YGi−1) +
∑

u∈O\Gj−1

(I(XR̂\R;Yu | YGj−1) + I(XR;Yu | YGj−1))

(e)

≤
j−1∑

i=1

I(XR;Ygi | YGi−1) + k max
u∈O\Gj−1

I(XR̂\R;Yu | XR,YGj−1)

+ k max
u∈V\Gj−1

I(XR;Yu | YGj−1), (3.38)

where (a) is due to monotonicity of MI, (b) due to the chain rule of MI, (c) due to
the monotonicity of MI (R̂ ⊇ R) and (d) due to submodularity of MI with respect to
extended set R̂. As a reminder, submodularity does not hold for the function I(XR;YS),
but holds for I(XR̂;YS) since all measurements are conditionally independent given XR̂.
The last inequality in (e) holds because we expanded the constraint set of I(XR;Yu |
YGj−1) from O \ Gj−1 to V \ Gj−1.

Let us denote by oj the element that maximizes oj ∈ arg maxu∈O\Gj−1
I(XR̂\R;Yu |

XR,YGj−1). From the greedy algorithm, we also have that gj ∈ arg maxu∈V\Gj−1
I(XR;Yu |

YGj−1). Therefore, Eq. (3.38) becomes

I(XR;YO) ≤
j−1∑

i=1

I(XR;Ygi | YGi−1) + kI(XR̂\R;Yoj | XR,YGj−1) + kI(XR;Ygj | YGj−1).

(3.39)
Let us further denote by fLj , f

U
j the following quantities

fLj = min
u∈V\Gj−1

I(XR̂\R;Yu | XR,YGj−1) (3.40)

fUj = max
u∈V\Gj−1

I(XR̂\R;Yu | XR,YGj−1). (3.41)

Then, the following inequality holds

fLj ≤ I(XR̂\R;Yoj | XR,YGj−1) ≤ fUj . (3.42)
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If we denote yj = I(XR;Ygj | YGj−1), zj = I(XR̂\R;Yoj | XR,YGj−1), then Eqs. (3.39),

(3.42) can be rewritten as

I(XR;YO) ≤
j−1∑

i=1

yi + kzj + kyj (3.43)

fLj ≤ zj ≤ fUj . (3.44)

We have that I(XR;YG) =
∑k

j=1 yj under the constraints (3.43), (3.44). Let us
consider the following linear optimization problem

min
y1,...,yk

k∑

j=1

yj (3.45)

s.t. I(XR;YO) ≤
j−1∑

i=1

yi + kzj + kyj

fLj ≤ zj ≤ fUj , ∀j = 1, 2, . . . , k.

If we denote by y∗ = (y∗1, . . . , y
∗
k) the optimal solution, then we have that I(XR;YG) =∑k

j=1 yj ≥
∑k

j=1 y
∗
j . Since our goal is to find a lower bound for the greedy solution, we

are interested in solving the optimization problem (3.45).
By taking the dual of problem (3.45), we have

d∗ = max
x1,...,xk

f(O)
k∑

j=1

xj +
k∑

j=1

(fLj sj − fUj tj) (3.46)

s.t. kxj +
k∑

i=j+1

xi = 1

kxj + sj − tj = 0

xj , sj , tj ≥ 0, ∀j = 1, 2, . . . , k.

Dual variables xj are related to the constraints I(XR;YO) ≤∑j−1
i=1 yi + kzj + kyj , while

dual variables sj , tj to the constraints fLj ≤ zj ≤ fUj . The optimal solution to the dual
problem is the following

x∗j =
1

k

(
1− 1

k

)k−j
(3.47)

t∗j − s∗j =

(
1− 1

k

)k−j
,∀j = 1, 2, . . . , k. (3.48)

The above problem is underdetermined since there are more variables (3k) than con-
straints (2k). Due to Eq. (3.48), the term (fLj sj−fUj tj) in the objective of dual problem
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(3.46) becomes

fLj s
∗
j − fUj t∗j = fLj s

∗
j − fUj (s∗j + (1− 1/k)k−j) = (fLj − fUj )s∗j − fUj (1− 1/k)k−j ≤ 0.

Obviously, we want this term to be as large as possible since it is a non-positive term
and reduces the overall objective. The value of the non-negative s∗j that maximizes the

above term is s∗j = 0, since fLj ≤ fUj . For s∗j = 0, we have

t∗j =

(
1− 1

k

)k−j
,∀j = 1, 2, . . . , k. (3.49)

Therefore, the optimal dual solution (3.46) becomes

d∗ = f(O)

(
1−

(
1− 1

k

)k)
−

k∑

j=1

fUj

(
1− 1

k

)k−j
. (3.50)

Since this is a linear optimization problem, the duality gap is zero. Therefore

I(XR;YG) =
k∑

j=1

yj ≥
k∑

j=1

y∗j = d∗ = f(O)

(
1−

(
1− 1

k

)k)
−

k∑

j=1

fUj

(
1− 1

k

)k−j
.

�

Lemma 3.5.1 (Monotonicity of I(XR̂\R;Yu | XR,YGj−1) with respect to j). The MI

term I(XR̂\R;Yu | XR,YGj−1) is decreasing with respect to j, for every Yu.

Proof. We have that

I(Yu;XR̂\R,Ygj | XR,YGj−1)
(a)
= I(Yu;XR̂\R | XR,YGj−1 ,Ygj ) + I(Yu;Ygj | XR,YGj−1)

(b)
= I(Yu;XR̂\R | XR,YGj ) + I(Yu;Ygj | XR,YGj−1), (3.51)

where (a) is due to the chain rule of MI and (b) since (YGj−1 ,Ygj ) = YGj .
The same term can also be written as

I(Yu;XR̂\R,Ygj | XR,YGj−1)
(a)
= I(Yu;Ygj | XR̂\R,XR,YGj−1) + I(Yu;XR̂\R | XR,YGj−1)

= I(Yu;Ygj | XR̂,YGj−1) + I(Yu;XR̂\R | XR,YGj−1)

(b)
= I(Yu;XR̂\R | XR,YGj−1), (3.52)

where (a) is due to the chain rule of MI and (b) due to the conditional independence
of measurements given XR, Yu ⊥⊥ Ygj | XR. If we combine Eqs. (3.51), (3.52), we have
that

I(Yu;XR̂\R | XR,YGj−1) = I(Yu;XR̂\R | XR,YGj ) + I(Yu;Ygj | XR,YGj−1)

≥ I(Yu;XR̂\R | XR,YGj ),
where the last inequality holds due to the non-negativity of MI. �
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Theorem 3.5.2 (Performance bounds in the focused setting). Let us denote by f(S) =
I(XR;YS), R the relevant set, and R̂ the extended set such that Yi ⊥⊥ Yj | XR̂, ∀i 6= j ∈
V. If the greedy method described in Alg. 2.1 is applied to problem max|S|≤k f(S) and

maxu I(XR̂\R;Yu | XR) ≤ 1
k maxu I(XR;Yu), the following bound holds

f(G) ≥ 1− 1/e

2− 1/e︸ ︷︷ ︸
≈0.387

f(O). (3.53)

Proof. Let us denote by hj the measurement that maximizes I(XR̂\R;Yu | XR,YGj−1)

hj ∈ arg max
u∈V\Gj−1

I(XR̂\R;Yu | XR,YGj−1)
︸ ︷︷ ︸

fUj

. (3.54)

It holds that

fU1 = I(XR̂\R;Yh1 | XR)
(a)

≥ I(XR̂\R;Yhj | XR)
(b)

≥ I(XR̂\R;Yhj | XR,YGj−1), (3.55)

where (a) holds due to the definition of greedy heuristic (3.54) and (b) due to Lem.
3.5.1. Due to Eq. (3.55), Thm. 3.5.1 can be simplified as

f(G) = I(XR;YG) =
k∑

j=1

yj ≥
k∑

j=1

y∗j = f(O)

(
1−

(
1− 1

k

)k)
−

k∑

j=1

fUj

(
1− 1

k

)k−j

≥ f(O)

(
1−

(
1− 1

k

)k)
− fU1

k∑

j=1

(
1− 1

k

)k−j

= f(O)

(
1−

(
1− 1

k

)k)
− fU1 k

(
1−

(
1− 1

k

)k)
. (3.56)

If fU1 ≤ 1
k max

u
I(XR;Yu)

︸ ︷︷ ︸
f(g1)

, Eq.(3.56) becomes

f(G) ≥ f(O)

(
1−

(
1− 1

k

)k)
− f(g1)

(
1−

(
1− 1

k

)k)

(
2−

(
1− 1

k

)k)
f(G) ≥ f(O)

(
1−

(
1− 1

k

)k)

f(G) ≥ 1−
(
1− 1

k

)k

2−
(
1− 1

k

)k f(O) ≥ lim
k→∞

1−
(
1− 1

k

)k

2−
(
1− 1

k

)k f(O) =
1− 1/e

2− 1/e︸ ︷︷ ︸
≈0.387

f(O),
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where the last inequality holds because the function
1−(1− 1

k )
k

2−(1− 1
k )

k is monotonically decreas-

ing with respect to k and lim
k→∞

1−(1− 1
k )

k

2−(1− 1
k )

k = 1−1/e
2−1/e .

4 �

The above bound says that if the information content of the best measurement with
respect to XR̂\R given XR is not greater than 1

k maxu I(XR;Yu), the same algorithm
that provides lower bounds for selection problems with submodular monotone rewards,
gives theoretical guarantees for the focused setting as well.

� 3.5.1 Obtaining an extended set R̂
From the previous section, it becomes apparent that the extended set R̂ needs to be a
minimal superset of R so that the condition that makes the bound in Thm. 3.5.2 true
is more likely to be satisfied. The extended set R̂ of latent nodes would basically block
all the paths between every pair of measurements. The key idea is to transform the
graph to a flow network, where the goal is to find the set of edges between latent nodes
with minimum flow capacity that cut the graph in two sets of nodes and thus block the
paths between two disjoint sets of measurements.

Before we proceed further, it would be helpful to explain briefly the min-cut problem.
Let us assume a graph G = (V, E) with N nodes and |E| edges. We further define two
special nodes, the source s and the sink node t. Each edge (i, j) might have potentially
a flow capacity cij . One main problem of interest is to find the maximum flow from
the source s to the sink node t such that the amount of flow entering a node equals the
amount of flow exiting assuming there are no other sources other than s. Also, the flow
at every edge fij should not exceed the edge’s capacity cij . This problem is also known
in abbreviation as max-flow. An s-t cut C is a partition of V into two sets S, T such
that s ∈ S, t ∈ T . The min-cut problem is finding the edges with the minimum total
capacity c(S, T ) =

∑
(u,v)∈S×T cuv whose removal would partition graph G in two sets

S, T containing nodes s, t, respectively. The min-cut problem is well-tied to the max-
flow problem by the max-flow/min-cut theorem. In other words, the max-flow equals
the min-cut capacity and there is a straightforward way to recover the min-cut edges
from the max-flow problem. Ford-Fulkerson’s algorithm is an established algorithm for
recovering the max-flow of a network which runs in O(fmax|E|) time, where fmax is the
max-flow [9].

We can transform the problem of finding an extended set R̂ that blocks all the paths
between any pair of measurements to a min-cut problem as follows. Graph G would
be comprised of the latent graph plus the observation nodes (measurements) that are
connected to latent nodes. If we assume that the number of edges between latent nodes
is |E| and a latent node is linked at most to m measurements, then the total number
of edges for G would be on the order of O(|E|+Nm), where N = |V| is the number of

4A proof of the monotonicity of
1−(1− 1

k )k

2−(1− 1
k )k

can be found in Appx. A.1.
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measurements. We then partition the set of measurements V into two equally-sized sets
Vs,Vt and connect set Vs with “fictitious” source node s and Vt with “fictitious” sink
node t. We apply infinite flow capacities to all edges incident to the source and sink
nodes and unit capacities to the remaining edges of the network that correspond to the
edges of the original graphical model (see Fig. 3.2b). We run the Ford-Fulkerson to find
the min cut-set C (see Fig. 3.2c). We arbitrarily remove the nodes of one side of the
cut and their incident edges. This splits the graph in two disjoint graphs Gs, Gt that
contain measurement sets Vs,Vt, respectively (see Fig. 3.2d). We continue this process
recursively until we reach the base case where a graph contains only two measurement
nodes (|V| = 2). After each iteration, when we remove the nodes (and their incident
edges) of one side of the cut, we block all the paths between each measurement in
Vs and each measurement in Vt. At the end, every pair of measurements would be
blocked conditioned on all the nodes that were removed during the algorithmic process.
A summary of the method is provided in Alg. 3.2. For a better understanding of the
algorithm, that we name BlockingSet, we consider a case with |V| = 8 measurements
and demonstrate the flow of the algorithm in Figs. 3.2, 3.3, 3.4. Fig. 3.5 shows the
original graph and the resulting extended set R̂ after the application of the proposed
algorithm.

Algorithm 3.2 BlockingSet(G,V)
Partition set V in two equally-sized sets Vs,Vt.
Connect all nodes in Vs,Vt to “fictitious” source and sink nodes s, t.
Assign infinite capacities on the edges incident to s, t and unit capacities to the
remaining.
Run Ford-Fulkerson algorithm on the designed network.
Find the min cut-set C.
Remove the nodes (and their incident edges) belonging to one side of the cut (this
would partition the initial graph G into two disjoint graphs Gs, Gt).
if |Vs| ≥ 2 then

BlockingSet(Gs,Vs)
end if
if |Vt| ≥ 2 then

BlockingSet(Gt,Vt)
end if

Complexity

As we briefly mentioned in the previous section, Ford-Fulkerson algorithm runs in
O(fmax|E|) time, where |E| is the number of edges in the flow network. The original
graph contains |E| edges between latent nodes and at most Nm edges between latent
and observed nodes. In addition, if source s is connected to N measurement nodes and
since a latent node is connected at most to m measurements via unit capacity edges, the
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max-flow fmax cannot exceed Nm. Therefore, the total complexity of Ford-Fulkerson
algorithm for this type of network is O(Nm(|E| + Nm)). During the first iteration of
BlockingSet the set of N measurements V is partitioned into two sets Vs,Vt of size
N/2 each. Since the N/2 measurements of Vs are connected to latent nodes in the
original graph with unit capacity edges and each latent node is connect at most to m
measurement nodes, the max-flow is upper-bounded by Nm/2. The complexity of the
algorithm in the first iteration is O(Nm2 (|E|+Nm)). In the second iteration, the graph
is partitioned in two graphs Gs, Gt, each one holding N/2 measurements. We repeat the
same procedure, where we split the measurement set of each graph in two equally-sized
sets. The complexity in this iteration per graph is O(Nm4 (|E|+ Nm

2 )). Since, there are
two graphs the total complexity in the second iteration is O(Nm2 (|E|+Nm)). If we con-
tinue in this fashion, we will see that the complexity per iteration is O(Nm2 (|E|+Nm))
per iteration and there is a total of log2N iterations, since every time we divide the
remaining observation set by two. Therefore, the total complexity of BlockingSet
would be O(Nm log2N(|E|+Nm)) = O(Nm|E| log2N) assuming |E| ≥ Nm.

� 3.6 Experiments

We present an experiment whose purpose is to demonstrate that penalized MI (PMI)
is better-suited for budgeted settings than MI. As a reminder, PMI is defined as

f(A) = I(X ;YA)− λc(A).

We consider the following linear state-space model

Xt+1 = AtXt + Vt

Yt = CtXt + Wt,

where t = {1, . . . , T}, j = {1, 2}, Vt ∼ N (vt; 0, Q) is driving noise, and Wt ∼ N (wt; 0, σ2
t )

measurement noise. We set λ = 0.5 and consider T = 10 time points. For odd time
points, we obtain two measurements which extract the position in x and y. For even time
points, we extract only the position in x. In addition, the variances of the noisy mea-
surements are: (σxt )2 = 16, (σyt )2 = 64 for odd time points, while (σxt )2 = 1 for even time
points. In addition, we set the costs such that c(x) = 0.5, c(y) = 0.05,∀t ∈ {1, . . . , T}.

Let GI denote the set obtained using MI as the reward function and GP the set
obtained using PMI. As expected, we see in Figs. 3.6a, 3.6b that the solution by
choosing PMI as the reward, GP results in lower accumulated cost and higher PMI
than the solution when MI is the objective, GI . PMI is more conservative in selecting
measurements that incur really high costs. Interestingly, the use of PMI results in
higher cumulative MI at the end, despite the fact that GI is optimized with respect
to MI, as shown in Fig. 3.6c. The reason is twofold; first the greedy heuristic using
MI as the reward selects measurements without regard to costs and second, the costs
are structured in a way that the greedy choices for PMI prefer to measure the y-
position of a latent variable when only the measurement of the x-position is available in
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(b) Conversion to a network structure.

Y1

Y2

Y3

Y4

Y5

Y6

X1

X2

X3

X4

X6

Y8

Y7

X5

X7

s
t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

(c) Finding a minimum s-t cut.
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Figure 3.2: Extended set and conversion to a min-cut problem. (a) We are interested in
finding an extended set R̂ such that Yi ⊥⊥ Yj | XR̂,∀i 6= j. (b) To convert the graph to
a network for solving the min s-t cut problem, we do the following. We divide the set
of measurements into two equally-sized sets arbitrarily. We connect the one set with a
“fictitious” source node s and the other set with a “fictitious” sink node t. The edges
connecting the source and sink nodes to measurements have infinite capacity. All the
remaining edges that correspond to the original edges of the graph have unit capacity.
(c) We find the min s-t cut by the Ford-Fulkerson algorithm. (d) We choose the nodes
of one set of the min-cut as the blocking nodes. The edges of the cut in this case are
{(4, 5), (4, 6)}. We remove arbitrarily node 4 (and its incident edges), since it belongs
to one set of the min-cut (removed edges represented by dashed lines). This splits the
original graph in two subgraphs G1 and G2. We continue this process recursively until
we reach a base case, where the measurement set is of size 2.
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Figure 3.3: Finding the extended set in graphs G1, G2 (iteration 2). (a) We divide the
measurements Y1, . . . ,Y4 of graph G1 in two equally-sized sets, connect the one set with
a “fictitious” source node s and the other with a “fictitious” sink node t. We assign
infinite capacities to edges incident to s, t and unit costs to the remaining edges of G1.
(b) We pick node 3 arbitrarily as the blocking node and remove all its incident edges,
since edge {(2, 3} belongs in the cut-set. This results in two smaller graphs G11 and
G12. (c) We divide the measurements of graph G2 in two equally-sized sets exactly as
in (a). Here, the cut-set is the empty set since there is no flow from s to t. (d) Two
smaller subgraphs G21 and G22 are created.
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Figure 3.4: Finding the extended set in graphs G11, G12, G21, G22 (iteration 3). (a) The
minimum cut-set in G11 is the empty set, since there is no flow between the source
and sink nodes. (b) The resulting graph is the same as G11. (c) The same holds for
graph G12. (d) As a result, the resulting graph is the same as G12. (e) In graph G21,
the minimum cut-set is the edge connecting Y5 and Y5. (f) As a result, node 5 is the
blocking node. (g) Similarly, for graph G22, the minimum cut-set is {(6, 7}. (h) We
pick arbitrarily node 6 as the blocking node.
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(b) Graph after determining the extended set R̂.

Figure 3.5: Determination of extended set R̂. (a) In the original graph, all mea-
surements are unconditionally dependent. (b) With the previous procedure, we can
find an extended set R̂, such that Yi ⊥⊥ Yj | XR̂, ∀i 6= j. In this example, we have

R̂ = {3, 4, 5, 7}. The blocking nodes are depicted by light green color.

neighboring nodes. This is not to say that there is a general method for adapting cost
structures so that greedy PMI outperforms MI, rather that the two, in general, are not
comparable and that it is quite possible (as our example shows) that PMI may yield
better information rewards than pure MI. Lastly, Fig. 3.6d shows that the posterior
entropy of each latent variable is lower for GP as compared to GI . As an additional
observation, we see that the monotone behavior induced by the introduction of “slack”
measurements (with no cost or informational value) results in non-negative incremental
rewards for GP .

� 3.7 Conclusion

In this chapter, we derived sufficient and necessary conditions under which open-loop
is equivalent to closed-loop control planning in exponential family distributions. As
expected, we showed that Gaussian models satisfy the necessary condition since the en-
tropy in this case does not depend on actual measurement values but rather on model
parameters describing the dependence between measurements and latent variables. Un-
fortunately, to the best of our knowledge there is no other known distribution that
satisfies this condition. We also considered the problem of finding nearly optimal solu-
tions under different problem settings; when the reward is submodular non-monotone,
measurements have varying costs and when only a part of latent variables is relevant.
In more detail, we derived a lower bound for the greedy solution when the reward
function is submodular, that depends on the minimum incremental value −θ that a
measurement can have. In that respect the bound is very pessimistic as it depends on
the measurement with the minimum incremental reward. However, the greedy solution
might be much higher than the lower bound in cases where the incremental reward of
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Figure 3.6: Comparison of MI to PMI for measurement selection. We denote by GI ,GP
the solutions generated by choosing MI and PMI as the rewards, respectively. (a) The
cost of GP is lower than the cost of GI , since PMI is more conservative in selecting
measurements that incur high costs. (b) Since the set GP is created by optimizing for
PMI, the cumulative PMI at every step is larger than that of solution GI as expected.
(c) Interestingly, solution GP results in higher total MI than GI , even though the latter
set is generated by optimizing for MI. The reason is twofold; first the greedy heuristic
using MI as the reward selects measurements without regard to costs and second, the
costs are structured in a way that the greedy choices for PMI prefer to measure the
y-position of a latent variable when only the measurement of the x-position is available
in neighboring nodes. (d) The posterior entropy of each latent variable is lower for GP
as compared to GI .



Sec. 3.7. Conclusion 97

the majority of measurements is much higher than −θ. We additionally show that the
use of a penalized form of mutual information as a reward in non-uniform cost settings
retains submodularity and thus admits the bounds we derived for general submodular
non-monotone functions. Furthermore, we show that when the costs of measurements
vary based on the relative information they provide, we can still consider the penal-
ized form of mutual information and use the same approximating algorithms with the
same theoretical guarantees. We also consider the submodular knapsack maximization
(SKM) problem and derive upper bounds for the optimal solution by casting the prob-
lem in its dual form and making use of the linear time algorithm by Buchbinder et al.
[13]. Lastly, we derive lower bounds for the greedy solution in focused planning settings,
where only a set of latent variables is of interest.
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Chapter 4

Complexity Reduction of
Information Planning in Gaussian

Models

IN Chap. 3, we proposed algorithms that serve as approximations to various settings
where the optimal solution is intractable as the number of measurements grows. We

measured complexity with respect to the graph size, the size of observation sets and
the constraint sets. We made the implicit assumption that the complexity of evaluating
the reward of a set is provided in constant time (oracle value model). Most previous
works have assumed such models [51], but as already has been alluded in [38, 47, 54],
the complexity of evaluating the reward of different measurement sets is nontrivial. For
example, in Gaussian models, when mutual information serves as the reward function,
the complexity of evaluating rewards depends on the latent dimension, the number of
latent variables and the size of the observations sets. As a consequence, the assumption
of oracle value models is not valid for large graphs and observation set sizes. The focus
of this chapter is to suggest an approach that reduces substantially the complexity of
information planning by taking advantage of sparsity in Gaussian graphical models.
We additionally present a variant of Gaussian belief propagation (GaBP) that reduces
the computational load significantly and show that it is much faster than standard
Kalman filtering/smoothing techniques that are used during greedy selection. We show
with experiments that taking sparsity into account and using the proposed variant of
GaBP leads to major computational savings that become more significant as the latent
dimension and observation size grow. Earlier versions of this work were originally
presented in [79, 80].

The chapter commences with Sec. 4.1 by introducing the problem. Sec. 4.2 discusses
related work that motivates the subsequent analysis. Previous works are cited that
hint on the complexity of evaluating rewards. This motivates the problem of finding
efficient ways to reduce this complexity by exploiting sparsity in the graph structure.
We formulate the problem in Sec. 4.3 and reiterate briefly some of the necessary theory
presented in Chap. 2. Sec. 4.4 presents an approach that takes advantage of sparsity in
the graph structure to reduce the complexity of evaluating information rewards. As this

99
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section shows, the complexity of evaluating mutual information is usually encountered
in two forms; when we update the covariance of the current walk element after the
incorporation of a new measurement and when we explore the current observation set
to find the best measurement in a greedy sense. When each measurement depends only
on a few latent variables, which translates to a sparse measurement matrix C, we show
that significant reductions can be achieved by taking sparsity into account. Sec. 4.5
focuses on forward walks, in other words, on walks of non-decreasing order. When we
incorporate a new measurement at the end of each greedy step, we need to update the
information coming from the addition of this measurement to the (latent) variable that
corresponds to the next walk element. In other words, we need to update the uncertainty
(as expressed by the covariance or precision) of the latent variable corresponding to the
next element in the walk after the addition of a new measurement. We introduce a
variant of BP in Sec. 4.4.3 that sends only the minimal number of messages to update
the precision of the next walk element. In Sec. 4.6 we outline how the above analysis
can be extended to trees and loopy graphs, while in Sec. 4.7 we briefly present a
generalization for the non-linear case. In this case, we can perform planning by using
an extended Kalman filter, where we linearize the model around the mean value at that
point [101]. As we note, even though linearization may be far from the true model,
it can still be used for planning purposes. Once a measurement plan is obtained,
inference can be achieved with more accurate techniques (e.g., sampling). We show
with synthetic experiments in Sec. 4.8 that our analysis that takes advantage of sparsity
results in planning which is orders of magnitude faster than standard approaches. We
also demonstrate empirically that major computational savings are obtained by using
the proposed variant of BP instead of standard Kalman filtering/smoothing techniques
when our goal is to update the uncertainty of the next element in the walk (at each
step of the greedy process). We provide an example in which the evaluation complexity
and resulting information rewards are decoupled. Lastly, we end the chapter with a
discussion in Sec. 4.9.

� 4.1 Introduction

An important, often neglected, aspect of information-based approaches is the computa-
tional cost of evaluating a given plan. While the bounds for greedy selection presented
in Sec. 2.6.3 hold for any plan subject to the same constraints, one is free to reorder
the sequence in which subsets are considered. Some orderings have significantly higher
information rewards than others. A simple example occurs in a Markov chain where at
each node one may choose k out of N measurements. A näıve plan considers each node
in increasing order, where k out of N measurements are selected at each node before
we move on to the next node. Alternatively, one may consider nodes in random order
selecting a single measurement (from those that have not already been selected), but
ensuring each node is considered k times. We will refer to the order of visiting nodes as
visit walk. One can see a depiction of a näıve plan (referred to also as forward walk) and
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a random plan in Fig. 4.1b. Evaluating the information reward of the näıve plan has
significantly lower computational complexity than the random plan, but the random
plan will often yield significantly higher information reward. Thus, there is motivation
to expend computational resources for exploring multiple plans subject to the same
constraints. Furthermore, when exploring multiple plans, the plan with lowest reward
provides the lowest upper bound on the optimal plan yielding a tighter performance
guarantee as compared to the greedy plan with highest reward.

Here, we consider the computational complexity of evaluating information rewards
for measurement selection in Gaussian models. In such models, complexity depends
on the number of latent variables, the latent dimension, the number of measurements
to be explored and the visitation order of observation sets, known also as walk. We
show speedups up to a thousand times by taking advantage of sparsity in the measure-
ment process without changing the outcome of the greedy algorithm. In addition, we
demonstrate that by working with the information form of Gaussian, we can provide the
sufficient statistics at every step with significantly reduced computation. We achieve
that by deploying a variant of Gaussian belief propagation that is well-suited for adap-
tive inference settings. We present this method for Gaussian HMMs, but show in Chap.
5 its extension to the discrete case, to trees and Gaussian loopy graphs. This analysis
is particularly useful for large-scale models, since the evaluation of information rewards
poses a major computational bottleneck. Additionally, we demonstrate empirically in
an example that both the information reward and evaluation complexity are largely
decoupled and as such, exploration of low-complexity walks yields high information
rewards.

� 4.2 Related Work

Consider the problem of selecting an optimal k-element subset (measurements for our
purposes) from a ground set V of size N that maximizes some reward f . As a reminder,
we introduced the formulation of this problem in detail in Sec. 2.6. Due to combinato-
rial complexity, optimal solutions are intractable for even moderately large problems.
However, Nemhauser et al. [77] showed in their seminal work that when function f is
submodular and monotone the reward of the greedy solution obtain by Alg. 2.1 is no
worse than (1− 1/e) of the optimal reward. However, this result implicitly assumes an
oracle value model, i.e., that the reward function for any given subset can be computed
in constant time. Specifically, the oracle value model assumes a universal “oracle” that
provides the function value for any input set. Subsequent work [34], which generalizes
[77] to matroidal structures, also assumes an oracle value model. They show that if the
same greedy approach is applied to matroidal structures, the reward cannot be worst
than 1/2 times the optimal one.

There have been a number of methods utilizing the preceding. As noted, Guestrin
et al. [38], Krause and Guestrin [54] consider information planning in the batch setting
while Kempe et al. [47] considers influential subset selection in social networks. The
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original bound of 1/2 in [34] is improved to (1 − 1/e) in [15], but it is restricted to
rewards that are sums of weighted rank functions of matroids. Online resource alloca-
tion networks [87, 88], stochastic submodular maximization [4], the submodular welfare
problem [93], and additional extensions to submodular maximization [17, 32, 37] com-
prise just a small sampling of approaches and analyses which exploit the results of
[34, 77]. All of the above works assume oracle value models.

However, as we discuss, evaluation of rewards presents a significant computational
challenge. As such, Guestrin et al. [38] propose truncation methods as an approximation
for Gaussian models. Similarly, Krause and Guestrin [54] note that the evaluation of
conditional entropies, intrinsic to greedy selection, can be prohibitive, while Kempe
et al. [47] acknowledge the complexity in evaluating the underlying influence function
that guides the selection of the most influential nodes. We are not aware of previous
results that exploit the structure of the latent graph to reduce the complexity of reward
evaluations. Despite the inherent computational bottleneck, it is often overlooked.
Here, we show for Gaussian models that exact computations are feasible by taking
advantage of the graph structure and utilizing a variant of belief propagation (BP)
more suited for active learning settings.

� 4.3 Problem Statement

For brevity and clarity of discussion, we restrict ourselves to HMMs. However, the
results easily extend to trees and polytrees. Our analysis can also be generalized to
Gaussian loopy MRFs as we show in Sec. 5.9. In the case of Gaussian HMMs, the
underlying dynamical system can be described by

Xt = At−1Xt−1 + Vt−1 (4.1)

Yt = CtXt + Wt, (4.2)

where Xt,Yt, t ∈ {1, . . . , T} are the latent and observed variables, respectively. In
addition, Vt ∼ N (vt;µ1,t, Qt), Wt ∼ N (wt;µ2,t, Rt) are the respective process and
measurement noises, with Rt being block-diagonal. Let X = {X1, . . . ,XT } denote the
set of latent variables up to time T . Each Xt is a d-dimensional vector. For each
Xt, we define an observation set, denoted by Vt, where |Vt| = Nt (Nt comparable to
d). Each measurement Yt,u from set Vt is an m-dimensional vector. In Eq. (4.2), Yt
represents the set of all Nt measurements of Vt. Therefore, Ct is a Ntm × d matrix,
where consecutive m-row patches correspond to one measurement from Vt. W.l.o.g.,
we assume Vi ∩ Vj = ∅,∀i 6= j. As shown in Fig. 4.1a, a measurement depends
at most on q elements of Xt. As a consequence, Ct is a highly sparse matrix. Our
goal is to characterize approximate solutions to the following (generally intractable)
combinatorial optimization problem:

O ∈ arg max
{S||S∩Vt|≤kt,∀t}

f(S), (4.3)
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Xt Xt+1

Yt,u

(a) Sparsity in the measurement process.

... ... ...

...
t = 1 t = 2 t = T

(b) Examples of different walks.

Figure 4.1: Sparsity and different walks. (a) Each measurement Yt depends only on
a few components of Xt. Dashed rectangles represent vectors of variables at a point,
Xt,Xt+1. This structure can be collectively represented as an HMM, as Fig. 4.1b shows.
(b) Two walks, that is, orders in which observation sets are visited, are visualized.
A forward walk represented with dashed arrows is a walk with increasing order of
visiting the different observation sets. In this type of walk, we greedily select the
required number measurements for each observation set before we move on to the next
one. Another (random) walk is depicted as well (represented with dotted arrows) for
comparison. Arrows with a circle in one end denote the beginning of the walk. Different
walks visit each observation set the same number of times, but in different orders.

where f(S) is a set function and kt are the selection constraints for the t-th set. We
restrict ourselves to monotonic functions and thus it never “hurts” to obtain more
measurements. Hence, the inequality constraint becomes tight. To give an indication

of the hardness of problem (4.3), there are
∏
t

(
Nt

kt

)
=
(
N
k

)T
feasible solutions, which is

an extremely large number as N, k, T grow.

� 4.3.1 Greedy Selection

Greedy methods select elements sequentially conditioned on the previous selection. A
walk w = {w1, . . . , wM} denotes the particular order in which observation sets are
visited. A walk is depicted in Fig. 4.2. Greedy selection for a particular walk is defined
as

gj ∈ arg max
u∈Vwj \Gj−1

f(u | Gj−1), (4.4)

where wj is the observation set index corresponding to the j-th element of the walk
and Gj−1 is the greedy set obtained up to the previous iteration. The marginal increase
in the reward (incremental reward) of incorporating a measurement u in a given set
Gj−1 is denoted as f(u | Gj−1) = f(Gj−1 ∪ {j}) − f(Gj−1). Essentially, at each greedy
step we choose the measurement that maximizes the incremental reward based on past
selections Gj−1. Since we explore at most all N measurements from a set and there
are kT steps of the algorithm (assuming kt = k,∀t), its overall complexity is O(kTN)
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h1 h1 h1 h1 h1 h2 h2 h3 h4h1 h1 h4 h4 h4 h4· · · · · ·
wj wj+1wj+2 wm· · · · · ·

Figure 4.2: Composition of a walk. A walk, w = {w1, . . . , wM}, represents the particu-
lar order observation sets are visited during measurement selection and correspond to
a feasible solution of problem (4.3). A walk segment is a part of the walk that consists
of elements from the same observation set. Here, we have two segments of length 5
corresponding to sets Vh1 ,Vh4 , two segments of length 2 corresponding to sets Vh1 ,Vh2 ,
and one of length one corresponding to set Vh3 . Vertical arrows indicate transition
points, which are points of transition between different observation sets.

as compared to O(
(
N
k

)T
) of the optimal approach. In information planning, a common

choice for the reward function is MI, f(S) = I(X ;YS), with the resulting incremental
reward being f(u | Gj−1) = I(X ;Yu | YGj−1). A walk that corresponds to a feasible

solution for problem (4.3) has length M =
∑T

t=1 kt. A forward walk is a walk with
non-decreasing order (referred as näıve walk in the introduction). W.l.o.g., we assume
that each observation set has the same number of measurements Nt = N .

� 4.3.2 Theoretical guarantees on greedy selection

As we showed in Sec. 2.6.3, a greedy solution in the sequential setting achieves in the
worst case half of the optimal reward [102]:

f(G) ≥ 1

2
f(O).

The above bound, seen differently, serves also as an upper bound on the optimal reward
which cannot exceed twice the reward of an arbitrary walk. Depending on the problem
structure, different walks yield significantly different rewards. Of most interest are the
walks of highest and lowest reward, since the first category offers the good solutions,
while the second gives the lowest bound on the optimal reward. Note that tighter
on-line bounds are available with some computation [102].

� 4.3.3 Gaussian HMMs

Gaussian models are appealing since information rewards can be expressed as a func-
tion of the covariance of the underlying process. In addition, obtaining values for the
measurements does not have an effect in the selection of measurements, which makes
planning completely independent of the actual measurement process. The incremental
reward of a measurement u is defined as

f(u | Gj−1) = I(X ;Yu | YGj−1) = H(X | YGj−1)−H(X | Yu,YGj−1). (4.5)
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As we showed in Sec. 2.9.1, entropy can be analytically expressed as

H(X ) =
d

2
(1 + log 2π) +

1

2
log |ΣX |,

where d is the dimension of X .
Therefore, Eq. (4.5) becomes

f(u | Gj−1) =
1

2
log

|ΣX |Gj−1
|

|ΣX |{u}∪Gj−1
| =

1

2
log
|JX |{u}∪Gj−1

|
|JX |Gj−1

| , (4.6)

depending on whether we work with the moment (covariance) or information (precision)
form.

In Sec. 2.1, we showed that the covariance updates in Gaussian HMMs take the
following form

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Qt−1 (4.7)

Σt|t = Σt|t−1 −GtCtΣt|t−1 (4.8)

Gt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1,

where Σt|t−1 = cov(Xt | Y1, . . . ,Yt−1) = cov(Xt | Y1:t−1), Σt|t = cov(Xt | Y1:t). Eqs.
(4.7), (4.8) are referred to as the propagation and update steps, respectively. It is
important to note that pursuant to propagation, the incremental reward depends only
on the local update to the node whose entropy is of interest.1 Consequently, updates
to the local covariance (equivalently precision) matrix fully quantify the information
reward with respect to the full set of latent nodes.

� 4.4 Complexity Reduction in Information Planning

For a given walk, three primary sources of computational complexity arise when eval-
uating the information reward: (i) exploration, in which the information rewards of
the remaining measurements of the current observation set are computed to find the
best measurement in a greedy sense; (ii) update, in which the covariance matrix of the
current walk element incorporates the selected measurement; and (iii) propagation, in
which the uncertainty is propagated to the next element in the walk. Greedy algorithms
proceed as follows; exploration, update and propagation: (i) explore the available can-
didate measurements in the observation set of that node choosing the measurement
with highest incremental reward, as dictated by Eq. (4.4), (ii) update the uncertainty
at that node after selecting the measurement, and lastly, (iii) propagate the uncertainty
to the next node in the walk. Exploration and updates depend on the structure of C,
while propagation depends on the composition of the walk.

1Note that this property is a consequence of conditional independence and is not restricted to
Gaussian models.
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With slight abuse of notation, we denote the m-row portion of matrix Ct corre-
sponding to measurement Yt,u as Ct(u, :). After we select a measurement gj at step j
as dictated by Eq. (4.4), we need to update the uncertainty at the current node of the
walk, Xwj and then propagate this uncertainty to Xwj+1 . For notational consistency
with the analysis later in the text, we will denote the greedily selected measurement gj
by u in the discussion below. From Eq. (4.8), we see that the complexity of the update
step is O(md2), where d is the dimensionality of Xwj , since the computation is domi-
nated by the term Cwj (u, :)Σwj |Gj−1

for m� d. Updates at each iteration yield overall

complexity of O(
∑T

t=1 ktmd
2)

kt=k= O(Tkmd2). Exploration of one measurement takes
O(d3) time as shown in Eq. (4.6), since it requires the computation of the determinant
of a d× d matrix. The number of measurements that should be considered is O(kTN).
Therefore, the overall complexity of exploration is O(TkNd3), which makes it the dom-
inant term in the computational load. Lastly, every time we update the uncertainty at
the current node in the walk we need to propagate it to the next walk element. We do
this by propagating the uncertainty to the end of the chain through Kalman filtering
and then smooth back to the next walk element via Kalman smoothing. The complexity
of this is O(T ). Since, we need to repeat this kT times assuming kt = k, ∀t, the total
complexity of propagation is O(kT 2).

The above analysis is agnostic to the sparsity of C. Here, we show that complexity of
exploration and updates are dramatically reduced by taking advantage of this sparsity.
Additionally, working with a minimal variant of belief propagation (instead of standard
Kalman filtering/smoothing techniques) to propagate the uncertainty to the next walk
element yields further efficiencies. We will start by first discussing reductions in the
update step due to sparsity, then continue on discussing the exploration step and lastly
cover the propagation step.

� 4.4.1 Reductions during updates

Let Ic denote the indicator matrix of the non-zero elements of C. Computation of
Ic requires O(Nmd) time or O(TNmd), if time-varying. We further assume that the
largest parent set for an m-dimensional measurement is of size q, where q � d. A
depiction of this is shown in Fig. 4.3. For an m × 1 measurement u, denote Iu as
Iu = ∨mi=1Ic(ui, :), where ui is the ith component of measurement u. That is, Iu is
the d × 1 indicator vector representing the nodes of latent graph X that generated
measurement u. If latent variable Xi is linked to measurement Yt,u, Iu(i) = 1, while 0
otherwise. Since a measurement depends on at most q latent variables, we have that∑d

i=1 Iu(i) ≤ q. Making use of Eq. (4.8), the updated covariance Σ′ with Σ as a prior
is:

Σ′ = Σ− ΣC(u, :)T (C(u, :)ΣC(u, :)T +R(u, u))−1C(u, :)Σ. (4.9)
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By inverting (4.9), we obtain the updated precision matrix:

J ′ = (Σ− ΣC(u, :)T (C(u, :)ΣC(u, :)T +R(u, u))−1C(u, :)Σ)−1

(a)
= Σ−1 + C(u, :)TR(u, u)−1C(u, :)

= J + C(u, :)TR(u, u)−1C(u, :), (4.10)

where in (a) we made use of the Woodbury matrix identity.
We denote by Ĉu = R(u, u)−1/2C(u, Iu) the m × q matrix that takes only into

account the part of C matrix that is relevant to the latent variables that generated
measurement u. The matrix square root R(u, u)−1/2 can be recovered in O(m3) time.
In addition, Ĉu is computed in O(m2q) time. Therefore, (4.10) can be rewritten as

J ′ =

[
J(Iu, Iu) J(Iu,¬Iu)
J(¬Iu, Iu) J(¬Iu,¬Iu)

]
+

[
ĈTu
0T

] [
Ĉu 0

]
, (4.11)

where ¬Iu denotes all the latent variables that are not directly linked to measurement
u. Eq. (4.11) can be written more concisely as

J ′(Iu, Iu) = J(Iu, Iu) + ĈTu Ĉu,

since only the block of J dictated by Iu will be affected by ĈTu Ĉu.
The above calculation requiresO(mq2) steps. Summarizing, the square rootR(u, u)−1/2

takes O(m3) time, the computation of Ĉu O(m2q) and the computation of ĈTu Ĉu
O(mq2) time. Overall, the computation is on the order of O(mmax{m, q}2). Com-
pare this to the complexity of the standard calculation, which is O(md2) per update,
resulting in a speedup on the order of ( d

max{m,q})
2 per update.

� 4.4.2 Reductions during exploration

Greedy selection for Gaussian models simplifies to

gj ∈ arg max
u∈Vwj \Gj−1

I(X ;Ywj ,u | YGj−1) (4.12)

(a)
= I(Xwj ;Ywj ,u | YGj−1) +�

�7
0

I(X1:T\wj
;Ywj ,u | Xwj ,YGj−1)

= arg max
u∈Vwj \Gj−1

I(Xwj ;Ywj ,u | YGj−1)

= arg max
u∈Vwj \Gj−1

log
|Jwj |{u}∪Gj−1

|
|Jwj |Gj−1

| , (4.13)

where (a) is due to the chain rule of MI and the fact that X1:T\wj
⊥⊥ Ywj ,u | Xwj . Jwj |Gj−1

is the precision of Xwj given observations YGj−1 and Jwj |{u}∪Gj−1
is the precision after

the incorporation of measurement u.
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(b) Only the block of matrix linked to the mea-
surement is necessary for information planning.

Figure 4.3: Sparsity in the measurement matrix. (a) Each measurement depends only
on a few latent variables. In this example, measurements Yu1 , Yu3 from set Vt depend
on one latent variable, while measurement Yu2 depends on two latent variables. (b)
If we assume that Yu2 depends on variables Xwj ,2,Xwj ,3, then according to Eq. (4.15)
we would only need the block of Σwj |Gj−1

that is related to Xwj ,2,Xwj ,3 for information
planning purposes.

We can express Jwj |{u}∪Gj−1
as a function of Jwj |Gj−1

by using Eq. (4.11):

Jwj |{u}∪Gj−1
= Jwj |Gj−1

+

[
ĈTwj ,u

0T

] [
Ĉwj ,u 0

]
, (4.14)

where Ĉwj ,u = Rwj (u, u)−1/2Cwj (u, Iu).
As we observe in (4.13), the selection of next measurement (in a greedy sense) is

determined by ratios of determinants. If we apply the Matrix Determinant Lemma on
Eq. (4.14), we obtain

|Jwj |{u}∪Gj−1
| =

∣∣∣∣Jwj |Gj−1
+

[
ĈTwj ,u

0T

] [
Ĉwj ,u 0

]∣∣∣∣

= |Jwj |Gj−1
|
∣∣∣∣Im×m +

[
Ĉwj ,u 0

]
J−1
wj |Gj−1

[
ĈTwj ,u

0T

]∣∣∣∣

= |Jwj |Gj−1
|
∣∣∣∣Im×m +

[
Ĉwj ,u 0

]
Σwj |Gj−1

[
ĈTwj ,u

0T

]∣∣∣∣

Therefore the ratio of determinants can be re-written as,

|Jwj |{u}∪Gj−1
|

|Jwj |Gj−1
| = |Im×m + Ĉwj ,uΣwj |Gj−1

(Iu, Iu)ĈTwj ,u|. (4.15)

From a closer inspection, we see that the incremental reward of a measurement u,
depends only the noise introduced in the measurement, the non-zero part of the mea-
surement matrix Cwj (u, :) and the block of covariance Σwj |Gj−1

(Iu, Iu) that are related
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Table 4.1: Speedups achieved by sparsity

Speedup/step Arbitrary Walk Forward Walk
propagation – O(d/p)
exploration O(N) O(1)
update O((d/max{m, q})2) O((d/max{m, q})3)

to to measurement u. Evaluating Ĉwj ,u takes O(m2 max{q,m}) time, while the term
inside the determinant can be recovered in O(mqmax{q,m}) time. In addition, evaluat-
ing the determinant of the above matrix is an O(m3) operation. Overall the complexity
of calculating the ratios is O(mmax{m, q}2) as compared to that of the standard cal-
culation which is O(d3). However, Eq. (4.15) implies knowledge of Σwj |Gj−1

. As we
showed in Sec. 4.4.1, it is much more beneficial to evaluate the precision rather than
the covariance matrix in an update step. Therefore, at the beginning of the explo-
ration step, we need to recover Σwj |Gj−1

by inverting Jwj |Gj−1
, which is accomplished in

O(d3) time. The complexity of an exploration step is thus O(d3 + Nmmax{m, q}2),
while the complexity of an exploration step with the näıve approach is O(Nd3), since
we evaluate a d × d matrix for every of N measurements. The speedups that we

obtain are on the order of
(
N (d/max{m,q})3

(d/max{m,q})3+N

)
. For d/max{m, q} ≥ 3

√
N , which

is the case, since our assumption is that d and N are comparable, the speedups we
gain are on the order of N per exploration step. Since there is a total of kT steps
of the greedy approach, the total speedups that we obtain through sparsity by our
method are O(kT ((d/max{m, q})2 + N)) = O(kT (d/max{m, q})2). For example, if
d = N = 104, T = 1000, k = 10 and q = 10,m = 1 the savings are on the order of 1010.
We summarize the gains we obtain in the update and exploration steps by making use
of sparsity in Tab. 4.1.

� 4.4.3 Reductions during propagation

The savings in the update and exploration steps assume the knowledge of Jwj |Gj−1
(or

equivalently Σwj |Gj−1
) at the beginning of each greedy step. The näıve way to compute

Σwj |Gj−1
is to first propagate forward the covariance up to the node corresponding to

the first element of the walk w1 and greedily select the measurement from that node. In
general, having selected a measurement, we need to propagate forward from the current
node up to the maximum walk element encountered so far and then smooth back to
the node corresponding to the next walk element. Each filtering and smoothing step
requires O(d3) time. Filtering is bounded by O(Td3), while smoothing is bounded by
O
(
(T − wj+1)d3

)
. Filtering and smoothing occurs only at the points of the walk when

we move to a new node, yielding overall complexity of O(
∑M−1

j=1 1(wj 6= wj+1)(2T −
wj+1)d3). In the worst case, wj 6= wj+1, ∀j giving overall complexity of O(kT 2d3), when
kt = k, ∀t. In the above approach, the farther the next walk element is from the node
with the maximum index encountered so far, the greater the number of unnecessary
computations. However, the increase in the total information reward only depends on
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the covariance update to the node corresponding to the next walk element wj+1

I(X ;Ywj+1,u | YGj ) = I(Xwj+1 ;Ywj+1,u | YGj ) =
1

2
log

|Σwj+1|Gj |
|Σwj+1|{u}∪Gj |

=
1

2
log
|Jwj+1|{u}∪Gj |
|Jwj+1|Gj |

.

(4.16)
Consequently, computations may be focused only on variable Xwj+1 that corresponds
to the next walk element. In fact, as Eq. (4.16) suggests, we need the covariance (or
equivalently precision) of Xwj+1 after the incorporation of the new measurement at step
j, that changed the greedy solution to Gj = gj∪Gj−1. Obtaining the covariance Σwj+1|Gj
(through Kalman filtering and smoothing) would induce unnecessary computations,
as it requires the propagation of uncertainty to the maximum walk element so far
(max{w1, . . . , wj}) and then smoothing back to the next walk element wj+1. As we show
in the the next section the information form is more efficient as uncertainty propagation
from the current to the next walk element can be achieved using a modified version of
Gaussian belief propagation (GaBP).

Gaussian HMMs as MRFs

It is well known that a Gaussian HMM may be described by node and edge potentials
as

ϕt(xt) = exp

(
−1

2
xTt Jt,txt + xTt ht

)

ψt,t+1(xt, xt+1) = exp
(
−xTt Jt,t+1xt+1

)
, where

ht = Q−1
t−1µ1,t−1 −ATt Q−1

t µ1,t + CTt R
−1
t (yt − µ2,t) (4.17)

Jt,t = Q−1
t−1 +ATt Q

−1
t At + CTt R

−1
t Ct (4.18)

Jt,t+1 = −ATt Q−1
t . (4.19)

where node ϕt and edge potentials ψt,t+1 have information parameters (ht, Jt,t), (0, Jt,t+1),
respectively.

An alternative approach to Kalman filtering (that works with covariance matrices)
is Gaussian BP (GaBP) (that works with precision matrices). In GaBP, the inference
propagates in the form of “forward” and “backward” messages [82, 99]:

Forward Pass

ht→t+1 = −JTt,t+1(Jt,t + Jt−1→t)
−1(ht + ht−1→t) , ∀t (4.20)

Jt→t+1 = −JTt,t+1(Jt,t + Jt−1→t)
−1Jt,t+1 (4.21)

Backward Pass

ht→t−1 = −Jt−1,t(Jt,t + Jt+1→t)
−1(ht + ht+1→t) ,∀t (4.22)

Jt→t−1 = −Jt−1,t(Jt,t + Jt+1→t)
−1JTt−1,t (4.23)
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where J0→1 = 0, h0→1 = 0, JT+1→T = 0, hT+1→T = 0. The marginals Xt given all the
measurements Xt | Y1:T ∼ N−1(xt;ht|T , Jt|T ), are obtained as:

ht|T = ht + ht−1→t + ht+1→t

Jt|T = Jt,t + Jt−1→t + Jt+1→t.

Updating the node potential

Assuming noise is independent across different measurements within an observation set,
Rt is an Ntm×Ntm block-diagonal matrix. Each block is of size m×m. Incorporating
an m× 1 measurement u from set Vt, only affects ht, Jt,t as

h′t = ht + Ct(u, :)
TRt(u, u)−1(yt(u)− µ2,t(u))

J ′t,t = Jt,t + Ct(u, :)
TRt(u, u)−1Ct(u, :).

The above operation completes in O(mmax(m, q)2) time.

Adaptive BP in Gaussian HMMs

We saw in Eq. (4.15) that the incremental reward of a measurement u only requires the
covariance (precision) of the next walk element. We can further reduce the complexity
by restricting the message updates to the nodes between the current and next walk
element. In this manner, the precisions at the nodes between the current and next
walk elements are correctly updated. The uncertainty of the remaining variables will
be incorrect. However, this does not affect the planning process since the covariance of
the node of interest corresponding to the next walk element will be correctly updated.
The way that the algorithm works briefly is the following. If wj < wj+1, we only need
to update the forward messages from wj to wj+1. Similarly, if wj > wj+1, we only need
to update the backward messages from wj to wj+1. We call this modified version of
belief propagation for HMMs, adaptive BP for HMMs.

To provide a more detailed description of the algorithm, we start by evaluating all
node potentials assuming no measurements are available and propagate messages along
the entire chain in both directions. As a new measurement gj is selected from set Vwj ,
we compute and update messages from Xwj to Xwj+1 . This results in correct node
marginals along that path. Within same walk segment, (wj = wj+1), propagation is
unnecessary and we need only update the node potential (hwj , Jwj ,wj ) See Alg. 4.1 for
details. Since relevant node potentials are correct at every iteration, and the message
from wj − 1 to wj (if wj < wj+1), or wj + 1 to wj (if wj > wj+1) is correct, then the
messages from wj to wj+1 are guaranteed to be correct as well. Messages from wj − 1
to wj (or wj +1 to wj) are also guaranteed to be correct, since during the previous walk
step, from wj−1 to wj , that message was either not included in the path from wj−1 to
wj and thus remained unchanged or has been correctly updated (as part of the directed
message schedule from wj−1 to wj). See Fig. 4.4 for an example flow of the algorithm.
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At every iteration, we need to update exactly |wj+1 −wj | messages. Therefore, the

overall complexity is O
(∑M−1

j=1 |wj+1 − wj |d3
)

. If we denote by ¯̀, 1
M−1

M−1∑
j=1
|wj+1 −

wj |, the average length of the path connecting two nodes of neighboring walk elements,
then the complexity term can be rewritten as O(kT ¯̀d3), where M = kT . Compare
this with the complexity of the näıve approach which is O

(
kT 2d3

)
. Since ¯̀≤ T , we

achieve a speedup on the order of O(T/¯̀) compared to Kalman filtering/smoothing or
standard BP. Small ¯̀ implies that there are only short jumps in the walk. In other
words, it is “cheaper” to obtain the marginal of the node of the next walk element
when there is a small distance from the current node. On the other hand, nodes farther
from the current walk element generally give higher information gain at the cost of
more intensive computation. In the best-case scenario, ¯̀ is a small constant, making
the speedup be on the order of O(T ).

Algorithm 4.1 Adaptive Belief Propagation for Gaussian HMMs

1: Initialization
2: Initialize the node, pairwise potentials and messages as described in Sec. 4.4.3.
3: Iteration
4: for j = 1, . . . ,M − 1 do
5: Update the node potential at Xw`

as

hwj = hwj + Cwj (gj , :)
TRwj (gj , gj)

−1Ywj (gj)− µw,wj (gj) (4.24)

Jwj ,wj = Jwj ,wj + Cwj (gj , :)
TRwj (gj , gj)

−1Cwj (gj , :). (4.25)

6: Send messages from wj to wj+1.
7: Compute the covariance at Xwj+1 as

Jwj+1|Gj = Jwj+1,wj+1 + Jwj+1−1→wj+1 + Jwj+1+1→wj+1 . (4.26)

8: end for

� 4.5 Forward Walks

Walks with non-decreasing orders, known as forward walks, are a special case since
their computation relies only on forward propagation. While the evaluation complexity
of such walks is low, they tend to produce significantly lower information rewards.
However, such walks are still of use in that they provide tighter upper bounds on the
optimal solution. Furthermore, forward walks benefit from additional computational
reductions since Kalman filtering is a sufficient approach to update uncertainty of future
nodes in the walk.
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Figure 4.4: Adaptive message passing in Gaussian HMMs. Solid thick node represents
the node wj , while the node with double stroke the next one wj+1. Dashed nodes
represent measurements that have been obtained in the past. The potential of wj is
updated after the incorporation of measurement gj . Thick arrows represent messages
that are transmitted in the current iteration. Solid and strikethrough arrows represent
correct messages and incorrect messages, respectively. Gray bands encompass all the
nodes whose marginals are correctly computed. During initialization (iteration #0),
all node potentials, forward and backward messages are computed. At each (greedy)
iteration, we update the precision of the current walk element wj and then send messages
from wj to wj+1. This updates the precision at the next walk element Jwj+1|Gj . Having
updated the precision at the next walk element correctly, we can then apply the greedy
algorithm to find the best measurement for that step.
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� 4.5.1 Reductions during propagation in forward walks

We assume that the dynamics matrix A is sparse. In other words, each row has at most
p non-zero elements. The sparsity in the dynamics matrix A affords a computational
advantage for such walks. It is straightforward to see that propagation requires O(d3)
time. We can take advantage of sparsity, by storing the indicator matrix Ia, which
contains the non-zero elements of each row of A. The above operation requires O(d2)
time, or O(Td2) for time-varying models. Assuming we know the covariance Σt−1|t−1,
we can evaluate the elements of Σt|t−1 as follows:

Σ1(i, :) = At−1(i, Ia(i, :))Σt−1|t−1(Ia(i, :), :), ∀i ∈ {1, . . . , d}
Σ2(:, `) = Σ1(:, Ia(`, :))At−1(`, Ia(`, :))

T , ∀` ∈ {1, . . . , d}
Σt|t−1 = Σ2 +Qt−1,

where Σ1,Σ2 are temporary d× d matrices. The above evaluation completes in O(pd2)
time, where p � d and so is much faster than O(d3) of the standard calculation. The
speedups per exploration step are thus O(d/p). It is important to note that we only
need to propagate when the walk transits to a new node Since there is a maximum
of T nodes, the overall speedups are on the order of O(Td/p). Interestingly, since the
speedups depend on T , the worst-case complexity of a forward walk is not affected by
the composition of the walk but rather the length of the chain T .

� 4.5.2 Reductions during updates in forward walks

As we saw in Sec. 4.4.1, the posterior covariance after the incorporation of a measure-
ment u is

Σ′ = Σ− ΣC(u, :)T (C(u, :)ΣC(u, :)T +R(u, u))−1C(u, :)Σ, (4.27)

which can be rewritten as

Σ′ = Σ− Σ(:, Iu)C(u, Iu)T (C(u, Iu)Σ(Iu, Iu)C(u, Iu)T +R(u, u))−1C(u, Iu)Σ(Iu, :),
(4.28)

if we take advantage of sparsity in C. Because we established in the beginning of
Sec. 4.5 that Kalman filtering is optimal to propagate uncertainty to the next walk
element for forward walks, it is more appropriate to work with the covariance form.
In that case, it is preferable to incorporate the measurement (chosen in the greedy
step) directly to the covariance. The dominant term in Eq. (4.28) is C(u, Iu)Σ(Iu, :
), which is a m × d matrix. Even though we can obtain significant gains by taking
advantage of sparsity of C, the complexity of updating the covariance is an O(md2)
operation due to the presence of C(u, Iu)Σ(Iu, :). Therefore, the update of covariance
in forward walks does not provide any benefits compared to the standard solution in
terms of O notation. However, the empirical benefits of exploiting sparsity in C when
we evaluate the quantity C(u, Iu)Σ(Iu, Iu)C(u, Iu)T can still be significant, even though
the theoretical complexity stays the same.
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� 4.5.3 Reductions during exploration in forward walks

Regarding the exploration, if we denote by N(u) the (latent) neighbors of measurement
u we have

gj ∈ arg max
u∈Vwj \Gj−1

I(Xwj ;Ywj ,u | YGj−1)

(a)
= arg max

u∈Vwj \Gj−1

I(Xwj ,N(u);Ywj ,u | YGj−1)

= arg max
u∈Vwj \Gj−1

log
|Σwj |Gj−1

(Iu, Iu)|
|Σwj |{u}∪Gj−1

(Iu, Iu)| ,

where (a) holds since the remaining hidden variables gain no information from u con-
ditioned on the neighbors of measurement u, Xwj ,N(u).

From Eq. (4.15), we see that the selection of a measurement depends on Ĉwj ,u and
the block of Σwj |Gj−1

that is related to the latent nodes that generated the measurement.

gj ∈ arg max
u∈Vwj \Gj−1

log
|Jwj |{u}∪Gj−1

|
|Jwj |Gj−1

| = log |Im×m + Ĉwj ,uΣwj |Gj−1
(Iu, Iu)ĈTwj ,u|. (4.29)

The covariance Σwj |Gj−1
is computed during the propagation step when we move to the

next walk element, while Ĉwj ,u is the m×q matrix defined in Sec. 4.4.2. The complexity
of computing Eq. (4.29) is O(max{m, q}3) per measurement. If we compare this to
the complexity of exploration of the standard approach O(d3), the speedups that we
gain are on the order of O((d/max{m, q})3) per measurement. Overall, we explore a
maximum of N measurements per greedy step and there is a total of kT steps. So,
the total speedups are on the order of O(kTN(d/max{m, q})3). Tab. 4.1 summarizes
these results. By way of example, if d = N = 104, T = 1000, k = 10 and q = 10,m = 1
the savings are on the order of 1017.

� 4.6 Extension to trees and loopy graphs

Our analysis on Sec. 4.4 applies directly to trees and loopy graphs as it depends
only on the sparsity of measurement matrix Cwj for iteration j, which models the
dependence between the measurements of observation set Vwj and the latent variable
Xwj . Therefore, the gains we receive from sparsity are not related to the latent graph
structure. However, in case of trees or loopy graphs the notion of forward walk is not
relevant anymore. Therefore, the findings of Sec. 4.5 apply only to Gaussian HMMs.
Regarding the propagation of uncertainty to the next walk element, the algorithm
presented in Sec. 4.4.3 is not applicable anymore. However, we extend the notion of
adaptive BP to trees and loopy graphs in Chap. 5. We will see in this chapter that the
propagation of uncertainty to the next walk element requires only as many messages
as the length of the path connecting two consecutive walk elements. We can determine
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instantly the connecting path of two nodes by keeping a structure that provides the
lowest common ancestor of two nodes in constant time. In case of loopy graphs, we
break the loops by determining a set of nodes, called Feedback Vertex Set (FVS). We
then apply the variant of BP presented in Chap. 5 to the remaining acyclic graph.

� 4.7 Complexity Reduction in Non-Linear Models

In the previous sections, we presented results for linear Gaussian models. Usually more
complex phenomena need to be expressed by non-linear models. We can generalize to
the non-linear case by taking first-order approximations. Assume X1 ∼ p, where p ∝ p∗,
and p∗ is a tractable, continuous, second-order differentiable function, strictly positive
on its domain. If this distribution has a local maximum at x∗, we can approximate p
around x∗ with a Gaussian through Laplace’s method [67]

pX1(x∗) ' N (x∗;µ1,Σ1),

where µ1 = x∗,Σ1 = − ∇2 ln p∗(x)
∣∣
x=x∗

. In addition, we assume that each Xt is given
as

Xt = ft−1(Xt−1) + Vt−1,

where ft−1 : Rd → Rd, Vt−1 ∼ N (vt−1; 0, Qt−1) and measurements Yt are given by

Yt = ht(Xt) + Wt,

where ht : Rd → RN , Wt ∼ N (wt; 0, Rt). In this case, the propagation and update are
given by the Extended Kalman Filter equations [28].

Propagation x̂t|t−1 = ft−1(x̂t−1|t−1)

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Qt−1

Update x̂t|t = x̂t|t−1 +Gt(yt − ht(x̂t|t−1))

Σt|t = Σt|t−1 −GtCtΣt|t−1

Gt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1,

where At = (∇ft(x̂t|t))T , Ct = (∇ht(x̂t|t−1))T . That is, [At]ij = ∂fti
∂xj

, [Ct]uj = ∂htu
∂xj

. In

this case, sparsity in the dynamics function ft is expressed through the i-th component
of that function. That is, if the i-th latent variable at point t+1 Xt+1,i is linked to a few
neighbors from Xt, the i-th component of function ft is written as fti(xt,1, . . . , xt,d) =
fti(xt,N(t+1,i)), where N(t+1, i) are the neighbors of variable Xt+1,i at point t. Similarly,
for htu. For each row of At and Ct, the only non-zero components would be the ones
corresponding to variables that participate in the generation of Xt+1, Yt, respectively.
For example, if variable Xt,j does not participate in the generation of measurement
Yt,u, we would have that ∂htu/∂xj = 0. We should note that if functions ft, ht are
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Figure 4.5: Empirical analysis of structured and unstructured walks. The figure com-
pares information rewards versus computation complexity (as quantified by number of
messages) for walks of different minimum size segment (magenta:1, brown:2, yellow:3,
purple:4, blue:5). As we see, the distribution of rewards is similar in all cases, but the
evaluation complexity is significantly lower for walks with harder constraints on the
minimum segment length.

highly non-linear, the first-order approximations for inference purposes can be extremely
inaccurate. However, for planning purposes we can still design a planning schedule
by using non-linear approximations and perform inference later with more accurate
techniques (e.g., sampling).

� 4.8 Experiments

We consider synthetic tracking experiments, where the primary goal is to demonstrate
the utility of the method from a computational perspective. We additionally observe
that in some cases, information rewards - depending on the structure of the problem
- may be decoupled from the complexity of walk. In such cases, exploration may
be restricted to low-complexity walks while yielding high information rewards. The
properties under which this condition arises remains an open question. The previous
analysis provides a tool by which such questions can be examined.

In our setup, there are three objects. Two of the objects move away from the
third one. Each object has a 6-dimensional states, px, py, pz, vx, vy, vz representing the
positions and velocities along the three axes. We consider the following linear state-
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space model

Xt = At−1Xt−1 + Vt−1

Yt = CtXt + Wt,

where At−1 captures linear dynamics, Vt−1 ∼ N (vt−1; 0, Qt−1) is driving noise and
Wt ∼ N (wt; 0, Rt) is measurement noise. Potential measurements are available for each
latent variable (position, velocity), which amounts to 18 measurements per time point
(6 per object) of which we may select six (at each time point). We consider five different
types of walks with the following walk segment minimum sizes; `min ∈ {1, 2, 3, 4, 5}.2
By minimum size, we mean that for every set Vt, there is a walk segment with size
at least `min. In Fig. 4.5 we compare rewards of different walks to their complexities.
As expected, the forward walk (green circle) has lowest complexity and lowest reward.
Interestingly enough, even though walks with larger minimum segment sizes (blue,
purple) result in much lower complexities, they have comparable rewards to those of
lower minimum segment sizes (brown, magenta) and higher complexity. Additionally,
the walk with the maximum reward which belongs in one of the highest complexity
clusters is not significantly higher than the maximum from lower complexity clusters.

We also examine the speedup due to sparsity by considering 200 moving objects with
different degrees of correlated motion. The latent dimension in this case is d = 1200.
We consider different observation sizes, constituting {10%, 25%, 50%, 75%, 100%} of the
latent dimension and different degrees of sparsity in the measurement model. Fig. 4.6
shows the efficiency gains as a function of sparsity q and observation size N , as we
discussed in Sec. 4.4. Here, color indicates speedup factor, the maximum being 1400
and the lower being 88.

Lastly, we examine the advantage of adaptive BP compare to standard Kalman fil-
tering and smoothing. We construct 10 Markov chains of varying length (from T = 10
to T = 300) and compare adaptive BP to the standard Kalman filtering and smoothing.
In Fig. 4.7a, certain speedups are obtained when the walk elements are sampled uni-
formly across the T different observation sizes. We also construct multiple walks with
specified average distance between consecutive walk elements, (1–5, 5–10, 15–20, 50–
60) for a chain of length T = 100 to better demonstrate the sensitivity of the proposed
method to the average distance between consecutive walk elements. As the average
distance between consecutive walk elements decreases, the greater the advantage of
Adaptive BP.

� 4.9 Conclusion

We have considered the problem of efficient evaluation of information rewards in Gaus-
sian HMMs. Näıve evaluation of such rewards is generally prohibitive for all but forward
walks. There are generally three sources of complexity; exploration, update and prop-
agation. We propose an approach that takes advantage of sparsity in the measurement

2Walk segment is a segment of the walk where all elements belong to the same observation set.
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Figure 4.6: Speedups by taking advantage of sparsity during exploration and updates.
The figure shows the speedup we gain by taking sparsity into account. We explore the
speedup for different degrees of sparsity defined as 1 − q/d and different observation
sizes N (as expressed by ratios to a maximum size Nmax). As expected, we see that the
gains are more imminent as observation size and sparsity grows.

process to reduce substantially the complexity in exploration and update steps. We
obtain a O(N) speedup per exploration step, where N is the size of an observation set.
Furthermore, we obtain O((d/max{m, q})2) speedup per update step. In addition, we
introduce a variant of Gaussian belief propagation that only sends messages from the
current wj to the next element of the walk wj+1 to evaluete the uncertainty Σwj+1|Gj
and is much more efficient than standard Kalman filtering and smoothing techniques.
If the average distance between consecutive walk elements is ¯̀, then we obtain speedup
on the order O(T/¯̀). The significant reductions in the complexity of evaluating infor-
mation rewards allow for the exploration of multiple plans that might lead to improved
rewards. Furthermore, our experimental results reveal that in some cases the informa-
tion reward of walk can be decoupled from its complexity. As a result, exploration can
be restricted to low-complexity walks while still yielding high information rewards that
are guaranteed to be within a computable factor of the (intractable) optimal solution.
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Figure 4.7: Speedups from adaptive message passing during propagation. (a) Efficiency
gains as the length of the chain T increases. Gains stabilize around a single number due
to the construction of the walks. Since we choose the same number of measurements
from every observation set, and observation sets are sampled uniformly with probability
1/T , the mean distance between two consecutive points would be T/3. Kalman filtering
and smoothing presents an O(T ) asymptotic complexity. In reality though, we send 2T
messages on average at every iteration, since we need to propagate to the end of the
chain and then smooth back to the node that corresponds to the next walk element.
Therefore, we would expect the speedup to converge to a number close to 2T

T/3 = 6. (b)
The figure shows how gains change as the average distance between consecutive elements
increases. As expected, we see that when the average distance between consecutive walk
elements is low, we gain significant speedups.



Chapter 5

Adaptive Belief Propagation

GRAPHICAL models are widely used in inference problems. They can represent
relationships between random variables and span a wide range of applications.

The proliferation of data and the desire to build more accurate models has given rise
to graphs with ten of thousands or even millions of variables. However, users of such
models are often interested in only a particular set of variables which might change
over time depending on the particular task at hand. In practice, one may construct a
single large-scale model to explain a phenomenon of interest, which may be utilized in a
variety of settings. The latent variables of interest, which can differ in each setting, may
only represent a small subset of all variables. A query that arises often is evaluating
the marginals at specific nodes. The marginals at these nodes may change after the
addition of measurements at different time points. In such adaptive settings, näıve
algorithms, such as standard belief propagation (BP), may utilize many unnecessary
computations by propagating messages over the entire graph.

In this chapter, we formulate an efficient inference procedure, termed adaptive BP
(AdaBP), suitable for adaptive inference settings. In other words, for settings where
new observations are added sequentially and there is a need of evaluating statistics such
as marginals while avoiding computing recurring quantities. This work is closely tied
to work in Chap. 4, since after the selection of a measurement at a greedy step, we
need to propagate the uncertainty at the next walk element. In that respect, we have
measurements that are added sequentially (after the end of each greedy selection step)
and there is a need of evaluating the covariance matrix (or else the precision matrix) of
the latent node that corresponds to the next walk element.

We show that AdaBP gives exact results for trees in discrete and Gaussian Markov
Random Fields (MRFs), and provide an extension to Gaussian loopy graphs. We ad-
ditionally demonstrate that when the inference problem is finding the most likely se-
quence, the solution corresponds to the full latent graph, rather than just a small
subset. Furthermore, we show that the problem of finding a nearly optimal schedule of
measurements can be cast as a Traveling Salesman Problem (TSP). We compare the
proposed method to standard BP and to that of Sümer et al. [89], which tackles the
same problem. We show in synthetic and real experiments that it outperforms standard
BP by orders of magnitude and explore the settings that it is advantageous over Sümer
et al. [89]. An earlier version of this work was originally presented in [81].
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We start the chapter with Sec. 5.1 by introducing the problem and motivating the
need for an algorithm that would be better suited for adaptive inference settings, when
there is a need for performing inference over a small subset of the hidden variables.
We continue by presenting related work in Sec. 5.2. In Sec. 5.3, we formulate the
problem and introduce necessary notation. Sec. 5.4 explains the concept of the lowest
common ancestor of two nodes and a way to retrieve it in constant time by reducing
this problem to the Range Minimum Query (RMQ) problem. We show in Sec. 5.5
how node potentials are updated upon the reception of a new measurement. Sec. 5.6
discusses the algorithm focusing on tree MRFs. A complexity analysis is given in Sec.
5.6.2. We analyze the case of multiple measurements and marginals per iteration in
Sec. 5.7. Sec. 5.8 extends the method to finding the MAP sequence. It is worth noting
that this extension recovers the MAP sequence on the full latent graph and not just a
small subset of interest, as is the case when evaluating marginals. Sec. 5.9 generalizes
the method to Gaussian loopy MRFs. We show that by using the algorithm proposed
by Liu et al. [64], the solutions are still exact. Sec. 5.10 studies the reverse problem.
In other words, when there is a fixed budget on the measurements we can retrieve and
there is no preference on the order of obtaining them. Then, the goal is to design
a measurement schedule that results in the minimum number of computations. We
continue the chapter with Sec. 5.11 by demonstrating the strengths and weaknesses of
our method on both synthetic and real data. Lastly, we conclude by summarizing the
contributions in Sec. 5.12.

� 5.1 Introduction

We consider the problem of inference in large-scale models. It is often the case that
only a subset of latent variables is of interest for different applications which may
vary from instance to instance. Additionally, the set of available measurements may
vary with use or become available at different points in time. The latter is common
for any sequential estimation problem. In such situations, general-purpose inference
algorithms, such as BP may utilize many unnecessary computations when only a small
subset is desired. There exist several examples that fall into this category of problems.
Patient monitoring provides one such practical example [16]. Large-scale systems may
monitor the health status of many patients; however, different physicians limit their
interest to patients under their immediate care. In funding allocation, a funding agency
might be interested in the expected impact that funding a particular research group
has on a certain scientific topic [100]. Temperature monitoring sensors provide data
over time and space, but sensitive areas (e.g., server room) may require more careful
examination for the timely response in case of abnormal behavior. In computer vision,
when image segmentation is performed on video frames, the data from frame to frame
change slightly which might make possible the reuse of previous quantities to avoid
recurring computations [49]. Lastly, in computational biology, the effects of mutations
are explored (computational mutagenesis), with each putative mutation resulting in a
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Figure 5.1: Outline of AdaBP. (a) At every iteration, we send messages along the
path between the previous measurement node w`−1 and the current one w`. The path
between w`−1 and w` is depicted in purple color. (b) In the second phase, we send
messages in the path between nodes w` and v`. This path is depicted in gray color. As
we will show later, this schedule guarantees that all marginals on the path between w`
and v` will be correct.

very similar problem [89].
This motivates methods for problems where measurements are added incrementally

and the interest is in a subset of node marginals at a given time point or the MAP
sequence of the full latent graph. This is the problem of adaptive inference, where
the goal is to take advantage of previously computed quantities instead of perform-
ing inference from scratch. In these cases, standard BP results in many redundant
computations. Consequently, we develop an adaptive inference approach which avoids
redundant computations and whose average-case performance shows significantly lower
complexity compared to BP. The main idea is to send only messages between the node
where a measurement has been obtained from, w`, and the node whose marginal is of
interest, v`.

1 The correctness of this approach is guaranteed by propagating messages
between consecutive measurement nodes w`−1, w` at every iteration. As a result, we
only send the absolutely necessary messages to guarantee that the incoming messages
to the node of interest v` are correct. We call this minimal messaging schedule adaptive
BP or AdaBP in short. A brief outline of this algorithm is shown in Fig. 5.1. We
show that it gives exact results on trees (as standard BP) and provide an extension for
Gaussian loopy graphs that still guarantees exactness in the evaluation of marginals.

The proposed method requires a preprocessing step of O(N logN) time, where N is
the number of latent nodes. In the worst case, when relative distance between consecu-
tive “measurement” nodes is approximately the diameter of the tree and the diameter
is on the order of N (highly unbalanced tree), the performance is comparable – yet still
faster than– standard BP. However, for height-balanced trees, worst-case performance
results in O(logN) messages per update as compared to O(N) for standard BP. If
nodes w`, v` are close to each other, the computation of the node marginal is obtained
in constant time per iteration. We provide an extension of the method for MAP in-
ference and for Gaussian loopy MRFs and show how it can be used to suggest nearly
optimal measurement schedules. We compare the proposed method to Sümer et al. [89]

1We will refer to w` as “measurement” node for abbreviation.
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and examine settings under one approach may have advantages over the other. Lastly,
we empirically demonstrate the performance of our method in a variety of synthetic
datasets, as well in two real applications.

� 5.2 Related Work

Kohli and Torr [49] consider an adaptive inference setting where nodes and edges can
be deleted or added at any time. They only consider the MAP inference problem and
show that a solution can be obtained in polynomial time by solving a dynamic version
of the st-mincut problem. However, their method is restricted to discrete variables
and to submodular pairwise factors. Komodakis et al. [50] also analyze the problem
of MAP inference in dynamic settings. They cast the MAP problem as a primal-dual
optimization problem, and solve a series of max-flow problems, where the number of
augmenting paths per max-flow runs decreases over time. This last attribute guarantees
efficiency of inference. Even though their method is applied to a wider range of MRFs,
it only addresses the MAP problem and does not generalize to the Gaussian case.
Nath and Domingos [76] propose a variant of BP, termed expanding frontier belief
propagation, where messages are only propagated in a small subset of nodes in the
close region around a node whose potential has changed. They additionally provide
guarantees on performance of their method relative to standard loopy BP.

Chechetka and Guestrin [16] examine the problem of inference over a fixed set of
nodes, Q, called the query set. They create a prioritized message schedule weighted
towards messages to which set Q is most sensitive. Their approach is limited to discrete
graphs, the query set is fixed and the preprocessing time depends on the number of edges
and neighbors of the nodes. Wick and McCallum [100] consider the same problem of
focused inference but from an MCMC perspective. They use Metropolis Hastings to
draw samples that come more frequently from the query variables. They achieve this
by creating variable selection distribution that favors the selection of query variables as
well as those variables that are highly influential to the query variables.

Lastly, Sümer et al. [89] analyze the problem of adaptive exact inference in the
context of factor graphs utilizing the factor elimination algorithm to evaluate node
marginals [23]. They construct a balanced representation of the elimination tree in
O(|X |3wN) time, which allows for computation of a node marginal in O(|X |2w logN),
where N is the number of nodes, w is the elimination tree width (size of the largest
clique in the chordal graph minus one) and |X | the alphabet size. However, the pre-
processing step becomes prohibitive as the alphabet |X | and treewidth w grow large,
thus making this method inappropriate for dense loopy graphs. For trees, the width
of the elimination tree is one and the complexity of updating the model reduces to
O(|X |3 logN) as compared to O(|X |N) for standard BP. Note that they address the
discrete case only. As we later show, the computational complexity is impacted signif-
icantly by not taking into account the relative distances between consecutive nodes of
interest. In contrast, our proposed method extends to loopy Gaussian models, has a
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much reduced pre-processing time, and allows for varying sets of interest.

� 5.3 Problem Statement

We consider the Markov Random Field (MRF) which represents a graph G = (V, E)
of N latent variables, X = {X1, . . . ,XN}, whose direct dependencies are represented by
edge set E . The neighbors of latent node Xt are denoted by N(t) and each latent node Xt
is linked to mt measurements {Yt,1:mt}. The set {Yt,1:mt} will be called observation set
and denoted by Vt. In addition, each Xt ∈ X . A feedback vertex set (FVS) F is a set of
nodes whose removal results in a cycle–free graph T = V \F (forest). Obviously, F = ∅
in the case of trees. We denote |F| = K to be the size of FVS. We would also call all
nodes in T that are neighbors to an FV node as anchors and denote them by A. That is,
A = {i | i ∈ T , i ∈ N(p),∀p ∈ F}. For the purpose of our analysis, we focus on discrete
MRFs, but the proposed method generalizes straightforwardly to Gaussian MRFs. The
only difference is in the inherent complexity of a message; O(|X |2) for discrete, O(d3)
for Gaussian, where |X | is the alphabet size and d the dimension of X , respectively.
Lastly, a common assumption is that measurements Y are conditionally independent on
X . We focus on pairwise MRFs as MRFs with larger cliques can be reduced to pairwise
ones [97]. We are interested in problems where a measurement is added at a time and
only one or a few marginals are of interest at any point. The total number of available
measurements is M . We are given a measurement plan w = {w1, . . . , wM} = {w1:M},
which provides the order of taking measurements from each set. That is, a measurement
is obtained from set Vw1 , then from Vw2 , and so on. We call marginal order v = {v1:M},
the sequence of the latent nodes whose marginal is of interest at each step.

� 5.4 Lowest Common Ancestor (LCA)

One efficient approach to evaluate marginals in graphical models is the belief propaga-
tion algorithm, which is exact for trees. When we acquire a new measurement, which
updates a node’s potential, we can find the marginal of a node of interest by treating
this node as a root and then propagating messages from the leaves to the root. When a
node’s potential is updated, this changes all the outgoing messages of this node, which
in effect change the messages of this node’s neighbors and so on. The question that
arises is if we can avoid repeated computations by running standard BP every time a
new measurement arrives. A potentially optimal approach is to pass messages from the
measurement node to the node of interest, but without any bookkeeping this will not
take into account the effect that past measurements had in the propagated messages.
We will show in Sec. 5.6 how we can tweak the above idea and produce correct marginal
estimates after a change in a node’s potential. For now, we will assume that we need to
send messages from the measurement node to the node of interest. This would require
knowledge of the path that connects these two nodes. The lowest common ancestor
(lca) of two nodes is the shared ancestor of these nodes that is located farthest from
the root. The lca is directly related to the path between two nodes as the path can be
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determined by traversing from a node up to the lca and then down to the other node.
Since we consider problems where node potentials are updated frequently, we need a
method that determines paths (or in other words, lcas) between nodes in a very efficient
way. It turns out that the determination of the lowest common ancestor between any
two nodes can occur in O(1) time by reducing the LCA problem to the Minimum Range
Query (RMQ) problem as we describe below.

The RMQ solves the problem of finding the index of the minimum element between
two specified indices of an array A[i . . . j]. Interestingly, they provide an answer in
constant time by building a structure M of size N × L, where L = dlog2Ne + 1 [39].
The element [M ]i,j gives the index of the minimum element in A[i . . . i + 2j−1 − 1].
The RMQ is extremely well-suited for problems with a large number of queries, R,
where R � N , since it is linear in R. It turns out that the LCA can be reduced to
the RMQ problem [22, 33]. For a specified root, we assume that each node is labeled
in a breadth-first manner. That is, the root is assigned label 1, and all other nodes
are labeled accordingly in a top-down, left-right approach (cf. Fig. 5.2). Now, suppose
we recover the Euler tour E of the tree starting from the root. As a reminder, the
Euler tour of a strongly connected, directed graph G is a cycle that traverses each
edge of G exactly once, although it may visit a node more than once [19]. Since we
are dealing with undirected graphs here, we assume for the purposes of analysis that
each undirected edge is equivalent to two directed edges of opposing direction. The
number of edges arriving at a node is called the in-degree, while the number of edges
leaving a node is called the out-degree. Since by construction each node has equal out-
and in-degree, the Euler tour is always a cycle, that is, it starts and ends on the same
node (here, the root). Now, if we denote by H the vector which stores the index of
the first occurrence of each node in E, the lca of two nodes u, v would be somewhere
in E[Hu, . . . ,Hv] due to the way the Euler tour is constructed (depth-first manner).
Since the nodes are labeled in a breadth-first manner, the lca of u, v would be the one
with the smallest label and hence the smallest depth in the range E[Hu, . . . ,Hv]. It
becomes apparent that we need to introduce a vector De which would store the depth
of the corresponding nodes in the Euler tour. For example, the depth of the first node
in the Euler tour, which is the root by construction, is [De]1 = 0. Since the lca of u, v is
the node with the smallest depth in E[Hu, . . . ,Hv], the index of the minimum element
of subarray De[Hu, . . . ,Hv] would give us the lca(u, v). We explain the quantities
E,De,H with an example in Fig. 5.2.

It remains now to build a matrix M that would provide answers to queries of the
type arg minDe[Hu, . . . ,Hv] in constant time. The size of this matrix would be N×L,
where L = dlog2Ne+1, while element [M ]i,j would represent the index of the minimum
element of the subarray De that starts at i and has length 2j−1:

[M ]i,j =

{
[M ]i,j−1 , [De][M ]i,j−1

≤ [De][M ]r,j−1

[M ]r,j−1 , otherwise,

where i = 1, . . . , N , j = 1, . . . , L, r = min{i+ 2j−2, N} and [M ]i,1 = i.
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Figure 5.2: Reduction from LCA to RMQ problem. The dashed arrows denote the
Euler tour. The black circle denotes the beginning and the arrow the end of the tour.
Note that the Euler tour begins and ends in the root. The array E gives the order in
which nodes are encountered in the Euler tour. The array De gives the depth of each
node in the Euler tour, while array H gives the index of the first occurrence of a node
in the Euler tour. For example, the index of node’s 3 first occurrence in the Euler tour
is 10. In other words, E10 = 3.

The absolute index of the minimum value of the subarray De[i, . . . , j] is recovered
in constant time as

RMQDe
(i, j) =

{
[M ]i,k+1 , [De][M ]i,k+1

≤ [De][M ]s,k+1

[M ]j−2k+1,k+1 , otherwise,

where k = blog2(j − i+ 1)c.
The lca of u, v is simply

lca(u, v) =

{
ERMQDe

(Hu,Hv) ,Hu <Hv

ERMQDe
(Hu,Hv) , otherwise.

(5.1)

� 5.5 Updating node potentials

Updating a node’s potential is really straightforward. We consider three types of po-

tentials; node potentials of latent variables ϕ
(0)
t (xt), pairwise potentials between la-

tent and observed variables χt`(xt, y`), and pairwise potentials between latent variables
ψij(xi, xj). In the discrete case, an observed variable Yt` = y` is embedded into the
node potential of the latent variable it links to as

ϕt(xt) = ϕ
(0)
t (xt)χt`(xt, y`) (5.2)

In the gaussian case, the node potential of variable Xt has the initial form χt(xt) =

exp(xTt h
(0)
t − 1

2x
T
t J

(0)
tt xt), while pairwise potentials between latent variables take the



128 CHAPTER 5. ADAPTIVE BELIEF PROPAGATION

form ψij(xi, xj) = exp(−xTi Jijxj). If a measurement Yt is obtained from Xt as

Yt = CtXt + Wt,

where Wt ∼ N(0, Rt), then the posterior distribution of the vector of variables X1, . . . ,XN
given Yt takes the form

p(x | yt) ∝ p(yt | x)p(x) = exp(−1

2
(yt − Ctxt)TR−1

t (yt − Ctxt)) exp(−1

2
xTJx+ xTh)

= exp(−1

2
(yt − Ctxt)TR−1

t (yt − Ctxt)) exp(−1

2
xTt J

(0)
tt xt + xTt h

(0)
t )

· exp(−1

2

∑

i 6=t
xTi J

(0)
ii xi −

1

2

N∑

i=1

∑

j∈N(i)

xTi Jijxj +
∑

i 6=t
xTi h

(0)
i )

(a)
= exp(−1

2
xTt (J

(0)
tt + CTt R

−1
t Ct)xt + xTt (h

(0)
t + CTt R

−1
t yt)

· exp(−1

2

∑

i 6=t
xTi J

(0)
ii xi −

1

2

N∑

i=1

∑

j∈N(i)

xTi Jijxj +
∑

i 6=t
xTi h

(0)
i ), (5.3)

where (a) has been obtained after isolating from p(yt | x) the terms that contain xt. It
becomes clear from Eq. (5.3), that a measurement which is drawn from a variable Xt
affects only the potential of that variable, as in the discrete case.

Jtt = J
(0)
tt + CTt R

−1
t Ct (5.4)

ht = h
(0)
t + CTt R

−1
t yt (5.5)

The update of a node potential in the discrete case takes O(|X |) time, while O(d2m)
in the Gaussian case, where d is the dimension of Xt and m the dimension of Yt (as-
suming m < d).

� 5.6 Adaptive BP

For the purpose of analysis, we would delay the discussion to general Gaussian MRFs.
We will consider trees here and present an extension later to loopy graphs in Sec. 5.9.
As a reminder, we obtain one measurement at every step and are interested in charac-
terizing the belief at a given node. Recall that a measurement order w = {w1, . . . , wM}
is the order that measurements are obtained. In addition, sequence v = {v1, . . . , vM}
determines the marginals of interest at any time. The key idea is to propagate messages
in the paths (w`−1, w`) and (w`, v`),∀`. We show that by propagating messages between
consecutive measurement nodes, the messages take into account the information of all
past measurements. The discovery of these paths is directly related to finding the lowest
common ancestor (lca) of pairs (w`−1, w`) and (w`, v`),∀`, which we discussed in Sec.
5.4.
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� 5.6.1 Method Description

With a careful inspection, we observe that after the incorporation of a measurement at
node Xw`

, the evaluation of the messages along the unique path from node w` to node v`
is sufficient for the determination of node v`’s marginal. The above procedure guarantees
to give the correct marginals along this path as long as all the incoming messages to node
w` are correct. This is possible, if we additionally propagate messages from w`−1 to w`
at every iteration. The algorithm is described as follows. During initialization, all the
node potentials are evaluated assuming no measurements are available. If measurements
are already available, they are absorbed in the corresponding latent node potentials,
as described above. At this point, we propagate messages along the entire graph in
both directions. As a new measurement arrives from set Vw1 , the messages from w1

to v1 are computed. This way, the marginals of the nodes in the path (incl. w1, v1)
are correctly updated. Then, we propagate messages from w1 to w2, update the node
potential of Xw2 and send messages from w2 to v2. We continue with this procedure for
each `. If w` = w`−1, no messages are propagated from w`−1 to w`, while if w` = v`−1,
only the node potential Xw`

is updated. Obviously, the path from node w`−1 to w`
is directly related to the lca(w`−1, w`). Similarly, for the pair (w`, v`). Therefore, at
every iteration, we need to determine the lcas of these two pairs, which is accomplished
in constant time, with the reduction to the RMQ problem. Once we find the lca of
pair (w`−1, w`), we can trivially determine the directed path from w`−1 to w`. We will
denote the messages in this path byM(w`−1 → w`). Similarly, we denote the messages
of the directed path from w` to v` by M(w` → v`). Note here that both of the above
schedules contain only the single-direction messages from one node to another. The
update is done in the same manner as in the serial version of BP, that is, we propagate
messages from w`−1 to the lca(w`−1, w`) and then down to w`. The procedure is the
same for the pair (w`, v`). The flow of the algorithm is depicted in Fig. 5.3 (see Alg.
5.1 for details).

Messages are updated as:

mi→j(xj) =
∑

xi

ϕi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mk→i(xi),

∀(i, j) ∈M(w`−1 → w`) and M(w` → v`), (5.6)

while the marginal of node of interest v` is computed as

pXv`
(xv`) ∝ ϕv`(xv`)

∏

k∈N(v`)

mk→v`(xv`). (5.7)

Obviously, if the model is Gaussian, we use the formulas for Gaussian BP as indicated
in Eqs. (2.109), (2.110), (2.111), (2.112). If the latent graph is a chain, there is no need
to determine the lca at every step: we simply propagate from w`−1 to w`, update the
node potential at w` and propagate messages to node v`.

By applying this algorithm, we guarantee exactness in the marginals of nodes on
the path M(w` → v`).
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Figure 5.3: Adaptive BP flow. The solid thick node represents node w`, double stroke
node v`, while dashed node previous node w`−1. Purple bands encompass the messages
sent between w`−1 and w`, while gray bands messages between w` and v`. Thick arrows
represent messages at the current iteration (purple ones transmitted between w`−1, w`
and black ones between w`, v`). Solid and strikethrough arrows represent correct and
incorrect messages, respectively, computed from previous iterations. At iteration #1,
measurement node w1 = 4 sends messages to node of interest v1 = 3. At iteration #2,
since w2 = v2 = 3, no messages need to be sent. At iteration #3, messages are sent
from past measurement node w2 = 3 to current measurement node w3 = 5 to guarantee
consistency and then messages are passed from w3 = 5 to node of interest v3 = 9.
Similarly, for iteration #4.

Theorem 5.6.1. The marginals of all nodes in M(w` → v`) are correct.

To prove the above statement, we need first to prove a few intermediate lemmas as
that we include below.

Lemma 5.6.1. Messages in path M(w`−1 → w`) are correct.

Proof. Base case: The messages in the path w1 → w2 are correct. This is trivially
true since all the incoming messages to w1 and to the nodes in the path M(w1 → w2)
have been correctly evaluated during initialization. Therefore, after we absorb the
measurement in the potential of Xw1 , propagating from w1 → w2 will give us the correct
messages. Induction step: We will assume now that the messages in M(wj−1 → wj),
j ∈ {2, . . . , `−1} are correct and we will show that the messages inM(w`−1 → w`) will
be correct as well. W.l.o.g. assume the tree is rooted at w`−1 as shown in Fig. 5.4 and
i is one of w`−1’s neighbors. We need to show that all the incoming messages to w`−1

as well as the incoming messages to the other nodes inM(w`−1 → w`) are correct. Let
us first show that the incoming messages to w`−1 are correct. There are three cases for
the subtree Ti rooted at i (if we ignore the branch containing the edge (i, w`−1)): (a)
there are no previous measurements {w1, . . . , w`−2} from it, (b) the last measurement
from it was taken at time ti < ` − 2, or (c) at time ti = ` − 2. In the first case (a),
since there are no previous measurements, the incoming message mi→w`−1

stayed intact
since initialization and thus is correct. In the second case (b), since ti < ` − 2, this
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Algorithm 5.1 Adaptive Belief Propagation

1: Preprocessing
2: Determine Euler tour E, depths of elements in the Euler tour De, vector H, which

stores the index of the first occurrence of node i in E, and matrix M , which stores
the index of the minimum value of the subarray of De starting at i and having
length 2j−1.

3: Initialization
4: Initialize the node, pairwise potentials and messages.
5: Iteration
6: for ` = 1, . . . ,M do
7: Find lca(w`−1, w`) from Eq. (5.1).
8: Determine schedule M(w`−1 → w`) : w`−1 → lca(w`−1, w`)→ w`
9: Compute messages mi→j(xj) in M(w`−1 → w`) from Eq. (5.6).

10: Update the node potential at Xw`
.

11: Find lca(w`, v`) from Eq. (5.1).
12: Determine schedule M(w` → v`) : w` → lca(w`, v`)→ v`
13: Compute messages mi→j(xj) in M(w` → v`) from Eq. (5.6).
14: Compute the marginal of interest pXv`

(xv`) from Eq. (5.7).
15: end for

means that at point ti + 1, we moved to a subtree of another neighbor of w`−1 through
w`−1. Due to our assumption, that all messages from previous paths M(wj−1 → wj),
j < `, are correct, this also implies that the messages in the path M(wti → wti+1) are
correct and this includes message mi→w`−1

as well. Lastly, if ti = ` − 2, this means
that the previous measurement, at time ` − 2, was taken from the subtree rooted at i
(c). By assumption, all messages in M(w`−2 → w`−1) are correct. So, in all cases, the
incoming message from i to w`−1 is correct. We follow similar logic for all neighbors of
w`−1. Lastly, we should demonstrate that the incoming messages to the other nodes in
the path M(w`−1 → w`) are correct. The logic is similar as before. Let us refer to the
subtrees that are attached to the path M(w`−1 → w`) as tree branches. Take a node
(call it j) attached to M(w`−1 → w`) and consider the subtree Tj rooted at it. Let
us denote by k the node in the path M(w`−1 → w`) that j links to, as show in Fig.
5.4. As before, we have three cases: (a) there are no previous measurements taken from
Tj , (b) the last measurement was taken at time tj < ` − 2, or (c) at time tj = ` − 2.
If there are no previous measurements (a), this means that the message mj→k stayed
intact since initialization. If tj < ` − 2 (b), then at point tj+1 we “exited” subtree Tj
through node k and moved either to another branch of that path or to another subtree
of w`−1. In either case, due to our assumption, the messages in M(wtj → wtj+1) are
correctly updated including message mj→k. Lastly, if tj = ` − 2 (c), then due to our
assumption, the messages M(w`−2 → w`−1) are correct, including the message mj→k.
We reason similarly for all nodes which are part ofM(w`−1 → w`). Therefore, since all
incoming messages to w`−1 and nodes in M(w`−1 → w`) are correct, the messages in
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Figure 5.4: Correctness of message updates. Purple thick arrows represent the messages
that will be propagated in the current iteration from w`−1 → w`, while solid black
arrows the incoming messages to M(w`−1 → w`) which have been evaluated correctly
from previous iterations.

M(w`−1 → w`) would also be correct. �

Lemma 5.6.2. The incoming messages of each node in M(w`−1 → w`) are correct.

Proof. We denote by k a node inM(w`−1 → w`) and by j one of its neighbors, j ∈ N(k),
as shown in Fig. 5.5. Denote further by Tj the tree that is rooted at j if we exclude the
tree branch that contains the edge (j, k). We define as t(k, j) the most recent time that
a measurement has been obtained from tree Tj . By default, if no measurement has been
obtained from Tj , we set t(k, j) = ∞. Also, if Tj includes node w`−1, then obviously
t(k, j) = ` − 1. From the definition of t(k, j), which indicates the time that the last
measurement has been obtained from Tj , we have that at time t(k, j) + 1 we exited the
tree Tj through edge (j, k). Due to Lem. 5.6.1, all messages in M(wt(k,j) → wt(k,j)+1),
including message mj→k are correct. We follow the same logic for all neighbors of k. �

Lemma 5.6.3. The incoming messages of each node in M(w` → v`) are correct.

Proof. We will first start by showing that the incoming messages of the neighbor of w`
in path M(w` → v`) are correct. Then, we can show with a similar logic that all the
incoming messages of the remaining nodes in M(w` → v`) are correct as well. From
Lem. 5.6.2, we showed that the incoming messages of all nodes in M(w`−1 → w`) are
correct. This includes node w`. Let us denote by k the neighbor of w` in M(w` → v`).
Since, the incoming messages of w` are correct, after the update of w`’s potential, it fol-
lows from relation mw`→k(xk) =

∑
xw`

ϕw`
(xw`

)ψw`,k(xw`
, xk)

∏
s∈N(w`)\kms→w`

(xw`
),

that message mw`→k is correct as well. Now, let us denote by j a neighbor of k (other
than w`), and by Tj the tree rooted at j that does not include the tree branch that
contains edge (j, k), as shown in Fig. 5.6. Again, t(k, j) denotes the most recent
time a measurement has been obtained from tree Tj . If w`−1 is contained in tree Tj ,
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Figure 5.5: Correctness of incoming messages in M(w`−1 → w`). The incoming mes-
sages of every node in M(w`−1 → w`) are correct. Here, k is a node in M(w`−1 → w`)
and j ∈ N(k), while Tj is the tree rooted at j, if exclude the tree branch that contains
edge (j, k).

then t(k, j) = ` − 1 (Fig. 5.6a), if no measurement has been obtained from Tj , then
t(k, j) =∞ (Fig. 5.6c), and t(k, j) = t < `− 1, otherwise (Fig. 5.6b). If t(k, j) = `− 1,
then during propagation M(w`−1 → w`), message mj→k has been correctly updated
as part of the schedule M(w`−1 → w`). If t(k, j) = t < ` − 1, this means that at
time t(k, j) + 1, we exited tree Tj through edge (j, k). Hence, message mj→k has been
correctly updated during schedule M(wt(k,j) → wt(k,j)+1). Lastly, if t(k, j) = ∞, this
means that no measurement has been obtained from tree Tj , and hence message mj→k
stayed intact since initialization. This obviously holds for every neighbor j of k. We
have established that all incoming messages to k, with k being the direct neighbor of
w` in M(w` → v`) are correct. Therefore, the message from k to its other neighbor in
M(w` → v`) would also be correct, since all the incoming messages to k are correct.
We argue that all the incoming messages to k’s neighbor in M(w` → v`) are correct
in exactly the same fashion we argued for k. By following this logic, we show that the
incoming messages of all nodes in M(w` → v`) are correct. �

Theorem 5.6.1. The marginals of all nodes in M(w` → v`) are correct.

Proof. Since the marginal at a node i is given by

pXi
(xi) ∝ ϕi(xi)

∏

k∈N(i)

mk→i(xi),

and by Lem. 5.6.3 all incoming messages to a node in M(w` → v`) are correct, then
the marginal at node i ∈M(w` → v`) will also be correct. �

� 5.6.2 Complexity

If the depth of each node (D) is not known in advance, it can be retrieved in O(N) time,
in a depth-first approach. Similarly, the Euler tour is also retrievable in linear time. The
same holds for vectors De and H. Lastly, the creation of matrix M , takes O(N log2N)
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Figure 5.6: Correctness of incoming messages of nodes in M(w` → v`). The incoming
messages of every node in M(w` → v`) are correct. Tree Tj represents the tree rooted
at node j, if we exclude the brach that contains edge (j, k). (a) Node w`−1 is included
in Tj . (b) The most recent measurement from Tj has been taken at time t(k, j) < `−1.
(c) No measurements have been received from tree Tj .

time and space. Therefore, the overall complexity of preprocessing is O(N log2N). For
adaptive BP, we only need to send messages along the directed paths M(w`−1 → w`)
and M(w` → v`). The number of messages to be sent in step ` is dist(w`−1, w`) +
dist(w`, v`).

2 The overall complexity, is O(
∑M

`=1(dist(w`−1, w`) + dist(w`, v`))|X |2).
Compare this with standard BP, where N − 1 messages are sent at each iteration

resulting in an overall complexity of O
(∑N

k=1mkN |X |2
)

= O
(
mN2|X |2

)
, assuming

the number of measurements from each set is the same, mk = m,∀k. As we see, the
complexity of adaptive BP directly depends on the context of the measurement and
marginal order, while standard BP has a fixed cost per iteration. We will analyze the
worst, best and average complexity of adaptive BP for balanced and unbalanced trees.
In the worst-case, when the tree is highly unbalanced (tree diameter on the order of N)
and the relative distance between (w`−1, w`), (w`, v`) is comparable to the diameter for
all `, we need to transmit O(N) messages at every iteration. In this case, the order of
the number of messages to be sent is the same with standard BP. If, instead, the latent
graph is a balanced tree, with each node having approximately q children, O

(
blogqNc

)

messages are propagated at every iteration in the worst case. In the best-case scenario,
if w`−1, w`, v` are akin (e.g., parent-child or siblings) for every `, then only one or two
messages are propagated at every iteration, which reduces the overall complexity to
just O

(
mN |X |2

)
. As expected, when there is small distance between pairs of nodes

(w`−1, w`), (w`, v`), the complexity is substantially reduced. Complexity only depends
on the relative distance between consecutive terms. Structure comes only into consid-
eration, in the worst case, when the relative distance between (w`−1, w`) and (w`, v`)

2The distance between nodes w, v is the length of the path connecting them and equals dist(w, v) =
Dv +Dw − 2Dlca(w,v).
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Figure 5.7: Extension to multiple measurements/marginals. (a) Original graph. (b)
Multiple w`, one v`. Measurements at node 3, 8, 10 are obtained, while node 1’s
marginal is sought. (c) One w`, multiple v`. Measurement at node 1 is obtained, while
marginals at nodes 3, 8, 10 are of interest.

are consistently comparable to the tree diameter.

� 5.7 Extension to Multiple Measurements/Marginals

We have made the assumption that w`, v` are scalars. That is, we have assumed we
obtain one measurement and are interested in just one marginal at a time. We can
easily relax this assumption by extending to multiple measurements or marginals at
a time (cf. Fig. 5.7). Let us start with the case of multiple measurements and one
marginal (Fig. 5.8a). That is, w` is a vector and v` a scalar. A näıve approach would
be to propagate messages in M(u → v`), for each u ∈ w`, but this would result in
the re-evaluation of many messages that are found in overlapping paths M(u → v`),
for all u ∈ w`. Ideally, we would like to send messages on the gray band just once in
the right order (Fig. 5.8a). In that case, for each u ∈ w`, we retrieve the messages in
the path M(u → v`) that need to be evaluated and push them into a stack (S1) (see
Fig. 5.8b). In order to place the messages in the right order of evaluation, we pop the
messages and push them into a second stack, S2. To avoid duplicates, we keep a hash
table with messages as a key. We evaluate messages by popping elements from stack
S2 one-by-one (see Fig. 5.8c).

In the case of one measurement and multiple marginals (Fig. 5.9a), w` is a scalar
while v` a vector. For each u ∈ v`, we retrieve the messages in the pathM(w` → u) that
need to be evaluated and push them into a queue (Q) (see Fig. 5.9b). We poll messages
from Q (retrieve and remove the head of the queue), while we avoid duplicates. To
avoid duplicates, we keep a hash table with messages as a key (Fig. 5.9c). If a message
already exists in the hash table, it will not be considered in the messaging schedule.
Lastly, we treat the multiple measurements/multiple marginals case by applying the
procedure of the multiple measurements/one marginal case to each different marginal.
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Figure 5.8: (a) Multiple w`, one v`. We need only propagate messages on the gray band
from measurement nodes (in bold face) to the node of interest v`. Here, w` = {3, 8, 10},
v` = 1. (b) For each u ∈ M(u→ v`), we push the messages that need to be evaluated
on stack S1. This also contains duplicate messages due to the overlap of paths (e.g.,
messages (2, 1), (4, 2)). In this example, messages were pushed into the stack in the
following order; first messages in M(3 → 1), then in M(8 → 1) and lastly messages
in M(10 → 1). (c) Pop each element from stack S1 and push it to stack S2, while
keeping a hash table to avoid duplicates. For instance, at the beginning message (2, 1)
is pushed to stack S2, then (4, 2), (9, 4), (10, 9). When element (2, 1) is encountered
again, it will be skipped since it already exists in the hash table. (d) After we pop all
elements from stack S1 and push them to stack S2 (avoiding duplicates), we form the
messaging schedule by popping messages from the top of stack S2.
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Figure 5.9: (a) One w`, multiple v`. We need only propagate messages on the gray
band from measurement node (in bold face) to the nodes of interest v`. Here, w` = 1,
v` = {3, 8, 10}. (b) For each u ∈ M(w` → u), we push the messages that need to be
evaluated on queue Q. This also contains duplicate messages due to the overlap of paths
(e.g., messages (1, 2), (2, 4)). In this example, messages were pushed into the queue in
the following order; first messages inM(1→ 3), then inM(1→ 8) and lastly messages
in M(1 → 10). (c) We generate the messaging schedule by polling each element from
the (head of) queue, while keeping a hash table to avoid duplicates. For instance, at the
beginning message (1, 3) is polled from the queue and then message (1, 2). The second
time that message (1, 2) will be encountered, it will be skipped since it already exists
in the hash table.

� 5.8 Extension to Max-Product

In case of max-product, we just need to replace sum with max and introduce a new
type of messages, called delta messages, that will be used for the recovery of the MAP
sequence. A delta message δi→j(xj) indicates the value of the source node that cor-
responds to the MAP sequence of the subtree rooted at the source node (excl. the
branch containing the target node) for a specific value of the target node. That is,
if we denote by Ti the subtree rooted at i excluding the branch that contains j, then
[x∗Ti ]i = δi→j(xj). That is, it provides the maximizing value at node i of the MAP
subsequence x∗Ti if node j had value xj . In order to recover the MAP sequence, we need
to propagate delta messages from w`−1 to w` and then backtrack from w` down to the
leaves (considering w` as the root).

In general, obtaining the MAP sequence is a linear operation in the number of nodes.
However, local changes in node potentials (via the introduction of measurements) might
induce only small changes in the MAP sequence. We should also note that the only
delta messages pointing towards the root w` that have changed, are the ones in path
M(w`−1 → w`), which were correctly updated at iteration `. See Fig. 5.10a for details.
This observation can help us recover the MAP sequence in a more efficient way. In more
detail, we can create an indicator sparse matrix, where rows would represent the source
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Figure 5.10: Message updates in max-product and computational savings. (a) Message
updates (max-product version). Purple thick arrows represent the messages that will be
propagated in the current iteration, while solid black messages that have been evaluated
correctly from previous iterations. (b) Savings in MAP sequence computations. During
the `-th step, the node potential at w` (bold-faced node) as well as delta messages
δi→j(xj) in M(w`−1 → w`) (purple arrows) change. Let us assume the maximizing
value at w` remained the same compared to the previous iteration, while the maximizing
values of the remaining nodes in pathM(w`−1 → w`) changed. We visualize this change
with a red ×. Since the maximizing value at w` stayed intact, the maximizing values of
all its subtrees (not including the one containing path M(w`−1 → w`)) will remain the
same (here, trees T1, T2). Therefore, there is no need to backtrack down to a node whose
maximizing value did not change since the last iteration. On the other hand, since the
maximizing values of the remaining nodes in M(w`−1 → w`) changed, their subtrees’
maximizing values (T3, T4, T5) would also potentially change and hence backtracking on
these trees is necessary. Usually, a change in a node’s maximizing value results only in
local changes in the MAP sequence. Therefore, this scheme might practically lead to a
lot of computational savings.

and columns the target of a delta message. We can assign the value 1 to any delta
message that became “dirty” (changed) in the most recent iteration. That is, every
message in path M(w`−1 → w`) (purple arrows in Fig. 5.10a). Therefore, when we
backtrack from w` down to the leaves, we must consider the effect that these changed
messages can have in the MAP sequence. Nevertheless, if the value of a node remains
the same (with the previous iteration), then the sequences of the subtrees rooted at the
neighbors of this node will remain the same. Therefore, there is no need to backtrack
further down to a subtree once a node’s maximizing value remained the same and the
subtree is linked to that node via a “clean” message. A visual explanation is provided
in Fig. 5.10b.
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� 5.9 Extension to Gaussian Loopy MRFs

Adaptive BP can be extended to Gaussian loopy graphs using the ideas from [64]. In the
case of Gaussian loopy graphs, we should observe that in order to obtain a marginal
at a node, we need to send two types of messages; first–round messages JTi→j , h

T
i→j

corresponding to the acyclic part of the graph T after the removal of FVS F , “feedback”
messages hpi→j for every feedback vertex p and second–round messages h̃Ti→j , which are
revised potential messages after the update of the potential vector h at the anchors
(neighbors of feedback vertices). This change in potential vector requires the knowledge
of the updated means µF and covariance ΣF of the FVS, which requires in turn the
knowledge of all “partial” means µ̂Ti and “feedback gains” gpi at the anchors.

This observation leads to a natural extension of adaptive BP to Gaussian loopy
graphs. First, let us denote the node from set T , where a measurement has been
obtained most recently as wT` . It obviously holds

wT` =

{
w` , w` ∈ T
wT`−1 , otherwise.

If w`−1, w` ∈ T , we send messages JTi→j , h
T
i→j , h

p
i→j from w`−1 → w` exactly as we did in

the acyclic case. However, when w`−1 ∈ F , we need to send messages from node wT`−1,
which is the node where a measurement has been obtained most recently, to propagate
the effects of the past changes in the current node w`. In summary, when w` ∈ T , we
send messages from wT`−1 to w`, while no action is necessary when w` ∈ F . By this

procedure, we ensure that all incoming messages JTi→j , h
T
i→j , h

p
i→j to w` are correct.

Now let us assume we want to update v` ∈ F . This would require the knowledge
of partial means µ̂Ti and “feedback gains” gpi , ∀p ∈ F at the anchors, i ∈ A. As a
reminder, anchors are the neighbors of FVS nodes which belong in T , A = {i | i ∈
T , i ∈ N(p),∀p ∈ F}. The correct update of µ̂Ti , g

p
i ,∀i ∈ A leads to the correct

evaluation of ĥF , ĴF which in turn provides the correct mean and variance for v` since
by our assumption belongs to the FVS. Partial means and “feedback gains” at the
anchors would be correct if the change in the potential of the most recent measurement
node wT` is propagated at the anchors after the update of node’s w` potential. We
achieve this by sending messages JTi→j , h

T
i→j , h

p
i→j from wT` to all anchors A,∀i. This

guarantees that all incoming messages at the anchors are correct.
If v` ∈ T , we need to propagate a second–round of messages to account for the

feedback provided by the updated parameters µF ,ΣF of the FVS nodes. In other
words, we revise the potential vectors as h̃i = hi +

∑
j∈N(i)∩F Jij [µF ]j . From an in-

spection of the above relationship, we can easily see that the only potential vectors
which would change are the ones at the anchors, since the sum involves the inter-
section of the FVS nodes F and the neighbors of a node in i ∈ T . This means we
need to propagate messages h̃Ti→j from the anchors A to node v`. We obtain the

right mean at v` from (h̃T , JT T , h̃
T
i→j , J

T
i→j). Lastly, we correct the variance from

σ2
v`

= (ĴTv`,v`)
−1 +

∑
p,q∈F g

p
i [ΣF ]pqg

q
i , where ĴTv`,v` is obtained from the previous run



140 CHAPTER 5. ADAPTIVE BELIEF PROPAGATION

Table 5.1: Messages between wT`−1, w` in loopy adaptive BP

w` ∈ T w` ∈ F

w`−1 ∈ {F , T }
Send JTi→j , h

T
i→j , h

p
i→j –

in M(wT`−1 → w`)

Table 5.2: First- and second-round messages between wT` ,A, v` in loopy adaptive BP

v` ∈ {F , T }

w` ∈ {F , T }
Send JTi→j , h

T
i→j , h

p
i→j

in M(wT` → A)

v` ∈ T v` ∈ F

w` ∈ {F , T }
Send h̃Ti→j in M(A → v`) –

Send hpi→j in M(wT` → v`) –

of BP. As we observe, the “feedback gains” at node v` are essential for the correct eval-
uation of variance at v`. As a last step, we need to propagate messages hpi→j , ∀p ∈ F
from wT` to v`. This concludes the algorithm. Tables 5.1, 5.2 summarize the messaging
protocol. A more detailed description is provided in Alg. 5.2.

Theorem 5.9.1. The marginal at v` (µv` , σ
2
v`

) is correct.

In order to prove this theorem, we need to prove the following intermediate lemmas
first.

Lemma 5.9.1. If w` ∈ T , messages hTi→j , J
T
i→j , h

p
i→j , ∀p ∈ F in path M(wT`−1 → w`)

are correct.

Proof. The proof follows the same logic with that of Lem. 5.6.1. �

The only difference here is that w`−1 is substituted by wT`−1, which is defined as

wT`−1 =

{
w`−1 , w`−1 ∈ T
wT`−2 , otherwise.

In other words, wT`−1 represents the most recent measurement that has been obtained

from T . The reason for propagating from wT`−1 to w` is that we need to propagate the
effect of the most recent measurement in T to w`. Obviously, when w` ∈ F , schedule
M(wT`−1 → w`) = ∅.

Lemma 5.9.2. If w` ∈ T , the incoming messages hTi→j , J
T
i→j , h

p
i→j ,∀p ∈ F of each

node in M(wT`−1 → w`) are correct.



Algorithm 5.2 Adaptive Belief Propagation for Gaussian Loopy Graphs

1: Preprocessing
2: Find FVS F using one of known algorithms (e.g., [5]).
3: Build the RMQ structure on tree T = V \ F as described in Sec. 3 of main paper.

4: Initialization
5: Before incorporating any measurements, run BP on tree T using parameters

(hT , JT T ), (JT p, JT T ), ∀p ∈ F . This will generate first–round JTi→j , h
T
i→j , h

p
i→j , ∀p ∈

F , and second–round messages h̃Ti→j ≡ hTi→j . Also, initialize wT0 = 0.
6: Iteration
7: for ` = 1, . . . ,M do
8: if ` > 1 ∧ wT`−1 6= 0 ∧ w` ∈ T then

9: Send JTi→j , h
T
i→j , h

p
i→j , ∀p ∈ F in M(wT`−1→ w`).

10: end if
11: Update the node potential at Xw`

: this changes hw`
, Jw`,w`

.
12: Send messages JTi→j , h

T
i→j , h

p
i→j , ∀p ∈ F in M(wT` → A).

13: Evaluate partial means µ̂Ti from (hT , JT T , h
T
i→j , J

T
i→j) and “feedback gains” gpi

from (JT p, JT T , h
p
i→j , J

T
i→j), for all i ∈ A, p ∈ F .

14: Obtain the K–sized FVS graph with updated parameters ĥF , ĴF as

[ĴF ]pq = Jpq −
∑

i∈N(p)∩T

Jpig
q
i , ∀p, q ∈ F (5.8)

[ĥF ]p = hp −
∑

i∈N(p)∩T

Jpiµ̂
T
i , ∀p ∈ F (5.9)

and solve for ΣF = Ĵ−1
F and µF = ΣF ĥF .

15: if v` ∈ F then
16: µv` = [µF ]v` , σ

2
v`

= [ΣF ]v`,v` .
17: else
18: Revise potential vectors as h̃i = hi +

∑
j∈N(i)∩F Jij [µF ]j .

19: Send messages h̃Ti→j in M(A → v`).

20: Send messages JTi→j , h
p
i→j , ∀p ∈ F in M(wT` → v`).

21: Evaluate µv` = (ĴTv`,v`)
−1ĥTv` , where

ĥTv` = h̃v` +
∑

k∈N(v`)

h̃Tk→v` (5.10)

ĴTv`,v` = Jv`,v` +
∑

k∈N(v`)

JTk→v` (5.11)

and σ2
v`

= (ĴTv`,v`)
−1 +

∑

p,q∈F
gpv` [ΣF ]pqg

q
v`
. (5.12)

22: Reset messages h̃Ti→j in M(A → v`).
23: end if
24: end for
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p1 p2

(a) Original graph. (b) T v
` . (c) T w

` .

Figure 5.11: (a) Original loopy graph. The graph G = (V, E) is divided in FVS nodes
F (nodes p1, p2) and the acyclic part T = V \ F . The black bold-faced node indicates
the node from T where a measurement has been taken most recently, wT` , the double-
stroke node represents the node of interest, v`, and the red bold-faced nodes represent
the anchor nodes A, that is, nodes in T that are neighbors to FVS nodes. (b) T v` tree.
Tree T v` is the subtree of T that has node v` as a root and passes through all anchor
nodes A. (c) T w` tree. Tree T v` is the subtree of T that that has node wT` as a root and
passes through all anchor nodes A.

Proof. The proof follows the same logic with that of Lem. 5.6.2. For every node k in
the path M(wT`−1 → w`), we consider one of its neighbors in tree T . Let us denote

it by j. We are interested in showing that the messages hTj→k, J
T
j→k, h

p
j→k,∀p ∈ F are

correct. Again, we denote by Tj the tree rooted at j, if we exclude the branch that
contains edge (j, k) and by t(j, k) the most recent time that a measurement has been
obtained from tree Tj . Then, at time t(j, k) + 1, we exited tree Tj through the edge
(j, k), and by Lem. 5.9.1 messages inM(wTt(j,k) → wt(j,k)+1) are correct, which includes

messages hTj→k, J
T
j→k, h

p
j→k, ∀p ∈ F . This holds for every neighbor of k in T . �

Let us denote the (minimal) subtree of T rooted at wT` that passes through all
the anchor nodes A by T w` and by T v` the (minimal) subtree that is rooted at v` ∈ T
and passes through all the anchor nodes A. See Fig. 5.11 for a visualization of trees
T w` , T v` . Messages from wT` to A in the tree T w` represent the messages inM(wT` → A).
Equivalently, messages from all u ∈ A to v` ∈ T in the tree T v` represent the messages
in M(A → v`).

Proposition 5.9.1. The incoming messages hTi→j , J
T
i→j , h

p
i→j , ∀p ∈ F of each node in

T w` are correct.

Proof. We should show that the messages from the “root” wT` towards the leaves of
the minimal subtree T w` that contains all the nodes in A are correct. If w` ∈ T , then
wT` = w` and we showed in Lem. 5.9.2 that the incoming messages of each node in
M(wT`−1 → w`) are correct. This includes the incoming messages to node w`. If w` ∈ F ,

and τ was the last time a measurement was obtained from T , then wT` = wτ and by
Lem. 5.9.2 all incoming messages to every node in M(wTτ−1 → wτ ) are correct, which
includes those of node wτ . Since, by assumption all remaining measurements (from
τ + 1 to ` have been taken from F), the incoming messages hTi→j , J

T
i→j , h

p
i→j , ∀p ∈ F
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to wτ would reflect the correct value up to iteration `. Therefore, we established that
whether w` ∈ T or w` ∈ F , the incoming messages to wT` are correct. Consequently,
messages to its children would be correct. We show that the incoming messages of
the remaining nodes in T w` are correct in exactly the same fashion as in Lem. 5.6.3.
That is, if we denote by k a child of wT` and by j one of k’s neighbors, we show that
messages hTj→k, J

T
j→k, h

p
j→k,∀p ∈ F are correct by claiming that they have been part of

a past message schedule M(wt(k,j) → wt(k,j)+1), where t(k, j) is the most recent time
a measurement has been obtained from subtree Tj .3 We continue this reasoning in a
top-down approach, from the “root” wT` to the nodes in A. �

Corollary 5.9.1. The “partial” means µ̂Ti of all nodes in T w` are correct.

Proof. This follows trivially from Prop. 5.9.1, since all incoming messages hTi→j , J
T
i→j

to every node in T w` are correct. �

Corollary 5.9.2. The “feedback gains” gpi of all nodes in T w` are correct.

Proof. This follows trivially from Prop. 5.9.1, since all incoming messages hpi→j , J
T
i→j , ∀p ∈

F to every node in T w` are correct. �

Corollary 5.9.3. The mean µF and covariance ΣF are correct.

Proof. From Eqs. (5.8), (5.9), we see that ĥ, Ĵ are correct, since by Cor. 5.9.1, 5.9.2
“partial” means µ̂Ti and “feedback gains” gpi , ∀p ∈ F at the anchors are correct and the
node potential at Xw`

has been already updated (l. 11, Alg. 5.2). �

Corollary 5.9.4. The revised potentials h̃i for every node i ∈ T are correct.

Proof. From l. 18, Alg. 5.2, the revised potential is defined as

h̃i = hi +
∑

j∈N(i)∪F

Jij [µF ]j .

Since by Cor. 5.9.3, we showed that µF is correct, then the revised potentials would be
correct as well. �

From the summation, it is clear that the only potential vectors that are revised are
the ones at the anchors.

Proposition 5.9.2. If v` ∈ T , the incoming messages h̃Ti→j of each node in T v` are
correct.

3As a reminder, subtree Tj is defined as the subtree rooted at j that excludes the branch which
contains edge (j, k).
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Proof. Let us start with the first iteration, ` = 1. Messages h̃Ti→j to nodes in A are

identical to hTi→j , since no other node potential has been revised yet. Initially, the

incoming messages hTi→j , J
T
i→j to the anchors A are correct by Prop. 5.9.1. The only

potentials that are revised after we learn µF ,ΣF are the ones at the anchors, which by
Cor. 5.9.4 are correct. This implies, that revised messages h̃Ti→j from the anchors to
their parent nodes would also be correct. Let us denote by k a parent of an anchor node
and by j one of its neighbors, as shown in Fig. 5.12. If j is one of the anchors, since
we assumed that k is parent node to an anchor node, we just argued above that the
message h̃Tj→k is correct. Now, if j does not belong to the tree T v` , we denote by Tj the
tree rooted at j excluding the tree branch that contains edge (j, k), as shown in Fig.
5.12. There are three scenarios, the last measurement that has been received from tree
Tj is in time t(j, k) = ` (Fig. 5.12a), t(j, k) = t < ` (Fig. 5.12b) or t(j, k) = ∞ (Fig.
5.12c), which means that no measurement has been obtained from that tree yet. For the
first two cases, message h̃Tj→k, which is identical to hTj→k, is correct as it is part of the

schedule M(wt(k,j)→t(k,j)+1). By Prop. 5.9.1, all incoming messages hTj→k, J
T
j→k, h

p
j→k,

of each node in M(wt(k,j)→t(k,j)+1) are correct. For the third case, when there is no

measurement from subtree Tj , message hTj→k has stayed intact since initialization. So,

in all three cases message h̃Tj→k is correct. Hence, when node k sends a message to
its own parent it will also be correct. Obviously, here because we start with the first
iteration ` = 1, t(k, j) can only be t(k, j) = 1 or t(j, k) = ∞. Continuing in this logic,
we show that all incoming messages to node v`, h̃

T
j→v` , are correct as well. As a last

step of the algorithm, after we evaluate the marginal at the node of interest, we reset all
messages h̃Ti→j in T v` to their previous values as the revised potentials h̃i at the anchors
reflect “imaginary” changes produced by the feedback of FVS nodes, rather than real
changes that would be an outcome of obtaining a new measurement. By doing so,
we guarantee that messages h̃Ti→j coincide with messages hTi→j at the end of the first
iteration. Therefore, when we move to the second iteration, we follow an identical logic
to show that messages h̃Ti→j in T v` would be correct. Similarly, messages h̃Ti→j in T v` for
every iteration ` would be correct. �

Corollary 5.9.5. If v` ∈ T , the incoming messages JTi→j , h
p
i→j ,∀p ∈ F of each node in

M(wT` → v`) are correct.

Proof. The proof follows exactly the same logic as that of Prop. 5.9.1. �

Theorem 5.9.1. The marginal at v` (µv` , σ
2
v`

) is correct.

Proof. If v` ∈ F , the marginal (mean and variance) have been correctly estimated in
Eqs. (5.8), (5.9) as shown in Cor. 5.9.3. If v` ∈ T , by Cor. 5.9.4, Prop. 5.9.2, and Cor.
5.9.5, the revised potential at v`, h̃v` , and the incoming messages to node v`, h̃

T
k→v` ,

JTk→v` are correct. Therefore, by Eqs. (5.10), (5.11), ĥTv` , Ĵ
T
v`,v`

are correct, which makes

the mean at v`, µv` correct. Lastly, since by Cor. 5.9.5, messages hpi→j , J
T
i→j ,∀p ∈ F in
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Figure 5.12: Correctness of incoming messages of nodes in T v` . The incoming messages
of every node in T v` are correct. Red bold faced nodes represent the anchors and the
fact that their potential vectors have been revised (changed). Tree Tj represents the
tree rooted at node j, if we exclude the brach that contains edge (j, k). (a) Node w`
is included in Tj . (b) The most recent measurement from Tj has been taken at time
t(k, j) < `. (c) No measurements have been received from tree Tj .

M(wT` → v`) are correct, it follows that the “feedback gain” at v`, gv` is also correct and
hence variance at v`, σ

2
v`

as estimated by Eq. (5.12) will also be estimated correctly. �

� 5.9.1 Complexity

In terms of complexity, we first need to determine the FVS. Even though, finding
the minimum FVS is NP-complete [46], there are approximate algorithms that find
an FVS with size comparable to the optimal. For example, Bafna et al. [5] provide
a 2-approximation, which runs in O(min{|E| logN,N2}) time. At every iteration we
need to send (K + 2)dist(wT`−1, w`) messages between wT`−1 and w`, if w` ∈ T and

(K + 2)(|T w` | − 1) messages between wT` and nodes in A. If, in addition, v` ∈ T , the
propagation of (|T v` |−1) h̃Ti→j messages between the anchors A and v` is necessary, plus

Kdist(wT` , v`) messages hpi→j from wT` to v`. Therefore, we send O(K(dist(wT`−1, w`) +

dist(wT` , v`) + |T w` |) + |T v` |) messages per iteration. Compare this to the O(K|T |)
messages per iteration of standard FMP. To understand the difference in complexity,
let us assume for the shake of exposition that |T w` | ≥ dist(wT`−1, w`),dist(wT` , v`), |T v` |.
This means that the complexity of adaptive BP is O(K|T w` |), which results in a speedup
on the order of O(|T |/|T w` |), since it always holds that |T w` | ≤ |T |. Therefore, adaptive
BP is consistently faster than standard FMP.

� 5.10 Determining a nearly optimal measurement schedule

We have made the assumption that the measurement order is not known to us in ad-
vance. An equally interesting problem arises when we are given constraints on the
number of measurements we can draw from each latent node and the task is to con-
struct an optimal schedule of obtaining them. More formally, suppose we can draw
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kt measurements from Xt and we draw measurements from M distinct latent nodes.4

Obviously, the schedule should be designed in such a way that it would result in the
minimum number of propagated messages. Since there is no propagation of messages
when measurements are taken consecutively from the same node, we can reduce this
problem to one where there is one measurement vector (of size kt) for each of the M
nodes. In other words, once we reach a node Xt (dictated by the measurement schedule),
we will draw kt measurements from that node. Even though we can find the optimal
solution to the above problem for small M , the exhaustive search becomes intractable
as M grows, since there are M ! possible solutions. The problem of determining an
optimal schedule of measurements that visits each of the M nodes exactly once, which
corresponds to finding a schedule with the minimum number of computations, can be
reduced to the shortest Hamiltonian path problem. As a reminder, a Hamiltonian path
is a path that visits each node exactly once. A Hamiltonian cycle is a cycle that visits
each node exactly once except for the starting node, which is visited twice. A graph
that contains a Hamiltonian cycle is called a Hamiltonian graph. A graph that has a
Hamiltonian cycle has trivially a Hamiltonian path as well, since the edge between the
last node in the visitation order and the starting node can be removed. The shortest
Hamiltonian path problem has shown to be NP-complete [3].

To formulate the shortest Hamiltonian path problem, we are given a set of nodes
X1, . . . ,XM that form an edge set E . For every edge (i, j) ∈ E linking two nodes, there
is a non-negative distance (cost) dist(i, j) associated with them. The goal is to find an
ordering w, where each node is visited exactly once, that minimizes the total distance
traveled

max
w

M−1∑

j=1

dist(wj , wj+1).

When the triangle inequality holds, that is, for every triplet (i, j), (i, k), (j, k) ∈ E ,
dist(i, j) ≤ dist(i, k) + dist(j, k), there are approximate techniques with nice theoretical
guarantees that provide nearly optimal solutions. One algorithm that runs in polyno-
mial time O(M3) is a variant of Christofides’ algorithm, which was initially designed
for the Traveling Salesman Problem (TSP) [18]. The TSP is very related to the shortest
Hamiltonian path, since the objective is the same with the additional constraint that
at the end of the visitation order, we return to the starting point. In other words, it
is a shortest Hamiltonian cycle problem. The variant of Christofides’ algorithm that
gives an approximate solution for the shortest Hamiltonian path problem is proposed
in [41]. This algorithm serves as a 3/2 approximation in the worst case.

We convert the problem of finding a schedule of minimum computations to a shortest
Hamiltonian path as follows. We concatenate all kt measurements of variable Xt into
one vector of measurements. Since we draw measurements from M latent nodes, we
compute the distance between every pair of latent nodes as

dist(i, j) = Di +Dj − 2Dlca(i,j), (5.13)

4As a reminder, there are N latent nodes in total.
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Figure 5.13: Reduction of finding optimal schedules to shortest Hamiltonian path.
(a) The nodes where we would obtain measurements from are 3, 5, 8, 11 (depicted as
boldface). Our task is to design a measurement plan with the minimum number of
messages for inference purposes. (b) We form a full undirected graph comprised of
the measurement nodes. The weight of each edge would be the distance between these
two nodes in the original graph, calculated by Eq. (5.13). (c) The path shown is one
possible optimal solution. The arrow with a circle in one end indicates the starting
node of sequence w.

where D is the depth of a node and lca(i, j) is the lowest common ancestor of i, j,
which is recovered in constant time through the reduction to the RMQ problem, as
we showed in Sec. 5.4. With this approach, we form a full undirected graph of M
nodes, where each edge is weighted by the distance between the incident nodes. This
graph is guaranteed to have a Hamiltonian path, since Dirac [24] showed that a simple
graph with M vertices with M ≥ 3 is Hamiltonian if every node has degree M/2 or
greater, which applies to full graphs. You can see a visualization of the measurement
plan designation in Fig. 5.13.

If we denote the length of the nearly shortest Hamiltonian path by `H , then in the
Gaussian case, the overall complexity of message passing would be O(`Hd

3), where d is
the dimension of latent variables. If, in addition, the dimension d is comparable to the
number of latent variables N , the complexity of finding a shortest Hamiltonian path
O(M3) does not affect the overall complexity (since M ≤ N).

� 5.11 Experiments

Henceforth, we refer to the proposed algorithm as AdaBP, the method of [89] as RC-
TreeBP, and standard BP as BP. We use a publicly available version of RCTreeBP. In
addition, when we make use of the term “consecutive elements”, we mean consecutive
measurement elements w`−1, w` and concurrent measurement and marginal elements
w`, v`. Recall that updates per iteration in RCTreeBP have complexity O(|X |3 logN)
(for trees), while complexity is O(|X |2(dist(w`−1, w`) + dist(w`, v`))) for AdaBP. Our
experiments demonstrate that AdaBP is consistently orders of magnitude faster than
standard BP (except in the worst case), and outperforms RCTreeBP when the average
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Figure 5.14: Comparison of total running time ratios between AdaBP and standard BP
(gray bars) and AdaBP and standard RCTreeBP (black bars) over different alphabet
sizes, |X | ∈ {2, 10}. (a) Distance between consecutive elements E[dist(w`−1, w`)] is
unconstrained. (b) E[dist(w`−1, w`)] ≤ |X | logN . For average distance E[dist(w`−1, w`)]
smaller than |X | logN , AdaBP is 1.3–4.7 faster than RCTreeBP.
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(b) E[dist(w`−1, w`)] = 2.

Figure 5.15: (a) Worst case. Distance between consecutive elements is on the order of
N . AdaBP is comparable to standard BP (still being 2–4 times faster) and hence orders
of magnitude slower than RCTreeBP. However, AdaBP is remarkably slower than RC-
TreeBP (nearly 80 times), since average distance between consecutive elements is close
to N . (b) Best case. Consecutive elements are very close to each other. Therefore, only
a constant number of updates is required per step for AdaBP. In contrast, RCTreeBP
is insensitive to the distance between consecutive elements.

distance between consecutive elements is less than |X | logN (see Fig. 5.14b). Con-
versely, if the tree diameter is much greater than |X | logN and the average distance
between consecutive elements is comparable to the tree diameter, AdaBP yields worse
performance than RCTreeBP. We consider the following synthetic experiment where
we construct unbalanced trees of sizes N ∈ {10, 102, 103, 104}. We repeat the above
procedure R = 10 times for each N , by randomly constructing a new tree. For each
tree, we randomly generate different w orders of size N and for simplicity of analysis
we set v = w, so that only the distance between consecutive measurement nodes affects
the computation. Figs. 5.14a and 5.14b compare the ratios of running times of AdaBP
against standard BP and RCTreeBP (different rows correspond to different alphabet
sizes). In all cases both AdaBP and RCTreeBP significantly outperform standard BP.
Fig. 5.14a considers the case of randomly generated w. When there is no restriction
on the distance between consecutive elements, both AdaBP and RCTreeBP are compa-
rable. However, for average distance between consecutive elements less than |X | logN ,
AdaBP is 1.3–4.7 times faster than RCTreeBP. Figs. 5.15a and 5.15b consider worst
and best case performance of AdaBP, respectively. In the former, we generate several
different instances of Markov chains of varying sizes and construct the measurement
and marginal orders, w and v such that there is at least 2N/3 distance between con-
secutive elements. In the latter case, we consider different instances of a star graph
(tree diameter: 2) of varying sizes and randomly create measurement and marginal
orders (which by construction do not have consecutive elements of more than 2 nodes
apart). As expected, in Fig. 5.15a, RCTreeBP outperforms AdaBP for worst-case w
(those with large distances between consecutive elements), yet still outperforms BP by
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Figure 5.16: Speedups of AdaMP over RCTreeMP for varying-size stretches of chromo-
some 21 (102–105 bp). (a) Left y-axis shows the speedup over RCTreeMP, while right
y-axis the actual running times in sec (represented as lines). (b) Ratios of update times
of AdaMP over RCTreeMP for different values of dist(w`−1, w`) (x-axis: dist(w`−1, w`),
y-axis: speedup). The four log-log plots correspond to four different DNA stretches of
102, 103, 104, 105 bp size, respectively. For smaller distances, AdaMP outperforms, but
for distances closer to the graph size N , RCTreeMP is preferable. Red line indicates
ratio of 1. (c) Both methods are not very sensitive to changes in the MAP sequence
between consecutive iterations (x-axis: # of bp that differ between consecutive MAP
sequences).

a factor of 2–4. However, in Fig. 5.15b we see that AdaBP is 4–49 times faster than
RCTreeBP and hundred to thousand times faster than standard BP.

Next, we consider application of AdaMP (MP denotes max-product) to biological
data. Specifically, we explore the effects of pointwise mutations in DNA sequences
to the birth or disappearance of CpG islands. CpG islands are regions of DNA with
high percentage of cytosine (C) occurring next to guanine (G) nucleotides and are
believed to be responsible for upstream gene regulation. Usually, CpG island detection
is modeled as an HMM problem where hidden nodes are binary variables which indicate
the presence (or absence) of a CpG region and observed variables correspond to the
observed DNA sequence comprised of the four nucleotides {A,T,C,G}. The goal is
to find the MAP sequence (CpG regions) that best explains the observed data (DNA
sequence). In computational mutagenesis, changes in the location of CpG islands are of
interest due to mutations in the DNA sequence [1]. We compare AdaMP and RCTreeMP
on varying-size stretches (102–105 bp) of human chromosome 21 obtained from the NCBI
database. We train the parameters of HMM with one of the standard CpG prediction
tools, CpG Island Searcher [91]. We perform a mutation every other nucleotide for
each DNA-pair stretch and compare the running times of both methods under different
criteria in Fig. 5.16. In this experiment, v` = w`,∀`. Fig. 5.16a shows the speedup
of AdaMP over RCTreeMP for varying sizes of DNA sequence. For medium to large
sequences, AdaMP exhibits better performance, however, for very large sequences of size
∼ 105, the computational cost of determining the MAP sequence is nearly linear with
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the graph size (even though the cost of updating the delta messages remains remarkably
low). In contrast, RCTreeMP depends only on the number of variables which changed
since the previous iteration. Fig. 5.16b examines the relationship in performance to
the distance between consecutive elements for DNA stretches of varying size (102–105

bp). As expected, AdaMP is very sensitive to the distance between consecutive elements
dist(w`−1, w`). On the contrary, RCTreeMP depends only on the graph size N . AdaMP
is preferred for measurement schedules with low average dist(w`−1, w`) (points above the
red line), while RCTreeMP average distance comparable to graph size (points below the
red line). Lastly, Fig. 5.16c shows that both methods are not very sensitive to changes
in the MAP sequence between consecutive iterations.

As a second experiment, we analyzed temperature measurements collected from 53
wireless sensors at 30 sec intervals from the Intel Berkeley Research lab. We model the
latent temperatures in the various locations of the lab (Fig. 5.17a) as a grid graph. We
assume that sensor measurements are a noisy representation of the temperatures around
its close vicinity. We further assume that temperatures evolve over time following linear
dynamics as Xt = AXt−1 + Vt−1, where Vt−1 ∼ N (vt−1; 0, Q) and Xt represents the
temperatures of the lab at time t. That is, we model the problem as a Gaussian HMM.
We learn parameters A and Q by training the data between Feb 28 and Mar 7, 2004
on a Normal-inverse-Wishart model. We are interested in estimating the mean and
covariance of temperatures in various lab locations which constantly change after the
incremental incorporation of new measurements. One of the primary goals is to estimate
the temperatures around sensitive areas with some certainty. The standard approach
is to use Kalman filter/smoothing (KF) updates to compute means and variances.
We use measurements in a 6-hour window on Feb 28, 2014 on a random order and
compare the update times of AdaBP versus standard Kalman filter/smoothing updates
(RCTreeBP is not included for comparison here, since it is not applicable to Gaussian
models). We see in Fig. 5.17b, that AdaBP is consistently (1–42 times) faster than
Kalman smoothing (green dots vs red dots). Also, in Fig. 5.17c, we observe the direct
dependence of AdaBP to distance between consecutive elements. We see that AdaBP is
much more appropriate to use when distance between consecutive measurement nodes
is small.

Lastly, we show the exactness of AdaBP in Gaussian loopy graphs by comparing
the solution to one obtained from näıve inference. We consider the Gaussian loopy
graph in Fig. 5.18a We create a random measurement w and marginal order v of size
1000. In the näıve inference approach, we retrieve the marginal v` after incorporating
measurement w` as σ2

v`
= [J−1]v`,v` , µv` = [J−1h]v` , which has cubic complexity in the

number of hidden nodes. The marginal at v` in the case of loopy AdaBP is calculated
as described by Alg. 5.2. We observe in Fig. 5.18b that both methods gives the same
results, which demonstrates empirically that loopy AdaBP makes exact inference.
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Figure 5.17: Speedups of AdaBP over Kalman filtering in temperature monitoring data.
(a) Lab diagram. The polygons show the locations where the 53 sensors are placed. The
latent temperatures in the lab are modeled as a grid graph. (b) This figure shows the
speedup over Kalman filter (KF). AdaBP is 1–42 times faster than standard Kalman
filtering/smoothing techniques. (c) Running time per iteration of AdaBP and KF as a
function of consecutive distance between elements. AdaBP is much more sensitive to
dist(w`, w`−1) and as the figure suggests it is much faster than KF when dist(w`−1, w`)
is small. Dotted plots represents deviation due to different runs of the experiment.
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Figure 5.18: Exact inference of AdaBP in Gaussian loopy graphs. (a) Loopy graph. The
FVS nodes are 11, 12 and 13. For a random measurement w and marginal order v, we
compare AdaBP against näıve inference, which requires the inversion of the information
matrix J at every step. (b) Results between AdaBP and näıve inference are the same.
We denote by µ1, σ

2
1, the sufficient statistics for node v` at each iteration produced by

näıve inference, while by µ2, σ
2
2, the sufficient statistics computed by AdaBP.
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� 5.12 Conclusion

We presented a new algorithm, AdaBP, which is particularly suited to sequential in-
ference problems, when there is little or no knowledge of the measurement schedule in
advance. In addition, when we can design the measurement order, we propose a nearly
optimal schedule by casting it as a shortest Hamiltonian path problem We compare
our method to standard BP and RCTreeBP [89]. In the case of trees, standard BP
incurs a prohibitive cost of sending O(N) messages per iteration, while AdaBP sends
only the necessary messages between consecutive elements. It is also much faster than
RCTreeBP when the mean distance between consecutive elements is much smaller than
O(|X | logN). We provided an extensive analysis of the algorithmic complexity with
respect to the measurement w and marginal schedule v. Lastly, we show extensions in
the case where we have multiple measurements or marginals of interest per iteration.
We provide the max-product version of the algorithm and extend to Gaussian loopy
graphs, where inference is still exact by using the FMP method by Liu et al. [64].



Chapter 6

Conclusion

THIS thesis has addressed some of the fundamental problems encountered in infor-
mation planning. We focused on proposing approximating algorithms that provide

theoretical guarantees for different settings: when the reward is non-monotone; when
measurements induce costs and there is a limited budget; when costs change based on
the relative information value of measurements and when the set of interest is only a
subset of the full latent graph. In addition, we have shown for Gaussian models that
the complexity of information planning can be substantially reduced by taking sparsity
in the measurement process into account. We have also designed a variant of belief
propagation, called adaptive belief propagation that is well-suited for settings where
model parameters change constantly and inference is made only on a set of relevant
(latent) variables. Information planning can be seen as a special case of adaptive in-
ference, as at the end of each greedy step we obtain a new measurement and this new
information needs to be propagated to a fixed (latent) variable. We now summarize the
contributions of this work to each of the addressed problems.

� 6.1 Contributions to information planning

The following sections highlight some of the contributions made to the problem of
information planning.

� 6.1.1 Theoretical guarantees for greedy heuristics

We begin the analysis in Chap. 3 by discussing value independent models and provid-
ing necessary and sufficient conditions for existence of such models. Determining the
models where planning is independent on the values of the selected measurements is
important, since in this case open-loop control planning, which can be done completely
in advance of measurement sampling, is equivalent to closed-loop control planning. We
additionally present bounds for non-monotone rewards in the sequential setting for a
slightly modified version of the greedy algorithm that is used for the monotone case,
with the same complexity. Usage of such rewards is more natural in budgeted settings,
where measurements induce different costs. In that respect, we propose a penalized
form of mutual information, that we refer to as PMI, that retains submodularity and
takes into account not only the informational value of a measurement, but its cost as
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well. We then consider the case of varying costs, where measurement costs change based
on the relative informational value they provide to the planning process. This scenario
can be encountered in cases where different information consumers have access to the
same pool of measurements. Different consumers might possess different knowledge of
the underlying quantity of interest and hence might be willing to obtain a new measure-
ment at different costs (given the relative information it carries). We provide conditions
under which this case accepts the same bounds that hold in the unconstrained setting
when the reward is a submodular monotone function. We additionally demonstrate up-
per bounds for the optimal solution of the submodular knapsack maximization (SKM)
problem. The objective in the submodular knapsack maximization problem is to find
the set of measurements that maximizes a submodular monotone reward under a budget
constraint. Even though, Sviridenko [90] presented a greedy algorithm with a 1 − 1/e
approximating ratio, its applicability can be prohibitive even for problems with mod-
erate observation sizes N due to its high complexity: O(N5). This complexity for can
be prohibitive. We show that by converting the original problem in its dual form and
using the algorithm by Buchbinder et al. [13], which is only linear in the number of
measurements N , we can obtain upper bounds for the optimal. Lastly, we consider fo-
cused planning when the reward is MI, where only a subset of the latent variables are of
interest. In this case, conditional independence between measurements breaks and thus
submodularity of MI does not hold anymore. We apply the same greedy algorithm that
is used for the unconstrained case of submodular monotone rewards and show (under
certain conditions) worst-case lower bounds for the greedy solution with respect to the
optimal.

� 6.1.2 Complexity reduction of reward evaluations

In Chap. 4, we take advantage of sparsity in the measurement process to reduce the
complexity of evaluating information rewards. We focus on Gaussian models and mutual
information (as the reward function). We highlight the inappropriateness of the oracle-
value model assumption, since the complexity of evaluating the information gain of a
given measurement set (to the latent variable) depends on the dimension of the latent
variable and the size of the measurement set. We focus our analysis on Gaussian HMMs,
but it can be trivially extended to Gaussian tree MRFs. We propose an alternative
approach of evaluating rewards, that under the assumption that a measurement depends
only on a few latent variables, it provides speedups several orders of magnitude larger
than standard Kalman filtering estimation. Additionally, we propose a variant of belief
propagation that sends only messages from the current to the next node of interest (next
element in the walk), thus avoiding unnecessary computations without compromising
the accuracy of estimation. The dramatic reduction in complexity of evaluating rewards
opens up the space for exploring more walks under the same time constraints. The
exploration of more walks is important, because as we remarked in Sec. 4.3.2 different
walks might lead to very different solutions.
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� 6.2 Contributions to adaptive inference

The following section outlines some of the contributions to the problem of adaptive
inference.

� 6.2.1 Adaptive Belief Propagation

Chap. 5 focuses on adaptive inference settings, that is, in settings where there are se-
quential changes in the parameters of the graphical model. The two inference problems
that we consider is that of evaluating the marginals at given nodes and determining
the most likely (MAP) sequence of all latent variables (given measurements) after each
change in the model parameters. We are interested in giving answers to such queries
without performing inference from scratch. We concentrate on focused inference set-
tings, where only a few marginals are of interest (at any given point). We present a
variant of BP, termed adaptive BP (AdaBP), that is well-suited for such settings. We
show that the algorithm is exact for trees and it applies both to discrete and Gaussian
variables. Interestingly, we demonstrate that this algorithm is exact for Gaussian loopy
graphs, when combined with the method by Liu et al. [64]. We provide a thorough
complexity analysis and show that adaptive BP is always faster than standard BP in
adaptive inference settings. We include extensions when multiple nodes are of interest
or multiple observations arrive at a time and extend the method to the MAP sequence
problem. Furthermore, we consider the reverse problem where instead of being given a
measurement plan, we have constraints on the number of measurements and our goal
is to determine a feasible measurement plan of minimum complexity. We show how we
can obtain a nearly optimal measurement plan by a reduction to the shortest Hamil-
tonian path problem. Lastly, we present experiments on both synthetic and real data
and empirically show that AdaBP is orders of magnitude faster than standard BP and
outperforms state-of-the-art method by Sümer et al. [89], when the average distance
between consecutive elements is less than O(|X | logN).

� 6.3 Future Work

We will list below some promising areas for future work.

� 6.3.1 Theoretical guarantees of Greedy Algorithms

In Chap. 3 we derived the conditions under which open-loop is equivalent to closed-
loop planning and we provided worst-case guarantees of one-step look-ahead greedy
algorithms for different settings: submodular non-monotone rewards, budgeted settings
and focused planning. In this section, we provide future directions for each of the above
settings.
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Conditions for weak dependence on measurement values

In Sec. 3.1, we provided conditions for exponential families under which entropy is in-
dependent on the measurement values. Unfortunately, the only known distribution that
satisfies these conditions is the Gaussian. One interesting direction is to explore condi-
tions under which models weakly depend on values of measurements. Even though the
notion of “weak” dependence on measurement values has not been introduced formally,
the goal of this analysis is to characterize models where planning (and consequently
rewards of selected measurements) is robust to the acquirement of new measurement
values.

Tighter lower-bound guarantees for stochastic sequential settings

In Sec. 3.2, we provided a very pessimistic bound for submodular non-monotone rewards
that was based on the assumption that the minimum incremental of any measurement
is greater than a negative value −θ. It might be worth to explore the case where
the minimum incremental value of each measurement follows a distribution (with fixed
mean and variance) rather than being a fixed negative value. In that matter, we might
be able to derive average-case performance bounds that can be less pessimistic than the
derived worst-case guarantees.

Closed-loop guarantees

Williams [101] showed that the closed-loop greedy heuristic can be arbitrarily worse
than the optimal closed-loop policy. Nevertheless, it might be possible to obtain weak
guarantees by introducing additional structure in the graph. One such structural con-
straint as formulated in [101] could be that the information that a measurement conveys
about a latent node of interest should be larger than a certain factor as compared to
the information that the same measurement conveys about the neighbors of this latent
node.

Worst-case bounds for discounted rewards in sequential settings

In Sec. 3.2, we derived lower-bound guarantees for submodular non-monotone functions
in sequential settings. We implicitly made the assumption that as we build the greedy
policy, the incremental rewards are not affected by how far into the planning horizon we
project. However, it might be beneficial to incorporate discount factors in the objective
that would represent the fact that measurements obtained later in the process would
be less valuable [101]. If we make the assumption that every time we move on to the
next iteration of the greedy process the incremental value is discounted by a factor αj ,
which is related to the current step, the greedy heuristic can be expressed as

gj ∈ arg max
u∈Vwj \Gj−1

j−1∏

i=1

αif(u | Gj−1).
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It would be interesting if we can derive similar worst-case bounds for the discounted
reward case.

Budgeted settings with different resource constraints for each observation set

In Sec. 3.4, we derived upper bounds for the optimal solution of the budgeted batch
problem, known also as submodular knapsack maximization (SKM) problem. The
underlying assumption in this case is that observations share the same resources. It
would be interesting to consider the sequential setting where different budget constraints
apply to different observation sets and explore whether meaningful upper bounds can
be derived in this case as well.

Stochasticity of parameters in Gaussian models

Krause and Guestrin [52] showed that under mild assumptions MI is a submodular
function. Later on, they considered the use of MI in Gaussian processes [38]. The
implicit assumption is that the model parameters are known. Often, there is some
uncertainty around the model parameters and hence it is more realistic that these
are expressed as random variables. A useful extension would be to explore whether
submodularity of MI holds for the case where model parameters are random variables.

Characterization of graph structures that satisfy the worst-case bounds for focused planning

In Sec. 3.5 we considered the focused planning problem, where a set of the latent
variables is of interest R (relevant set). Because conditional independency of measure-
ments given XR no longer holds, we had to introduce an extended set R̂ that enforces
conditional independencies among all pairs of measurements so that submodularity of
MI holds. In this section, we provided a 39% worst-case bound under the assumption
that the maximum information that a measurement conveys about XR̂\R given XR is
less than a factor of the maximum information that a measurement conveys about XR.
Intuitively, this condition would be satisfied for cases where relevant set XR enforces
conditional independence to almost all pairs of measurements. It would be interesting
though to characterize the graph structures that satisfy this condition and consequently
the 39% lower bound applies.

� 6.3.2 Complexity Reduction of Information Planning in Gaussian Models

In Chap. 4 we provided an analysis that achieves substantial reductions in the complex-
ity of information rewards in Gaussian models when there is sparsity in the measurement
process. Sparsity is expressed via sparsity of matrix C which is assumed to be known.
Here, we will suggest future work that might generalize to cases where matrix C is
stochastic and to non-Gaussian models.
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Stochasticity of measurement matrix C

The results in Chap. 4 are based in the assumption that matrix C is known. It might be
beneficial to explore the setting where there is some uncertainty on the value of C, that
is, the level of sparsity in each row is a random variable. The last assumption would
model the fact that there are times where the graph structure is not entirely known.
So, even though we might have a rough idea about the links connecting different nodes,
it might not be possible to identify the exact variables and precisely determine the
strength of the links between nodes.

Extension to discrete graphs

In our work, we focused on Gaussian models, because the sparsity in the graph structure
can be precisely described by the composition of matrix C. In addition, there is a closed-
form expression that ties the entropy with the uncertainty (covariance) at each latent
node and covariance updates after the incorporation of measurements can be derived in
closed form. It would be interesting to extend the ideas of sparsity in the measurement
process to discrete MRFs. The challenge in this case would be to be able to specify how
model parameters change in sparse graphs and express information rewards in terms of
the model parameters in a way that the sparsity pattern would emerge similarly to the
Gaussian case.

Sparsity in the measurement process in focused planning settings

In Chap. 4, all the latent variables X1, . . . ,XT were of interest. This conveniently
allowed us at each greedy step to focus only on the latent variable that was related
to the observation set corresponding to the current walk element. This is due to the
fact that conditioned on the latent variable Xwj linked to the observation set Vwj of
the current walk element wj , each measurement from set Vwj is independent on the
remaining latent variables. A question that arises is how to take advantage of sparsity
in focused planning settings, where only a set of latent variables XR is of interest. In this
case, we can no longer quantify the information content of a measurement based only
on the latent variable it links to, because this latent variable might not belong to the
relevant set. It might be beneficial to use the notion of diffusive rewards as introduced
in [101] to be able to use relaxations of MI (over the relevant set) that contain the latent
variables that link to a measurement under consideration at each greedy step.

Connection of walk complexity to value of walks

In Sec. 4.8 we hinted upon the connection of a walk’s computational complexity and
its informational value. We also presented an example where rewards of different walks
are not closely tied to their intrinsic complexities. An interesting area of exploration
would be to formally quantify the tradeoffs between complexity and value of rewards
across different walks.
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� 6.3.3 Adaptive Belief Propagation

In Chap. 5 we presented AdaBP, a variant of belief propagation well-suited for adaptive
inference settings. In Sec. 5.9, we provided an extension of AdaBP for Gaussian loopy
graphs that returns the true marginals using the FMP algorithm by Liu et al. [64]. Two
promising future directions as outlined below would be to extend these ideas to discrete
loopy and Gaussian loopy graphs with many cliques.

Extension to Gaussian loopy graphs with large cliques

The complexity of AdaBP in Gaussian loopy graphs depends on the number of FV
nodes K. In fact it grows linearly to K. See Sec. 5.9.1 for a detailed discussion
of AdaBP’s complexity in Gaussian loopy graphs. Unfortunately, dense graphs with
many loops would result in a really large FVS F . In that case, the dominating term in
the complexity would be K, where K = |F| and asymptotically AdaBP would be no
better than the FMP method by Liu et al. [64]. To make the inference problem to dense
loopy graphs tractable it is helpful to introduce the notion of pseudo-FVS instead (as
discussed in [64]), that is a set of nodes whose removal breaks loops in many parts of
the graph but does not guarantee that the entire remaining graph T = V \F would be
acyclic. Since the resulting graph T would not be acyclic, we know that AdaBP will
not provide exact results. However, an interesting research direction would be to derive
conditions under which AdaBP would provide similar solutions to loopy BP.

Extension to loopy discrete graphs

It is well established that convergence of loopy BP is not guaranteed in loopy graphs
and even if convergence is reached the solutions might not correspond to the true values
[42, 99]. Therefore, we already know that application of AdaBP in loopy graphs would
result in incorrect marginals. A natural extension would be to focus the computation
on the paths connecting the measurement w` and node of interest v` and apply a
loopy version of AdaBP. Previous works that center the computation around certain
parts of the graph by weighting accordingly BP messages based on their proximity to
areas of interest have already been proposed [16, 29]. It would be worthwhile to study
whether similar techniques could be applied to the AdaBP algorithm as well and derive
conditions under which results would be similar to existing methods.
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Appendix A

Derivations

� A.1 Monotonicity of f(k) =
1−(1− 1

k)
k

2−(1− 1
k)

k

Let us consider the functions f(k) =
1−(1− 1

k )
k

2−(1− 1
k )

k and g(k) =
(
1− 1

k

)k
. Trivially, g(k) ≥

0, ∀k. We have that

log g(k) = k log

(
1− 1

k

)
. (A.1)

If we take the derivatives (with respect to k) on both sides of the above expression, Eq.
(A.1) becomes

g′(k)
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= log
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1− 1
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+

1

k − 1

g′(k) = g(k)

[
log
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1− 1

k
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+

1

k − 1

]
. (A.2)

From [66], we draw the standard logarithm inequality

log(1 + x) ≥ x

1 + x
, ∀x > −1.

For x = −1/k, the above inequality becomes

log

(
1− 1

k

)
≥ − 1

k − 1
. (A.3)

Due to Eq. (A.3), we obtain from (A.2) that

g′(k) ≥ 0, (A.4)

and hence g(·) is monotonically increasing. Function f can be expressed in terms of
function g as

f(k) =
1− g(k)

2− g(k)
.
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Figure A.1: Function f(k) =
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k . The function is monotonically decreasing and

lower-bounded by 1−1/e
2−1/e ≈ 0.387.

Therefore,

f ′(k) = − g′(k)

(2− g(k))2

(A.4)

≤ 0.

Therefore, f is monotonically decreasing with respect to k. Function f is depicted in
Fig. A.1.
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[89] Ö. Sümer, U. A. Acar, A. T. Ihler, and R. R. Mettu. Adaptive exact inference
in graphical models. Journal of Machine Learning Research, 12:3147–3186, Nov
2011.

[90] M. Sviridenko. A Note on Maximizing a Submodular Set Function Subject to a
Knapsack Constraint. Operations Research Letters, 32(1):41–43, 2004.

[91] D. Takai and P. A. Jones. Comprehensive analysis of CpG islands in human chro-
mosomes 21 and 22. Proceedings of the National Academy of Sciences (PNAS),
99(6):3740–3745, March 2002.
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