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Abstract

We consider the problem of selecting measurements from an available subset for performing inference in

graphical models. The measure of utility is an information reward discounted by resource costs. Optimal

subset selection is known to be combinatorially complex and generally intractable even for sets of moderate

size. However, it has been shown that greedy selection using unpenalized conditional mutual information

rewards achieves performance within a factor of the optimal. Here we provide conditions under which

cost-penalized mutual information may achieve similar guarantees.

Motivation

I Previous guarantees extend trivially to homogenous measurement costs.

I Consequently, we consider heterogenous measurement costs, specifically we are interested in cases

where:

1. costs are reflected as additive penalties to information rewards,

2. differ across measurements, and

3. information costs may vary, e.g, due to changing supply/demand for sensing/measurement assets.

Problem Statement

Notation

I X = {X1, . . . ,Xn} denotes n latent variables that are the focus of inference.

I Z = {Z1, . . . ,Zn} denotes n measurement vectors.

I Each Zt is comprised of Nt measurements corresponding to variable Xt.

I V t = {1, . . . ,Nt} indicate measurement indices, referred to as observation sets.

I Zi ⊥⊥ Zj | X : we assume that measurements are statistically independent conditioned on X.
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Batch Setting Sequential Setting

Batch setting

I X is treated as monolithic hidden variable.

I Z is treated as a uniform collection of measurements that are all simultaneously available.

I Goal: Find the best subset up to size K , where K < N and N =
n∑

t=1
Nt: O = arg max

|S|≤K

f (S).

Sequential setting

I Nt measurements for each hidden variable Xt.

I Visit walk: define the M-length visit walk as the order {w1, . . . ,wM} in which we visit observation sets

V t during a selection process.

I Goal: Find the best subset up to k1 measurements from set V1, . . ., kn measurements from set Vn:

O = arg max
|S1|≤k1,...|Sn|≤kn

f (S) where S =
n⋃

t=1
S t and S i ∩ S j = ∅,∀i 6= j .

Reward function:

I f : 2V → R : a set function that captures the value of sensing actions.

Cost function:

I c : 2V → R+ : a nonnegative set function that quanitfies the cost of a subset and where all costs are

assumed to be additive over the elements of the subset.

Submodularity

Given a finite set V , a real-valued function f on the set of subsets of V is submodular [Fujishige, 05] if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B),∀A,B ⊆ V .

I Set increment function: ρS(j) , f (S ∪ {j})− f (S).

I A real-valued function is submodular if: ρA(j) ≥ ρB(j),∀A ⊆ B ⊆ V and j /∈ B.

I Submodularity captures the notion of “diminishing returns”, that is, a measurement incurs higher

rewards when little prior information is available.

Monotonicity

A real-valued f is monotone if f (A) ≤ f (B),∀A ⊆ B or ρS(j) ≥ 0,∀j ∈ V ,S ⊆ V .

Greedy Selection

Greedy selection in the batch and sequential settings have different behavior owing to which measurements are available for selection at any given

iteration.

Batch setting Sequential setting
gj = arg max

u∈V\G j−1

ρG j−1(u) gj = arg max
u∈Vwj\G j−1

ρG j−1(u)

The batch setting chooses from among all measurements conditioned on previous selections while the sequential setting is restricted to only those

available at the current node in the visit walk.

Mutual Information (MI) Rewards and Conditional Increments

Reward function: f (S) = I (X; ZS), Increment function: ρS(j) = I (X; Z j | ZS)

I monotone: I (X; Z j | ZS) ≥ 0,∀j and S ⊆ V
I submodular: ρA(j) = I (X; Z j | ZA) ≥ I (X; Z j | ZB) = ρB(j),∀A ⊆ B.

Related Work

I [Nemhauser et al., 78I]: Greedy selection over monotone submodular functions for the batch setting is guaranteed to be at least

1− 1/e ≈ 0.63 of the optimal reward.

I [Krause et al., 05]: Under the assumption of conditionally independent measurements, conditional mutual information is a monotone

submodular function.

I [Nemhauser et al., 78II]: Greedy methods are within a bound of 1
P+1 for monotone submodular functions under P matroid constraints

where all measurements should be available at every iteration. The sequential setting is equivalent to a problem where each observation set

forms a uniform matroid constraint UNt ,kt
, but only considers a limited class of visit paths (i.e., those that observation sets cannot be

revisited once we depart from them).

I [Lee et al., 10]: For non-negative non-monotone submodular functions greedy can be bounded by 1
P+2+ 1

P+ε
under P matroid constraints.

I [Williams et al., 07]: Proves a sharp bound of 1/2 for greedy versus optimal selection for an arbitrary path in the sequential setting.

Additional computable on-line bounds are available. Remark: The entire problem structure (latent or observation sets) need not be fully

specified.

Nonmonotone Rewards

Let G and O denote the greedy and optimal subsets, respectively, and suppose that

I ρS(j) ≥ −θ, ∀S ⊆ V , j ∈ V \ S, where θ ≥ 0 (i.e., −θ is the worst case negative reward).

I Greedy selection terminates in L ≤ K steps.

Batch setting

f (G) ≥

[
1− L

K

(
1− 1

K

)L
]

f (O)− Lθ

(
1− 1

K

)L

Sequential setting
f (O) ≤ 2f (G) + Kθ

Comment: For nonmonotone rewards, bounds become less useful as K and L grow for both batch and sequential settings.

Penalized Rewards and Modified Costs

Question: Can we impose additional constraints on either the reward or selection structure to improve the bounds?

Penalized Rewards: A natural choice is to penalize the information reward by the cost of acquiring a set of measurements via some positive

conversion factor λ, i.e.,

f (S) = I (X; ZS)− λc(S).

While this is submodular, it is not monotone and we are left with the bounds above.

Thresholded Rewards: One could only select those measurements for which the reward is strictly positive, i.e.,

f (S) = max{I (X; ZS)− λc(S), 0}.

This is neither monotone nor submodular and as such we cannot use the bounds above to make comparisons.

Auxiliary Measurements: One could modify the selection structure to include kt measurements for each set V t for which the cost and

information rewards are both zero.

I Behaves as the thresholded case, but is submodular and nonmonotone, i.e., the bounds above apply.

I Interestingly, it can be shown that the greedy and optimal selection will have no negative incremental rewards and, as such, all rewards will

be nonnegative as well.

Proportional Costs: An intuitive choice is to only pay costs which are proportional to the (informational) reward, captured by

cS(j) = rj I (X; Z j | ZS),

where rj is a nonnegative constant specific to each measurement.

I well-posedness constraint: The relation ρS(j) + ρ∅(S) = ρj(S) + ρ∅(j) must hold to preserve well-posedness, so rj = r ,∀j .

I nonmonotone constraint: c(j) ≤ rI (X; Z j | ZS),∀j ∈ V ,S ⊆ V ensures monotonicity.

These conditions on proportional costs are sufficient such that the bounds of [Krause et al., 05] and [Williams et al., 07] apply and, as such,

provide an extension to heterogeneous cost scenarios.

Simple Filtering Example

Consider the standard linear state-space model:

Xt+1 = FXt + Ut

Z j
t+1 = H j

t+1Xt+1 + W j
t ,

where t ∈ {1, . . . ,T}, j ∈ {1, 2}, F desribes the state dynamics and Ut ∼ N (0,Q),W j
t ∼ N (0, σ2

tj) are driving and

measurement noise, respectively.

Measurement Structure

I At odd time points, noisy measurements of the x- and y -positions, respectively, are available with σ2
tx = 16 and

σ2
ty = 64.

I At even time points, only one noisy measurement of the x-position is available with σ2
tx = 1.

I The cost of the measurements for the x- and y -positions are c = 0.5 and c = 0.05, respectively.

I Let G I ,GP denote the sets obtained using MI and penalized MI, respectively, as the reward for selecting

measurements.
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Information Reward: Here we see that I (X; ZG
I
) is lower than I (X; ZG

P
), despite the fact that the GP selections

incorporate penalties. The reason is twofold, first the greedy heuristic using MI as the reward selects measurements

without regard to costs and second, the costs are structured in a way that the greedy choices for PMI prefer to

measure the y -position of a latent variable when the measurement of the x-position is available in neighboring nodes.

This is to say that depending on the cost structure the PMI reward may yield better information rewards than pure MI.

Penalized Reward: Comparison between I (X; ZG
I
)− λc(G I ) and I (X; ZG

P
)− λc(GP). Not surprisingly, the latter is

superior to the former. We also see that the monotone behavior induced by the introduction of auxiliary variables

results in non-negative increments in GP .

Posterior Entropy: The posterior entropy of each hidden variable is consistently lower for GP as compared to G I .
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