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ABSTRACT

The classification of urban landscape in aerial LIDAR point clouds
is useful in 3D modeling and object recognition applications in ur-
ban environments. In this paper, we introduce a multi-category
classification system for identifying water, ground, roof, and trees
in airborne LiDAR. The system is organized as a cascade of binary
classifiers, each of which performs unsupervised region growing
followed by supervised, segment-wise classification. Categories
with the most discriminating features, such as water and ground,
are identified first and are used as context for identifying more
complex categories, such as trees. We use 3D shape analysis and
region growing to identify “planar” and “scatter” regions that likely
correspond to ground/roof and trees respectively. We demonstrate
results on two urban datasets, the larger of which contains 200 mil-
lion LiDAR returns over 7km?. We show that our ground, roof,
and tree classifiers, when trained on one dataset, perform well on
the other dataset.

Index Terms— Airborne LiDAR, cascaded classifiers, region
growing, 3D shape analysis

1. INTRODUCTION

The classification of aerial LIDAR point clouds plays an important
role in providing high-level contextual information for 3D urban
modeling and object recognition applications. In multi-category
classification, aerial LIDAR point clouds are typically labeled us-
ing categories such as ground, building, and vegetation. For ex-
ample, Charaniya et al. perform pixel-wise, four-category clas-
sification using expectation maximization with features such as
height variation and return intensity, computed over a 2.5D height
map [1]. Forlani et al. use two region growing segmentations fol-
lowed by rule-based, segment-wise classification to identify three
classes of LiDAR returns [2].

Whereas the airborne methods described above process data
in the 2.5D domain, methods that use ground-based LiDAR often
take advantage of full 3D analysis [3]. For example, Lalonde et
al. use 3D shape analysis and a Bayesian classifier to identify pla-
nar, scatter, and linear LiDAR returns in two relatively complex,
yet small, terrestrial datasets [3]. As a post-processing step, they
perform region growing in 3D to connect proximal LiDAR returns
of the same category.

In this paper, we present a modular system for labeling aerial
LiDAR returns as water, ground, roof, tree, or other. The input to
our system is an aerial, colored LIDAR point cloud with each return
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specified by an (z, y, z) position in a global coordinate system and
an associated (r, g, b) color value. Our system is composed of cas-
caded binary classifiers, as shown in Fig. 1. Each binary classifier
“peels off” positively identified LiDAR returns from the process-
ing pipeline. Categories of LiDAR returns that exhibit the most
discriminating features, such as water and ground, are identified
first and used as context for identifying more complex classes of
urban landscape. The dotted lines in Fig. 1 indicate the passing
of contextual information. The modularity of our system enables
each binary classifier to use its own unique set of discriminating
features. Unlike most work on aerial LiIDAR classification, we use
3D shape analysis to grow “planar”(“scatter”’) regions, which are
then used by our classifiers to detect ground/roof{(trees).

Our work most resembles that of [3] and [4]. Similar to [4], our
binary classifiers perform region growing segmentation as a means
of enforcing spatial coherency, followed by segment-wise classi-
fication. However, our system is a multi-category classification
system that works in the 3D domain rather than in 2.5D. The 3D
shape analysis aspect of our approach is similar to Lalonde et al.
[3]. Whereas Lalonde et al. generate 3D segments corresponding
to planar, scatter, and linear regions for the purpose of identifying
navigable terrain, we perform an extra segment-wise classification
on planar and scatter segments to arrive at urban landscape cat-
egories. In addition, our work deals with airborne data, which is
inherently different from terrestrial data due to spatio-temporal res-
olution, acquisition geometry/distance, and noise levels.

We test our classification system on two different datasets
D1 and D2. D1 captures range information over a hilly, lightly
urban city in North America with modern architecture including
skyscrapers. It contains approximately 125 million LiDAR returns
over 3km? with an average spatial density of 65 returns/m?.
D2 captures range information over a flat, densely urban city in
Europe with mostly 19th century architecture. It contains approx-
imately 200 million LiDAR returns over 7km? with an average
spatial density of 25 returns/m?.

Section 2 describes our water classifier, and Section 3 outlines
3D segmentation and classification for ground, roofs, and trees. We
present our results in Section 4.

2. WATER CLASSIFIER

The water classifier is first in our system, because water tends to
exhibit the most discriminating features, the most notable of which
is low return density as compared to highly scattering non-water
areas. It is the only component of our system that processes a 2.5D
depth image, which is justified considering that the water surfaces
of interest typically lack 3D structure. Our proposed water classi-
fier works in two steps. In the first step, we perform region growing
segmentation on the 2.5D image based on the density of empty pix-
els with no returns in a neighborhood. In the second step, a trained
random forest classifier [5] identifies each segment as either wa-
ter or non-water. Empirically, we have found that large segments
that are low in height and contain few returns tend to correspond to
water. Therefore, for segment-wise classification, we use the fol-
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Fig. 1. Classification system composed of four binary classifiers. Dotted lines indicate the passing of contextual information.

lowing features: the segment-wise empty-pixel density, the median
height of the segment, and the size of the segment in pixels.

3. THE 3D CLASSIFIERS

In contrast to our water classifier, our proposed ground, roof, and
tree classifiers treat input LiDAR point clouds as fully three di-
mensional data. Since modern airborne LiDAR data acquisition
systems often collect data in high-density, wide-angled swaths with
multiple fly overs, treating the data as three dimensional is justified,
if not ideal.

3.1. 3D Shape Analysis and Region Growing

Our 3D region growing algorithm is inspired by the saliency
features of Medioni et al. [6]. Specifically, we use principle
component analysis (PCA) to analyze the spatial distributions of
neighborhoods of points. For each non-water point of the 3D
dataset, we first collect all neighbors within a specified radius
Tpea, Which defines the scale of the neighborhood over which
spatial analysis is performed. PCA results in a set of eigenval-
ves (Amaxzs Amid, Amin ), Which encode the size and shape of
an ellipsoid fit over the neighborhood, and a set of eigenvectors
(émaz, €mid, €min ), which describe the principal directions of the
ellipsoid.

After PCA, we divide the LiDAR returns into three disjoint
subsets—“planar” points, “scatter” points, and all remaining points.
We assume that points corresponding to ground and roofs are a
subset of the planar points, and that points corresponding to trees
are a subset of the scatter points. Based on the interpretation
of PCA as described above, we define a planar point as a point
with Amia/Amin > tpianar, and a scatter point as a point with
Amam/Amid < tscatterl and )\mzd/)\mln < tscatter2, where
tplanars tscatterl, and tscattera are user-specified thresholds.
While in an ideal case, these user specified thresholds would be
learned from data, we have empirically verified our results to be
insensitive to these parameters, and argue that learning these pa-
rameters would require point-wise ground truth that is tedious to
produce and often inaccurate for such large, noisy datasets.

Our 3D region growing is similar to [3]. For the ground and
roof classifiers, we group proximal, planar LIDAR returns into a set
of segments. For the tree classifier, scatter points are segmented in
a similar manner. For 3D segmentation, we grow a region through
any pair of points in the same subset that are within a distance 7s¢g4
of each other, where 7.4 is a user-specified parameter.

3.2. Classification

3.2.1. Ground Classifier

The input to our ground classifier is the set of non-water, locally
planar segments in 3D, a subset of which is classified as ground.

We have empirically found that ground points are usually in a sin-
gle large segment that is low in height, allowing for it to be iden-
tified without machine learning. For each segment, we consider a
feature vector made of the median height and the number of returns
in the segment. We normalize these two features to values between
0 and 1, and automatically tag as ground the segment that is clos-
est in Euclidean distance to (medianH eight, numReturns) =
(0,1). We also wish to account for the possibility of multiple
ground segments; we have empirically found that most ground seg-
ments are within a factor of 10 in size of the main ground segment,
and have few or no LiDAR returns that fall directly underneath
them.

3.2.2. Roof Classifier

The input to the roof classifier is the set of non-water, non-ground,
locally planar segments in 3D, a subset of which is classified as
roof. Three segment-wise features are used for roof classifica-
tion: (1) the difference between the median height of the seg-
ment and the median height of all ground returns identified in the
100m x 100m tile in which the segment resides, (2) the count of
LiDAR returns that fall in a window underneath a segment, nor-
malized by the number of points in the segment, and (3) the z
component of a segment’s normal vector, as calculated by a linear
least squares plane fit over the segment. Intuitively, these features
are used because we expect that roofs (1) are some distance above
ground, (2) have a large number of LiDAR returns that fall below
rooftop edges, corresponding to ground and building facades, and
(3) have normal vectors that tend to point upward. To calculate a
segment’s feature vector, our classifier uses the median height of
ground LiDAR returns in the input point cloud. This is an exam-
ple of the contextual information shared between our classifiers, as
indicated by the arc labeled a in Fig. 1.

To create a training set for our roof classifier, we have de-
veloped a visualization tool to generate 3D segment-wise ground
truth. Namely, for a training set, a human operator tags each 3D
segment as ground, roof, tree, other, and none of the above. None
of the above includes objects that are unidentifiable, or on which
segmentation failed, causing two different classes to be grouped
into a single segment. Segments that are labeled as none of the
above are not included in training or cross-validation. For the roof
classifier, locally planar segments labeled as “roof” (“other”) are
used as the positive (negative) examples for training a random for-
est classifier.

3.2.3. Tree Classifier

The input to the tree classifier is the set of non-water, locally scatter
segments, a subset of which is classified as tree. From our exper-
iments, we observe that these input segments typically correspond
to three types of objects: actual trees, rooftop clutter e.g. antennas



| Classifier [ Measure [ D1 [ D1* [ D2 [ D2* ‘
Correct Pos 597 396 43 0
Correct Neg | 4787 4965 116 123
False Pos 25 1301 7 0
2.5D Water | False Neg 73 731 4 47
Precision 96.0% | 23.3% | 86.0% 0%
Recall 89.3% | 35.1% | 91.9% 0%
Total Error 1.8% | 27.5% | 6.4% | 27.6%
Correct Pos 446 440 287 290
Correct Neg 38 38 27 22
False Pos 12 12 15 20
3D Roof | False Neg 5 11 8 5
Precision 97.4% | 97.3% | 95.0% | 93.5%
Recall 98.9% | 97.6% | 97.3% | 98.3%
Total Error 3.4% 4.6% 6.8% 7.4%

Correct Pos 538 517 950 934
Correct Neg 653 659 925 924

False Pos 62 56 64 65
3D Tree False Neg 50 71 45 61
Precision 89.6% | 90.2% | 93.7% | 93.5%
Recall 91.4% | 87.9% | 954% | 93.9%
Total Error 8.6% 9.7% 5.5% 6.4%
Correct Pos | 12342 | 11024 | 12413 | 11821
Correct Neg | 7734 6883 9607 6776
False Pos 652 1503 329 3161
2.5D Tree | False Neg 445 1763 355 946
Precision 95.0% | 88.0% | 97.4% | 78.9%
Recall 96.5% | 86.2% | 97.2% | 92.6%
Total Error 52% | 154% | 3.0% | 18.1%

Table 1. Segment-wise confusion matrices and average preci-
sion, recall, and total error rates for our binary classifiers. The
DI1*(D2%*) columns correspond to using the D2(D1) trained model
to test on the DI1(D2) training set.

and building edges, and objects low to the ground e.g. cars. Our
first segment feature is the count of points that fall in a window be-
low a segment, normalized by the number of points in the segment.
We expect this feature to aid in discriminating between cars that
are on the ground and tree foliage through which LiDAR returns
tend to penetrate. The second segment feature is the percentage of
points in a segment that are a significant distance from a LiDAR re-
turn identified as roof. This assists in discriminating between trees
and rooftop clutter and is another example of the context used in
our classifiers, as indicated by the arc labeled b in Fig. 1. Our third
and fourth features are Amaz and Amid/Amin, Where the values
(Xmaz, Amid, Xmm) are the eigenvalues obtained from PCA over
the entire segment. In the same way that LiDAR returns corre-
sponding to trees should be scattered on a local level, they should
also be scattered on a larger scale. We do not use color as a feature
for identifying trees, because shadows are particularly prevalent in
urban canyon and foliage color is season and species dependent.

Segment-wise ground truth is obtained as described in Sec-
tion 3.2.2; we use locally scattered segments identified as “trees”
(“other”) as the positive (negative) examples for training a random
forest classifier.

4. RESULTS

We test our classification system on the Centos Linux x64 5.2 plat-
form with an 8-core Intel Xeon CPU and 4GB of RAM. For the
D1 and D2 datasets, our classification system processes approx-
imately 800,000 and 645,000 LiDAR returns per minute respec-
tively, with a majority of processing time devoted to 3D region
growing. This difference between the two datasets can be attributed
to the increased complexity of neighborhood searches for PCA and

region growing in D2 due to the larger 7pcq and 7s.y parameters.
In particular, we scale the parameters 7., and 7.4 inversely pro-
portional with the square root of the average return density. By
adjusting 7,., We are ensuring a similar number of points in the
neighborhood used by PCA; adjusting 7.4 results in segments of
comparable physical size and shape for both datasets.

Figs. 2(a) and 2(b) demonstrate overall results for D1 and D2
respectively. For each of our classifiers, we build a random forest
classifier with 300 decision trees and perform 10-fold cross vali-
dation. Segment-wise confusion matrices for each dataset, along
with average precision, recall, and total error rates, are reported in
the D1 and D2 columns of Table 1. Because the confusion matrices
are in terms of segments, they fully describe the number of posi-
tive and negative training segments for each dataset. The training
data for both D1 and D2 is over a 0.5km? area for our water clas-
sifier and over a 0.3km? area for our 3D classifiers. We also apply
the random forest classifier as trained on the D2(D1) dataset to
test on the D1(D2) training set, as shown in the D1#(D2*) column
of Table 1. These two experiments provide a quantitative mea-
sure of the robustness of our classifiers and their generalization
capability. Specifically, they indicate that our 3D classifiers suffer
minimal performance degradation when testing on the dataset for
which they have not been trained. Results for the entirety of the D1
dataset are available online [7].

Even though the water classifier performs well when tested on
the same dataset for which it was trained, its performance degrades
when it is trained on D2(D1) and tested on D1(D2), as shown in the
D1*(D2%*) columns of Table 1. We attribute this to the use of empty
pixel density as a segment feature. Whereas a quantity such as the
height of a segment is determined by the physical world, the empty
pixel density is a sensor-specific feature, and highly dependent on
the data acquisition process. Recall that the data acquisition sen-
sors for D1 and D2 are different from each other. The discrepancy
in the total number of segments for the two training sets has to do
with the fact that the D2 dataset has more uniform point spacing,
such that over the same area, it has fewer segments. This can be
partially attributed to the physical characteristics of the two differ-
ent LiDAR systems used in collecting these datasets. For the water
classifier, columns D1#(D2%*) are obtained using not only the clas-
sifier as trained on D2(D1) but also the the segmentation param-
eters from D2(D1), resulting in different segment counts between
the D1 and D1* experiments. The accuracy rates are still compara-
ble because classified segments in all cases are evaluated based on
a majority vote over pixel-wise ground truth.

For roof classification, the precision and recall rates are high,
i.e. above 97%, because (1) we choose relevant features and (2)
most segments processed by the roof classifier do indeed corre-
spond to roofs. These confusion matrices do not take into account
errors in segmentation, typically corresponding to segments that
contain a mix of classes; however, less than 1% of all locally pla-
nar segments in the ground truth are mixed segments. This low
figure is an encouraging indicator of the performance of our seg-
mentation algorithm for detecting roofs.

The performance of N-category pointwise classification sys-
tems is usually characterized by an N x NN confusion matrix [1].
Carrying out such a performance characterization for our system
is not feasible for two reasons. First, we carry out segment-wise
rather than point-wise classification and would therefore have to
account for both segmentation and classification errors. Second,
our system is made of a cascade of binary classifiers rather than a
single multi-category classifier. To overcome this, we have opted
to carry out extensive subjective evaluation to characterize the per-
formance of our system. Specifically, a human operator has used a
3D viewer to subjectively analyze the results of our roof classifier



over the entirety of both datasets, as shown in Table 2. The op-
erator is instructed to count the total number of buildings in each
dataset, the number of buildings correctly identified by our classi-
fier, and the number of false positive segments. A building is con-
sidered correctly identified if our roof classifier positively identifies
all planar segments associated with its rooftop. Over the entirety
of both datasets, our classifiers correctly classify 99% of buildings
as identified by a human operator, with a false alarm rate of ap-
proximately 5%. In essence, this subjective evaluation confirms
the performance of both our segmentation and classification algo-
rithm. We have observed that false positives are usually attributed
either to trees that are particularly flat or to railroad cars, which ex-
hibit very similar physical characteristics as buildings. Segments
that contain a mix of classes occur infrequently, but have been iden-
tified to happen on buildings such as parking garages that have pla-
nar ramps that connect the ground to the top of the building.

Dataset| Buildings | Buildings | Detection False False
Observed Correct Rate Positives Alarm

ID Rate
D1 975 969 99.4% 47 4.6%
D2 1812 1803 99.5% 102 5.4%

Table 2. Subjective results by human operator of roof classifier
over entirety of both datasets

For the tree classifier, less than 5% of input scatter segments in
the ground truth for both datasets correspond to mixed segments.
Since trees exhibit significantly more 3D characteristics than water,
ground, or roofs, we also compare our 3D tree classifier with a
more “traditional” 2.5D tree classifier. The 2.5D tree classifier is
described in detail in [8], and its cross-validation results are also
shown in Table 1.

A human operator has utilized a 2D viewer to subjectively
characterize the performance of both the 2.5D and 3D tree clas-
sifiers on the entirety of both datasets. Since it is nearly impossi-
ble for a human operator to count each individual tree, we instead
quantize the approximate misclassification rate for a 100m x 100m
tile of LiDAR data into three broad categories: less than 10%, be-
tween 10% and 30%, and larger than 30%. The three categories
are referred to as minimal, moderate, and significant error respec-
tively in Table 3, which shows the subjective results for the 266 and
711 tiles of D1 and D2 respectively. Significant errors typically
correspond to a large collection of trees misclassified as non-tree,
or many building edges and significant rooftop clutter identifed as
trees. Moderate errors, on the other hand, are most often caused
by mixed segments, containing a tree and some other object such
as a car or building edge, being identified as a tree. Less frequent
in this category are false positives corresponding to a single car or
false negatives corresponding to one or two trees.

Dataset | Classifier|  Total Minimal | Moderate | Significant
Tiles Error Error Error
D1 2.5D 266 49.6% 43.2% 7.1%
D1 3D 266 74.8% 23.3% 1.9%
D2 2.5D 711 71.6% 26.7% 1.7%
D2 3D 711 75.1% 20.8% 4.1%

Table 3. Subjective results by human operator for 2.5D and 3D
tree classifier over entirety of both datasets.

In comparing our 2.5D and 3D tree classifiers in Tables 1
and 3, even though the 2.5D classifier is more accurate in 10-fold
cross-validation, the 3D classifier appears to generalize better to
the dataset on which it has not been trained, as demonstrated by
the D1* and D2* columns of Table 1. In addition, Table 3 shows
that from a subjective point of view our 3D classifier outperforms

the 2.5D classifier, particularly for the D1 dataset. By project-
ing our 3D classification results to 2D, we observe that the two
classifiers disagree for 4.6%(5.6%) of pixels in the entire D1(D2)
dataset. More importantly, the 3D classifier assigns a label to every
3D point by not projecting onto 2D, thus allowing for the correct
identification of structures such as rooftops that lie underneath
trees.

(b) ¥4

Fig. 2. Classified point cloud from (a) DI and (b) D2.
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