
A Latent Source Model for Online Collaborative Filtering
Guy Bresler George H. Chen Devavrat Shah

Online recommendation systems

• Recommend items to users over time

• Want to simultaneously recommend good items & learn user preferences

• Collaborative filtering widely used in practice

 little theory justifying why it works in online setting!

Collaborative Filtering Results

Model and Problem Setup

This work was supported in part by NSF grant CNS-1161964 and by Army Research Office MURI Award W911NF-11-1-0036. GHC was supported by an NDSEG fellowship.

Theorem: Under latent source model and low noise and cosine separation

conditions, with number of users 𝑛 = Θ(𝑘𝑚), after an initial learning time

𝑇learn = Θ
log 𝑘𝑚 Δ

Δ4 1 − 𝛾 2

1 1−𝛼

,

at each time step henceforth, COLLABORATIVE-GREEDY with appropriately

chosen parameters recommends likable items for each user w.h.p.

provided that the system hasn’t exhausted the likable items for that user.

Fraction of likable items recommended:
𝑟+

𝑇

𝑇𝑛
= Ω 1 −

𝑇learn

𝑇

for 𝑇learn ≤ 𝑇 ≤ 𝜆𝑚 where 𝜆 = minimum fraction of likable items in a cluster

Our contributions

• Frame online recommendation as a learning problem

• Provide sufficient conditions for when a cosine-similarity collaborative

filtering method achieves essentially optimal performance

 uses two exploration types: learn about items, learn about users

Motivation

User ratings do actually cluster!

Key features

• Collaborative filtering is exploitation how to trade off with exploration?

• Can’t recommend already consumed item to a use

• Structure in users makes collaboration useful

Simple online recommendation system (𝑛 users, 𝑚 items)

Latent source structure ⋯

0.2 0.8 0.7 0.9 0.9 0.3

0.9 0.2 0.3 0.1 0.0 0.9

⋯

⋯

⋮ ⋮ ⋮
𝑘

clusters

𝑚 items

𝝁𝟏

𝝁𝒌

Goal: Maximize expected

number of likable items

recommended over time

• Each user belongs to one

of 𝑘 clusters (equally likely)

• Item is likable for user if the

user’s cluster likes the item

with probability > 1/2
Probability of liking each item, per cluster

User1

User 2

User 𝑛

Time 1

?

?

?

Time 2 Time 𝑡 ⋯

−1 −1

−1 +1

−1 +1

⋯

⋯

⋯

⋮

𝑟+
𝑇 ≜ 𝔼

𝑛

𝑢=1

𝕝
item recommended

to user 𝑢 at time 𝑡
is likable

𝑇

𝑡=1

How does this grow with 𝑇?

Exploitation: cosine-similarity nearest-neighbor recommendation

1. For user 𝑢, assign score 𝑝 𝑢𝑗
𝑡

 for item 𝑗 based on users’ ratings up to time 𝑡:

𝑝 𝑢𝑗
𝑡

=
neighbors of user 𝑢 who like item 𝑗

neighbors of user 𝑢 who have rated item 𝑗

Two users are neighbors ⇔ cosine similarity between their ratings ≥ 𝜃

2. Recommend unconsumed item with highest score

Remarks:

• User’s item score estimates user’s cluster’s probability of liking the item

• Estimate only good when enough neighbors have rated the item

 recommendation based on item score is exploitation

 need exploration!

Exploration

• Find good items:

randomly explore items a user hasn’t consumed

• Find similar users:

ask all users to jointly explore common set of items

𝑝 𝑢𝑗
𝑡

 𝜇𝑔𝑗 where 𝑔 = user 𝑢’s cluster

Algorithm (COLLABORATIVE-GREEDY)

Parameters: 𝜃 ∈ 0,1 , 𝛼 > 0 sufficiently small

Select a random ordering 𝜎 of the items [𝑚]

Define

𝜀𝑅 𝑛 =
1

𝑛𝛼
, 𝜀𝐽 𝑡 =

1

𝑡𝛼

At time 𝑡:

• W.p. 𝜀𝑅 𝑛 : for each user, recommend random unconsumed item

(random exploration)

• W.p. 𝜀𝐽 𝑡 : for each user, recommend next unconsumed item in ordering 𝜎

(joint exploration)

• Else: for each user, recommend unconsumed item that maximizes 𝑝 𝑢𝑗
𝑡

(exploitation)

Theoretical analysis

Conditions on cluster probability strings 𝝁𝟏, … , 𝝁𝒌:

• Low noise. For every cluster 𝑔 and item 𝑖

𝜇𝑔𝑖 −
1

2
≥ Δ

E[cosine similarity] between users’

ratings from clusters 𝑔 and ℎ

• Cosine separation. For any two different clusters 𝑔 and ℎ

1

𝑚
2𝝁𝒈 − 𝟏, 2𝝁𝒉 − 𝟏 ≤ 4𝛾Δ2

Item liked w.p. close to 1/2

too ambiguous!

Enables cosine-similarity to

distinguish between

clusters after enough time

Simulation results

• For dense (200 user by 500 item) subset of movielens10m & Netflix datasets,

reveal entries over time to simulate online recommendation system

(ratings quantized to +1,0, −1)

• Look at cumulative sum of ratings averaged across users

