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Online recommendation systems 

• Recommend items to users over time 

• Want to simultaneously recommend good items & learn user preferences 

• Collaborative filtering widely used in practice 

 little theory justifying why it works in online setting! 

Collaborative Filtering Results 

Model and Problem Setup 
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Theorem: Under latent source model and low noise and cosine separation 

conditions, with number of users 𝑛 = Θ(𝑘𝑚), after an initial learning time 

𝑇learn = Θ
log 𝑘𝑚 Δ 

Δ4 1 − 𝛾 2

1 1−𝛼 

, 

at each time step henceforth, COLLABORATIVE-GREEDY with appropriately 

chosen parameters recommends likable items for each user w.h.p. 

provided that the system hasn’t exhausted the likable items for that user. 

Fraction of likable items recommended: 
𝑟+

𝑇

𝑇𝑛
= Ω 1 −

𝑇learn

𝑇
  

for 𝑇learn ≤ 𝑇 ≤ 𝜆𝑚 where 𝜆 =  minimum fraction of likable items in a cluster 

Our contributions 

• Frame online recommendation as a learning problem 

• Provide sufficient conditions for when a cosine-similarity collaborative 

filtering method achieves essentially optimal performance 

 uses two exploration types: learn about items, learn about users 

Motivation 

User ratings do actually cluster! 

Key features 

• Collaborative filtering is exploitation  how to trade off with exploration? 

• Can’t recommend already consumed item to a use 

• Structure in users makes collaboration useful 

Simple online recommendation system (𝑛 users, 𝑚 items) 
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Goal: Maximize expected 

number of likable items 

recommended over time 

• Each user belongs to one 

of 𝑘 clusters (equally likely) 

• Item is likable for user if the 

user’s cluster likes the item 

with probability > 1/2 
Probability of liking each item, per cluster 
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How does this grow with 𝑇? 

Exploitation: cosine-similarity nearest-neighbor recommendation 

1. For user 𝑢, assign score 𝑝 𝑢𝑗
𝑡

 for item 𝑗 based on users’ ratings up to time 𝑡: 

𝑝 𝑢𝑗
𝑡

=
# neighbors of user 𝑢 who like item 𝑗 

# neighbors of user 𝑢 who have rated item 𝑗 
 

Two users are neighbors ⇔ cosine similarity between their ratings ≥ 𝜃 

2. Recommend unconsumed item with highest score 

Remarks: 

• User’s item score estimates user’s cluster’s probability of liking the item 

 

 

• Estimate only good when enough neighbors have rated the item 

 recommendation based on item score is exploitation 

 need exploration! 
  

Exploration 

• Find good items: 

randomly explore items a user hasn’t consumed 

• Find similar users: 

ask all users to jointly explore common set of items 

𝑝 𝑢𝑗
𝑡

 𝜇𝑔𝑗 where 𝑔 = user 𝑢’s cluster 

Algorithm (COLLABORATIVE-GREEDY) 

Parameters: 𝜃 ∈ 0,1 , 𝛼 > 0 sufficiently small 

Select a random ordering 𝜎 of the items [𝑚] 

Define 

𝜀𝑅 𝑛 =
1

𝑛𝛼
, 𝜀𝐽 𝑡 =

1

𝑡𝛼
 

At time 𝑡: 

• W.p. 𝜀𝑅 𝑛 : for each user, recommend random unconsumed item 

(random exploration) 

• W.p. 𝜀𝐽 𝑡 : for each user, recommend next unconsumed item in ordering 𝜎 

(joint exploration) 

• Else: for each user, recommend unconsumed item that maximizes 𝑝 𝑢𝑗
𝑡

 

(exploitation) 

Theoretical analysis 

Conditions on cluster probability strings 𝝁𝟏, … , 𝝁𝒌: 

• Low noise. For every cluster 𝑔 and item 𝑖 

𝜇𝑔𝑖 −
1

2
≥ Δ 

E[cosine similarity] between users’ 

ratings from clusters 𝑔 and ℎ 

• Cosine separation. For any two different clusters 𝑔 and ℎ 

1

𝑚
2𝝁𝒈 − 𝟏, 2𝝁𝒉 − 𝟏 ≤ 4𝛾Δ2 

Item liked w.p. close to 1/2 

too ambiguous! 

Enables cosine-similarity to 

distinguish between 

clusters after enough time 

Simulation results 

• For dense (200 user by 500 item) subset of movielens10m & Netflix datasets, 

reveal entries over time to simulate online recommendation system 

(ratings quantized to +1,0, −1) 

• Look at cumulative sum of ratings averaged across users 


