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Abstract. A new method is proposed for automatic recognition of brain tumors 
from MRI. The prevailing convention in the literature has been for humans to 
perform the recognition component of tumor segmentation, while computers 
automatically compute boundary delineation. This concept manifests as clinical 
tools where the user is required to select seed points or draw initial contours. 
The goal of this paper is to experiment with automating the recognition compo-
nent of the image segmentation process. The main idea is to compute a map of 
the probability of pathology, and then segment this map instead of the original 
input intensity image. Alternatively, the map could be used as a feature channel 
in an existing tumor segmentation method. We compute our map by performing 
nearest neighbor pattern matching modified with our novel method of “diago-
nalization”. Results are presented for a publicly available data set of brain tu-
mors. 

1   Introduction 

[2] introduced the concept of segmenting brain tumors not by focusing on features of 
tumors, but rather by recognizing deviations from normalcy. Under this philosophy, 
all training is performed on healthy tissue rather than pathology. Such an approach 
seeks answers to two guiding questions:  

1. What is normal? 
2. How is abnormality measured? 

One possible solution is to process a training set of example instances of normal im-
ages. Given a univariate, normally-distributed, random process, the answers to our 
two guiding questions are straightforward: normalcy is defined as the population 
mean, and abnormality is measured as some distance from the mean. The units of 
measurement for this distance should be standard deviations because a Gaussian 
process is fully characterized by its mean and standard deviation. For variable x with 
mean µ and standard deviation σ, expressing distance in this way is commonly 
known as the Mahalonobis distance: 
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Next, consider a multivariate process of n correlated variables. Combining the 
variances and covariances into a covariance matrix Σ, we have: 
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In the absence of an extensive training population, a definition for normal can be 
derived from an exploitation of symmetry. For example, it has been proposed that 
computer-aided diagnosis algorithms for detecting breast and respiratory lesions 
could exploit left/right symmetry to define normal as the healthy breast or lung. (See 
[4, 5] for survey articles.) In practice, however, texture from a single healthy breast 
has been insufficient to capture all the variability, requiring a training set of many 
scans. We perform experiments here to judge how well normal brain anatomy can be 
defined as the healthy hemisphere. The problem of recognizing brain tumors may be 
better suited for exploiting symmetry because the application is for treatment plan-
ning rather than screening. Consequently, while breast tumors can appear minutely 
small on a routine screen, brain tumors tend to not be scanned until their size has 
grown sufficiently large to become symptomatic.  

With symmetry providing examples of normal texture, abnormality can be meas-
ured using an appropriate distance metric such as the sum-of-squares distances for a 
Euclidean space. This leads us naturally to the method of nearest neighbor pattern 
recognition (NNPM), developed below. The main idea is to compute a map of the 
probability of pathology, and then segment this map instead of the original input 
intensity image. Alternatively, the map could be used as a feature channel in an exist-
ing tumor segmentation method, such as [6].  

2   Method 

2.1   NNPM Algorithm 

A simple pattern matcher can be constructed from two elements: a container and a 
comparator. The container holds a set of template patterns, and the comparator com-
putes a distance value, according to an appropriate metric, between each template and 
the sample under study. The template corresponding with the smallest distance is the 
nearest neighbor to the sample. Classification can be accomplished with NNPM by 
classifying the sample by assigning it the label associated with its nearest neighbor 
[1]. We will adapt NNPM for use as a means of measuring deviations from normalcy. 

For our application, define a sample to be a small rectangular window surrounding 
a certain voxel of the patient’s image. Let there be a different container Ci of tem-



plates Tj for each sample Si in the patient image. Then perform the following algo-
rithm: 

For each sample Si in the patient image: 
  For each template Tj in container Ci: 
    Compute disparity between Si and Tj 
  Record the lowest distance as pixel i of the result 

 
We next consider how NNPM can be used to answer our two guiding questions of 

what is normal, and how to measure abnormality. 

2.2   Measuring Abnormality with NNPM 

Let us express the above algorithm mathematically. The method searches for the 
template with the smallest distance:  
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We next need to define dij: the distance between the iTH sample in the image, and 
the jTH template in Ci. We adapt equation 2 by treating each variable within a window 
as independent, and defining “normal” as the reference value instead of the mean. 
Instead of normalizing with standard deviations, we normalize with window size W to 
accommodate comparing the results achieved using various window sizes.  These 
substitutions result in the following equation, which is essentially the root-mean-
squared error. Let Si[k] represent the kTH voxel of the iTH sample, and let Tj[k] repre-
sent the corresponding voxel in the jTH template. 
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Combining the above two equations produce a mathematical expression of the algo-
rithm, given our metric for measuring abnormality: 
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2.3   Defining Normal with NNPM 

NNPM defines normal as the set of templates in each container Ci. Each template 
is an example of normal texture that one would expect to find within the window of 
W pixels surrounding the iTH voxel of the patient’s image. Since no probability distri-
butions are fit to these templates, building collections of them is straightforward. 
However, enough templates must be gathered into each container to sufficiently span 



the space of normal variation within a window, and none must be examples of ab-
normal texture near voxel i.  

For example, if all Ci were identically all windows within a reference image of a 
healthy brain, the algorithm would effectively search an entire reference image for the 
template window that best fits a given window in the patient image. However, by 
searching the entire reference image, spatial information – the location of voxel i – is 
ignored. Consequently, in a search for deviations from normalcy, finding a dark win-
dow where one would expect a light window should be considered abnormal. But if 
the reference image contained a dark window anywhere, then the algorithm would 
consider any dark windows in the patient image to be permissible. 

Therefore, a more plausible choice of Ci would be the window surrounding the one 
voxel of the reference image that exhibits the best correspondence with voxel i of the 
patient image. Correspondence would need to be established by defining a mapping 
from voxels in the patient image to voxels in the reference image. Such a mapping 
could be computed as a linear or affine transform using rigid registration, or as a 
polynomial function or vector displacement field using non-rigid registration. Either 
way, robustness to registration errors could be introduced by expanding Ci to include 
all windows centered on the small set of neighboring voxels surrounding the one 
voxel with the best correspondence. The algorithmic time complexity would then be 
O(NMW), where N is the image size, W is the window size, and M is the neighbor-
hood size, and M,W < N. 

How well does a single reference image capture the extent of normal variation 
within a population? With this thought in mind, perhaps a better approach to defining 
Ci would involve not one reference image, but a set of images that have been selected 
to be representative of the complete population. Call this the training set of images, 
and define Ci to include all templates defined as windows surrounding the set of vox-
els within the neighborhood surrounding the one voxel in each image of the training 
set that exhibits the best correspondence with voxel i of the patient’s image. The time 
complexity of this algorithm scales linearly with the training set size: O(NMWT). 
While a larger atlas alleviates the need for a larger search neighborhood, no search 
neighborhood is as good as a more complete atlas, especially for expressing concepts 
such as the vessels which rarely appear in exactly the same place on any two scans, 
but always occur in the same general area. 

2.4   Defining Window Size for NNPM 

Consider selection of the window size W. For the foregoing discussion, define mi-
cro-texture to refer to the normal intensity patterns found over small regions, and 
macro-texture to refer to the patterns spread over large areas. The optimal choice of 
window size is quite application-dependent, as it varies with the interplay between 
micro- and macro-textures. Selecting a small window size would be adequate to in-
corporate the context necessary to recognize normal micro-texture, and run times 
would also be favorable. Large windows, on the other hand, would have the advan-
tage of capturing macro-texture, but they would situate the micro-texture within the 
macro-texture. That is, if a certain micro-texture pattern could normally be found 



anywhere, then enough macro templates would be required to express this fact by 
exhibiting the certain micro-texture in various situations. Thus, the run-time of the 
algorithm that correctly uses large window sizes would be dramatically lengthened 
for two reasons: 

1. More time is required to process larger windows 
2. More template windows are required to encode more situations 

We will refer to this as the double trouble with large window sizes. One way to 
handle this dilemma would be to isolate the searches for micro- and macro-texture.  
This will be our goal in the next sections, as we derive our novel diagonalized 
NNPM. 

2.5   Multi-scale NNPM 

As we seek a means to somehow isolate the searches for micro- and macro-
patterns, we acknowledge that there has been much experience within the computer 
vision community with multi-scale algorithms. When the input data set is downsam-
pled to halve the size of each dimension, 3-D computation with the same window size 
proceeds 8 times more quickly, and incorporates context from a region 8 times larger. 
More importantly, at progressively smaller image dimensions, micro-textures become 
blurred out, allowing the computation to concentrate on macro-textures alone. 

In order to avoid the artificial introduction of spurious features, smoothing with a 
Gaussian kernel (1-4-6-4-1 in our case) must be performed prior to downsampling. 
This is the purpose of scale-space theory, and in particular, the scaling theorem. 
Multi-scale analysis for extracting features from a continuum of scales was initiated 
by [9,8]. The scaling theorem arose when [11] plotted the zero crossings of a Gaus-
sian-smoothed signal over a continuum of scales. The resulting contours form either 
lines or bowls as the scale progressed from small to large. Thus, the transformation 
from a fine scale to a course scale can be regarded as a simplification. Fine-scale 
features disappear monotonically with increasing scale such that no new artificial 
structures are created at courser scales. Otherwise, it would be impossible to deter-
mine if course-scale features corresponded to important fine-scale features, or arti-
facts of the transformation. In what is known as the scaling theorem, [7] and [12] 
each proved that the Gaussian kernel uniquely holds this remarkable property. 

2.6   Diagonalized NNPM 

Completing our derivation of multi-scale NNPM requires some means of combin-
ing the results found using fine and course scales. The output of NNPM is a spatial 
map of distances from normalcy. We create a probability of pathology by normalizing 
this map to scale from 0 to 1. Let us define the following: 

 
 P(A)         = probability of pathology at the highest resolution 
 P(B)         = probability of pathology at intermediate resolution 

P(C)         = probability of pathology at the lowest resolution 
P(A,B,C) = probability of pathology 



 
Operating on the assumption that using multiple scales is successful in isolating 

micro- and macro-texture, we treat the probabilities of pathology at each resolution as 
if they were independent. (Although not true in practice, we make this assumption for 
tractability.) Thus, we can combine the results obtained at each resolution by scaling 
each result to become a probability map, and then multiplying all the maps: 

)()()(),,( CPBPAPCBAP =  (6) 

Finally, we must determine the value of the window size parameter, W. Imagine a 
matrix with a vertical axis of image resolution, and a horizontal axis of window width 
(2*r+1). Figure 1 arranges the resultant images from running NNPM into such a ma-
trix. Instead of using identical window sizes at all scales (such as the red oval in Fig-
ure 1 indicates for a window radius of 2), we will prove that the diagonal blue oval is 
a better choice for us. We label this algorithm, where the window size increases 
monotonically with decreasing resolution, diagonalized NNPM. 

 
Statement:  

In the Diagonalized NNPM algorithm, window size increases monotonically 
with decreasing resolution, resulting in large windows at coarse resolutions. 

Reasoning: 
• Diagonalized NNPM combines the results obtained at each resolution by 

scaling each result to become a probability map, and then multiplying all the 
maps (equation 6). 

• The validity of this operation depends on the independence of each map. 
• The independence of each map depends on the separation between micro- 

and macro-texture. 
• Micro-texture is most isolated with a small window so that the Gaussian 

smoothing obscures the micro-features. 
• Macro-texture is most isolated with a large window so that a given micro-

feature within the window cannot exert a significant influence in the calcula-
tion of abnormality (equation 5). 

• Thus, multiplicative combination of the maps is best achieved with window 
sizes that increase with courser resolutions. 

QED 

3 Results 

We performed experiments by running diagonalized NNPM on every case in the 
tumorbase [7]. The depicted results were generated by defining normal as the two 
best corresponding slices (computed by symmetry across the midline) from the 
healthy hemisphere of the same patient. The diagonalization is performed using the 
following set of window radii from fine to course resolution: {1, 1, 2, 2}. The seg-
mentation is performed fully automatically by applying a threshold just above the 
noise floor (the 1% level), and keeping the largest island in the intracranial cavity. 



     
Fig. 1. The diagonalization matrix is shown on the left, the single abnormality map computed 
from diagonalization is shown on the upper right, and the resulting segmentation of this ab-
normality map is overlaid in red on the lower right. The red oval represents basic multi-scale 
NNPM for a window size with radius 2, while the blue oval depicts diagonalized NNPM. 
(Color version available at http://www.ai.mit.edu/people/gering/) 

         
Fig. 2. From left to right are shown the red results overlaid on cases 1-10 of the tumorbase.  



4   Discussion 

In most of the cases, the boundary delineations of fully automatic segmentation us-
ing diagonalized NNPM are too inaccurate for clinical usage. Regardless, the results 
are encouraging given the goal of this paper, which is to solve the recognition prob-
lem for brain tumors. Existing methods have largely focused on boundary delineation, 
leaving the recognition task for humans. With the exception of only one (case #7) of 
the 10 cases in the tumorbase, diagonalized NNPM correctly recognized the tumor 
well enough to initiate the boundary delineation process using one of the existing 
methods. Together, diagonalized NNPM and these methods can form an end-to-end 
solution for automatic recognition and delineation of brain tumors. For more detailed 
derivations and results, we refer the reader to [3]. 
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