Exercise 06

Lecturer: Mohsen Ghaffari
Teaching Assistant: Przemyslaw Uznanski

1 MAX-SAT

Consider a conjunctive normal form (CNF) formula on Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$, that is, a formula defined as AND of a number m of clauses, each of which is the OR of some literals appearing either positively as x_{i} or negated as \bar{x}_{i}. Suppose that each clause c_{j} has some weight w_{j}. The goal is to find an assignment of TRUE/FALSE values to the literals with the objective of maximizing the total weight of the satisfied clauses.
(A) Consider a clause that has $k \geq 1$ literals. Argue that the simple randomized algorithm that sets each variable at random (true or false, each with probability half) satisfied this clause with probability $\left(1-2^{-k}\right)$.
(B) Consider the linear program with objective

$$
\begin{gathered}
\text { maximize } \sum_{j=1}^{m} w_{j} z_{j} \\
\text { subject to } \forall j \in\{1,2, \ldots, m\}: \sum_{i \in S_{j}^{+}} y_{i}+\sum_{i \in S_{j}^{-}}\left(1-y_{i}\right) \geq z_{j} \\
\forall j \in\{1,2, \ldots, m\}: z_{j} \in[0,1] \\
\forall i \in\{1,2, \ldots, n\}: y_{i} \in[0,1]
\end{gathered}
$$

Here, S_{j}^{+}denotes the set of variables that appear in the $j^{\text {th }}$ clause positively, and S_{j}^{-} denotes the set of variables that appear in the $j^{\text {th }}$ clause in a negated form. Explain how this is a relaxation of an integer linear program for our objective. Moreover, let $\left(y^{*}, z^{*}\right)$ denote the optimal solution of this LP. Show that the natural randomized rounding algorithm that sets each x_{i} to be True with probability y_{i}^{*} provides the following guarantee: if the $j^{\text {th }}$ clause has k literals, it is satisfied with probability at least $\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*}$.
(C) Notice that the first algorithm handles well large clauses and the second algorithm handles well the smaller clauses. Put the two together to get a $3 / 4$ approximation algorithm for the MAX-SAT problem.
(D) In part (B), we considered a linear randomized rounding process. Consider a non-linear round which rounds variable x_{i} to be true with probability $f\left(y_{i}^{*}\right)$ where $f:[0,1] \rightarrow[0,1]$ is an arbitrary function such that $f(y) \in\left[1-4^{-y}, 4^{y-1}\right]$. Prove that this non-linear rounding directly gives a $3 / 4$ approximation algorithm.
(E) Find a CNF such that there is a 3/4 gap between the value of the solution of LP described in part (B) and the optimal Boolean assignment to the variables. Hint: find a CNF with 4 clauses, each of weight 1 , such that the LP has value 4 but any assignment satisfies at most 3 clauses. This implies that the $3 / 4$ factor is the integrability gap of this LP formulation and no rounding technique for it will give an approximation better than $3 / 4$.

