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Lecture 1
Lecturer: Mohsen Ghaffari Scribe: Jakob von Kalle

1 Graph Sparsification — Preserving Cuts

Given an undirected unweighted graph with n-nodes G = (V,E), we would like to find a much sparser
weighted subgraph G′ which has roughly the same cut sizes, that is,

∀S ⊂ V, S 6= ∅ : EG (S, V/S) ≈ EG′ (S, V/S)

Here, EG′ (S, V/S) denotes the summation of the weights of the edges in G′ connecting S to V \ S,
and similarly, EG (S, V/S) denotes the number of the edges in G connecting S to V \ S. In particular,
during this lecture, we will see a method that sparsifies the graph into merely O(n log n/ε2) edges, while
preserving each cut size up to a (1 ± ε) factor. That is, amazingly, we can reduce the number of edges
of any graph down to almost linear, while keeping the cut sizes essentially the same.

Warm up: If G was a complete graph Kn, how would we go about obtaining a sparser graph G′

satisfying the above properties?
One simple way would be to use the standard Erdős-Rényi random graphs. In particular, define a

sparsified graph G′ = Gn,p in which we keep each edge of G = Kn with probability p = Ω
(

logn
n

)
, discard

the rest, and weight each kept edge with 1
p . One can see that this fulfills the above criteria with high

probability —i.e., probability at least 1− 1/nc for a desirably-large fixed constant c ≥ 2. We will see a
stronger version of this in exercise 3 of this week’s problem set.

Plan: Next, we describe a method for general graphs. This method is based a similar uniform ran-
dom sampling and allows us to get a somewhat sparser graph, if the original graph has a large edge-
connectivity. Later, we see how to extend this to a non-uniform sampling scheme which provides us with
the sparsifer with near-linear number of edges, as claimed above.

1.1 Uniform Sampling

Theorem 1 (Karger [Kar93]). : Given a graph G with min-cut size k, suppose we sample each edge
with probability p = Ω

(
logn
k

)
. Then, in the resulting graph, all cuts are within a 1±ε factor of their

expectation, with probability at least 1− 1
n5 .

Proof. As a warm up, let us start with one cut of size k. The probability that none of the edges remain
is (1− p)k ≤ e−kp = e−Ω(logn), which is pretty small. What is the the probability that the number of
sampled edges is not in (1±ε) kp? This probability can be upperbounded using the Chernoff Bound. Let
Xi be the indicator random variable of whether the ith edge in the cut is sampled or not. Then, the
number of sampled edges is X =

∑
iXi and we can write

Pr

(
X =

∑
i

xi /∈ (1±ε)E[X]

)
≤ 2 exp

(
−ε2E[X]

3

)
= 2 exp

(
−ε2kp/3

)
≤ exp

(
− c

4
log n

)
,

where in the last inequality, we have assumed p ≥ c logn
k . This means that one min-cut is not likely to

deviate from its expectation. But we want to argue something much stronger; we want to show that,
with high probability, no cut will deviate from its expectation. For that, we need to somehow union
bound over all cuts. A graph has potentially up to 2n − 2 non-trivial cuts. Thus, we cannot directly
union bound over all cuts (why?).

One observation is that cuts that are larger have a much smaller probability of deviation, as then the
expected sampled size is larger and Chernoff gives us a much smaller probability. Thus, we should try
to handle cuts of different sizes differently. Here’s where the following key fact comes in:
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Claim 2. ∀α ≥ 1, the number of cuts of size at most αk is at most nO(α).

This claim—the proof of which is based on Karger’s random contraction algorithm and is discussed
in exercise 1 of this week’s problem set—allows us to union bound over all cuts of size αk. In particular,
using a calculation as above, we see that for each cut of size αk, the probability that in the sampled
graph the cut is not within a 1± ε of its expectation is at most

exp
(
−αε2kp

)
≤ exp

(
−αc

4
log n

)
Now we can use a union bound over all cuts, while bundling cuts of the same size together. We get

the following upper bound on the probability of deviation of any cut:∫ ∞
1

nO(α) · exp
(
−αc

4
log n

)
· dα ≤

∫ ∞
1

1

n10α
· dα ≤ 1/n5

That is, with probability at least 1− 1/n5, all cuts are within 1± ε of their expectation.

One can prove a slighly stronger version of the above lemma where different edges are sampled with
different probabilities using essentially the same proof. We will make use of this version in the next
subsection. We next state this stronger version but leave its proof as an exercise.

Theorem 3. [Karger]: Given a graph G and suppose that each edge e is sampled independently with some
probability pe. Suppose that for each cut, the expected number of sampled edges in this cut is Ω(log n/ε2).
Then, in the resulting graph, all cuts are within a 1±ε factor of their expectation, with probability at least
1− 1

n5 .

1.2 Non-Uniform Sampling

The scheme that we saw above allows us to sparsify a large roughly by a factor of k/ log n, where k
denotes the min-cut size of the graph. But this is not always good enough. A graph might be very dense,
while having a very small min-cut size. Think of the Dumbbell graph, which is made of two n/2-node
cliques connected via a single edge. This graph has Ω(n2) edges and min-cut size 1, which means that
uniform sampling discussed above would not suffice for sparsifying it. On the other hand, this example
suggests that we should treat different edges differently. In particular, edges in “well-connected parts”
of the graph can be sampled with lower probabilities.

To formalize this intuition, we first need a definition:

Definition 4 (Strong Connectivity). A k-strong component is a maximal induced subgraph that is k-
edge-connected. For each edge e, the strength ke of e is the maximum value k′ such that there exists a
k′-strong component that contains e.

Lemma 5. The above definition satisfies the following three properties

(1) for each edge e, it’s strength ke is uniquely-defined

(2) For any two values k1, k2 such that k2 ≥ k1, we have that k2-strong components are a refinement of
k1-strong components. That is, each k2-strong component is completely inside one of the k1 strong
components.

(3)
∑
e

1
ke
≤ n− 1

Proof. The proofs of the first two properties are left as exercises, with the hint that given two intersecting
k′-edge connected induced subgraphs, their union is also k′-edge connected.

We now argue about the third property. Consider a minimum cut of graph G. It has k edges and
each edge e in this cut has strength ke ≥ k. Hence, the contribution of the edges on this cut to the
summation

∑
e

1
ke

is at most k · 1/k = 1. Let us remove all of these edges, now we remain with a graph
with (at least) two components. We repeat a similar process. Each time, we pick one of the connected
components of the remaining graph, and a min-cut of it, say with k′ edges. Then, each of the edges in
this cut has strength at least k′ in the base graph, because it is in a k′-connected induced subgraph.
Hence, the summation contributed by the edges of this cut is at most k′ · 1/k′ = 1; we then remove these
edges. Each time we remove a cut, we remove a value of at most 1 from the summation and we increase
the number of connected components by at least 1. The process stops once we reach n components, as
then we have an empty graph, and we started with 1 component. Hence,

∑
e

1
ke
≤ n− 1.
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The Sparsification Algorithm of Benczur and Karger [BK96]: Sample each edge e with pe = q
ke

where q = C logn
ε2 . If sampled, keep the edge with weight 1

pe
.

Lemma 6. The sampled graph satisfies the following two properties with high probability: (1) it has
O(n log n/ε2) edges, (2) the size of each cut in the sampled graph is within a (1± ε) factor of its size in
the base graph G.

Proof. We start with proving property (1). In the sampled graph, the expected number of edges is

O (nq) = O
(
n logn
ε2

)
. Therefore, by the Chernoff bound, the number of sampled edges is in O(n logn

ε2 ).

Next, we argue about property (2). Let Gw → be the same as G, except that each edge e has weight
1
Pe

= Ke

q . We want to analyze the graph Gw under the random sampling process. However, analyzing
the sampling process on Gw directly is difficult, because different edges in Gw have different weights
and thus we cannot use standard concentration bounds to analyze the cut size of the resulting graph.
Instead, we rewrite Gw as the summation of a number of uniformly-weighted graphs, as follows. Let
k1 < k2 < . . . < km′ be all the edge strengths values in graph G. Notice that m′ ≤ m as each edge has
one value. Define subgraph Fi as the spanning subgraph with all the edges of G that have strength at
least ki. Then, we can rewrite graph Gw as the following sum of graphs

Gw =
∑
i

(ki − ki−1)

q
· Fi

To see why, just note that an edge e with strength ke = ki has weight ke/q on the left hand side, and
weight (ki − ki−1) + (ki−1 − ki−2) + . . .+ (k2 − k1) + k1 = ki also on the right hand side.

Next, we analyze the result of the sampling process on each of graphs Fi separately. Notice that
the sampling process on Gw directly translates to a sampling on graphs Fi. In particular, for each edge
e ∈ Gw, we toss one coin (with the appropriate probability) and if it comes out head, then we keep the
edge in Gw as well as in all Fi-s that contain e. Otherwise, none of them keeps e. Of course now the
sampling processes in different graphs Fi are not independent of each other. But, in each Fi, different
edges are sampled independently.

Consider one fixed Fi. We next argue that, during the sampled process, each cut in Fi is concentrated
around its expectation. Consider one component C of the graph Fi. We argue that each cut in this
component has expected size at least q, and therefore, we can apply Theorem 3 to analyze it and infer
that each cut is concentrated around its expectation. Consider an arbitrary cut of component C, and
suppose that it has k′ edges. Then, the strength of each of the edges in this cut with respect to graph
C is at most k′. We can then use Lemma 5(2) to infer that the strength of each of these edges in the
original graph G is also at most k′. Hence, each of these edges is sampled with probability at least q/k′,
which implies that the expected number of sampled edges across this cut is at least q. Now, since each
cut in C has expected sampled size at least q, we can apply lemma Theorem 3 to infer that after the
sampling, each cut in C, and thus also similarly each cut in Fi, is within a 1± ε of its expectation.

By a union bound over all graphs Fi over different values of i, we can conclude that each of these
graphs remains within a 1± ε factor of its expectation. Therefore, Gw is also within a 1± ε factor of its
expectation.
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