
Advanced Algorithms 11/21, 2017

Lecture 10
Lecturer: Mohsen Ghaffari Scribe: Frederik Benzing

This draft has not been checked by the lecturer yet.

1 Online Algorithms & Competitive Analysis 2

1.1 The k-Server Problem

Problem description: For the general k-server problem we are given a metric space (V, d) on n points
and a sequence of requests r1, r2, . . . ∈ V . We have k servers, which are placed on points in V and each
time a new request ri arrives, one of the k servers has to move to ri. The cost of such a move is given
by the distance the server travels in (V, d).

Observe that this is a generalization of the paging problem considered in the previous lecture. To see
this simply take the uniform 1-metric on the space of pages and let the positions of the servers correspond
to the pages currently held in the cache.

In fact, several important problems can be rewritten as a k-server problem, which is why it has at-
tracted some attention. It was introduced by Manasse, McGeoch and Sleator[MMS90]. Fiat, Rabani, and
Ravid obtained a deterministic 2O(k log k) competitive algorithm/analysis[FRR90]. This was improved
by Grove to 2O(k)[Gro91]. Then came a breakthrough by Koutsoupias and Papadimitriou[KP95], which
obtained competitiveness ratio of 2k−1. This is still the best known, result even though the algorithm is
conjectured to be k-competitive. When turning to randomized algorithms, currently the best result was
obtained by Bansal et al.[BBMN11] and is poly(log n, log n) competitive (it uses metric tree embeddings
seen in a previous lecture).

k-server Problem for Line Metrics: We will only consider a special case of the k server problem,
where we are given a line-metric, i.e. V ⊂ R where R has the usual metric. It can easily seen that the
natural greedy approach, where we always move the server closest to the new request to the request can
be very bad. Indeed, consider V = {0, 2, 3} and assume that all servers start at 0. If the requests now
alternate between 2,3, then the greedy approach has cost linear in the number of requests, whereas the
optimal solution only has constant cost.

Instead we propose the following k competitive ‘Double Coverage’ Algorithm introduced by []. Label
the servers s1, . . . , sk and suppose that si is at position xi. it is easily seen that any optimal algorithm
can be adapted so that the servers never change their order so we may assume without loss of generality
x1 ≤ . . . ≤ xk.

Double Coverage Algorithm: Suppose we receive a request r. If r ≤ x1 then s1 answers the
request, similarly if r ≥ xk then sk answers the request. Otherwise, we can find some 1 ≤ i < k so that
xi ≤ r ≤ xi+1. We now let both servers si, si+1 move towards r at the same speed. Once the first server
reaches r both servers stop1.

Before analyzing this algorithm, we remark that it can be easily generalized to tree metrics. If a new
request appears then we move all servers s for which there is no other server on the shortest path from s
to r towards r at the same speed (and we stop every server s once another server appears on the shortest
path from s to r in this process). The analysis for this algorithm is essentially the same as the one we
now present.

Analysis of Double Coverage: We will show that our algorithm is k competitive. By OPT and
ALG we denote the current cost of the optimal solution and our double coverage algorithm, respectively.
We mostly oppress time/round dependence of these (and other) values. Suppose that the servers of

1In principle, the server that does not answer the request might end up outside V , however we may just virtually update
that server’s position without actually moving it and then continue our algorithm. This only decreases the cost of our
algorithm, since we might avoid some zig-zag moves.

1

double coverage are at positions x1 ≤ . . . ≤ xk and the servers of OPT are at positions y1 ≤ . . . ≤ yk.
We define a potential function

Φ = k

k∑
i=1

|xi − yi|︸ ︷︷ ︸
=:Φ1

+
∑
i<j

xj − xi︸ ︷︷ ︸
=:Φ2

.

Intuitively, the first term Φ1 accounts for how far ALG is from OPT, while the second term Φ2 accounts
for how much ALG wins by its double coverage. It is easily seen that Φ0 = 0 and Φ ≥ 0 at any time. So
if suffices to show

ALG+ Φ ≤ k ·OPT (1)

to prove k-competitiveness. In proving this inequality, we suppose that a new request r arrives and show
that it holds after (only) OPT moves and then show that it also still holds after ALG moves. Say OPT
moves server si to answer r by x (we may assume that only the server answering the request moves,
since we can delay the moves of all other servers until they actually answer a request and we may also
assume that the servers do not change their order). The the cost of OPT increases by x. At the same
time Φ1 increases by at most kx while Φ2 stays the same. So (1) still holds after OPT’s move. Now
we consider ALG’s move. First assume that r ≤ x1. In this case, ALG has cost x = x1 − r. Moreover,
Φ2 increases by (k − 1)x. Finally, since in OPT some server is at position r, we know y1 ≤ r so that
Φ1 decreases by kx, so that (1) still holds after ALG’s move. The case r ≥ xk is analogous, so it only
remains to consider the case where xi ≤ r ≤ xi+1 for some 1 ≤ i < k. Let us without loss of generality
assume that xi is closer to r than xi+1, so that si moves x := r − xi to the right, while xi+1 moves x
to the left. This move has cost 2x for ALG. Moreover, Φ2 decreases by 2x (the xi+1 − xi decreases by
2x while for all j 6= i, i + 1 the changes in xj − xi and xj − xi+1 cancel). So to establish that (1) still
holds it only remains to show that Φ1 does not increase. To see this, note that some server of OPT is
at position r. This implies that yi ≥ r or yi+1 ≤ r. So at least one of xi and xi+1 moves closer to its
‘partner’ yi, yi+1, respectively. This decreases Φ1 by kx while the move of the other server can increase
Φ1 by at most kx finishing the analysis.

1.2 Online Routing of Virtual Circuits

Problem Statement: We are given a graph G = (V,E) on n vertices and m edges together with some
edge capacities ue > 0 for all e ∈ E. Now several requests requests of the form (si, ti, p(i)) arrive in an
online manner, where si, ti ∈ G and p(i) ∈ R+. For each such request, we have to send a flow of p(i)
from si to ti along some path Pi in G. Our aim is to choose these paths Pi to minimise the maximum
congestion load maxe∈E `e, where the congestion load `eof an edge e is defined as

`e =

∑
Pi3e p(i)

ue
.

Below, we descibe an online algorithm by Fiat et al. which is O(log n) competitive, it uses a technique
know as ‘multiplicative weight update’ which can be used in many other contexts, too.

Algorithm Description: For the description and analysis we assume that we know the correct value
Λ for the maximum congestion of (offline) OPT. We indicate how to get rid of this assumption after the
analysis.
We first need some notation: Write pe(i) = p(i)/ue so that the congestion of an edge after j rounds is
given by

`e(j) =
∑

i≤j:e∈Pi

pe(i).

We use ‘*’ to denote corresponding quantities of the (offline) OPT, e.g. l∗e(j) is the congestion of e after j
rounds in OPT. Additionaly, we use tilde to denote quantities which are normalized by a factor of Λ, e.g.
˜̀
e(j) = `e(j)/Λ. We define the cost of an edge e to be ce = a

˜̀
e(i)+p̃e(i) − a˜̀

e(i), where a is a constant to
be determined later. In the resulting graph, we simply route request i+ 1 through the shortest si+1, ti+1

path. Note that the cost function makes edges which are already highly-congested very expensive so that
they are less likely to get even more congested.

2

Analysis: As mentioned before, we want to show that our algorithm is O(log n) competitive. To this
end, we need to show maxe∈E ˜̀

e = O(log n).
We define the following potential function

Φ(j) =
∑
e∈E

a
˜̀
e(j)(γ − ˜̀∗

e(j)),

where γ > 1 is another constant to be determined. Note that by our normalisation, we have ˜̀∗
e(j) ≤ 1

implying γ − ˜̀∗
e(j) = Ω(1).

We will show that Φ is non-increasing for the right choice of a and γ. Togehter with the simple bound
Φ(0) ≤ γm, this shows that we have Φ(j) ≤ γm at all times j. This easily implies ˜̀

e(j) = O(log n)
(assume otherwise, plug the value of ˜̀

e(j) into the definition of Φ(j) to see Φ(j) > γm as a contradiction).
We now show that Φ is non-increasing, i.e. Φ(j + 1) ≤ Φ(j) for all times j. We explain how to obtain
the inequalities below right after they are displayed.

Φ(j + 1)− Φ(j) =
∑

e∈Pj+1

(
a

˜̀
e(j+1) − a˜̀

e(j)
)

(γ − ˜̀∗
e(j))−

∑
e∈P∗

j+1

a
˜̀
e(j+1)p̃e(j + 1) (2)

≤
∑

e∈Pj+1

γ
(
a

˜̀
e(j)+p̃e(j+1) − a˜̀

e(j)
)
−

∑
e∈P∗

j+1

a
˜̀
e(j)p̃e(j + 1)

≤
∑

e∈P∗
j+1

(
γ
(
a

˜̀
e(j)+p̃e(j+1) − a˜̀

e(j)
)
− a˜̀

e(j)p̃e(j + 1)

)

=
∑

e∈P∗
(
j+1)

a
˜̀
e(j)

(
γ
(
ap̃e(j+1) − 1

)
− p̃e(j + 1)

)

The second line follows from ˜̀∗
e(j) ≥ and ˜̀

e(j + 1) ≥ ˜̀
e(j). The third line uses precisely that the cost

w.r.t. ce (as defined in the description of the algorithm) of the path Pj+1 is at most the cost of P ∗j+1

(since we chose Pj+1 as a minimiser of this cost).
To finish, we recall 0 ≤ p̃e(j + 1) ≤ 1 and note that for example choosing γ = 2 and a = 1 + 1/γ gives
the inequality γ(ax − 1) ≥ x for 0 ≤ x ≤ 1. Using this inequality in the last line of (2) for x = p̃e(j + 1)
shows that Φ(j + 1)− Φ(j) ≤ 0 which finishes the analysis.

What about Λ? It remains to discuss how to drop the assumption of knowing the congestion load
of OPT. Suppose that the algorithm described above is β = β(n) competitive (we can clearly use the
above analysis to find some explicit function β = O(log n), so that ALG is β competitive). We will run
the algorithm in several phases. We start running our algorithm for the following guess Λ = mine pe(1),
which is a lower bound on the congestion of OPT. If in any round j some ˜̀

e(j) becomes larger than
βΛ, we start a new phase. This means that we multiply our current guess of Λ by 2 and that we reset
the current load of every edge to 0 (so we forget about any previous paths.) and that we retry routing
request j.

One can check now that the resulting algorithm is 4β competitive. Indeed, suppose that there were T
phases in total and consider our final guess Λ (after the last phase has ended) and note that Λ ≤ 2OPT .
This inequality is based on the observation that the algorithm above works whenever the congestion load
of OPT is at most OPT ≤ Λ, thus a phase only ends when OPT > Λ (before updating Λ). Note also
that the inequality also holds if there is only one phase by our initial guess of Λ). Finally, for any i ≤ T ,
the congestion at the end of the i-th phase of ALG was at most βΛ/2T−i. So all together, the phases

have a congestion of at most
∑T

i=1 βΛ/2T−i ≤ 2βΛ finishing the proof.

1.3 Online Bipartite Matching

A very similar problem as described below is what arises when for example search engines try to match
certain ads to certain requests.

Problem Statement: We are given a bipartite graph on (disjoint) vertex sets V,U . For each vertex
u ∈ U its neighborhood in V is revealed in an online-fashion. Whenever a new vertex u is revealed we
have to decide whether we keep it and match it to one of its unmatched neighbors in V (assuming such

3

a neighbor exists) or discard it. Our decisions are irreversible and our goal is to find a matching as large
as possible.

It is clear that OPT can just calculate a maximum matching. Using the fact that each maximal
matching has size at least half of a maximum matching, we can see that a greedy approach for the
Online Bipartite Matching Problem gives a 1/2 competitive strategy. This is optimal for deterministic
algorithms.

Karp, Vazirani, and Vazirani [] used a randomized algorithm to give a (e − 1)/e ' 0.63 competitive
algorithm, they also showed that this is asymptotically best possible. We describe and analyze their
algorithm below, the analysis follows Birnbaum, Mathieu [].

Algorithm Description: Order V uniformly at random. When a new vertex u ∈ U is revealed, we
match it to the smallest unmatched vertex in V .

Analysis: We first observe that we may assume without loss of generality that OPT is a perfect
matching. Indeed, fix some OPT (i.e. a maximum matching). We only need to show that removing
a vertex x does not make the matching obtained by ALG larger. To see this, denote the matching
obtained by ALG before removing x by M and the one obtained after removing x by M ′. If M and
M ′ are not identical, then x must have been matched in M and one can easily see that M and M ′ only
differ by an alternating path starting at x (using edges from M and M ′ alternatingly). This already
gives |M | ≥ |M ′|.
Let us now fix some maximum (perfect) matching M∗, for any vertex x we will denote by M∗(x) the
vertex it is matched to by M∗. Moreover, let σ be the random permutation (ranking) chosen by ALG,
and let M = M(σ) be the matching constructed by our algorithm. Let xt be the probability that the
vertex at rank t is matched by M . Then clearly the expected size of M is

∑n
i=1 xt where n is the size of

both vertex classes U, V .

Observation: Let v ∈ V and u = M∗(v). It is easily seen that if v is unmatched in M , then u must
be matched to some vertex v′ of lower rank than v, i.e. σ(v′) < σ(v).

We now need a slightly technical Lemma in order to deal with some dependencies.

Lemma 1. Let u and v be as before, and let σ′ be a permutation of V , let σi be the permutation obtained
from σ′ by moving v to rank i. If v is not matched by M ′ = M(σ′), then u is matched by Mi = M(σi)
to some vertex vi with rank σi(vi) ≤ σ′(v).

Proof. We write v′ = M ′(u) and note that for any w ∈ V , we have by noting σi(w)− 1 ≤ σ′(w).
If M ′ and Mi match u to the same vertex vi = v′, then the claim follows from the observation just before
the lemma since σi(v

′)− 1 ≤ σ′(v′) < σ′(v).
Otherwise, similarly to before, the two matchings M ′,Mi differ by an alternating path starting at v and
going through vi and v′. It is not hard to check that this path is increasing in σi, so writing vi = Mi(u),
we get σi(vi) ≤ σi(v′). The claim follows from σi(vi) ≤ σi(v′) ≤ σ′(v′) + 1 ≤ σ′(v) using the observation
just before the Lemma.

We will, in a second, use Lemma 1 to establish 1 − xt ≤ (1/n)
∑t

i=1 xi, but let us first show how

this inequality finished the proof. Writing St =
∑t

i=1 xi and subtracting St−1 from both sides gives
1− St ≤ (1/n)St − St−1 and rearranging yields St ≥ (1− 1/(n+ 1))(1 + St−1). These expressions for St

are minimized when equality holds throughout. Noting S1 = x1 = 1, we obtain St =
∑t−1

i=0(1−1/(n+1))i

leading to Sn = (n + 1)
(
1 − (1 − 1/(n + 1))n

)
proving that the algorithm is 1 − 1/e competitive as n

tends to infinity.
It remains to show 1 − xt ≤ (1/n)

∑t
i=1 xi. First, we denote by Rt the set of vertices in U which are

matched to some vertex of rank at most t. Linearity of expectation gives Exp[|Rt|] =
∑t

i=1 xt.
Given our permutation σ, let σ′ be obtained from σ by taking an element v ∈ V uniformly at random
and moving it to rank t. Consider M ′ = M(σ′) and let u = M∗(v). By choosing i appropriately, we
can achieve σi = σ (using notation from Lemma 1). So if v is not matched in M ′, which happens with
probability 1 − xt, then we have by Lemma 1 that u is matched by M = M(σ) to some vertex with
rank at most t, meaning u ∈ Rt. We also have Pr[u ∈ Rt] = |Rt|/n (note that, crucially, Rt depends on
t and σ and that our random choice u is independent of those). So we get 1 − xt ≤ |Rt|/n and taking
expectations gives the desired result.

4

References

[BBMN11] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. In Foundations of Computer Science
(FOCS), 2011 IEEE 52nd Annual Symposium on, pages 267–276. IEEE, 2011.

[FRR90] Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. In Founda-
tions of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages 454–463.
IEEE, 1990.

[Gro91] Edward F Grove. The harmonic online k-server algorithm is competitive. In Proceedings
of the twenty-third annual ACM symposium on Theory of computing, pages 260–266. ACM,
1991.

[KP95] Elias Koutsoupias and Christos H Papadimitriou. On the k-server conjecture. Journal of the
ACM (JACM), 42(5):971–983, 1995.

[MMS90] Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11(2):208–230, 1990.

5

	Online Algorithms & Competitive Analysis 2
	The k-Server Problem
	Online Routing of Virtual Circuits
	Online Bipartite Matching

