
Advanced Algorithms 11/28, 2017

Lecture 11
Lecturer: Mohsen Ghaffari Scribe: Jerri Nummenpalo

This draft has not been checked by the lecturer yet.

1 Streaming & Sketching Algorithms 1 — Frequent Elements,
Approximate Counting, and Distinct Elements

1.1 Streaming algorithms

In the this lecture we will focus on streaming algorithms. This is a relatively new field of algorithm
design which has seen many developments in the recent 5 years. We consider a stream of numbers
a1, . . . , am ∈ {0, . . . , n − 1} where the number are revealed to us one by one. The goal of a streaming
algorithm is to take the stream and to maintain a function or an approximation of a function over the
so far revealed stream. The main measure of complexity we are interested in is the amount of space the
algorithm needs. Let us start with a simple example.

Consider the Majority problem: Given a stream a1, . . . , am with the guarantee that one element
appears at least m

2 times, output such a majority element. An elegant algorithm for solving this problem
maintains a pair (c, e) which we initialize after seeing the first element to c ← 1 and e ← a1. We think
of c as being a counter and e will always be one of the elements of the stream. Upon the arrival of a
new element ai we check if e equals ai. If it does, we increase c by 1. If not, we check if c > 0 and in the
positive case decrease c by 1 and in the negative case we set e ← ai and c ← 1. We claim that in the
end e equals the majority element. This can be proven by pairing up a subset of the majority elements
with the remaining elements (in a natural way) and then analyzing the behavior of the counter across
the stream. The space needed by this algorithm is log n+ logm. Notice that this algorithm only works
for the promise version and it will not distinguish whether a majority element exists. In fact, in the
exercises we will see that linearly many bits are needed to decide if a majority element exists.

1.2 Moment estimation

Many applications of streaming algorithms can be reduced to that of computing some moment of the
stream. We let fi denote the number of times that i ∈ {0, . . . , n − 1} appears in the stream. The k-th
moment of the stream is defined as

F k :=

n∑
i=1

fki . (1)

1.2.1 First moment estimation

Let us consider the task approximating m in the stream up to a multiplicative factor of (1 ± ε) for a
constant ε > 0. Equivalently, we want to compute a (1 ± ε)-approximation of the 1st moment of the
stream. We consider the following approach due to Morris [Mor78] and uses O(log log n) bits of memory.
We initially set x = 0 and upon the arrival of a new element we increment x with probability 2−x. In
the end we output 2x − 1. For intuition, notice that if at some point x = i it will take in expectation 2i

new elements until we increment x again. Since m ≈
∑logm
i=0 2i this strategy should give a good estimate

of m.
For a more formal treatment we let Xi denote the value of x after we have seen i elements of the

stream.

Claim 1. The output of the algorithm is an unbiased estimator of m, i.e., E
[
2Xm

]
= m+ 1.

1

Proof. We prove the claim by induction on m. The base case m = 0 holds since E
[
20
]

= 0+1. Assuming
that the claim holds for some m ≥ 0 we can condition on the value of Xm and compute that

E
[
2Xm+1

]
=
∑
j≥0

E
[
2Xm |Xm = j

]
Pr[Xm = j] =

∑
j≥0

(
2−j · 2j+1 + (1− 2−j) · 2j

)
Pr[Xm = j]

=
∑
j≥0

Pr[Xm = j]︸ ︷︷ ︸
=1

+
∑
j≥0

2jPr[Xm = j]︸ ︷︷ ︸
=E[2Xm]

ind.
= 1 + (m+ 1).

To bound the probability of the output 2Xm deviating far from its expectation m+ 1, we use Markov’s
inequality to observe that

Pr
[
|2Xm − 1−m| > εm

]
≤ E[(2Xm − 1−m)2]

ε2m2
≤ 1

2ε2
. (2)

The last inequality follows by first proving by induction along the similar lines as in Claim 1 that
E[22Xm] = 3

2m
2 + 3

2m+ 1 and then via a direct computation we get that

E[(2Xm − 1−m)2] = E[22Xm]− 2E[2Xm](m+ 1) + (m+ 1)2 = E[22Xm]− (m+ 1)2 =
m2 −m

2
≤ m2

2
.

Notice that for small ε the bound in (2) is trivial. To get a better bound observe first that E[(2Xm−1−m)2]
is the variance of our output. Recall that the variance of the average of s i.i.d. random variables is a
factor s smaller than the variance of only one such random variable. We can maintain s = C

ε2 independent
counting processes x for some constant C and take the average of the resulting output. The probability
that the result deviates more than εm from the expectation is then upper bounded by 1

2ε2s = 1
2C .

If we want the error probability to be smaller than δ for some δ > 0, then we could of course set
C = 2

δ . A better idea is to fix C to be constant and, to maintain O(log 1
δ) independent copies of the

process, and to report the median of the outputs of the different processes. We leave it as an exercise to

show that this gives the desired result. The number of bits used by this last process is O
(

log 1
δ

ε2 log log n
)

and it gives an (1± ε)-approximation with probability 1− δ.

1.2.2 Zeroth moment estimation

We go on to the estimation of the 0th moment of the stream, i.e., estimating the number of distinct
elements in the stream. This section is based on the papers by Flajolet and Martin [FM85] and Alon,
Matias and Szegedy [AMS96]. We let Zn denote the set of integers {0, . . . , n− 1}. The basic idea is to
take a random hash function h : Zn → [0, 1] and then to remember min{h(ai)} across the stream. We
output 1

min{h(ai)} − 1 which is an unbiased estimator of the number of elements in the stream since the

minimum of k uniformly distributed numbers in [0, 1] is 1
k+1 in expectation (exercise). Observe that this

works because repeated elements of the stream are always mapped to the same value.
There are two shortcomings to this procedure that we haven’t specified. The first problem is that

we are hashing to real numbers. We can overcome this easily by considering instead hash functions
h : Zn → Zn. The second problem is the description of h. If we explicitly store a random hash function
h : Zn → Zn we would have to use Θ(n log n) bits of memory in expectation. This defeats the purpose
of hashing as we might as well remember all the values we have seen in the stream in the same space.
The answer to solving the second shortcoming is to only consider certain kinds of hash functions.

A familyH consisting of hash functions h : Zn → Zn is a family of pairwise independent hash functions
if for h ∈u.a.r. H and for any x, y, i, i′ ∈ Zn it holds that Pr[h(x) = i ∧ h(y) = i′] = 1

n2 . If n is a prime
power, then Zn equipped with standard addition and multiplication modulo n is a field. In that case
Hn := {ha,b | a, b ∈ Zn and ha,b(x) = ax + b} is a family of pairwise independent hash functions. This
follows from the fact that for any a, b, i, i′ ∈ Zn the system {ax+ b = i, ay+ b = i′} has a unique solution
(x, y) in the field Zn. If n is not a prime power we can easily overcome this by instead considering the
least power of 2 larger than n. We can store a random hash function from Hn by storing a and b which
takes O(log n) bits. As a general remark, pairwise independence can be used for derandomization: If a
randomized algorithm works correctly while using only pairwise independent randomness, then we can

2

brute force over all generators of that randomness which only leads to a polynomial multiplicative loss
in the runtime.

Going back to the problem of estimating the 0th moment, for i ∈ Zn we define zeros(i) as the largest
integer j so that 2j divides i. Our algorithm for the problem picks a random hash function ha,b ∈ Hn
and remembers z := max{zeros(ha,b(ai))} throughout the stream. We output 2z+

1
2 in the end. The

number of bits used for z is O(log log n) so the total number of bits used is O(log n) due to having to
store the hash function.

Claim 2. The output 2z+
1
2 is a 3-approximation to the number of distinct elements in the stream with

constant probability.

Proof. Consider the stream a1, . . . , am and let S denote the set of distinct elements in the stream. For
every i ∈ S and for every r = 1, . . . , log n we define the random variables

Xi,r :=

{
1 if zeros(ha,b(i)) ≥ r
0 otherwise

, Yr :=
∑
i∈S

Xi,r

and we let d = |S| = F 0 denote the number of distinct elements in the stream. Observe that E[Xi,r] = 2−r

since Xi,r = 1 iff the r least significant bits in the binary representation of ha,b(i) are 0. This happens
with probability 2−r because by construction ha,b(ai) is uniformly distributed in Zn and we can further
assume that n is a power of two. From linearity of expectation we get that E[Yr] = d2−r. The random
variables Yr are decreasing in r and z is equal to the largest r such that Yr ≥ 1. Letting d1 be the
smallest value with 2d1+

1
2 > 3d we can bound the probability that z is large with Markov’s inequality:

Pr[z ≥ d1] = Pr[Yd1 ≥ 1] ≤ d

2d1
≤
√

2

3
.

For bounding the probability of erring to the other side we let d2 be the largest value such that 2d2+
1
2 < d

3 .
Then similarly to how we bounded the expression in (2) we get that

Pr[z ≤ d2] = Pr[Yd2+1 = 0] ≤ Pr

[∣∣∣∣Yd2+1 −
d

2d2+1

∣∣∣∣ ≥ d

2d2+1

]
≤ var(Yd2+1)(

d
2d2+1

)2 . (3)

Notice that Yd2+1 is the sum of indicator variables and these indicator variables are pairwise independent
by construction. The variance of pairwise independent random variables is the sum of the variances of
these variables (note that this is where we use the properties of the hash functions). This allows us to
derive the bound

var(Yd2+1) =
∑
i∈S

var(Xi,d2+1) =
∑
i∈S

E[X2
i,d2+1]− E[Xi,d2+1]2 ≤

∑
i∈S

E[Xi,d2+1] =
d

2d2+1
= E[Yd2+1]

where we used the fact that Xi,d2+1 is an indicator random variable. For general use it is good to
remember this fact that we can bound the variance of a sum of pairwise independent indicator random
variables by the expectation of the same sum. Substituting our derivation to (3) we get that

Pr[z ≤ d2] ≤ 2d2+1

d
≤
√

2

3
.

In conclusion, we have seen that Pr[d3 ≤ |2
z+ 1

2 − d| ≤ 3d] ≥ 1 − 2
√
2

3 > 0 meaning that with constant
probability this approach produces a 3-approximation of d and standard probability boosting methods
allow us to improve this probability higher.

To improve on the approximation factor, let us instead take a random hash function h uniformly
from HN where N = n3. This increase is needed to deal with rounding issues and it guarantees that
with high probability there will be no collisions of the hashed values of Zn. Our algorithm remembers
the t smallest values of h(ai) where t = O(1

ε2) for some ε > 0. By letting z be the largest number that

we remembered, the output of our algorithm is tN
z . The intuition here is that if the stream contains d

distinct values, then the t-th smallest hashed value will be in expectation roughly t
dN .

Claim 3. This modified algorithm produces a (1± ε)-approximation of the number of distinct elements
d with constant probability.

3

Proof (partial). Let dout = tN
z be the number the algorithm outputs and let τ := 1

1−ε ·
tN
d be a threshold

value. Denote by h ∈u.a.r. HN the randomly chosen hash function and let S still denote the set of
different values in the stream. For i ∈ Zn let Xi be an indicator random variable for the event that
h(i) < τ and let further Y :=

∑
i∈S Xi. Then

Pr[dout ≤ (1− ε)d] = Pr[z ≥ τ] = Pr[Y < t].

Observe that E[Y] = d τN = t
1−ε . For ε ≤ 1

3 it holds that (1 + ε
2)t ≤ t

1−ε ≤ (1 + 3
2ε)t. Using this we can

compute that

Pr[Y < t] ≤ Pr

[
|Y − E[Y]| ≥ εt

2

]
≤ var(Y)(

εt
2

)2 ≤ E[Y](
εt
2

)2 ≤ (1 + 3
2ε)t(

εt
2

)2 ≤ 6

C

when we set t = C
ε2 and we can choose the constant C. We didn’t cover in class the analysis of the

probability dout ≥ (1 + ε)d.

References

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 20–29. ACM, 1996.

[FM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of computer and system sciences, 31(2):182–209, 1985.

[Mor78] Robert Morris. Counting large numbers of events in small registers. Communications of the
ACM, 21(10):840–842, 1978.

4

	Streaming & Sketching Algorithms 1 — Frequent Elements, Approximate Counting, and Distinct Elements
	Streaming algorithms
	Moment estimation
	First moment estimation
	Zeroth moment estimation

