
Advanced Algorithms 12/12, 2017

Lecture 13
Lecturer: Mohsen Ghaffari Scribe: Przemys law Uznański

This draft has not been checked by the lecturer yet.

1 Streaming & Sketching Algorithms 3

The Coordinator Model and Graph Connectivity We devise an Õ(n)-space streaming algorithm
that identifies the connected components of the graph. In fact, we will adopt the following hypothetical
multi-party computation setting, which we will refer to as the coordinator model. Each of the players
in this model can be thought of as one of the nodes of the graph. The streaming algorithm can easily
simulate all these nodes and thus perform the same computation as we do in this multi-party setting,
while using only poly(log n) bits of memory per node. We switch to this multi-party setting because
discussing some of the challenges becomes more intuitive here.

We have n players, numbered 1 to n, as well as an arbitrary n-node graph G = (V,E) where
V = {1, 2, . . . , n}. The ith player gets to know the edges incident on the ith node. Moreover, all the
players have access to shared randomness, that is, there is a sufficiently long string of random bits, which
is known to all the players. Later, we discuss the notion of ε-bias spaces, which allow us to reduce these
shared random bits to merely poly(log n) bits.

The graph connectivity problem in this setting is as follows: each of the players will create a B-bit
packet based on its own edges (and the shared randomness) and send it to a coordinator. Then, the
coordinator that receives the packets of all the n-players should determine whether graph G is connected
or not (with high probability). More generally, the coordinator should know the connected components
of G. The main question that we will focus on is how large should the packet size B be?

We emphasize that the nodes cannot communicate with each other, they should generate their packets
based only on the edges they know (and the shared randomness). The coordinator also knows this shared
randomness, when determining the connected components of G.

2 The First Challenge and The Idea for Overcoming It

The Challenge in a Special Case Consider a hypothetical scenario where V is made of two disjoint
parts A and B = V \ A such that there is exactly one edge e = (v, u) between nodes of A and nodes of
B. The existence of e is important for connectivity, the coordinator should know this edge or otherwise
the graph may seem disconnected to him, despite being connected.

However, to node v, the edge e looks like any other of the edges incident on v. This is because node
v doesn’t see anything beside its own edges. Similarly, to node u, the edge e looks like any other of the
edges incident on u.

Suppose we happen to be in a situation that v and u have high degrees, say up to Ω(n). Since neither
of these two nodes can distinguish the bridge edge e from the rest of their edges, and as the existence of
edge e must be communicated to the coordinator, it may appear that we are in bad luck and quite large
packets are needed, up to Ω(n).

Fortunately, as we will see, that is not the case and merely poly log n size packets suffice. Let us see
how we would solve this special case. We explain how the coordinator gets to learn the edge e connecting
A to B, despite the fact that the nodes do not know A and B and they also do not know which edges
are internal to these and which edge connects them.

The Solution Idea Suppose that each edge e has a Θ(log n)-bit unique identifier IDe. We will later
discuss these identifiers. Now, consider the algorithm that each node v computes the bit-wise XOR of
the identifiers of its incident edges, i.e., s(v) = ⊕e′∈E(v)IDe′ and sends the result to the referee. The
referee then computes ⊕v∈As(v). We claim that this must be equal to the IDe of the bridge edge e
connecting A to B. In simple terms, the reason is that, each of the edges with both of its endpoints in
A is added to the XOR ⊕v∈As(v) = ⊕v∈A ⊕e′∈E(v) IDe′ , which means it is canceled out. The only edge
remaining is the single edge e which has exactly one endpoint in A.

1

3 The Second Challenge and The Idea for Overcoming It

In the above, we considered a hypothetical scenario where there is exactly one edge between A and
B = V \A. What if there are k ≥ 2 such edges? Notice that k might be large.

Notice that in such a case, when the coordinator computes ⊕v∈As(v), this is the XOR of the identifiers
of all the k-edges that connect some node in A to some other node in B. The coordinator needs to learn
about at least one of these edges, but out of this XOR, it may not be able to distinguish which edge is
there.

The Solution Idea Suppose that the nodes know an estimation k̃ of the value of k that is within its
2-factor, that is, k ∈ [k̃/2, 2k̃]. We will later discuss how to remove this assumption.

Consider the experiment where we randomly pick a subset E′ ⊂ E where each of the edges e ∈ E is
included in E′ with probability 1

k̃
. Moreover, each of the nodes v knows only about its own edges, and

we use E′(v) to denote the edges incident on v that are included in E′.

Lemma 1. With probability at least 1/40, there is exactly one edge in E′ that has one endpoint in A
and the other endpoint in B.

Proof. The probability of having exactly one such edge is at least k̃
2 ·

1
k̃

(1− 1
k̃

)2k̃ ≥ 40.

Suppose that the identifiers are such that the XOR of more than one of them is distinguishable from
the identifier of exactly one edge, with high probability. In the exercises of this lecture, we see that
merely random edge identifiers suffice for that purpose. Then, the above “experiment” gives us a way
so that the coordinator learns one edge between A and B with probability at least 1/40. Additional
challenge comes from the fact that we cannot afford to store the ID’s explicitly.

Boosting the Success Probability to High Probability: To boost this probability to high prob-
ability, it suffices to repeat the experiment 100 log n times (each with new randomness in determining
E′). The probability that the coordinator fails to learn an edge between A and B in all 100 log n of these
repetitions is at most (1− 1/40)100 logn ≤ 1/n3.

Removing the Assumption of Knowing a 2-factor estimate of k: In the above, we considered
that the nodes know a 2-factor estimate k̃ of the value of k, i.e., k ∈ [k̃/2, 2k̃]. But they do not have
this information. So what can they do? Well, it suffices for the nodes to try all the log n guesses k̃ = 2i

for i ∈ {1, 2, . . . , log n}. One of these guesses will satisfy k ∈ [k̃/2, 2k̃] and then the referee will learn an
edge between A and B with high probability.

4 The Complete Algorithm

Recall Boruvka’s algorithm for MST:

1. start with an empty sub-graph T ,

2. at each round i = 0 . . .O(log n) each connected component S of T selects cheapest edge from δS
adds it to T (each component does it in parallel).

Our goal is to let the coordinator run O(log n) phases of Boruvka using the messages of the nodes.
For that, every node sends a message of size O(log4 n) as follows. The message contains O(log2 n) many
sketches [O(log n) phases with a batch of O(log n) sketches] of size O(log2 n) bits each. Each sketch has
O(log n) parts, where for the ith part an O(log n)-bit string is generated, according to the description
in Sections 3 and 4, as follows. A (new) random subset of the edges incident to the node is sampled,
choosing each edge with probability 2−i, and then the XOR of the random edge IDs (of size O(log n))
over all sampled edges is stored.

The coordinator can now run Boruvka’s algorithm in the following way. In every round, the coordi-
nator needs to identify an outgoing edge for every component. (Note that, since we are only interested in
connectivity, there is no need for having a minimum weight outgoing edge.) To this end, the coordinator
proceeds as described in Sections 3 and 4, using a batch of O(log n) many new sketches in every round.
This will, with high probability, give him a single crossing edge for every component. He then merges
the components as described in Lecture 12, and proceeds to the next round.

2

5 ε-bias sample spaces

What is left is describing how to assign ID’s to edges so that with high probability the labeling scheme
works correctly, that is no XOR of two or more ID’s produces a valid ID. Equivalently, we want it so
no XOR of two or more ID’s produce 0. Since each bit of ID’s operates independently, we focus on
constructing 1-bit ID’s first. Let N =

(
n
2

)
.

Claim 2. There exists a collection B of functions b : {1, . . . , N} → {0, 1} such that:

1. For any E′ ⊆ [N], if |E′| ≥ 1 then ∀E′⊆[N] Prb∈B [(
⊕

e∈E′ b(e)) = 0] ∈ [1/2− ε, 1/2 + ε],

2. |B| = O(N/ε2).

Proof. Fix E′ arbitrarily to nonempty subset of [N]. First observe, that for b picked uniformly from
{0, 1}N , Pr[

⊕
e∈E′ b(e)) = 0] = 1/2. Thus our claim is that there are polynomially small B that are

a good approximation of exponentially large {0, 1}N . In fact, B picked uniformly at random works,
by a simple application of Chernoff bound. Indeed, fix k = cN/ε2 for some large constant c. Pick
B of size k uniformly from {0, 1}N . Observe that in expectation (taken over choices of B), k/2 of
b ∈ B satisfy

⊕
e∈E′ b(e)) = 0. By Chernoff bound, the probability that number of such b is NOT in

[(1/2− ε)k, (1/2 + ε)k] is at most 2e−ε
2k/2 � 2−N . By taking union bound over all 2N choices of E′, we

prove the claim.
Now we assume that such collection B is constructed (fast constructions is outside of the scope of

this lecture). To store ID’s, it is enough to store which functions from B are used - that is if we fix ID’s
to be of length ` = C · log n for some constant C, then we need to store only ` · log |B| = O(log2 n) bits of
information. Additionally, since each bit of ID is selected independently, probability of a collision from
XOR’s is upperbounded by (1/2 + ε)`, thus selecting C to be large enough constant, can be made high
probability.

References

3

	Streaming & Sketching Algorithms 3
	The First Challenge and The Idea for Overcoming It
	The Second Challenge and The Idea for Overcoming It
	The Complete Algorithm
	-bias sample spaces

