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1 The multiplicative weights update method

The multiplicative weights update method, also known as learning from the experts is a very useful
technique applicable to a wide variety of learning and optimization problems; for instance, see [PST95]
regarding approximation solutions for fractional packing and covering problems. Algorithms in this
setting maintain a probability distribution over a certain set that is updated iteratively by a multiplicative
rule. The deterministic and randomized variants of the method are discussed respectively in Section 1.1
and Section 1.2, and finally in Section 1.3 a more general framework is argued.

1.1 Deterministic Weighted Majority

Consider the following simple example. There are n experts e1, · · · , en who predict the stock market every
day. The predictions of the experts are binary valued (zero/one). Assume one of the experts is perfect,
meaning s/he never makes a mistake. An online learning algorithm sees the predictions of the experts
every day and makes a prediction of its own and its goal is to minimize the total number of mistakes
made. Now, consider the following simple majority-based algorithm: by starting from E = {e1, · · · , en},
in each round (day) it predicts by following the most frequent prediction among experts in E and removes
the experts who predicted incorrectly from E. This algorithm does not make more than log n mistakes,
no matter how many iterations it is applied, because every time it makes a mistake at least half of the
experts get removed from E. Notice, the existence of a perfect expert guarantees the non-emptiness of
set E.

The aforementioned algorithm enjoys the unrealistic assumption that there exists a perfect expert;
in other words, it eventually fails (the set E will be empty) if there is no perfect expert. However, the
main idea behind the algorithm is to update some initially associated weights to the experts depending
on the correctness of their prediction, where the update rule simply is to multiply the weight of all wrong
experts by zero. One might modify the algorithm to cover also the setting in which there is no perfect
expert. Experts making wrong predictions should not be dropped, but their weights can be reduced by
a constant factor, say 1− ε for 0 < ε < 1/2. More precisely, by starting from wi = 1 for 1 ≤ i ≤ n, where
wi denotes the weight corresponding to expert ei, in each round the algorithm predicts according to the
weighted majority of the experts. Furthermore, it sets wi = (1− ε)wi if expert ei’s prediction is wrong.

If the algorithm makes a mistake, the weight of the wrong experts is at least half the total weight.
The weight of the wrong experts gets reduced by 1 − ε, so the total weight is reduced by a factor of at
least 1− ε/2 for every mistake. After making m mistakes, the total weight is at most n(1− ε/2)m. On
the other hand, obviously the total weight is lower-bounded by (1− ε)m∗

, where m∗ denotes the number
of mistakes made by the best expert. Putting the lower bound and the upper bound together and taking
logarithms we have

(1− ε)m
∗
≤ n(1− ε/2)m ⇒ m∗ ln(1− ε) ≤ lnn+m ln(1− ε/2).

By applying −ε− ε2 ≤ ln(1− ε) < −ε (see Lemma 1), we have −m∗(ε+ ε2) ≤ lnn−mε/2. Finally, by
rearranging and dividing by ε/2, we have m ≤ 2(1 + ε)m∗ + 2 lnn

ε .
Therefore, the weighted majority algorithm can perform acceptably in the sense that the number of

its mistakes is not more than roughly two times the number of mistakes by the best expert plus some
logarithmic term in n. Actually, the following simple example demonstrates that it is almost the best
that one can hope for; i.e., it is not possible to achieve a constant better than 2. Suppose there are two
experts e1, who always predicts 1, and expert e2, who always predicts 0. In the wost-case scenario, no
matter how we break a tie, all our prediction can go wrong while at least one of the two experts is right
in at least fifty percent of the situations.

Lemma 1. For 0 < ε < 1/2, −ε− ε2 ≤ ln(1− ε) < −ε.
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Proof. The Taylor series expansion for ln(1− ε) is given by ln(1− ε) =
∑
i∈N−εi/i. From the expansion

we have ln(1− ε) < ε as the discarded terms are negative.

The other half is equivalent to the inequality 1− ε ≥ e−ε−ε2 . By the convexity of the function e−ε−ε
2

,
the inequality is true for all ε less than a threshold εt. Substituting ε = 1/2 we have e−3/4 < 1/2 showing
that the threshold εt is more than 1/2.

1.2 Randomized Weighted Majority

So far, we argued the deterministic approach and observed we cannot have a guarantee factor better
than two, in comparison to the best expert. Does the randomness allow us to achieve a better perfor-
mance? The answer is yes. More accurately, we show a probabilistic strategy, which chooses experts with
probabilities proportional to their weights, makes at most (1 + ε)m∗ + lnn/ε mistakes in expectation.

At the beginning, all experts have weight 1; i.e., wi = 1 for 1 ≤ i ≤ n. In each round, the algorithm
chooses one of the experts at random with probability proportional to his/her weight and follows his/her
advice. Furthermore, it changes the weight wi to (1 − ε)wi for each expert ei who predicts wrongly in
this round. Let random variable m denote the number of mistakes made by the algorithm.

Theorem 2. For 0 < ε < 1/2, E[m] ≤ (1 + ε)m∗ + lnn/ε.

Proof. Let Fi be the weighted fraction of experts that are wrong in round i; clearly, E[m] =
∑
i Fi. Let

Φi denote the sum of the weights in the i-th round. Then, Φi ≤ Φi(1− εFi). The sum of the weights in

round T is upper-bounded by n
∏T
i=1(1− εFi). Assuming the best expert makes m∗ mistakes in the first

T rounds and utilizing the estimate 1− x ≤ e−x, we have

(1− ε)m
∗
≤ n

T∏
i=1

(1− εFi)⇒ (1− ε)m
∗
≤ ne−

∑T
i=1 εFi .

Taking logarithms and applying Lemma 1 result in

m∗ ln(1− ε) ≤ lnn− εE[m]⇒ E[m] ≤ − ln(1− ε)
ε

m∗ +
lnn

ε
≤ (1 + ε)m∗ +

lnn

ε
.

Note that as ε becomes smaller, our multiplicative overhead over m∗ is approaching 1, but the additive
term is growing. So, we usually want to choose ε in a way that balances out these two effects.

1.3 General Framework

Now, we discuss that the aforementioned method can be extended to capture a more general framework.
Assume the experts can choose from an arbitrary space of decisions and at the end of each round t a
“loss” lti ∈ [−ρ, ρ] for expert ei, 1 ≤ i ≤ n, is revealed. Note that we allow lti to be negative; i.e., they
can correspond to gains. A natural generalization of our algorithm from Section 1.2 would be to initially
assign weight wi = 1 to the expert ei for 1 ≤ i ≤ n and in each round the algorithm picks one of the
experts at random with probability proportional to his/her weight. Furthermore, the algorithm updates
wi = (1− ε

ρ l
t
i)wi.

Observe that in the case when ρ = 1 and lti is either 0 (for correct prediction) or 1 (for wrong
prediction) we are back in the same setting as Section 1.2. Very similar to the proof of Theorem 2, one can
show1 in the general setting the expected loss of this algorithm is upper bounded by

∑
t l
t
i+

∑
t |lti |+

ρ lnn
ε .

Note that as this result allows us to compare our performance with respect to an arbitrary expert then
in particular it has to hold for the best one among them.
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1For a detailed proof, see Theorem 2.1 in [AHK12].
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