
Advanced Algorithms 11/14, 2017

Lecture 9
Lecturer: Mohsen Ghaffari Scribe: Roko Zaja

This draft has not been checked by the lecturer yet.

1 Online Algorithms and Competitive Analysis

Competitive analysis is a method invented for analyzing online algorithms, in which the performance of
an online algorithm (which must satisfy an unpredictable sequence of requests, completing each request
without being able to see the future) is compared to the performance of an optimal offline algorithm
that can view the sequence of requests in advance. An algorithm is competitive if its competitive ratio
(the ratio between its performance and the offline algorithm’s performance) is bounded.

1.1 Ski Rental Problem

The ski rental problem is a name given to a class of problems in which there is a choice between continuing
to pay a repeating cost or paying a one-time cost which eliminates or reduces the repeating cost.

Assume that renting skis costs 1 dollar per day and buying skis costs B dollars. There is a number
of days d (unknown to you) that you will ski. We are looking for an algorithm that minimizes the ratio
between what you pay using the algorithm (that does not know d) and what you would pay optimally if
you knew d in advance.

Algorithm: Rent for the first B − 1 days of skiing. On day B, buy skis.

We claim that our algorithm is (2 − 1/B) competitive. Let σ be any request sequence specifying n
skiing days. Then our algorithm has cost n if n ≤ B − 1 and cost 2B − 1 if n ≥ B. Since the optimum
offline cost is given by minn,B, it follows that our algorithm is (2− 1/B) competitive.

We can’t do any better. Any competitive algorithm (ALG) must buy skis at some point in time, say,
day j.The adversary simply presents skiing requests until the algorithm buys and then ends the
sequence. Thus, the online cost is j − 1 +B, whereas the optimal offline cost is minj,B.

If j ≤ B, then
costALG

costOPT
=
j − 1 +B

minj,B
=
j − 1 +B

j
≥ 2− 1

B
.

If j ≥ B, then
costALG

costOPT
=
j − 1 +B

minj,B
=
j − 1 +B

B
≥ 2− 1

B
.

1.2 Linear Search

Our problem will be the list accessing problem. In this problem, we have a finite pile/list of papers on the
desk. Requests for elements in the list arrive online. At each moment we choose some of the following
steps:

• linear/sequential search to depth i that costs i

• free swap - move item i arbitrarily upwards at cost 0

• paid swap - pick consecutive items and swap them at cost 1

1



Move-To-Front (MTF): Upon finding the requested paper, move it to the foremost of the pile.

Let m denote the number of papers in the list. We define potential function Φ for the analysis of MTF .

Φ = number of pairs (i,j) ordered differently between ALG and OPT .

Let ci be the cost incurred by ALG on request ri. The amortized cost ai for serving request ri is
defined as

ai = ci + Φi − Φi−1.

The intuition behind a potential function and the amortized cost is to measure ”how good” the current
configuration of the online algorithm is compared to an optimal offline algorithm.

n∑
i=1

ci =

n∑
i=1

ai + Φ0 − Φn ≤
n∑

i=1

ai + Φ0.

If we can show that ai ≤ c ·OPT (ri), then it follows that the online algorithm ALG is c-competitive.
Let x be the element requested in ri, which is at position k in MTF ’s list and at position l in the list
organized by OPT . We denote the number of free and paid exchanges used by OPT on this request by
f and p, rspectively. Let v be the number of elements that are in front of x in MTF ’s list but behind x
in OPT ’s list before the request. Bt moving x to the front of the list, v inversions are removed and at
most j − 1 new inversions are created. Thus, the increase in potential due to actions of MTF is at
most −v + j − 1. By reorganizing the list, OPT can increase the potential by at most p− f . Thus, the
amortized cost satisfies:

ai = ci + Φi − Φi−1 = k + Φi − Φi−1 ≤ k − v + j − 1 + p− f ≤ j + p+ k − v − 1.

Recall that v is the number of elements in MTF ’s list that were in front of x but came after x in
OPT ’s list. Thus, k − 1− v elements are before x in both lists. Since OPT contained x at position j,
we conclude that k − v − 1 ≤ j − 1. We get

ai ≤ j + p+ (j − 1) ≤ 2(j + p)− 1 = 2OPT (ri)− 1.

Summing over all requests r1, ..., rn results in
∑n

i=1 ai ≤ 2OPT (σ)− n. Since OPT (σ) ≤ nm we can
conclude that

n∑
i=1

ai ≤ (2− 1

m
)OPT (σ).

We finally use that MTF and OPT start with identical list configurations such that Φ0 = 0. We get
the following theorem:

Theorem 1. MTF achieves a competitive ratio of (2− 1/m) for the list accessing problem.

1.3 Paging/Caching

We have a space of N pages, a cache and a hard drive. Cache can hold k pages. Accessing a page that
is in the cache costs 0 units. Accessing a page that is on the hard drive costs 1 unit(and we can move it
to the cache).
Sleator and Tarjan give tight bounds on the best competitive ratio which can be achieved by any de-
terministic online paging algorithm.They show that two commonly used paging algorithms achieve a
competitive ratio of k. These algorithms are FIFO which on a fault evicts the page that was placed in
the fast memory least recently and LRU which on a fault evicts the page that was used least recently.

Definition 2 (Conservative strategy). A strategy is conservative, if on any consecutive request sequence
containing k or fewer distinct page references, the algorithm will incur k or fewer units of cost.

Theorem 3. If A is any deterministic online paging algorithm, then its competitive ratio is at least k.

2



Proof. We assume that A and OPT both start with the same set of pages in the cache. The adversary
restricts its request sequence to a set of k + 1 pages: the k pages initially residing in the cache and one
other page. The adversary always requests the page that is outside of A’s cache. This process can be
continued for an arbitrary number of requests, resulting in an arbitrarily long sequence σ on which A
faults on every request.

We must now show that cost of OPT is dσ/ke. At each fault, the adversary adopts the following
strategy: evict the page whose first request occurs farthest in the future. Suppose a page x is evicted by
OPT. The next fault occurs the next time x is requested. The adversary is guaranteed that all the other
pages in the adversary’s fast memory will be requested before x is requested again. There will be at least
k − 1 pages requested between any two faults, so the adversary faults at most on every kth request.

Definition 4. The oblivious adversary(weak adversary) knows the algorithm’s code, but does not get to
know the randomized results of the algorithm.

1-Bit LRU (RMA): At first all pages in cache are unmarked.

• when accessing a page in cache, mark it

• when accessing a page not in cache, bring it to the cache and mark it, evict an arbitrary unmarked
page, if there is one

• otherwise evict an arbitrary page, replace it with the new page and unmark all the pages

Theorem 5. The RMA has competitive ratio O(log(k)) against any oblivious adversary.

Proof. Assume OPT and RMA start with the same cache contents. As before we divide the sequence σ
into phases. The ith phase ends immediately before the k + 1st distinct page is requested in the phase.
We will analyze the cost of both OPT and RMA phase by phase. Note that once a page is marked, it
is not evicted from the cache for the remainder of the phase. Therefore, if we denote the set of pages
requested in phase i by Pi, then at the end of a phase i, the contents of RMA’s cache is exactly Pi.
Furthermore, RMA will not fault twice on the same page within a phase. Thus, we need only account
for faults incurred on the first request to any given page in a phase.
Let mi be the number of new requests in phases i. A page requested in the first phase is also new if it is
not one of the pages initially in the cache. Since any new page is not in RMA’s cache at the beginning
of a phase, RMA must fault once on every new page requested. Now we must analyze the expected
number of faults on requests to old pages. What is the probability that RMA faults on the jth old page
requested? Let’s suppose that just before the jth old page is requested, there have been l new pages
requested so far in the phase. It is easy to show by induction that at this time there are exactly l pages
in Pi−1. Since the adversary has fixed the request in advance, the probability that it is not in the cache
is exactly l/k− (j + l− 1). Since l is always at most mi, the probability of a fault on the request to the
jth old page is at most

mi

k − (j +mi − 1)
.

Therefore, the expected cost of the marking algorithm in the ith phase is

E[costRMA(σ)] ≤ mi +

k−m∑
j=1

mi

k − (j +mi − 1)
≤ miHk.

Summing up over all phases, we get that the expected cost for the algorithm over the entire sequence is

E[costRMA(σ)] ≤ Hk

∑
i

mi.

Now we must prove a lower bound for the optimal cost. We claim that

costOPT (σ) ≥
∑
i

mi

2
.

3



Consider the (i− 1)st and ith phases. The number of distinct pages requested in both phases is k+mi.
Since OPT has only k pages in the cache at the beginning of the (i− 1)st phase, it must incur at least
mi faults during the two phases. Applying this argument to every pair of adjacent phases, we have that
costOPT (σ) ≥

∑
im2i and costOPT (σ) ≥

∑
im2i+1. Therefore OPT has cost at least the average of

these, i.e. costOPT (σ) ≥
∑

i
mi

2 . Thus, E[costRMA(σ)] ≤ 2HkcostOPT (σ).

Theorem 6. Let R be any randomized paging algorithm . If the number of pages is greater than or equal
to k + 1 where k is the size of the cache, the competitive ratio of R against any oblivious adversary is
Ω(log(k)).

Proof. We will find our lower bound on cR by exhibiting a probability distribution P for which cPA ≥ Hk

for all deterministic algorithms A. Let S be a set of k + 1 pages which include the k pages initially in
the cache. Take P to be the uniform distribution on the k + 1 pages in S. That is, a sequence σ of m
requests is generated by independently selecting each request at random from S. Clearly, the expected
performance of any deterministic algorithm on inputs generated from the distribution is

EP [costA(σ)] =
m

k + 1

for σ = m. To see this, note that the probability that a given requested page is not in the cache is 1
k+1 .

we now need an upper bound on the expected performance of OPT.
Once Again, we divide the sequence of page requests into non-overlapping phases such that each phase
contains maximal runs of request to at most k distinct pages. As we have seen, if there are r distinct
phases then the optimal algorithm can service the sequence with at most r + 1 faults. At the beginning
of a phase, OPT replaces the one page currently in the cache that will not be requested in the phase.
Therefore, if N(m) is the random variable which is the number of phases in a sequence σ of length m
(generated from P ), then the expected offline cost satisfies

EP [costOPT ] ≤ E[N(m) + 1].

Since the durations of successive phases, are independent, identically distributed random variables, we
have by the elementary renewal theorem that

lim
m→∞

m

E[N(m)]
= E[Xi],

where E[Xi] is the expected length of the ith phase.
The expected length of a phase, E[Xi] is easily seen to be (k + 1)Hk (”coupon collectors problem”).
Therefore, we have that

lim
m→∞

EP [costA]

EP [costOPT ] ≥ m/k+1
m/E[Xi]

≥ E[Xi]

k + 1
=

(k + 1) ·Hk

k + 1
= Hk.

1.4 Lost Cow Problem

A cow comes to an infinitely long straight fence. The cow knows that there is a gate in the fence, and
she wants to get to the other side. Unfortunately, she doesn’t know where the gate is located. Assume
that the gate is positioned an integer number of steps away from the cow and that the cow can only
recognize the gate when directly upon it. How can she optimally find the gate? We suppose the cow
knows that there is a gate somewhere but she does not know how far. What is the minimum number of
steps she must make to find the gate as a function of the actual (unknown) distance to the gate?

Theorem 7. The doubling strategy is 9-competitive for the lost cow problem.

References

4


	Online Algorithms and Competitive Analysis
	Ski Rental Problem
	Linear Search
	Paging/Caching
	Lost Cow Problem


