Advanced Algorithms

10/19, 2018

Exercise 04

Lecturer: Mohsen Ghaffari Teaching Assistant: Manuela Fischer

1 MAX-SAT

Consider a conjunctive normal form (CNF) formula on Boolean variables x_1, x_2, \ldots, x_n , that is, a formula defined as AND of a number m of clauses, each of which is the OR of some literals appearing either positively as x_i or negated as \bar{x}_i . Suppose that each clause c_j has some weight w_j . The goal is to find an assignment of TRUE/FALSE values to the literals with the objective of maximizing the total weight of the satisfied clauses.

- (A) Consider a clause that has $k \geq 1$ literals. Argue that the simple randomized algorithm that sets each variable at random (true or false, each with probability half) satisfied this clause with probability $(1-2^{-k})$.
- (B) Consider the linear program with objective

$$\begin{aligned} maximize & \sum_{j=1}^{m} w_{j} z_{j} \\ subject \ to \ \forall j \in \{1, 2, \dots, m\} : \sum_{i \in S_{j}^{+}} y_{i} + \sum_{i \in S_{j}^{-}} (1 - y_{i}) \geq z_{j} \\ \forall j \in \{1, 2, \dots, m\} : z_{j} \in [0, 1] \\ \forall i \in \{1, 2, \dots, n\} : y_{i} \in [0, 1] \end{aligned}$$

Here, S_j^+ denotes the set of variables that appear in the j^{th} clause positively, and S_j^- denotes the set of variables that appear in the j^{th} clause in a negated form. Explain how this is a relaxation of an integer linear program for our objective. Moreover, let (y^*, z^*) denote the optimal solution of this LP. Show that the natural randomized rounding algorithm that sets each x_i to be True with probability y_i^* provides the following guarantee: if the j^{th} clause has k literals, it is satisfied with probability at least $(1 - (1 - \frac{1}{k})^k)z_j^*$.

- (C) Notice that the first algorithm handles well large clauses and the second algorithm handles well the smaller clauses. Put the two together to get a 3/4 approximation algorithm for the MAX-SAT problem.
- (D) In part (B), we considered a linear randomized rounding process. Consider a non-linear round which rounds variable x_i to be true with probability $f(y_i^*)$ where $f:[0,1] \to [0,1]$ is an arbitrary function such that $f(y) \in [1-4^{-y},4^{y-1}]$. Prove that this non-linear rounding directly gives a 3/4 approximation algorithm.
- (E) Find a CNF such that there is a 3/4 gap between the value of the solution of LP described in part (B) and the optimal Boolean assignment to the variables. Hint: find a CNF with 4 clauses, each of weight 1, such that the LP has value 4 but any assignment satisfies at most 3 clauses. This implies that the 3/4 factor is the integrability gap of this LP formulation and no rounding technique for it will give an approximation better than 3/4.