
Advanced Algorithms 11/09, 2017

Exercise 08

Lecturer: Mohsen Ghaffari Teaching Assistant: Sebastian Brandt

1 Majority

In the class, we discussed the deterministic algorithm of Boyer and Moore which has space
complexity O(log n+ logm) and outputs an element such that if the stream has a majority, the
output is equal to this majority. Prove that any deterministic algorithm that is able to decide
whether a stream has a majority element or not needs space Ω(n) bits.

2 Frequent Elements

Extend the majority algorithm of Boyer and Moore, which we discussed in the class, to an
algorithm space complexity of O(k(log n + logm)) bits that outputs k elements that include
those that appear in more than 1/k fraction of the stream.

3 Morris’s Approximate Counting Algorithm

In Morris’s approximate counting algorithm, which we discussed in the class, prove that

E[22Xm ] =
3

2
m2 +

3

2
m + 1.

4 Pairwise Independent Hashing

Prove that given a prime number p, the random hash function ha,b(x) : Fp → Fp defined as
f(x) = ax + b mod p, where a and b are random numbers in {0, 1, . . . , p − 1} is a pairwise
independent hash function, that is, for every x, y ∈ {0, 2, . . . , p − 1} where x 6= y, and every
i, j ∈ {0, 1, . . . , p− 1}, we have Pr[f(x) = i and f(y) = j] = 1/p2.

5 Distinct Elements

Consider the algorithm that we saw in the class on November 5, for (1 + ε) approximation of
the number of distinct elements. We saw that the probability of undershooting by a (1 − ε)
factor is at most some constant c < 1/2. Prove that the probability of overshooting by a (1 + ε)
factor is also upper bounded by c < 1/2.

1


