Exercise 08

Lecturer: Mohsen Ghaffari
Teaching Assistant: Sebastian Brandt

1 Majority

In the class, we discussed the deterministic algorithm of Boyer and Moore which has space complexity $O(\log n+\log m)$ and outputs an element such that if the stream has a majority, the output is equal to this majority. Prove that any deterministic algorithm that is able to decide whether a stream has a majority element or not needs space $\Omega(n)$ bits.

2 Frequent Elements

Extend the majority algorithm of Boyer and Moore, which we discussed in the class, to an algorithm space complexity of $O(k(\log n+\log m))$ bits that outputs k elements that include those that appear in more than $1 / k$ fraction of the stream.

3 Morris's Approximate Counting Algorithm

In Morris's approximate counting algorithm, which we discussed in the class, prove that

$$
\mathbb{E}\left[2^{2 X_{m}}\right]=\frac{3}{2} m^{2}+\frac{3}{2} m+1
$$

4 Pairwise Independent Hashing

Prove that given a prime number p, the random hash function $h_{a, b}(x): \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ defined as $f(x)=a x+b \bmod p$, where a and b are random numbers in $\{0,1, \ldots, p-1\}$ is a pairwise independent hash function, that is, for every $x, y \in\{0,2, \ldots, p-1\}$ where $x \neq y$, and every $i, j \in\{0,1, \ldots, p-1\}$, we have $\operatorname{Pr}[f(x)=i$ and $f(y)=j]=1 / p^{2}$.

5 Distinct Elements

Consider the algorithm that we saw in the class on November 5 , for $(1+\varepsilon)$ approximation of the number of distinct elements. We saw that the probability of undershooting by a $(1-\varepsilon)$ factor is at most some constant $c<1 / 2$. Prove that the probability of overshooting by a $(1+\varepsilon)$ factor is also upper bounded by $c<1 / 2$.

