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Lecture 1
Lecturer: Mohsen Ghaffari Scribe: Michelle Sweering

1 Graph Sparsification — Preserving Distances, i.e., Spanners

In this lecture we want to sparsify graphs while preserving distances. We call these sparser subgraphs
spanners. The formal definition is as follows:

Definition 1 ((α, β)-spanner). Given values α, β ≥ 1 and an arbitrary undirected unweighted graph
with n-nodes G = (V,E), we call a spanning subgraph G′ ⊆ G an (α, β)-spanner of G if for every pair
s, t of vertices, we have

distG(s, t) ≤ distG′(s, t) ≤ α · distG(s, t) + β.

In particular (1, 0)-spanners preserve the graph exactly. Higher values of α and β let us delete more
edges, but we don’t want them to be very high either. In this lecture we focus on the two extremes:
multiplicative sparsification (β = 0) and additive sparsification (α = 1).

2 Multiplicative Spanners

In this section, we focus on purely multiplicative spanners, i.e., (α, β)-spanners where β = 0. We refer
to an (α, 0)-spanner as an α-multiplicative spanner.

Theorem 2. (Althofer et al. [ADD+93]) For every k ≥ 1, every n-node graph G has a (2k − 1)-
multiplicative spanner G′ ⊆ G with O(n1+1/k) edges.

Proof. First we observe that it is okay to remove an edge, if there is a path of length 2k − 1 or shorter
between its endpoints. Instead of removing edges one by one, we remove all edges and then add them
back in one by one, unless there is a path of length at most 2k− 1 between their endpoints. If such path
exists, there is no need to add an edge. The subgraph G′ that we obtain, is a (2k − 1)-multiplicative
spanner. Now we only have to show it does not have too many edges.

Note that the resulting graph has girth at least 2k + 1, i.e. G′ does not have a cycle of length 2k or
smaller. Suppose G′ has more than 2n1+1/k edges. We want to generate an induced subgraph G′′ ⊂ G′

whose vertices all have degree at least n1/k + 1. Remove repeatedly all vertices with degree less than
n1/k + 1. Each time we remove less than n1/k + 1 edges. So in total we remove less than n1+1/k + n
edges. However G′ has 2n1+1/k edges and some edges remain. Once we stop, all vertices have at least
n1/k + 1 neighbors. G′′ has two properties:

1. The minimal degree of G′′ is at least n1/k.

2. G′′ does not contain a cycle of length 2k or smaller.

We pick a vertex and count the number of vertices at distance at most k. Their number is at least

1 + (n1/k + 1) + (n1/k + 1)n1/k + (n1/k + 1)n2/k + ...+ (n1/k + 1)n(k−1)/k = 1 +
(n1/k + 1)(n− 1)

n1/k − 1
> n.

This is a contradiction, as there are only n vertices in G. Therefore G′ has less than 2n1+1/k edges.

This algorithm solves the problem in polynomial time. There is also an algorithm that solves this
problem in near linear time, which we will see in the problem set of this lecture.

The sparsity obtained by the above algorithm for stretch α = 2k−1 is conjectured to be optimal. The
concrete conjecture is actually about the existence of some graphs, which cannot be sparsified, without
stretching their edges by at least a 2k factor:

Conjecture 3. (Girth Conjecture of Erdős [Erd64]) For every k ≥ 1, there exists an n-node graph with
Ω(n1+1/k) edges and girth at least 2k + 2.

Notice that since the graph has girth 2k + 2, removing any single edge of it would stretch at least
one edge by a factor of 2k (why?). The conjecture remains widely open and has been proven only for for
small values of k, e.g., k = 1, 2, 3, 5.
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3 Additive Spanners

In this section, we focus on purely additive spanners, i.e., (α, β)-spanners where α = 1. We refer to 1
(1, β)-spanner as a β-additive spanner.

Theorem 4. (Aingworth et al. [ACIM99]) Every n-node graph G has a 2-additive spanner G′ ⊆ G with
Õ(n3/2) edges.

Proof. We partition the vertices of G into two types1: light vertices, which have degree at most n1/2,
and heavy vertices, which have degree more than n1/2. Now, we remove all edges except those incident
to a light vertex and call this new graph G′.

For every pair of vertices (s, t) consider a path Ps→t of minimal length in G. If all edges of Ps→t are
in G′, the distance between s and t remains the same. Suppose we found a set S such that all remaining
paths Ps→t contain a point in S. Now adding the BFS trees for the vertices in S—i.e., one BFS tree
rooted in each vertex of S—ensures that a shortest path exists from s to t exists.

Each heavy vertex has at least n1/2 neighbors. If instead of on the paths themselves, we can choose
the S elements in the neighorhoods of the paths, we can reduce the size of S, while increasing the
distances by at most 2. For that, we do as follows.

We build S by including each v ∈ V in S with probability p = 10 log n/
√
n, independently. The

expectation of the number of vertices sampled in the neighborhood of Ps→t is at least
√
n · p ≥ 10 log n.

Therefore, by Chernoff bound, with high probability there is at least one sample vertex in N(Ps→t).
Union bounding over all

(
n
2

)
pairs (s, t) gives that with high probability, for each pair (s, t) that have a

shortest path Ps→t with at least one heavy vertex, there is at least one sampled S-vertex in N(Ps→t).
Furthermore, a simple application of the Chernoff bound shows that, with high probability, |S| = O(np) =
O(
√
n log n). Hence, the number of the edges that we add to the spanner because of adding the BFSs

rooted in S is at most O(n
√
n log n).

Theorem 5. (Chechik [Che13]) Every n-node graph G has a 4-additive spanner G′ ⊆ G with Õ(n7/5)
edges.

Proof. The proof is somewhat similar to that of theorem 4. Again we keep all edges of light vertices,
but this time light means degree at most n2/5. For the shortest paths with heavy vertices we distinguish
two cases:

1. Paths Ps→t with at least n1/5 heavy vertices. For this case, we first argue that for any such path,
we must have |N(Ps→t)| > n3/5/3. First, notice that the summation of the neighborhood sizes of
the heavy vertices on Ps→t is at least n1/5 · n2/5, simply because we have n1/5 heavy vertices and
each contributes at least n2/5. However, we might have double-counting, in the sense of counting
each node in the neighborhood of the path many times. We next argue that each node can be
counted at most 3 times. For the sake of contradiction, suppose that there is a vertex v that is
adjacent to four vertices v1, v2, v3, v4 on the path (in this order).

dist(s, t) ≤ dist(s, v1) + dist(v1, v) + dist(v, v4) + dist(v4, t)

= dist(s, v1) + 2 + dist(v4, t)

< dist(s, v1) + dist(v1, v2) + dist(v2, v3) + dist(v3, v4) + dist(v4, t)

= dist(s, t)

This is a contradiction. Therefore |N(Ps→t)| > n3/5/3. We now sample vertices in V with proba-
bility p = n−3/5 log n. With high probability the sample will have a vertex in the neighborhood of
every shortest path with a heavy vertex as above. Add the BFS trees of the vertices in the sample.
Distances are increased by at most two, as we say in the proof of the previous theorem. Moreover,
with high probability, we have at most O(n · n−3/5 log n) sampled vertices. Since we add a full
BFS, which has at most n− 1 edges, for each sampled vertex, this is at most O(n7/5 log n) edges,
in total, that are added to the spanner.

2. Paths Ps→t with less than n1/5 heavy vertices
Pick O(n3/5 log n) heavy vertices at random. We call them the heavy centers. With high probability
each heavy vertex has a heavy center neighbor. For each pair of heavy vertices (c1, c2) we add a

1We note that in this scheme, one can slightly optimize the bounds and achieve a spanner with n
√
n logn edges, by

picking
√
n logn as the threshold for heavy vertices. However, for simplicity, we do not focus on these logarithmic factors.
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shortest path between c1 and c2 among all paths that have at most n1/5 internal (i.e., ignoring
endpoints) heavy vertices, if such a path exists. Notice that we are not necessarily taking the
shortest path among the two centers, as that might have many more heavy vertices.

Next, we argue that for any such path Ps→t that has less than n1/5 heavy vertices, the constructed
spanner includes a path with length at most dist(s, t) + 4. Let h1 be the first heavy node on Ps→t
and h` be the last heavy vertex on it. Let c1 and c` be the corresponding heavy centers, which exists
with high probability, as argued above. Then, the spanner includes a path between c1 and c` that
has length at most dist(h1, h`)+2. The reason is that, the path (c1, h1), h1 → h`, (h`, c`) is one path
connecting c1 to c` that has at most n1/5 internal heavy vertices and has length dist(h1, h`) + 2,
and we add the shortest such path connecting c1 to c` to the spanner. Then, there is a path in the
spanner connecting s to t by taking the segment of Ps→t from s to h1, then the edge (h1, c1), then
the afformentined path from (c1) to (c`), the edge (c`, h`), and finally the segment of Ps→t from h`
to t. This path has length at most dist(s, t) + 4.

If we relax the desired additive stretch, we can achieve even a sparser spanner graph, as captured by
the following theorem, which we do not prove in the class.

Theorem 6. (Baswana et al. [BKMP05]) Every n-node graph G has a 6-additive spanner G′ ⊆ G with
Õ(n4/3) edges.

Given the trend shown in the previous three theorems, one would expect that further increasing the
additive stretch of spanners to larger constants should allow for even less edges. This is however not the
case as stated in the following theorem.

Theorem 7. (Abboud and Bodwin. [AB16]) For any constant ε > 0, there exists an n-node graph that
has no 6-additive spanner with O(n4/3− ε) edges. In fact, for any small fixed ε > 0, there is a δ > 0 and
an n-graph that has no nδ-additive spanners with at most n4/3−ε edges.

That is, perhaps surprisingly, O(n4/3) is the best possible sparsity for any constant additive spanner.
It remains an open problem whether a 4-additive spanner with O(n4/3) exists:

Open Problem 8. Prove (or disprove) that every n-node graph G has a 4-additive spanner G′ ⊆ G
with Õ(n4/3) edges.
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