
Advanced Algorithms 02/10, 2017

Lecture 3: Approximation Algorithms 1
Lecturer: Mohsen Ghaffari Scribe: Simon Schölly

1 Set Cover, Vertex Cover, and Hypergraph Matching

1.1 Set Cover

Problem (Set Cover) Given a universe U of elements {1, . . . , n}, and collection of subsets S =
{S1, . . . , Sm} of subsets of U , together with cost a cost function c(Si) > 0, find a minimum cost subset
of S, that covers all elements in U .
The problem is known to be NP-Complete, therefore we are interested in algorithms that give us a good
approximation for the optimum. Today we will look at greedy algorithms.

Greedy Set Cover Algorithm [Chv79] Let OPT be the optimal cost for the set cover problem. We
will develop a simple greedy algorithm and show that its output will differ by a certain factor from OPT.
The idea is simply to distribute the cost of picking a set Si over all elements that are newly covered.
Then we always pick the set with the lowest price-per-item, until we have covered all elements.
In pseudo-code have have

C ← ∅
Result← ∅
whi le C 6= U

S ← arg minS∈S
c(S)
|S\C|

∀e ∈ (S \ C) : price-per-item(e)← c(S)
|S\C|

C ← C ∪ S
Result← Result ∪ {S}

end
return Result

Theorem 1. The algorithm gives us a lnn + O(1) approximation for set cover.

Proof. It is easy to see, that all n elements are covered by the output of the algorithm. Let e1, . . . , en
be the elements in the order they are covered by the algorithm. At iteration k, there must be a set from
S that is contained in the optimal solution and covers some of the remaining elements U \ C including
ek at cost at most OPT. Thus we have

price-per-item(ek) ≤ OPT

|U \ C|
=

OPT

n− k + 1

and using this, we can upper bound the total cost of the greedy solution by

Total Cost =

n∑
k=1

price-per-item(ek) ≤
n∑

k=1

OPT

n− k + 1
=

n∑
k=1

OPT

k
= OPT ·Hn ≈ OPT · (lnn + 0.6)

1.2 From Set Cover to Vertex Cover

Set Cover as a Hypergraph We can view an instance of the set cover as a hypergraph where
the vertices are the m subsets and the edges are the n elements, that is, a set Si is contained in a hy-
peredge j, if Si as a set contains element j. Then we get the following two quantities:

• max degree ∆ := maxv∈V (H) deg(v) ≡ size of the largest subset Si.

• rank f := maxe∈E(H) |e| ≡ largest occurrence of an element in the subsets.

1

Special case 1 (small ∆): If ∆ is small, we get a better approximation-factor:

Theorem 2. [Chv79] The greedy algorithm gives a H∆-approximation.

Proof Sketch. Consider one of the sets Si in OPT. We analyze how much we pay for covering the elements
of this set, and argue that we do not pay more than c(Si) ·H∆. The approximation factor then follows.
Suppose that Si covers d elements. Note that by definition of ∆, we have d ≤ ∆. The first time that

the algorithm takes any set that covers at least one element in Si, the price per item is at most c(Si)
d ,

because otherwise taking Si would give a better price-per-item. Similarly, when k items of Si are already

covered and d − k remain, the price-per-item for the algorithm is at most c(Si)
d−k . Hence, similar to the

proof of Theorem 1, we can conclude that the overal price paid for covering elements of Si is at most∑d
k=1

c(Si)
d−k+1 = c(Si) ·H∆.

Special case 2: The next special case gets us to the setting of vertex cover. Let us assume that each
set has the same cost. Moreover, for simplicity, let us start with the case f = 2. First, we repeat some
terms from graph theory here

• Vertex Cover : A set of vertices of such that each hyperedge contains at least one vertex of this set.

• Minimal-cardinality vertex cover : A vertex cover of minimal cardinality

• Matching : A set of hyperedges of a graph, such that no two hyperedges share a common vertex.

• Maximal Matching : A matching such that no additional hyperedge can be added to it.

• Maximum Matching : A matching of maximum cardinality. Note that every maximum matching is
also a maximal matching.

Now in the case f = 2, our hypergraph is just a graph. If we pick a minimal-cardinality vertex cover,
then this is just a minimal-cardinality subset of S that covers all elements. Unfortunately the vertex
cover problem is also known to by NP-complete in general.
There are some well known connections between vertex covers and matching, for example

Theorem (Königs Theorem). In a bipartite graph the number of vertices in a minimal-cardinality vertex
cover equals the number of edges in a maximum matching.

Observation 3. Any matching is always smaller than the size of any vertex covering

This observation gives us an idea for an approximation algorithm in case f = 2

Theorem 4. (An 2-approximation algorithm for Vertex Cover:) For f = 2, simply picking a maximal-
matching M and outputting all its endpoints gives a 2-approximation of minimum-cardinality vertex
cover.

Proof. The output set is a vertex cover C, as each edge must have one of its endpoints in the chosen vertex-
cover (otherwise the matching was not maximal). Since |M | ≤ OPT , we have |C| = 2·|M | ≤ 2·OPT .

Extension to f-approximation algorithm for Hypergraph Vertex Cover: Similarly, for any
larger f , we can get an f approximation by picking a maximal matching—i.e., a matching to which we
cannot add any more hyperedges—and outputting all of its endpoints.

1.3 Hypergraph Matching

Above we used maximal matchings in hypergraphs, which are easy to find. How about the maximum
matching?

Maximum Matching Approximation Algorithm: If we want to find the size OPT of a maximum
matching on a hypergraph of rank f , there is a simple greedy f -approximation algorithm: Build a
maximal matching by greedily taking hyperedges from our graph as long as it is possible. The resulting
matching is clearly a maximal matching, as no further hyperedges can be added to it.

Lemma 5. Any maximal matching is an f -approximation of maximum matching.

2

Proof. Imagine that we give 1 dollar to every hyperedge e of OPT, and ask these hyperedges to move
their money to their neighboring hyperedges in the maximal matching. That is, each hyperedge e of OPT
gives its 1 dollar to one of the incident maximal matching hyperedge (there must be one). A hyperedge
of the output cannot overlap with more than f hyperedges of OPT (why?). Thus every hyperedge of the
output receives at most f dollars. Since we have moved all the OPT dollars to the output matching,
while each received at most f dollars, this implies that the cardinality of the output matching must be
at least OPT/f .

2 Minimum Makespan Scheduling

Problem (Minimum Makespan Scheduling): We have a set of m identical machines and a set of
n tasks, where each task takes p1, . . . , pn time to run on a machine. Each machine can only run one task
at a time and a task can only be assigned to one machine. We want to assign the tasks in such a way as
to minimize the total time, called the makespan, until all tasks are finished.

Graham’s Algorithm (also called List Scheduling Algorithm): [Gra66] Put each task on the
least loaded machine at that point.

Theorem 6. Graham’s gives a 2-approximation of the optimal makespan time OPT.

Proof. We use the following two obvious lower bounds on OPT:

• LB1: avg load =
∑

pi

m ≤ OPT

• LB2: pmax ≤ OPT

where pmax is the task with the longest time. Let Cmax be the makespan return by Graham’s algorithm
and let j be the task, that finishes last. Then Cmax− pj ≤ 1

m

∑
i pi ≤ OPT and pj ≤ OPT immediately

gives us Cmax ≤ 2 ·OPT .

This version of Graham’s algorithm works in an online fashion, i.e. we can expect the next task to
arrive, while the previous tasks are already appointed to their machines. If we know the the times of all
the tasks already in the beginning, we get an even better result.

Theorem 7. Graham’s algorithm applied to a sorted list with non-increasing processing times gives a
4
3 ·OPT-approximation.

Proof. Let p1 ≥ p2 ≥ · · · ≥ pn and let j be the last task to finish, in Graham’s algorithm. Then we can
w.l.o.g assume that pj = pn, as otherwise we could remove the last task, which would decrease OPT but
not the outcome of the algorithm, so we would get an even better bound. If pn ≤ OPT

3 , then we are
done.
Otherwise suppose pn > OPT

3 . We will show, that in this case, Graham’s algorithm actually achieves the
optimum. For the sake of contradiction, suppose that pn finishes in Graham’s algorithm after OPT time.
Consider the time that Graham’s algorithm was adding pn. Let’s order the machines in such a way that
the first i machines get a single task and the other m− i get two tasks (right before adding pn). Notice
that no machine can have zero tasks (as then pn would be added on that machine and it would finish in
pn < OPT time) or more than two tasks (as that would sum up to more than 3pn > OPT. We call the
first kind of tasks heavy tasks. Notice that we were unable to add pn to the machines with single heavy
tasks and still finish in OPT time. Since pn is smaller than all tasks before it, this means that even in the
optimum schedule, these heavy tasks must be alone. There are 2(m− i) + 1 other (non-heavy) tasks —
including pn — and somehow in the optimum schedule, these should be processed in the remaining m− i
machines. But that is a contradiction as this means some machine should process at least three tasks,
each of them of size pn > OPT

3 , which means the optimum schedule finishes in time strictly more than
OPT. Having arrived at contradiction starting from the assumption that Graham’s algorithm finishes
after OPT time, we conclude that the assumption is incorrect, i.e., Graham’s algorithm finishes in OPT
time (in this case of pn > OPT

3).

3

References

[Chv79] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233–235, 1979.

[Gra66] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Jour-
nal, 45(9):1563–1581, 1966.

4

	Set Cover, Vertex Cover, and Hypergraph Matching
	Set Cover
	From Set Cover to Vertex Cover
	Hypergraph Matching

	Minimum Makespan Scheduling

