
Advanced Algorithms 10/31, 2017

Lecture 7
Lecturer: Mohsen Ghaffari Scribe: Martin Nägele

This draft has not been checked by the lecturer yet.

1 Probabilistic Tree Embedding

The technique of probabilistic tree embeddings was introduced by Bartal in 1996 [Bar96]. The motivation
is that many metric problems on graphs are easy to solve if the graph is a tree (and thus, the metric is
a tree metric), so if we can approximate a general graph by a tree, we can solve the problem on the tree
and thus obtain an approximation for the original problem.

1.1 Setting

An undirected graph G = (V,E) induces a metric space (V, dG), where dG : E → R≥0 given by

dG(u, v) = distance between u and v in G

is the graph metric. Ideally, we would like to find a tree T on a vertex set V ′, V ⊆ V ′, such that the
induced tree metric dT satisfies

∀u, v ∈ V : dG(u, v) ≤ dT (u, v) ≤ c · dG(u, v) ,

for some reasonably small factor c. However, by considering G to be a cycle, we immediately see that
we need c = Ω(n), as the one edge of the cycle not contained in T is stretched by a factor of n − 1.
Thus, Bartal introduced the notion of probabilistic tree embeddings. Instead of a single tree, we consider
a collection T = {T1, T2, . . . , Tk} of trees on a vertex set V ′ ⊇ V , together with a probability distribution

on T such that Pr(Ti) = pi, for some p1, . . . , pk with
∑k

i=1 pi = 1. We will see that for any graph G,
there exists such a probabilistic tree embedding with the following two properties:

∀u, v ∈ V, ∀i ∈ [k] : dG(u, v) ≤ dTi(u, v) , (1)

and ∀u, v ∈ V : ET∼T [dT (u, v)] ≤ O(log n) · dG(u, v) . (2)

As shown by Bartal in [Bar96], the factor of O(log n) is asymptotically best possible.

1.2 FRT tree embeddings

We present an algorithm by Fakcharoenphol, Rao, and Talwar [FRT03] constructing a probabilistic tree
embedding of a graph G = (V,E) with the above properties.

An iterative construction. Suppose D is the diameter of G. The idea is to decompose G into disjoint
subgraphs G1, G2, . . . , G` (in the sense of partitioning the vertices of G) using a randomised procedure
such that

(a) for all i ∈ [`], we have diam(Gi) ≤ D
2 , and

(b) for all u, v ∈ V , the probability that u and v are assigned to different parts Gi is at most dG(u,v)
D ·α,

for some α.

We will see a method to achieve the above decomposition with α = O(log n). For now, we assume that
we can obtain the stated guarantees for any graph. We construct a first layer of our tree T by invoking
the decomposition result for G, introducing a root r and connecting it the components Gi with edges
of weight D. We iteratively apply this construction to all components, with the weights on the edges
reducing by a factor of 2 in each step, see Figure 1.

The iterative construction ends once all remaining subgraphs are single nodes. Thus, the resulting
tree T has precisely the vertices of G as leaves, and all internal vertices were added in the process of

1

r

G1 G2
. . . G`

D
D

D

r

r1

D

G11
. . . G1`1

D
2

D
2

r2

D

G21
. . . G2`2

D
2

D
2

. . .

r`

D

G`1
. . . G```

D
2

D
2

Figure 1: Two steps of constructing a tree T by iteratively splitting graphs into subgraphs.

constructing the tree. Note that in each step, the partition of the current graph into disjoint subgraphs
will be done using a randomised procedure, thus the resulting tree T is actually a random object from
a finite collection T of trees.

Moreover, note that the weights on the edges of any path from the root r to a leaf have weights
D, D2 ,

D
4 , . . ., hence its length is, if the path has k edges,

D +
D

2
+
D

4
+ . . .+

D

2k−1
<

D

1− 1
2

= 2D ,

and thus, T satisfies diam(T) ≤ 4D. Moreover, by induction and using property (a) of the graph
partitions, it is easy to see that for any u, v ∈ V , we have dG(u, v) ≤ dT (u, v) on every level of the above
iterative construction, and hence also at the very end. Consequently, the family of trees T that can be
obtained through our construction satisfies property (1).

To see that property (2) is satisfied as well, fix u, v ∈ V and let Ai be the event that the nodes u and
v are separated at the ith level of the recursion. Then, we have

E[dT (u, v)] ≤ Pr[A1] · 4D + Pr
[
A2|A1

]
· 4D

2
+ Pr

[
A3|A1 ∩A2

]
· 4D

4
+ . . . ,

because the distance of two vertices that are separated at the ith level can be bounded by 4D
2i−1 . Cal-

culating the probabilities in the above bound is easy: By property (a) of the graph decomposition, a
subgraph at the (i − 1)th level of the recursion has diameter at most D

2i−1 , and hence by property (b),

the probability of separating two vertices at level i is bounded by dG(u,v)
D/2i−1 · α from above. Using this, we

get the bound

E[dT (u, v)] ≤ dG(u, v)α

D
· 4D +

dG(u, v)α

D/2
· 4D

2
+
dG(u, v)α

D/4
· 4D

4
+ . . . = 4α · logD · dG(u, v) , (3)

where the factor logD comes from the fact that the recursion has at most logD many levels, as the
initial graph G has diameter D.

Using the decomposition method with α = O(log n), we thus get property (2) with a factor of
O(logD · log n) instead of O(log n). A better analysis will later improve this to the desired factor.

Randomised graph decomposition. We now put the focus on obtaining the decomposition result
used above. There are various such results in literature, including results by Linial and Saks (1993)
[LS91], Bartal (1996) [Bar96], and Carlinescu, Karloff, and Rabani (2001) [CKR01]. We study the last
one here, where the algorithm is as follows:

1. Pick a radius θ ∈
[
D
8 ,

D
4

]
at random.

2. Permute, via a random permutation π, all vertices of G.

3. The ith subgraph Gi is the graph induced by the vertices in B(π(i), θ) \
⋃

j<iB(π(j), θ) (balls use

distances with respect to G, and we still build the ith ball if π(i) is already included).

With this construction, each of the balls obviously has radius at most D
4 and thus diameter at most D

2 ,
so property (a) is guaranteed by construction, and it remains to show property (b). We need to obtain
an upper bound on the probability that the two vertices u and v are not assigned to the same component
Gi. As an upper bound, it is enough to bound the probability that the whole ball B(u, r) is not assigned
to the same component. If B(u, r) is not assigned to the same component, we say that B(u, r) is cut.
Note that in this case, there is a vertex w ∈ V and i ∈ [n] with π(i) = w such that

2

(a) for all j < i, Gj ∩B(u, r) = ∅, and

(b) Gj ∩B(u, r) 6= ∅ and B(u, r) 6⊆ Gj .

We then say that B(u, r) is cut by w. In other words, if B(u, r) is cut by w = π(i), then the component
Gi cuts B(u, r) into two pieces (condition (b)), and this did not happen when constructing previous
components Gj with j < i. For the analysis, let v1, v2, . . . be the vertices of G sorted in a non-decreasing
order based on the distance from u. Note that

Pr[B(u, r) is cut] =

n∑
i=1

Pr[B(u, r) is cut by vi] (4)

There are two things that need to happen such that B(u, r) is cut by vi: First, the radius θ has to
be in the right range, which is the interval (d(vi, u) − r, d(vi, u) + r) of length 2r. Second, all vertices
v1, . . . , vi−1 (which have shorter distance to u than vi) have to appear after vi in the permutation π, as
else, vi would not be the first vertex at which the ball B(u, r) is touched. The corresponding probabilities
for these events are at most 2r

D/8 and 1
i , respectively. Plugging this into the above sum, we obtain

Pr[B(u, r) is cut] ≤
n∑

i=1

2r

D/8

1

i
≤ 16r · lnn

D
, (5)

which is the desired result with α = c · log n, for some constant c.

Improving the analysis. We can assume without loss of generality that r ≤ D
16 . Note that in

(4) and (5), we do not have to sum over all vertices: It is enough to sum over vertices vi such that
θ − r ≤ d(vi, u) ≤ θ + r. Indeed, if θ − r > d(vi, u), then all of B(u, r) is covered by B(vi, θ); if
d(vi, u) > θ+r, then B(u, r) and B(vi, θ) are disjoint. By the assumption on the size of r, we immediately
see that the interesting vertices vi are a subset of those vi with d(vi, u) ∈

[
D
16 ,

D
2

]
. Restricting the

harmonic sum in (5) to only the vertices with distances in this range, we obtain the better bound

Pr[B(u, r) is cut] ≤ 2r

D/8

|B(u,D/2)|∑
i=|B(u,D/16)|

1

i
≤ 16r

D
· ln
(
|B(u,D/2)|
|B(u,D/16)|

)
,

and thus, we obtain the decomposition property (b) with a factor αD = ln
(
|B(u,D/2)|
|B(u,D/16)|

)
, depending on

the diameter of the graph that is decomposed. Using this in (3), we get the bound

E[dT (u, v)] ≤ 4 · dG(u, v) · (αD + αD/2 + αD/4 + . . .) ≤ 12 · lnn · dG(u, v) ,

which is of the desired form O(log n) · dG(u, v). Indeed, note that in the sum αD + αD/2 + . . ., after
writing log(x/y) = log(x)− log(y), all but three terms cancel, and each of these can be bounded by lnn.

2 Application: Buy-at-Bulk Network Design

Given: A weighted undirected graph G = (V,E) with edge lengths `e for all e ∈ E, pairs (si, ti) of
vertices, and demands di.

Goal: For each i, route di units of commodity i from si to ti through some si-ti-path Psi,ti in G such
that the total costs are minimized, where the cost of a connection of capacity ce on edge e is f(ce) · `e,
for some subadditive function f , i.e., a function with the property f(x+ y) ≤ f(x) + f(y). For each edge
e ∈ E, ce must be

∑
e∈Psi,ti

D(i).

Special case: Trees. In this case, finding a solution is trivial: There is only one unique path between
any two vertices, so there is no alternative to choosing that path. We can thus hope that obtaining a
probabilitstic tree embedding for the graph metric of G, and solving the problem on the tree, gives an
approximation.

3

Algorithm. Let d be the distance metric in G = (V,E), and embed d into a probabilistic tree metric
(V ′, T). We first want to transform this tree metric to another tree metric (V, T ′) on the original vertex
set. For each v ∈ V such that the parent of v in T is not in V , contract the edge connecting V to its
parent. This potentially decreases distances, but if we multiply everything by a factor of 4 in the end,
we are safe (by the geometric decay of the distances in the tree that we constructed). Now solve the
network design problem on the tree T ′ (i.e., find the right paths in T ′), and project it back into the
original graph: For each edge (x, y) in T ′, find a shortest x-y-path in in the original graph, and then
combine all those paths to obtain a solution in G.

Analysis. Let OPT be the optimal solution in the original graph, let SOL denote our solution. We
have

SOL projected back on G ≤ SOL on T ′

SOL on T ′ ≤ OPT projected to T ′

E[OPT projected to T ′] ≤ O(log n) ·OPT

The first inequality follows from subadditivity of f and the fact that distances in G are shorter than in
G′. The second one is true as SOL is the best solution on T ′. Finally, the third one follows from the
fact that distances are streched by a log n-factor, so costs increase by a log n-factor. Together, the three
inequalities prove that we indeed found a O(log n)-approximation (in expectation).

References

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proc. of the Symp. on Found. of Comp. Sci. (FOCS), pages 184–, 1996.

[CKR01] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the 0-
extension problem. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’01, pages 8–16, Philadelphia, PA, USA, 2001. Society for Industrial and
Applied Mathematics.

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating ar-
bitrary metrics by tree metrics. In Proc. of the Symp. on Theory of Comp. (STOC), pages
448–455, 2003.

[LS91] Nathan Linial and Michael Saks. Decomposing graphs into regions of small diameter. In
Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’91,
pages 320–330, 1991.

4

	Probabilistic Tree Embedding
	Setting
	FRT tree embeddings

	Application: Buy-at-Bulk Network Design

