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1 Graph as a geometric object

Let us start with some structural insights regarding geometric structure of a graphs. In example, we
might have a representation of cuts in G as a property of its geometric embedding. Ideas below are form
Linial, London and Rabinovich [LLR95].

For a cut S ⊆ V we define δS as a set of edges going “across” S, that is δS = {(u, v) : u ∈ S∧v ∈ V \S}.

Definition 1. An elementary cut metric associated with S is: dSij = 1, if (i, j) ∈ δS, dSij = 0 otherwise.

Given edge capacities c : E → R+, we write down an IP.

Variables: dij ∈ {0, 1} for i, j ∈ V .
Objective and Constraints:

min
∑
i,j

cij · dij

s.t. ∀i,j,k dij ≤ dik + dkj

dst = 1

A d∗ being a solution to above is an elementary cut metric associated with a min s-t cut in G.
Relaxing this IP to LP, we obtain.

Variables: dij for i, j ∈ V .
Objective and Constraints:

min
∑
i,j

cij · dij

s.t. ∀i,j,k dij ≤ dik + dkj

∀i,jdij ≥ 0

dst ≥ 1

We obtain an object for which dst = 1. Moreover, it can be shown that it is a linear combination of
elementary cut metrics: there is a weight function y : 2V → R+ s.t.

dij =
∑

S⊆V :ij∈δS

y(S).

Any linear combination of elementary cut metrics is called a cut metric.

2 Warm up: Min s-t cut via LP

Assume that d∗ is a minimal solution to LP. How to extract the cut from d∗? Idea: plot the vertices
according to d∗(s, v), call their coordinates x0 = 0 ≤ x1 ≤ ... ≤ xn = 1. Natural cuts are vertical lines,
that is separating xi−1 (and smaller indices) from xi (and larger indices).

Theorem 2. Smallest vertical s-t cut is the smallest s-t cut.

Proof. Let Ej be the said vertical cut and define its capacity cj =
∑
e=(u,v)∈δEj

ce, and take as weights

yj = xj − xj−1. It follows that d∗e ≥
∑
j:e∈Ej

yj .
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Consider cost of optimal solution of LP:

OPT(LP) =
∑
e

ced
∗
e ≥

∑
e

ce
∑
j:e∈Ej

yj =
∑
j

∑
e∈Ej

ceyj =
∑
j

yj
∑
e∈Ej

ce =

=
∑
j

yjcj ≥
∑
j

yj · cjmin
= cjmin

∑
j

(xj − xj−1) = cjmin
dst ≥ cjmin

Since OPT(IP) ≥ OPT(LP), it follows that cjmin
is the min-cost s-t cut.

3 Sparsest cut

Let us consider some non-trivial (NP-hard) cut properties. For example, define sparsity of the cut to be

α(S) =
cap(δS)

min(|S|, |V \ S|)
.

We are interested in finding the sparsest cut, or the sparsity of the sparsest cut:

α(G) = min
S⊆V

α(S).

Other connected parameter is the flux of the graph (Leighton and Rao [LR88]):

flux(G) = min
S⊆V

cap(δS)

|S| · |V \ S|
.

flux is a 2-approximation of the sparsest cut.
We go into more general setting. Consider a pairwise demands demij for sending flow, and a capacities

capij . Then

min
S⊆V

cap(δS)

dem(δS)

is a trivial upper bound on the ratio of demands we can satisfy with flows, while keeping the flows
constrained by edge capacities. However, working with ratios is quite unwieldy, we like things to be
linear.

Variables: dij for i, j ∈ V .
Objective and Constraints:

min
∑

capijdij

s.t. ∀i,j,k dij ≤ dik + dkj

∀i,jdij ≥ 0∑
ij

demijdij = 1

Our plan in general:

1. solve LP above to obtain d∗,

2. we embed d∗ into Lp1 for some large enough dimension p,

3. from L1 embedding we obtain cut metric,

4. which decomposes to small number of elementary cut metrics,

5. we take the best of those cuts.

Step (2) follows from

Theorem 3. Any n point metric has embedding: φ : V → L
O(log2 n)
1 such that

dij
O(log n)

≤ |φ(i)− φ(j)|1 ≤ dij

where |x|1 =
∑
i |xi|
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result from Bourgain 80s, proof by Linial London Rabinovich [LLR95] (in the next section).
Step (3) follows from Any L1-metric on n points with dimension k = O(log2 n) can be written as a

cut metric which is a linear combination of (n− 1)k elementary cuts, denote them C.
Say

S∗ = arg min
S∈C

cap(δS)

dem(δS)

αS∗ =
cap(δS∗)

dem(δS∗)
≤

∑
S∈C cap(δS)y(S)∑
S∈C dem(δS)y(S)

=

∑
S⊆V cap(δS)y(S)∑
S⊆V dem(δS)y(S)

≤

≤
∑
ij capij · |φ(i)− φ(j)|1∑
ij demij · |φ(i)− φ(j)|1

≤
∑
ij capij · d∗(i, j)∑
ij demij · d

∗(i,j)
Θ(logn)

= Θ(log n)

∑
ij capij · d∗(i, j)∑
ij demij · d∗(i, j)

Thus the best cut we find is O(log n) factor away from fractional solution from the LP formulation, thus
O(log n) approximation to the OPT.

4 L1 Metric Embedding

Assume n-point metric space with metric d. We will embed it into a k = O(log2 n)-dimensional L1 space.
Take some S ⊆ V and let φ(v) = d(v, S) = mins∈S d(v, s). By triangle inequality: |φ(v) − φ(u)| ≤

d(u, v). Set Si to be a random subset of V by including each v ∈ V with probability 1/2i. Set φi(v) =
d(v, Si)/L (where L = log n) the i-th coordinate of φ. We need to show only that distances are not
reduced too much, as they are always at most than d(u, v).

We define
ρt = min

ρ
(|B(v, ρ)| ≥ 2t and |B(u, ρ)| ≥ 2t).

Obviously, they are non-decreasing: ρ0 ≤ ρ1 ≤ ...
Let us focus on t s.t. ρt < d(u, v)/2, i.e. ρt = min(d(u, v)/2, ρt). Then, w.l.o.g., |Bo(v, ρt)| ≤ 2t and

B|(u, ρt−1)| ≥ 2t−1 (we denote by Bo an open ball, and | · | counts the number of points).
There is

Pr[St ∩Bo(v, ρt) = ∅] ≥ e−1

and
Pr[St ∩B(u, ρt−1) 6= ∅] ≥ 1− e−0.5

and those events are independent. If this happens, then it contributes at least ρt − ρt−1 to the distance.
Then for some constant c,

E[|φt(v)− φt(u)|] ≥ c · ρt − ρt−1

L

E[|φ(v)− φ(u)|1] = c · d(u, v)/L,

To get w.h.p. instead of expectation, we increase number of dimensions to O(log2 n) to get w.h.p. of
success for the ball intersections.
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