Advanced Algorithms 18 September 2018

Lecture 1: Approximation Algorithms I
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Approximation algorithms

Unless P = NP, we do not expect efficient algorithms for NIP-hard problems. However, we are often able
to design efficient algorithms that give solutions that are provably close/approximate to the optimum .
We next formalize this.

Definition 1 (a-approximation). An algorithm A is an a-approzimation algorithm for a minimization

problem with respect to a cost metric c if for any problem instance I and for some optimum algorithm
OPT, c(A(I)) < a-c(OPT(I)).

Remark Maximization problems are defined similarly with ¢(A(I)) > a - c(OPT(I)).

2 Minimum set cover

Consider a universe Y = {ey, ..., e, } of n elements, a collection of subsets S = {51, ..., S} of m subsets
of U such that U = |J S, and a non-negative cost function ¢ : § — RT. Suppose S; = {e1, €2, e5}, then we
say that S; covers elements e1, eg, and e5. For any subset 7' C S, we define c(Ug, e Si) = >_g, e ¢(Si)-

Definition 2 (Minimum set cover problem). Given U, S, and ¢ : S — RT, find a subset S* C S such
that:

(i) (Set cover): Ug, ¢g- Si =U

(i) (Minimum cost): ¢(S*) is minimized.

Example
S el
Sy e
S3 es
Sy €4
€5

In this example, there are n = 5 vertices and m = 4 subsets S = {S1,52,55,S51}. Suppose the
cost function is defined as ¢(S;) = 2. Even though S3 U S, covers all vertices, it costs c¢(S3 U S;) =
¢(S3) 4+ ¢(S4) = 94 16 = 25. One can verify that the minimum set cover is S* = {51, 52, 53} with a cost
of ¢(S*) = 14. Notice that we want a minimum cover with respect to ¢ and not the number of subsets
chosen from S (unless ¢ is uniform cost).

2.1 A greedy minimum set cover algorithm

Minimum set cover is known to be NP-complete, hence we are interested in algorithms that give us a
good approximation for the optimum. In this section, we describe a greedy algorithm and prove that it
is a H,-approximate algorithm.

Algorithm 1 (cite?) is a greedy set cover algorithm. The intuition is as follows: Spread the cost ¢(.5;)
amongst the vertices that are newly covered by S;. The algorithm then greedily selects the set that has
the lowest price-per-item.

Algorithm 1 GREEDYSETCOVER(U, S, ¢)

T+ 0 > Selected subset of S
C 10 > Covered vertices
while C # U do
S; < argming, o\ ‘CS(% > Pick the set with the lowest price-per-item
T+ TU{S;} > Add S; to selection
C+—CuUs§s; > Update covered vertices
end while
return T

Consider a run of Algorithm 1 on the earlier example. On the first iteration, price-per-item(S;) =
2/3, price-per-item(S3) = 4, price-per-item(S3) = 9/2, and price-per-item(Ss) = 16/3; So, S is chosen.
On the second iteration, price-per-item(S3) = 4, price-per-item(S3) = 9, and price-per-item(Ss) = 16;
So, So was chosen. In the third iteration, price-per-item(S3) = 9, and price-per-item(S;) = 0o; so S3 was
chosen. Since all vertices are now covered, the algorithm terminates (coincidentally to the minimum set
cover). Notice that the price-per-item for the remaining sets change according to which vertices remain
uncovered. Furthermore, one can simply ignore S4 when it was no longer covers any uncovered vertices.

Theorem 3. Algorithm 1 gives us a Hy-approzimation for minimum set cover.

Proof. Since U = |J S, by the termination condition of algorithm 1, the output T is a valid set cover.
Consider any fized minimum set cover OPT. It remains to show that ¢(T') < H, - ¢(OPT). Let

€1,...,€, be the elements in the order they are covered by algorithm 1. Define price(e;) as the price-
per-item of the set that covered e; during the run of the algorithm.

Consider the moment in the algorithm where elements eq,...,ex_1 are already covered. Since there
is a cover of cost at most ¢(OPT) for the remaining n — k + 1 elements, then there must be an element
whose price is at most Cn(?:fl) We formalize this intuition with the argument below.

Since OPT is a set cover, there exists a subset of OPTy, C OPT that covers e . ..e,.

O O e
Not in
OPT
® O ex-1
O O ek
OPT, (O €r+1
OPT { O :
o\\o
O

Suppose OPTy, = {O1,...,0,}. We know the following:
1. 01,...,0, € S\ T. Otherwise, some element in ey, ..., e, would have been covered.

2. n—k+1=U\NC|<|0O1NUN\C)|+---+10,N U\ C)|, because some elements may be covered
more than once.
3. By definition, for each j € {1,...,p}, price-per-item(O,) = IOJ'?W((%'
Since the greedy algorithm will pick a set in S\ T with the lowest price-per-item, price(ey) < price-
per-item(O;) for all j € {1,...,p}. Hence,

c(0;) > price(ex) - 10, N WU\ C)|,¥5 € {1,...,p} (1)

Summing over all p sets, we have: ¢c(OPT) > ¢(OPTy) = 3°7_, ¢(0;) > price(ex) - 27—, [0; N U\ C)| >
price(eg)- U\ C| = price(ex) - (n—k+1), where the second inequality is due to Equation (1). Rearranging,

c

we get: price(ex) < Summing over all elements, we have:

— n—k+1"
" ¢(OPT) "
o(T) = Z Zprlce er) < Z e ¢(OPT) Z 7= c¢(OPT) -
SeT =1 k=1
The second equality is because the cost of sets is partitioned into the price(-) of all n vertices. O

Tight bound example for algorithm 1 During lecture, it was mentioned, without an explicit
example, that the bound is tight. We construct the example here.

Note that H,, = In(n) ++ < In(n) + 0.6 € O(log(n)), where ~ is the Euler-Mascheroni constant'.
Consider the following setup with n = 2- (2% — 1) elements, for some k € N\ {0}. Partition the elements
into groups of size 2-20,2-21,2.22 .. 2.2F"1 Let S = {S1,..., Sk, Sks1,Sksa}. For 1 <i <k, let
S; cover the group of size 2-2¢"1 = 2¢. Let Si41 and Sk cover half of each group (i.e. 2k _ 1 elements
each).

2 4 8 2.2k
elements elements elements elements
7//\\7 /*44’\444\77 7777 777 77 B
O 10Ol 0. O O Ol = |0 O = Ol Sen
1010 O] 10 O O O] =+ 10 O - O] Sk
Sl A92 Sé Sk

Suppose ¢(S;) =1,Vi € {1,...,k+2}. The greedy algorithm will pick S, then Sg_1, ..., and finally
S;. This is because 2-2F > n/2 and 2-2¢ > (n ZJ _i112-27)/2, for 1 <4 < k. This greedy set cover
costs k = O(log(n)). On the other hand, the minimum set cover is S* = {Sk11, Sk+2} with a cost of 2.

A series of works by Lund and Yannakakis [LY93], Feige [Fei98], and Moshkovitz [Mos15] showed
that it is NP-hard to always approximate set cover to within (1 — €) In|i/|, for any constant € > 0.

Theorem 4 ([Mos15]). It is NP-hard to always approzimate set cover to within (1 — €)In|U|, for any
constant € > 0.

Proof. See [Mos15] O

2.2 Special cases

In this section, we show that one may improve the approximation factor from H,, if we have further as-
sumptions on the set cover instance. Define A = maz;c(y,... mydegree(S;) and f = maz;cq1,... mydegree(e;).
Consider the following two special cases of set cover instances:

1. A is small. i.e. All sets are small.

2. f is small. i.e. There is a small number of sets that cover any fixed element.

2.2.1 Small A

Theorem 5. Algorithm 1 gives us a Ha-approximation for minimum set cover.

Proof. Suppose OPTy, = {O1,...,0,}. Consider a set O; = {e;1,...,¢€;, 4} with degree(0;) = d < A.
Without loss of generality, suppose that the greedy algorithm covers e; 1, then e; >, and so on. For
1 < k < d, when e; is covered, price(e;) < dc_((,ZfF)l (The inequality could possibly be equal and O;
could be chosen by the greedy algorithm, covering €ik,---,€id). Hence, the greedy cost of covering

elements in O; (i.e. €;1,...,€;4) is at most Zk 1 d(g-'r)l = c(0y) - Zk | k = ¢(0;) - Hy < ¢(0;) - Ha.

Summing over all p sets to cover all n elements, we have ¢(T') < Ha - ¢(OPT). O

Thttps://en.wikipedia.org/wiki/Euler-Mascheroni_constant

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

Remarks We apply the same greedy algorithm for small A but analyzed in a more localized manner.
Crucially, in our analysis, we always work with the exact degree d and only use the fact d < A after
summation. Observe that A < n and the approximation factor equals that of Theorem 3 when A = n.

2.2.2 Small f

We first look at the case when f = 2, show that it is related to another graph problem, then generalize
the approach for general f.

Vertex cover as a special case of set cover

Definition 6 (Minimum vertex cover problem). Given a graph G = (V, E), find a subset S C V such
that:

(i) (Vertex cover): Ve = (u,v) € E,u€ S orve S
(ii) (Minimum cost): |S| is minimized

When f =2 and ¢(S;) = 1,VS; € S, the minimum set cover problem is essentially a minimum vertex
cover problem — Each element is an edge with endpoints being the two sets that cover it. One way to
obtain a 2-approximation to minimum vertex cover (and hence 2-approximation for this special case of
set cover) is to use a maximal matching.

Definition 7 (Maximal matching problem). Given a graph G = (V, E), find a subset M C E such that:
(i) (Matching): Ye;,e; € M, edges e; and e; do not share an endpoint.
(i) (Mazimal): Ve & M, adding M U {er} is not a matching (violates first property).

A related concept to maximal matching is maximum matching, where one tries to maximize the
set of M. By definition, any maximum matching is also maximal matching, but the converse is not
necessarily true. Consider the line graph of 6 vertices and 5 edges below. Both the set of blue edges
{(a,b), (c,d), (e, f)} and the set of red edges {(b,c),(d,e)} are valid maximal matchings, where the
maximum matching is the former.

Algorithm 2 GREEDYMAXIMALMATCHING(V, E)

M+ > Selected edges
C+0 > Set of incident vertices
while F # () do

e; = (u,v) + Pick any edge from F

M+ M U{e;} > Add e; to the matching
C + CU{u,v} > Add endpoints to incident vertices
Remove all edges in E that are incident to u or v

end while

return M

Algorithm 2 is a greedy maximal matching algorithm. The algorithm greedily adds any available
edge e; that is not yet incident to M, then exclude all edges that are adjacent to e;.

[O © - © O] Vertex cover C,
where |C] =2 - |M|
)

Maximal matching M

[Q O - 0O

Theorem 8. The set of incident vertices C in Algorithm 2 is a 2-approximation for minimum vertexr
cover.

Proof. Suppose, for a contradiction, that C' is not a vertex cover. Then, there exists an edge e = (u,v)
such that u € C and v € C. If such an edge exists, it would not be removed from E during in the greedy
algorithm. This is a contradiction, hence C is a vertex cover.

Consider the matching M. Any vertex cover has to include either endpoints, hence the minimum
vertex cover OPT has at least | M| vertices. By picking C' as our vertex cover, |C|=2-|M| < 2-|OPT|.
Therefore, C is a 2-approximation. O

We now generalize beyond f = 2 by considering hypergraphs. Hypergraphs are a generalization of
graphs in which an edge can join any number of vertices. Formally, a hypergraph H = (X, E) consists
of a set of vertices/elements X and a set of hyperedges E where each hyperedge is a non-empty subset
of P(X), the powerset of X. The minimum vertex cover problem and maximal matching problems are
defined similarly on a hypergraph.

Remark A hypergraph H = (X, E) can be viewed as a bipartite graph where the partitions X and F
respectively and the edges are between element € X and hyperedge e € F if x € e.

Example Suppose H = (X, E) where X = {a,b,¢,d,e} and E = {{a,b,c},{b,c},{a,d,e}}. A mini-
mum vertex cover of size 2 would be {a, e} (there are multiple size 2 vertex covers). Maximal matchings
would be {{a,b,c}} and {{b, c},{a,d,e}}, where the latter is the maximum matching.

Claim 9. For general f, we can find a f-approximation for minimum verter cover.
Sketch of Proof

e Greedily compute a maximal matching in the hypergraph, removing any edge involving vertices
that appear in the hyperedge of the greedy selection.

e Let C' be the set of all vertices involved in the greedily selected edges.

e (' can be showed to be an f-approximation in a similar manner as the proof in Theorem 8.

References

[Fei98] Uriel Feige. A threshold of In n for approximating set cover. Journal of the ACM (JACM),
45(4):634-652, 1998.

[LY93] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization prob-
lems. In Proc. of the Symp. on Theory of Comp. (STOC), pages 286—293, 1993.

[Mos15] Dana Moshkovitz. The projection games conjecture and the np-hardness of In n-approximating
set-cover. Theory of Computing, 11(1):221-235, 2015.

	Approximation algorithms
	Minimum set cover
	A greedy minimum set cover algorithm
	Special cases
	Small
	Small f

