
Advanced Algorithms 25 September 2018

Lecture 2: Approximation Algorithms II
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Approximation schemes

Previously, we described simple greedy algorithms that approximate the optimum for minimum set cover,
maximal matching and vertex cover. We now formalize the notion of efficient (1 + ε)-approximation
algorithms for minimization problems, a la [Vaz13].

Let I be an instance from the problem class of interest (e.g. minimum set cover). Denote |I| as the
size of the problem (in bits), and |Iu| as the size of the problem (in unary). For example, if the input is
just a number x (of at most n bits), then |I| = log2(x) = O(n) while |Iu| = O(2n). This distinction of
“size of input” will be important later when we discuss the knapsack problem.

Definition 1 (Polynomial time approximation algorithm (PTAS)). For cost metric c, an algorithm A
is a PTAS if for each fixed ε > 0, c(A(I)) ≤ (1 + ε) · c(OPT (I)) and A runs in poly(|I|).

By definition, the runtime for PTAS may depend arbitrarily on ε. A stricter related definition is that
of fully polynomial time approximation algorithms (FPTAS). Assuming P 6= NP, FPTAS is the best one
can hope for on NP-hard optimization problems.

Definition 2 (Fully polynomial time approximation algorithm (FPTAS)). For cost metric c, an algo-
rithm A is a FPTAS if for each fixed ε > 0, c(A(I)) ≤ (1 + ε) · c(OPT (I)) and A runs in poly(|I|, 1ε).

As before, (1−ε)-approximation, PTAS and FPTAS for maximization problems are defined similarly.

2 Knapsack

Definition 3 (Knapsack problem). Consider a set S with n items. Each item i has size(i) ∈ Z+ and
profit(i) ∈ Z+. Given a budget B, find a subset S∗ ⊆ S such that:

(i) (Fits budget):
∑
i∈S∗ size(i) ≤ B

(ii) (Maximum value):
∑
i∈S∗ profit(i) is maximized.

Let us denote pmax = maxi∈{1,...,n} profit(i). Further assume, without loss of generality, that
size(i) ≤ B, ∀i ∈ {1, . . . , n}. As these items cannot be chosen in S∗, we can remove them, and relabel,
in O(n) time without affecting the correctness of the result. Thus, observe that pmax ≤ profit(OPT (I))
because we can always pick at least one item, namely the highest valued one.

Example Denote the size and profit of each item by a pair i : (size(i), profit(i)). Consider an instance
where budget B = 10 and S = {1 : (10, 130), 2 : (7, 103), 3 : (6, 91), 4 : (4, 40), 5 : (3, 38)}. One can verify
that the best subset S∗ ⊆ S is {2 : (7, 103), 5 : (3, 38)}, yielding a total profit of 103 + 38 = 141.

2.1 An exact algorithm in poly(npmax) via dynamic programming (DP)

Observe that the maximum achievable profit is at most npmax, where S∗ = S. Using dynamic program-
ming (DP), we can form a n-by-(npmax) matrix M where M [i, p] is the smallest total sized subset from
{1, . . . , i} such that the total profit equals p. Trivially, set M [1, profit(1)] = size(1) and M [1, p] = ∞
for p 6= profit(1). To handle boundaries, we also define M [i, j] =∞ for j ≤ 0. Then,

M [i+ 1, p] =

{
M [i, p] if profit(i+ 1) > p (Cannot pick)

min{M [i, p], size(i+ 1) +M(i, p− profit(i+ 1))} if profit(i+ 1) ≤ p (May pick)

Since each cell can be computed in O(1) using the DP via the above recurrence, matrix M can be
filled in O(n2pmax) and S∗ may be extracted by back-tracing from M [n, npmax].

1

Remark This dynamic programming algorithm is not a PTAS because O(n2pmax) is exponential in
input problem size |I|. This is because the value pmax is just a single number, hence representing it only
requires log2(pmax) bits. As such, we call this DP algorithm a pseudo-polynomial time algorithm.

2.2 FPTAS for the knapsack problem via profit rounding

Algorithm 1 FPTAS-Knapsack(S, B, ε)
k ← max{1, b εpmax

n c} . Choice of k to be justified later
for i ∈ {1, . . . , n} do

profit′(i) = bprofit(i)k c . Round the profits
end for
Use DP described in Section 2.1 with same sizes and same budget B but re-scaled profits.
return Answer from DP

Algorithm 1 pre-processes the problem input and calls the dynamic programming algorithm described
in Section 2.1. Since we scaled down the profits, the new maximum profit is pmax

k , hence the DP now

runs in O(n
2pmax

k). To obtain a FPTAS for Knapsack, we pick k such that Algorithm 1 is a (1 − ε)-
approximation algorithm and runs in poly(n, 1ε).

Theorem 4. For any ε > 0 and knapsack instance I = (S, B), then Algorithm 1 (A) is a FPTAS.

Proof. Let loss(i) denote the decrease in value by using rounded profit′(i) for item i. By the profit

rounding definition, for each item i, loss(i) = profit(i)− kbprofit(i)k c ≤ k. Then, over all n items,∑n
i=1 loss(i) ≤ nk

< ε · pmax Since k = b εpmax

n c
≤ ε · profit(OPT (I)) Since pmax ≤ profit(OPT (I))

Thus, profit(A(I)) ≥ (1− ε) · profit(OPT (I)).

Furthermore, the A(I) runs in O(n
2pmax

k) = O(n
3

ε) ∈ poly(n, 1ε).

Example Recall the earlier example where budget B = 10 and S = {1 : (10, 130), 2 : (7, 103), 3 :

(6, 91), 4 : (4, 40), 5 : (3, 38)}. For ε = 1
2 , one would set k = max{1, b εpmax

n c} = max{1, b
1
2 ·130
5 c} = 13.

After rounding, we have S ′ = {1 : (10, 10), 2 : (7, 7), 3 : (6, 7), 4 : (4, 3), 5 : (3, 2)}. The optimum subset
from S ′ is {3 : (6, 7), 4 : (4, 3)} which translates to a total profit of 91 + 40 = 131 in the original problem.
As expected, 131 = profit(FPTAS-Knapsack(I)) ≥ (1− 1

2) · profit(OPT (I)) = 70.5.

3 Bin packing

Definition 5 (Bin packing problem). Given a set S with n items where each item i has size(i) ∈ (0, 1],
find the minimum number of unit-sized (size 1) bins that can hold all n items.

For any problem instance I, let OPT (I) be a optimum bin assignment and |OPT (I)| be the corre-
sponding minimum number of bins required. One can see that

∑n
i=1 size(i) ≤ |OPT (I)|.

Example Consider an instance where S = {0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4}, where |S| = n = 9.
Since

∑n
i=1 size(i) = 3, at least 3 bins are needed. One can verify that 3 bins suffices: b1 = b2 = b3 =

{0.5, 0.4, 0.1}. Hence, |OPT (S)| = 3.

2

b1 b2 b3

0.5

0.4

0.1

0.5

0.4

0.1

0.5

0.4

0.1

3.1 First-fit: A 2-approximation algorithm for bin packing

Algorithm 2 FirstFit(S)

B → ∅ . Collection of bins
for i ∈ {1, . . . , n} do

if size(i) ≤ size(b) for some bin b ∈ B then
size(b)← size(b)− size(i) . Put item i to existing bin b

else
B ← B ∪ {b′}, where size(b′) = 1− size(xi) . Put item i into a fresh bin b′

end if
end for
return B

Algorithm 2 shows the First-Fit algorithm which processes items one-by-one, creating new bins if an
item cannot fit into existing bins.

Lemma 6. Using First-Fit, at most one bin is less than half-full. That is, |{b ∈ B : size(b) ≤ 1
2}| ≤ 1.

Proof. Suppose, for a contradiction, that there are two bins bi and bj such that i < j, size(i) ≤ 1
2 and

size(j) ≤ 1
2 . Then, First-Fit could have put all items in bj into bi, and not create bj . Contradiction.

Theorem 7. First-Fit is a 2-approximation algorithm for bin packing.

Proof. Suppose First-Fit terminates with |B| = m bins. By lemma above,
∑n
i=1 size(i) >

m−1
2 . Since∑n

i=1 size(i) ≤ |OPT (I)|, we have m−1 < 2
∑n
i=1 size(i) ≤ 2 · |OPT (I)|. That is, m ≤ 2 · |OPT (I)|.

Recall the example where S = {0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4}. First-Fit will use 4 bins: b1 =
{0.5, 0.1, 0.1, 0.1}, b2 = b3 = {0.5, 0.4}, b4 = {0.4}. As expected, 4 = |FirstFit(S)| ≤ 2 · |OPT (S)| = 6.

b1 b2 b3 b4

0.5

0.1
0.1
0.1

0.5

0.4

0.5

0.4

0.4

Remark If we first sort the item weights in non-increasing order, then one can show that running First-
Fit on non-increasing ordering of item weights will yield a 3

2 -approximation algorithm for bin packing.
See footnote for details1.

1Curious readers may want to read the following lecture notes for proof on First-Fit-Decreasing:
http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf

https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%20Combinatorial%20Optimization/

12-BinPacking.pdf

3

http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf
https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%20Combinatorial%20Optimization/12-BinPacking.pdf
https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%20Combinatorial%20Optimization/12-BinPacking.pdf

0 Item sizes
. . .

≤ n
k items ≤ n

k items ≤ n
k items

Figure 1: Partition items into k groups, then round sizes up to the maximum size in each group.

It is natural to wonder whether we can do better than a 3
2 -approximation. Unfortunately, unless

P = NP, we cannot do so efficiently. To prove this, we show that if we can efficiently derive a (3
2 − ε)-

approximation for bin packing, then the partition problem (which is NP-hard) can be solved efficiently.

Definition 8 (Partition problem). Given a multiset S of (possibly repeated) positive integers x1, . . . , xn,
is there a way to partition S into S1 and S2 such that

∑
x∈S1 x =

∑
x∈S2 x?

Theorem 9. Solving bin packing with (3
2 − ε)-approximation for ε ∈ (0, 12] is NP-hard.

Proof. Suppose algorithm A solves bin packing with (3
2 − ε)-approximation for ε > 0. Given an instance

of the partition problem with S = {x1, . . . , xn}, let X =
∑n
i=1 xi. Define set S ′ = { 2x1

X , . . . , 2xn

X } and
run A(S ′). Since

∑
x∈S′ x = 2, at least two bins are required. By construction, one can bi-partition S if

and only if only two bins are required to pack S ′. Since A gives a (3
2 − ε)-approximation, if the OPT (I)

returns 2 bins, then A(I) will return b(3
2 − ε)(2)c = 2 bins. As A can solve the partition problem, solving

bin packing with (3
2 − ε)-approximation for ε ∈ (0, 12] is NP-hard.

3.2 Special case where items have sizes larger than ε, for some ε > 0

In this section, we describe a PTAS algorithm that solves the special case of bin packing assuming
all items have at least size ε > 0. We first describe an exact algorithm that further assumes another
condition. Then, we show how we round the item weights and make use of the exact algorithm, as a
black box, to yield a PTAS. Note that the final algorithm we describe is not a FPTAS because it will
run in time exponential in 1

ε .

3.2.1 Exact solving via Aε
Let us describe an exact algorithm for a special case of bin packing with two assumptions:

1. All items have at least size ε

2. There are only k different possible sizes (for some constant k)

Let M = d 1ε e and xi be the number of items of the ith possible size. Let R be the number of weight
configurations, or possible item configurations (multiset of item weights) in a bin. By assumption 1,
each bin can only contain ≤ M items. By assumption 2, there are at most R =

(
M+k
M

)
. Then, the

total number of bin configurations is at most
(
n+R
R

)
. Since k is a constant, one can enumerate over all

possible bin configurations (denote this algorithm as Aε) to exactly solve bin packing in this special case
in O(nR) ∈ poly(n) since R is a constant (with respect to constants ε and k).

Remark 1 Number of configurations are computed by solving combinatorics problems of the following
form: How many non-negative integer solutions are there to x1 + · · ·+ xn ≤ k?2

Remark 2 The number of bin configurations is computed out of n bins (i.e. 1 bin for each item). One
may use less than n bins, but this upper bound suffices for our purposes.

3.2.2 PTAS for special case

Algorithm 3 pre-processes the sizes of a given input instance, then calls the exact algorithm Aε to solve
the modified instance. Since we only round up sizes, Aε(J) will yield a satisfying bin assignment for
instance I, with spare “slack”. We will prove the following claim in the next lecture.

Claim 10. |OPT (J)| ≤ |OPT (I)|+ nε2

2See slides 22 and 23 of http://www.cs.ucr.edu/~neal/2006/cs260/piyush.pdf for illustration of
(M+k

M

)
and

(n+R
R

)
.

4

http://www.cs.ucr.edu/~neal/2006/cs260/piyush.pdf

Algorithm 3 PTAS-BinPacking(I = S, ε)
k ← d 1

ε2 e
Partition n items into k non-overlapping groups, each with at most n

k items . See Figure 1
for i ∈ {1, . . . , k} do

kmax ← maxitem j in group i size(j)
for item j in group i do

size(j)← kmax
end for

end for
Denote the modified instance as J
return Aε(J)

References

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

5

	Approximation schemes
	Knapsack
	An exact algorithm in poly(npmax) via dynamic programming (DP)
	FPTAS for the knapsack problem via profit rounding

	Bin packing
	First-fit: A 2-approximation algorithm for bin packing
	Special case where items have sizes larger than , for some > 0
	Exact solving via A
	PTAS for special case

