
Advanced Algorithms 2 October 2018

Lecture 3: Approximation Algorithms III
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Approximation schemes (Continued)

2 Bin packing (Continued)

During the last lecture, the bin packing problem was tackled first by FirstFit, which we showed to be
a 2-approximation algorithm. We also described Aε, an exact algorithm which solves bin packing under
two assumptions:

1. All items have at least size ε

2. There are only k different possible sizes (for some constant k).

Towards the end, we worked towards removing these two assumptions.

Definition 1 (Bin packing problem). Given a set S with n items where each item i has size(i) ∈ (0, 1],
find the minimum number of unit-sized (size 1) bins that can hold all n items.

For any problem instance I, let OPT (I) be an optimum bin assignment and |OPT (I)| be the corre-
sponding minimum number of bins required. One can see that

∑n
i=1 size(i) ≤ |OPT (I)|.

2.1 Special case where items have sizes larger than ε, for some ε > 0

Algorithm 1 PTAS-BinPacking(I = S, ε)
k ← d 1

ε2 e
Q← bnε2c
Partition n items into k non-overlapping groups, each with Q items . See Figure 1
for i ∈ {1, . . . , k} do

kmax ← maxitem j in group i size(j)
for item j in group i do

size(j)← kmax
end for

end for
Denote the modified instance as J
return Aε(J)

0 Item sizes
. . .
. . .

≤ Q items ≤ Q items ≤ Q items

J rounds up

J ′ rounds down

J1 = J ′1 J2 = J ′2 Jk = J ′k

Figure 1: Partition items into k groups, each with at most Q items. Label groups in ascending size
ordering. J rounds up item sizes, J ′ rounds down item sizes.

Algorithm 1 pre-processes the sizes of a given input instance, then calls the exact algorithm Aε to
solve the modified instance. Since J only rounds up sizes, Aε(J) will yield a satisfying bin assignment
for instance I, with possibly “spare slack”. For analysis, let us define another modified instance J ′ as
rounding down item sizes. Since we rounded down item sizes in J ′, |OPT (J ′)| ≤ |OPT (I)|.

1

Lemma 2. |OPT (J)| ≤ |OPT (J ′)|+Q

Proof. Label the k groups in J by J1, . . . , Jk where the items in Ji have smaller sizes than the items in
Ji+1. Label the k groups in J ′ similarly. See Figure 1. For i = {1, . . . , k − 1}, since the smallest item in
J ′i+1 has size larger to the largest item in Ji, any valid packing for J ′i serves as a valid packing for the
Ji−1. For Jk (the largest group of Q items), let us use separate bins (hence the additive Q term).

Lemma 3. |OPT (J)| ≤ |OPT (I)|+Q

Proof. By Lemma 2 and the fact that |OPT (J ′)| ≤ |OPT (I)|.

Theorem 4. Algorithm 1 is an (1 + ε)-approximation algorithm.

Proof. Assumption (1) tells us that all items have at least size ε, so |OPT (I)| ≥ nε.
Then, Q = bnε2c ≤ nε2 ≤ ε · |OPT (I)|. By Lemma 2, |OPT (J)| ≤ (1 + ε) · |OPT (I)|.

2.2 Full PTAS for bin packing without assumptions

Algorithm 2 Full-PTAS-BinPacking(I = S, ε)
ε′ ← min{ 12 ,

ε
2} . See analysis why we chose such an ε′

X ← Items with size < ε′ . Ignore small items to fulfill assumption of sizes ≥ ε′
P ← PTAS-BinPacking(S \X, ε′) . By theorem 4, |P | = (1 + ε′) · |OPT (S \X)|
P ′ ← Using FirstFit, add items in X to P . Handle small items
return Resultant packing P ′

Theorem 5. Algorithm 2 uses at most (1 + ε)|OPT (I)|+ 1 bins

Proof. If FirstFit does not open a new bin, the theorem trivially holds. Suppose FirstFit opens a new
bin (using m bins in total), then we know that at least (m− 1) bins are strictly more than (1− ε′)-full.

|OPT (I)| ≥
∑n
i=1 size(i) Lower bound on |OPT (I)|

> (m− 1)(1− ε′) From above observation

Hence,

m < |OPT (I)|
1−ε′ + 1 Rearranging

< |OPT (I)| · (1 + 2ε′) + 1 Since 1
1−ε′ ≤ 1 + 2ε′, for ε′ ≤ 1

2

≤ (1 + ε) · |OPT (I)|+ 1 By choice of ε′ = min{ 12 ,
ε
2}

3 Minimum makespan scheduling

Definition 6 (Minimum makespan scheduling problem). Given n jobs I = {p1, . . . , pn}, find an assign-
ment of jobs to m identical machines such that the completion time (called the makespan) is minimized.

For any problem instance I, let OPT (I) be an optimum job assignment and |OPT (I)| be the corre-
sponding makespan. One can see that:

• pmax = maxi∈{1,...,n} pi ≤ |OPT (I)|

• 1
m

∑n
i=1 pi ≤ |OPT (I)|

Denote L(I) = max{pmax, 1
m

∑n
i=1 pi}. We see that L(I) ≤ |OPT (I)| ≤ pmax + 1

m

∑n
i=1 pi ≤ 2L(I).

Remark To prove approximation factors, it is often useful to relate to lower bounds of |OPT (I)|.

2

Example Suppose we have 7 jobs I = {p1 = 3, p2 = 4, p3 = 5, p4 = 6, p5 = 4, p6 = 5, p7 = 6} and
m = 3 machines. Then, the lower bound on the makespan is L(I) = max{6, 11} = 11. This is achieveable
via M1 = {p1, p2, p5},M2 = {p3, p4},M3 = {p6, p7}.

0 Time

M1

M2

M3

p1 p2 p5

p3 p4

p6 p7

3 5 7 Makespan = 11

We now describe a simple greedy algorithm (Algorithm 3) due to Graham [Gra66] and show that it is
a 2-approximation algorithm. With slight modifications, we improve it to a 4

3 -approximation algorithm
(Algorithm 4). Finally, we end off the section with a PTAS for minimum makespan scheduling.

3.1 Greedy approximation algorithms

Algorithm 3 Graham(I = {p1, . . . , pn},m)

M1, . . . ,Mm ← ∅ . All machines are initially free
for i ∈ {1, . . . , n} do

j ← argminj∈{1,...,m}
∑
p∈Mj

p . Pick the least loaded machine

Mj ←Mj ∪ {pi} . Add job i to this machine
end for
return M1, . . . ,Mm

Theorem 7. Graham (Algorithm 3) is a 2-approximation to minimum makespan scheduling.

Proof. Consider the last job that finishes running. Suppose it takes time plast and it was assigned to
machine j whereby

∑
p∈Mj

p = t. Then, |Graham(I)| = t + plast. As Graham assigns greedily to

the least loaded machine, all machines take at least t time, so t ·m ≤
∑n
i=1 pi ≤ m · |OPT (I)|. Since

plast ≤ pmax ≤ |OPT (I)|, |Graham(I)| = t+ plast ≤ 2 · |OPT (I)|.

Recall the example where I = {p1 = 3, p2 = 4, p3 = 5, p4 = 6, p5 = 4, p6 = 5, p7 = 6} and m = 3.
Graham will schedule M1 = {p1, p4},M2 = {p2, p5, p7},M3 = {p3, p6}, yielding a makespan of 14. As
expected, 14 = |Graham(I)| ≤ 2 · |OPT (I)| = 22.

0 Time

M1

M2

M3

p1

p2

p3

p4

p5

p6

p7

3 4 5 8 9 10 Makespan = 14

Remark The approximation for Graham is loose because we have no guarantees on plast beyond
plast ≤ pmax. This motivates us to order the job timings in descending order (see Algorithm 4).

Lemma 8. Let plast be the last job that finishes running. If plast >
1
3 ·|OPT (I)|, then |ModifiedGraham(I)| =

|OPT (I)|.

3

Algorithm 4 ModifiedGraham(I = {p1, . . . , pn},m)

I ′ ← I in descending order
return Graham(I ′,m)

Proof. For m ≥ n, |ModifiedGraham(I)| = |OPT (I)| by trivially putting one job on each machine.
For m < n, we may assume that every machine has a job1.

Suppose, for a contradiction, that |ModifiedGraham(I)| > |OPT (I)|. Then, there exists2 a sequence of
jobs with descending sizes I = {p1, . . . , pn} such that the last smallest job pn causes ModifiedGraham(I)
to have a makespan larger than OPT (I). That is, plast = pn and |ModifiedGraham(I \ {pn})| ≤
|OPT (I)|. Let C be the configuration of machines after ModifiedGraham assigned {p1, . . . , pn−1}.

Observation 1 In C, each machine has either 1 or 2 jobs.
If there exists machine Mi with ≥ 3 jobs, Mi will take > |OPT (I)| time because all jobs take
> 1

3 · |OPT (I)| time. This contradicts the assumption |ModifiedGraham(I \ {pn})| ≤ |OPT (I)|.

Let us denote the jobs that are alone in C as heavy jobs, and the machines they are on as heavy machines.

Observation 2 In OPT (I), all heavy jobs are alone.
Assigning pn to any machine (in particular, the heavy machines) in C causes the makespan to
exceed |OPT (I)|. Since pn is the smallest job, no other job can be assigned to the heavy machines
otherwise |OPT (I)| cannot attained by OPT (I).

Suppose there are k heavy jobs occupying a machine each in OPT (I). Then, there are 2(m− k) + 1 jobs
(two non-heavy jobs per machine in C, and pn) to be distributed across m− k machines. By pigeonhole
principle, at least one machine M∗ will get ≥ 3 jobs in OPT (I). However, since the smallest job pn
takes > 1

3 · |OPT (I)| time, M∗ will spend > |OPT (I)| time. Contradiction.

Theorem 9. ModifiedGraham (Algorithm 4) is a 4
3 -approximation to minimum makespan scheduling.

Proof. Case 1: plast ≤ 1
3 · |OPT (I)|

By similar arguments as per Theorem 7, |ModifiedGraham(I)| = t+ plast ≤ 4
3 · |OPT (I)|

Case 2: plast >
1
3 · |OPT (I)|

By Lemma 8, |ModifiedGraham(I)| = |OPT (I)|.

Recall the example where I = {p1 = 3, p2 = 4, p3 = 5, p4 = 6, p5 = 4, p6 = 5, p7 = 6} and
m = 3. I ′ = {p4 = 6, p7 = 6, p3 = 5, p6 = 5, p2 = 4, p5 = 4, p1 = 3} and ModifiedGraham will
schedule M1 = {p4, p2, p1},M2 = {p7, p5},M3 = {p3, p6}, yielding a makespan of 13. As expected,
13 = |ModifiedGraham(I)| ≤ 4

3 · |OPT (I)| = 14.666 . . .

0 Time

M1

M2

M3

p1p2

p3

p4

p5

p6

p7

5 6 10 Makespan = 13

1Suppose there is a machine Mi without a job, then there must be another machine Mj with more than 1 job (by
pigeonhole principle). Shifting one of the jobs from Mj to Mi will not increase the makespan.

2If adding pj for some j < n already causes |ModifiedGraham({p1, . . . , pj})| > |OPT (I)|, we can truncate I to

{p1, . . . , pj} so that plast = pj . Since pj ≥ pn > 1
3
· |OPT (I)|, the antecedent still holds.

4

3.2 PTAS for minimum makespan scheduling

Recall that any makespan scheduling instance (I,m) has a lower bound L(I) = max{pmax, 1
m

∑n
i=1 pi}.

We know that |OPT (I)| ∈ [L(I), 2L(I)]. Let Bin(I, t) be the minimum number of bins of size t that
can hold all jobs. By associating job times with sizes, and scaling bin sizes up by a factor of t, we can
relate Bin(I, t) to the bin packing problem. One can see that |OPT (I)| = mint{Bin(I, t) = m}, and
that Bin(I, t) is monotonically decreasing. To get a (1 + ε)-approximate schedule, it suffices to find a
t ≤ (1 + ε) · |OPT (I)| such that Bin(I, t) ≤ m.

Algorithm 5 PTAS-Makespan(I = {p1, . . . , pn},m)

L = max{pmax, 1
m

∑n
i=1 pi}

for t ∈ {L,L+ ε, L+ 2ε, . . . , 2L} do . Binary search on t also works, but it is still poly-time
X ← Jobs with sizes ≤ εt . Remaining jobs have sizes ∈ (εt, t]
I ′ ← I \X . Ignore small jobs
h← dlog1+ε(

1
ε)e . Partition (εt, t] into powers of (1 + ε): tε · (1, (1 + ε), . . . , (1 + ε)h = ε−1]

for pi ∈ I ′ do
k ← minj∈{0,...,h}{pi ≥ tε(1 + ε)j} . Find lowest power of (1 + ε) for rounding down
pi ← tε(1 + ε)j . Round down job sizes

end for
P ← Aε(I ′) . See Section 3.2.1 in Lecture 2 notes for Aε, but with size t bins
α(I, t, ε)← Use bins of size t(1 + ε) to emulate P . Use extra (1 + ε) buffer
α(I, t, ε)← Using FirstFit, add items in X to α(I, t, ε) . Handle small items
if α(I, t, ε) uses ≤ m bins then . Since |OPT (I)| ∈ [L, 2L], this will occur at some point

return Assign jobs to machines according to bin assignment α(I, t, ε)
end if

end for

Given t, Algorithm 5 transforms a makespan scheduling instance into a bin packing instance, then
solves for an approximate bin packing to yield an approximate scheduling. Let α(I, t, ε) as the number
of bins used by Algorithm 5.

Lemma 10. For any t > 0, α(I, t, ε) ≤ Bin(I, t).

Proof. If FirstFit does not open a new bin, then α(I, t, ε) ≤ Bin(I, t) since α(I, t, ε) uses additional
(1+ ε) buffer. If FirstFit opens a new bin (say, totaling b bins), then there are at least (b−1) produced
bins from Aε (exact solving on rounded down non-small items) that are more than (t(1+ ε)− εt) = t-full.

Hence, any bin packing algorithm must use strictly more than (b−1)t
t = b− 1 bins.

Theorem 11. PTAS-Makespan is a (1 + ε)-approximation for minimum makespan scheduling.

Proof. Let mint{Bin(I, t) = m} = t∗. By Lemma 10, mint{α(I, t, ε) = m} ≤ mint{Bin(I, t) = m} =
|OPT (I)|. But since PTAS-Makespan checks for values of t that differ by ε, it may terminate with
t∗ + εL instead. Since L ≤ |OPT (I)|, |PTAS-Makespan(I)| ≤ t∗ + εL ≤ (1 + ε) · |OPT (I)|.

Theorem 12. PTAS-Makespan is runs in poly(I,m).

Proof. There are at most L
ε = max{pmaxε , 1

mε

∑n
i=1 pi} values of t to try. Filtering small jobs and

rounding remaining jobs take O(n). From previous lecture, Aε runs in O(1
ε · n

h+1
ε) and FirstFit runs

in O(nm).

References

[Gra66] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966.

5

	Approximation schemes (Continued)
	Bin packing (Continued)
	Special case where items have sizes larger than , for some > 0
	Full PTAS for bin packing without assumptions

	Minimum makespan scheduling
	Greedy approximation algorithms
	PTAS for minimum makespan scheduling

