Advanced Algorithms 9 October 2018

Lecture 4: Approximation Algorithms IV
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Randomized approximation schemes

In earlier lectures, we saw PTAS and FPTAS. In this lecture, we study the class of algorithms which
extend FPTAS by allowing randomization.

Definition 1 (Fully polynomial randomized approximation algorithm (FPRAS)). For cost metric ¢, an
algorithm A is a FPRAS if for each fized € > 0, Pr[|c(A(I)) — c(OPT(I))| < € - c(OPT(I))] > 3 and A
runs in poly(|I],).

A useful inequality that we will use in the proofs below is the Chernoff bound.

Theorem 2 (Chernoff bound). For independent Bernoulli variables Xi,...,X,, let X = > | X;.
Then,

Pr[X > (1 + ¢)E(X)] < exp(_623) forO<e
Pr[X < (1 - e)E(X)] < exp(==2)) for0<e<1

By union bound, for 0 < e <1, we get Pr[|X —E(X)| > eE(X)] < Qexp(_ezg(x))

Remark 1 We usually apply Chernoff bound to show that the probability of bad approximation is low
2
(Pick parameters such that 2exp(%(x)) < 4), then negate to get Pr[|X —E(X)| < eE(X)] >1-4.

Remark 2 The fraction % in the definition of FPRAS is arbitrary. In fact, any fraction % + « for
o > 0 suffices. For any d > 0, one can invoke O(%) independent copies of A(I) then return the median.
Then, Chebyshev’s inequality tells us that the probability that the median is a correct estimation with

probability greater than > 1 — §. This is also sometimes known as probability amplification.

2 DNF counting

Definition 3 (Disjunctive Normal Form (DNF)). A formula F' on n Boolean variables x1, . .., T, is said
to be in DNF:

e F=C1V---VC, is a disjuntion of clauses

e Vic{l,...,m}, aclause C; = l;1 \--- Nl |c,| 15 a conjunction of literals
o Vie{l,...,n}, aliteral |; € {x;, ~x;} is either the variable x; or its negation.
Let a: {1,...,n} = {0,1} be a truth assignment on the n variables. Formula F is said to be satisfiable

if there exists a satisfying assignment « such that F evaluates to true under o (i.e. Fla]=1).

One can see that any clause with both x; and —z; is trivially false. Since we can remove such clauses
in a single scan of F', let us assume that F' does not contain such trivial clauses.

Example Let F = (z1A—xaA—xg)V (22 Az3)V (-23A—24) be a Boolean formula on 4 variables x1, xa,
x3, and x4, where Cy = 1 A 2o Ay, Cy = 22 Az and C3 = —x3 A —x4. One can draw the truth table
and check that there are 9 satisfying assignments to F, one of which is a(1) = 1, @(2) = a(3) = a(4) = 0.

Remark Another common normal form for representing Boolean formulas is the Conjunctive Normal
Form (CNF). Formulas in CNF are disjunctions of conjunctions (as compared to conjunctions of disjunc-
tions in DNF). In particular, one can determine in polynomial time whether a DNF formula is satisfiable
but it is NP-complete to determine if a CNF formula is satisfiable.

Suppose F is a DNF Boolean formula. Let f(F) = |{« : Fla] = 1}| be the number of satisfying
assignments to F. If we let S; = {a : C;[a] = 1} be the set of satisfying assignments to clause C;, then
we see that f(F) = ||/~ Si|. In the above example, |Si| = 2, |S2| =4, |S3| =4, and f(F) =9. In the
following, we present two failed attempts to compute f(F') and then present Algorithm 1, a FPRAS for
DNF counting via sampling.

2.1 Failed attempt 1: Computing f(F') via Principle of Inclusion-Exclusion
By definition of f(F) = |J!", Si|, one may be tempted to apply PIE to expand:

|USi‘ZZ|Si|_Z|SiﬂSj|+...
i=1 i=1

i<j

However, there are exponentially many terms and one can show that there exists instances where trun-
cating the sum as a form of approximation can be arbitrarily bad.

2.2 Failed attempt 2: Sampling (wrongly)

Suppose we pick k assignments uniformly at random (u.a.r.). Let X; be the indicator variable whether

the i-th assignment satisfies F', and X = Zle X; be the total number of satisfying assignments out

of the k sampled assignments. A u.a.r. assignment is satisfying with probability ! éf) By linearity of

&
) on

expectation, E(X) = jRAChy Unfortunately, since we only sample k € poly(n, %) assignments can be

27L
exponentially small. That is, this approach will not yield a FPRAS for DNF counting.

2.3 A FPRAS for DNF counting via sampling

1 if assi t a; satisfies cl C;
Consider a m-by-f(F') Boolean matrix M where M{[i, j] = 11 asslghinent ay Satisties clatise
0 otherwise

Let |M| denote the total number of 1’s in M. Since |S;| = 27711 |M| =37 S| = S0, 2n G,
As every column represents a satisfying assignment, there are exactly f(F) “topmost” 1’s.

‘ (65) (6% Oéf(F)
ci o 10 ... 0
Cs 1 1 ... 1
Cs | 0 0 0
Cnl| O 1 ... 1

Table 1: Red 1’s indicate the (“topmost”) smallest index clause C; satisfied for each assignment «;

Lemma 4. Algorithm 1 samples a ‘1’ in the matriz M uniformly at random at each step.

Proof. Recall that the total number of 1's in M is |M| = 31" S| = Y1, 2n~ 1,

Pr[C; and «; are chosen] = Pr[C; is chosen] - Pr[a; is chosen|C; is chosen]
_ on—1C;| . 1
- Z;YLI 2717\07;\ Qn—\Ci\
_ 1
ool
— 1
= IM]

Algorithm 1 DNF-COUNT(F)¢)

X«0 > Empirical number of “topmost” 1’s sampled
for k = 96—2” times do

C; < Sample one of m clauses, where Pr[C; chosen] = 27};\/‘5” > Shorter clauses more likely

aj <= Sample one of 2n=1C1 satisfying assignments of C; > Flip coins for x & C;

IsSToPMOST < True

forle{1,...,i—1} do > Check if a; is “topmost”
if Cj[a] =1 then > Checkable in O(n) time

IsSToPMOST < False

end if

end for

if ISToPMOST then
X+—X+1

end if

end for

|M|-X
return

k

Lemma 5. In Algorithm 1, Pr|| ‘MIL'X —f(F)|<e-f(F)] > %.

Proof. Let X; be the indicator variable whether the i-th sampled assignment is “topmost”, where p =
Pr[X; = 1]. By Lemma 4, p = Pr[X; = 1] = L) Let X = Zle X; be the empirical number of

[M]
“topmost” 1’s. Then, E(X) = kp by linearity of expectation. By picking k = 96—’2", Chernoff bound gives:
Pr|X — kp| > ekp] < 2exp(—L2)
= Qexp(—i?’ﬁ']gj(‘m) Since k = 23 and p = %
< 2exp(—3) Since |M| < m - f(F)
< 1
= 3
Splitting up the absolute sign, we have: Pr[X > (1+ €)kp] < £ and Pr[X < (1 —€)kp] < £. So,
L Pr[X > (1+ekp=(1+ e < 1
k-
2. Pr(X < (1-ekp=(1-e*] <1
Multiplying both sides by M}cl, union bound gives us:
M| - X k- f(F) k- f(F) 1 1 1
Prl|[——— — f(F)| > e f(F)] <Pr|lX <(1-— PrlX > (1 <-—+-==
I = FP) 2 e P < PX < (1= D P > (g il < g e g
Negating, we get:
M|-X 1 3
e LTI 12 S
O

Lemma 6. Algorithm 1 runs in poly(F,) = poly(n,m, %)

€

Proof. There are k € O(%;) iterations. In each iteration, we spend O(m + n) sampling C; and «;, and

m2n(m+n)

O(nm) for checking if a sampled «; is “topmost”. In total, Algorithm 1 runs in O(=—7—>) time. [
Theorem 7. Algorithm 1 is a FPRAS for DNF counting.
Proof. By Lemmas 5 and 6. O

3 Counting graph colourings

Definition 8 (Graph colouring). Let G = (V, E) be a graph on |V| = n vertices and |E| = m edges.
Denote the mazimum degree as A. Given wvalid g-colouring of G is an assignment ¢ : V. — {1,...,q}
such that no adjacent vertices have the same colour. i.e. (u,v) € E = c(u) # c(v).

Example (3-colouring of the Petersen graph)

For ¢ > A + 1, one can obtain a valid g-colouring by sequentially colouring a vertex with available
colours greedily. In this section, we show a FPRAS for counting the graph colouring f(G) when g >
2A + 1.

3.1 Sampling a colouring uniformly

When ¢ > 2A + 1, the Markov chain approach in Algorithm 2 allows us to sample a random colour in
O(nlog) steps.

Algorithm 2 SAMPLECOLOUR(G = (V, E),¢)
Greedily colour the graph
for k = O(nlog %) times do
Pick a random vertex v uniformly at random from V'
Pick an available colour (different from N (v)) uniformly random
Colour v with new colour > May end up with same colour
end for
return Colouring

Claim 9. For q > 2A+ 1, the distribution of colourings returned by Algorithm 2 is e-close to a uniform
distribution on all valid colourings.

Proof. Beyond the scope of the course. O

3.2 FPRAS for counting graph colourings for ¢ > 2A +1 and A > 2

Fix an arbitrary ordering of edges in E. For i = {1,...,m}, let G, = (V| E;) be a sequence of graphs

such that E; = {ey,...,e;} be the first i edges. Define ; = {c¢ : ¢ is a valid colouring for G;} be the set

of all proper colourings of GG;, and denote r; = | Sg?—‘ll

One can see that ; C ;_; as removal of e; in G;_1 can only increase the number of valid colourings.
Furthermore, suppose e; = (u,v), then Q;,_1\ Q; = {c: ¢(u) = ¢(v)}. Fix the colouring of, say the lower-
indexed vertex, u. Then, there are > ¢ — A = 2A +1 = A + 1 possible recolourings of v. Hence,

] > (A+1)[€i1 \ Q] > (A+1)(Qi1] — |2]). This implies that r; = %L > 841 > 3 since A > 2.

Since f(G) = |Qm| = Q0] - }g;: . |5‘29’i‘1| = |Qo| - T yr; = ¢™ - 1% 7y, if we can find a good estimate
of r; for each r; with high probability, then we have a FPRAS for counting the number of valid graph

colourings for G.

Lemma 10. In Algorithm 3, for alli € {1,...,m}, Pr[|7; —r;| < £ -r;] > 2

= dm-

Proof. Let X; be the indicator variable whether the i-th sampled colouring for ;_; is a valid colouring for
Q;, where p = Pr[X; = 1]. From above, we know that p = Pr[X; = 1] = |s‘z?i|1\ > 2 Let X = Z?:l X;
be the empirical fraction of colourings that is valid for both €;_; and ;, captured by k - 7;. Then,

E(X) = kp by linearity of expectation. Picking k = 12?;"3, Chernoff bound gives:

Pr[|X — kp| > sokp] < 2exp(~)]
= Zexp(——wg”p) Since k = 128m°
< 2exp(—8m) Since p > 2
< ﬁ Since exp(—z) < % forz >0

Algorithm 3 COLOUR-COUNT(G,¢)

T1yeeoyTm <0 > Estimates for r;
fori=1,...,m do
for k = 12?;”3 times do
¢ + Sample colouring of G;_; > Using Algorithm 2
if Adding c is a valid colouring for G; then
Ty & T+ % > Update empirical count of r; = %
end if
end for
end for
return ¢"II™ 7
Dividing by k and negating, we have: Pr[|r; — r;| < 5% -] = Pr[|X — kp| > 55kp| > 1 — ﬁ = %.
O

Lemma 11. Algorithm 3 runs in poly(F, %) = poly(n, m, %)

Proof. There are m r;’s to estimate. Each estimation has k € O(T—;) iterations. In each iteration, we

spend O(nlog) sampling a colouring of G;_; and O(n) checking if it is a valid colouring for G;. In
4 n

total, Algorithm 3 runs in O(mk(nlog 2 +n)) = O(%) time. O

Theorem 12. Algorithm 3 is a FPRAS for counting the number of valid graph colourings for ¢ > 2A+1

and A > 2.

Proof. By Lemma 11, Algorithm 3 runs in poly(n,m, 1) time. Since 1+ x < e” for all real x, we have
(1435)™ < e? < 1+e¢. On the other hand, Bernoulli’s inequality tells us that (1—55)™ > 1—§ > 1—e.
Therefore, via Lemma 10,

3

4m

Pr{l¢™ L 7 — f(G)] < ef(G)] = 1 = Prllg™ L 75 — f(G)] =2 ef(G)] = (=)™ =

3
4

	Randomized approximation schemes
	DNF counting
	Failed attempt 1: Computing f(F) via Principle of Inclusion-Exclusion
	Failed attempt 2: Sampling (wrongly)
	A FPRAS for DNF counting via sampling

	Counting graph colourings
	Sampling a colouring uniformly
	FPRAS for counting graph colourings for q 2+ 1 and 2

