
Advanced Algorithms 9 October 2018

Lecture 4: Approximation Algorithms IV
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Randomized approximation schemes

In earlier lectures, we saw PTAS and FPTAS. In this lecture, we study the class of algorithms which
extend FPTAS by allowing randomization.

Definition 1 (Fully polynomial randomized approximation algorithm (FPRAS)). For cost metric c, an
algorithm A is a FPRAS if for each fixed ε > 0, Pr[|c(A(I))− c(OPT (I))| ≤ ε · c(OPT (I))] ≥ 3

4 and A
runs in poly(|I|, 1

ε).

A useful inequality that we will use in the proofs below is the Chernoff bound.

Theorem 2 (Chernoff bound). For independent Bernoulli variables X1, . . . , Xn, let X =
∑n
i=1Xi.

Then,

Pr[X ≥ (1 + ε)E(X)] ≤ exp(−ε
2E(X)
3) for 0 < ε

Pr[X ≤ (1− ε)E(X)] ≤ exp(−ε
2E(X)
2) for 0 < ε < 1

By union bound, for 0 < ε < 1, we get Pr[|X − E(X)| ≥ εE(X)] ≤ 2 exp(−ε
2E(X)
3)

Remark 1 We usually apply Chernoff bound to show that the probability of bad approximation is low

(Pick parameters such that 2 exp(−ε
2E(X)
3) ≤ δ), then negate to get Pr[|X − E(X)| ≤ εE(X)] ≥ 1− δ.

Remark 2 The fraction 3
4 in the definition of FPRAS is arbitrary. In fact, any fraction 1

2 + α for
α > 0 suffices. For any δ > 0, one can invoke O(1

δ) independent copies of A(I) then return the median.
Then, Chebyshev’s inequality tells us that the probability that the median is a correct estimation with
probability greater than ≥ 1− δ. This is also sometimes known as probability amplification.

2 DNF counting

Definition 3 (Disjunctive Normal Form (DNF)). A formula F on n Boolean variables x1, . . . , xn is said
to be in DNF:

• F = C1 ∨ · · · ∨ Cm is a disjuntion of clauses

• ∀i ∈ {1, . . . ,m}, a clause Ci = li,1 ∧ · · · ∧ li,|Ci| is a conjunction of literals

• ∀i ∈ {1, . . . , n}, a literal li ∈ {xi,¬xi} is either the variable xi or its negation.

Let α : {1, . . . , n} → {0, 1} be a truth assignment on the n variables. Formula F is said to be satisfiable
if there exists a satisfying assignment α such that F evaluates to true under α (i.e. F [α] = 1).

One can see that any clause with both xi and ¬xi is trivially false. Since we can remove such clauses
in a single scan of F , let us assume that F does not contain such trivial clauses.

Example Let F = (x1∧¬x2∧¬x4)∨(x2∧x3)∨(¬x3∧¬x4) be a Boolean formula on 4 variables x1, x2,
x3, and x4, where C1 = x1∧¬x2∧¬x4, C2 = x2∧x3 and C3 = ¬x3∧¬x4. One can draw the truth table
and check that there are 9 satisfying assignments to F , one of which is α(1) = 1, α(2) = α(3) = α(4) = 0.

1

Remark Another common normal form for representing Boolean formulas is the Conjunctive Normal
Form (CNF). Formulas in CNF are disjunctions of conjunctions (as compared to conjunctions of disjunc-
tions in DNF). In particular, one can determine in polynomial time whether a DNF formula is satisfiable
but it is NP-complete to determine if a CNF formula is satisfiable.

Suppose F is a DNF Boolean formula. Let f(F) = |{α : F [α] = 1}| be the number of satisfying
assignments to F . If we let Si = {α : Ci[α] = 1} be the set of satisfying assignments to clause Ci, then
we see that f(F) = |

⋃m
i=1 Si|. In the above example, |S1| = 2, |S2| = 4, |S3| = 4, and f(F) = 9. In the

following, we present two failed attempts to compute f(F) and then present Algorithm 1, a FPRAS for
DNF counting via sampling.

2.1 Failed attempt 1: Computing f(F) via Principle of Inclusion-Exclusion

By definition of f(F) = |
⋃m
i=1 Si|, one may be tempted to apply PIE to expand:

|
m⋃
i=1

Si| =
m∑
i=1

|Si| −
∑
i<j

|Si ∩ Sj |+ . . .

However, there are exponentially many terms and one can show that there exists instances where trun-
cating the sum as a form of approximation can be arbitrarily bad.

2.2 Failed attempt 2: Sampling (wrongly)

Suppose we pick k assignments uniformly at random (u.a.r.). Let Xi be the indicator variable whether

the i-th assignment satisfies F , and X =
∑k
i=1Xi be the total number of satisfying assignments out

of the k sampled assignments. A u.a.r. assignment is satisfying with probability f(F)
2n . By linearity of

expectation, E(X) = k f(F)
2n . Unfortunately, since we only sample k ∈ poly(n, 1

ε) assignments, k
2n can be

exponentially small. That is, this approach will not yield a FPRAS for DNF counting.

2.3 A FPRAS for DNF counting via sampling

Consider a m-by-f(F) Boolean matrix M where M [i, j] =

{
1 if assignment αj satisfies clause Ci

0 otherwise

Let |M | denote the total number of 1’s in M . Since |Si| = 2n−|Ci|, |M | =
∑m
i=1 |Si| =

∑m
i=1 2n−|Ci|.

As every column represents a satisfying assignment, there are exactly f(F) “topmost” 1’s.

α1 α2 . . . αf(F)

C1 0 1 . . . 0
C2 1 1 . . . 1
C3 0 0 . . . 0

. . .
...

...
. . .

...
Cm 0 1 . . . 1

Table 1: Red 1’s indicate the (“topmost”) smallest index clause Ci satisfied for each assignment αj

Lemma 4. Algorithm 1 samples a ‘1’ in the matrix M uniformly at random at each step.

Proof. Recall that the total number of 1’s in M is |M | =
∑m
i=1 |Si| =

∑m
i=1 2n−|Ci|.

Pr[Ci and αj are chosen] = Pr[Ci is chosen] · Pr[αj is chosen|Ci is chosen]

= 2n−|Ci|∑m
i=1 2n−|Ci|

· 1
2n−|Ci|

= 1∑m
i=1 2n−|Ci|

= 1
|M |

2

Algorithm 1 DNF-Count(F, ε)

X ← 0 . Empirical number of “topmost” 1’s sampled
for k = 9m

ε2 times do

Ci ← Sample one of m clauses, where Pr[Ci chosen] = 2n−|Ci|

|M | . Shorter clauses more likely

αj ← Sample one of 2n−|Ci| satisfying assignments of Ci . Flip coins for x 6∈ Ci
IsTopmost ← True
for l ∈ {1, . . . , i− 1} do . Check if αj is “topmost”

if Cl[α] = 1 then . Checkable in O(n) time
IsTopmost ← False

end if
end for
if IsTopmost then

X ← X + 1
end if

end for
return |M |·X

k

Lemma 5. In Algorithm 1, Pr[| |M |·Xk − f(F)| ≤ ε · f(F)] ≥ 3
4 .

Proof. Let Xi be the indicator variable whether the i-th sampled assignment is “topmost”, where p =

Pr[Xi = 1]. By Lemma 4, p = Pr[Xi = 1] = f(F)
|M | . Let X =

∑k
i=1Xi be the empirical number of

“topmost” 1’s. Then, E(X) = kp by linearity of expectation. By picking k = 9m
ε2 , Chernoff bound gives:

Pr[|X − kp| ≥ εkp] ≤ 2 exp(− ε
2kp
3)

= 2 exp(− 3m·f(F)
|M |) Since k = 9m

ε2 and p = f(F)
|M |

≤ 2 exp(−3) Since |M | ≤ m · f(F)
≤ 1

8

Splitting up the absolute sign, we have: Pr[X ≥ (1 + ε)kp] ≤ 1
8 and Pr[X ≤ (1− ε)kp] ≤ 1

8 . So,

1. Pr[X ≥ (1 + ε)kp = (1 + ε)k·f(F)
|M |] ≤ 1

8

2. Pr[X ≤ (1− ε)kp = (1− ε)k·f(F)
|M |] ≤ 1

8

Multiplying both sides by |M |k , union bound gives us:

Pr[| |M | ·X
k

− f(F)| ≥ ε · f(F)] ≤ Pr[X ≤ (1− ε)k · f(F)

|M |
] + Pr[X ≥ (1 + ε)

k · f(F)

|M |
] ≤ 1

8
+

1

8
=

1

4

Negating, we get:

Pr[| |M | ·X
k

− f(F)| ≤ ε · f(F)] ≥ 1− 1

4
=

3

4

Lemma 6. Algorithm 1 runs in poly(F, 1
ε) = poly(n,m, 1

ε).

Proof. There are k ∈ O(mε2) iterations. In each iteration, we spend O(m + n) sampling Ci and αj , and

O(nm) for checking if a sampled αj is “topmost”. In total, Algorithm 1 runs in O(m
2n(m+n)
ε2) time.

Theorem 7. Algorithm 1 is a FPRAS for DNF counting.

Proof. By Lemmas 5 and 6.

3 Counting graph colourings

Definition 8 (Graph colouring). Let G = (V,E) be a graph on |V | = n vertices and |E| = m edges.
Denote the maximum degree as ∆. Given valid q-colouring of G is an assignment c : V → {1, . . . , q}
such that no adjacent vertices have the same colour. i.e. (u, v) ∈ E ⇒ c(u) 6= c(v).

3

Example (3-colouring of the Petersen graph)

For q ≥ ∆ + 1, one can obtain a valid q-colouring by sequentially colouring a vertex with available
colours greedily. In this section, we show a FPRAS for counting the graph colouring f(G) when q ≥
2∆ + 1.

3.1 Sampling a colouring uniformly

When q ≥ 2∆ + 1, the Markov chain approach in Algorithm 2 allows us to sample a random colour in
O(n log n

ε) steps.

Algorithm 2 SampleColour(G = (V,E), ε)

Greedily colour the graph
for k = O(n log n

ε) times do
Pick a random vertex v uniformly at random from V
Pick an available colour (different from N(v)) uniformly random
Colour v with new colour . May end up with same colour

end for
return Colouring

Claim 9. For q ≥ 2∆ + 1, the distribution of colourings returned by Algorithm 2 is ε-close to a uniform
distribution on all valid colourings.

Proof. Beyond the scope of the course.

3.2 FPRAS for counting graph colourings for q ≥ 2∆ + 1 and ∆ ≥ 2

Fix an arbitrary ordering of edges in E. For i = {1, . . . ,m}, let Gi = (V,Ei) be a sequence of graphs
such that Ei = {e1, . . . , ei} be the first i edges. Define Ωi = {c : c is a valid colouring for Gi} be the set

of all proper colourings of Gi, and denote ri = |Ωi|
|Ωi−1| .

One can see that Ωi ⊆ Ωi−1 as removal of ei in Gi−1 can only increase the number of valid colourings.
Furthermore, suppose ei = (u, v), then Ωi−1 \Ωi = {c : c(u) = c(v)}. Fix the colouring of, say the lower-
indexed vertex, u. Then, there are ≥ q − ∆ = 2∆ + 1 = ∆ + 1 possible recolourings of v. Hence,

|Ωi| ≥ (∆ + 1)|Ωi−1 \Ωi| ≥ (∆ + 1)(Ωi−1| − |Ωi|). This implies that ri = |Ωi|
|Ωi−1| ≥

∆+1
∆+2 ≥

3
4 since ∆ ≥ 2.

Since f(G) = |Ωm| = |Ω0| · |Ω1|
|Ω0| ·

|Ωm|
|Ωm−1| = |Ω0| ·Πm

i=1ri = qm ·Πm
i=1ri, if we can find a good estimate

of ri for each ri with high probability, then we have a FPRAS for counting the number of valid graph
colourings for G.

Lemma 10. In Algorithm 3, for all i ∈ {1, . . . ,m}, Pr[|r̂i − ri| ≤ ε
m · ri] ≥

3
4m .

Proof. LetXj be the indicator variable whether the i-th sampled colouring for Ωi−1 is a valid colouring for

Ωi, where p = Pr[Xj = 1]. From above, we know that p = Pr[Xj = 1] = |Ωi|
|Ωi−1| ≥

3
4 . Let X =

∑k
j=1Xj

be the empirical fraction of colourings that is valid for both Ωi−1 and Ωi, captured by k · r̂i. Then,

E(X) = kp by linearity of expectation. Picking k = 128m3

ε2 , Chernoff bound gives:

Pr[|X − kp| ≥ ε
2mkp] ≤ 2 exp(− (ε

2m)2kp

3)

= 2 exp(− 32mp
3) Since k = 128m3

ε2

≤ 2 exp(−8m) Since p ≥ 3
4

≤ 1
4m Since exp(−x) ≤ 1

x for x > 0

4

Algorithm 3 Colour-Count(G, ε)

r̂1, . . . , r̂m ← 0 . Estimates for ri
for i = 1, . . . ,m do

for k = 128m3

ε2 times do
c← Sample colouring of Gi−1 . Using Algorithm 2
if Adding c is a valid colouring for Gi then

r̂i ← r̂i + 1
k . Update empirical count of ri = |Ωi|

|Ωi−1|
end if

end for
end for
return qmΠm

i=1r̂i

Dividing by k and negating, we have: Pr[|r̂i − ri| ≤ ε
2m · ri] = Pr[|X − kp| ≥ ε

2mkp] ≥ 1− 1
4m = 3

4m .

Lemma 11. Algorithm 3 runs in poly(F, 1
ε) = poly(n,m, 1

ε).

Proof. There are m ri’s to estimate. Each estimation has k ∈ O(m
3

ε2) iterations. In each iteration, we
spend O(n log n

ε) sampling a colouring of Gi−1 and O(n) checking if it is a valid colouring for Gi. In

total, Algorithm 3 runs in O(mk(n log n
ε + n)) = O(

m4n log n
ε

ε2) time.

Theorem 12. Algorithm 3 is a FPRAS for counting the number of valid graph colourings for q ≥ 2∆+1
and ∆ ≥ 2.

Proof. By Lemma 11, Algorithm 3 runs in poly(n,m, 1
ε) time. Since 1 + x ≤ ex for all real x, we have

(1+ ε
2m)m ≤ e ε2 ≤ 1+ε. On the other hand, Bernoulli’s inequality tells us that (1− ε

2m)m ≥ 1− ε
2 ≥ 1−ε.

Therefore, via Lemma 10,

Pr[|qmΠm
i=1r̂i − f(G)| ≤ εf(G)] = 1− Pr[|qmΠm

i=1r̂i − f(G)| ≥ εf(G)] ≥ (
3

4m
)m ≥ 3

4

5

	Randomized approximation schemes
	DNF counting
	Failed attempt 1: Computing f(F) via Principle of Inclusion-Exclusion
	Failed attempt 2: Sampling (wrongly)
	A FPRAS for DNF counting via sampling

	Counting graph colourings
	Sampling a colouring uniformly
	FPRAS for counting graph colourings for q 2+ 1 and 2

