Advanced Algorithms

9 October 2018

Lecture 4: Approximation Algorithms IV

Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Randomized approximation schemes

In earlier lectures, we saw PTAS and FPTAS. In this lecture, we study the class of algorithms which extend FPTAS by allowing randomization.

Definition 1 (Fully polynomial randomized approximation algorithm (FPRAS)). For cost metric c, an algorithm \mathcal{A} is a FPRAS if for each fixed $\epsilon > 0$, $\Pr[|c(\mathcal{A}(I)) - c(OPT(I))| \le \epsilon \cdot c(OPT(I))] \ge \frac{3}{4}$ and \mathcal{A} runs in $\operatorname{poly}(|I|, \frac{1}{\epsilon})$.

A useful inequality that we will use in the proofs below is the Chernoff bound.

Theorem 2 (Chernoff bound). For independent Bernoulli variables X_1, \ldots, X_n , let $X = \sum_{i=1}^n X_i$. Then,

$$\Pr[X \ge (1+\epsilon)\mathbb{E}(X)] \le \exp(\frac{-\epsilon^2\mathbb{E}(X)}{3}) \quad for \ 0 < \epsilon$$

$$\Pr[X \le (1-\epsilon)\mathbb{E}(X)] \le \exp(\frac{-\epsilon^2\mathbb{E}(X)}{2}) \quad for \ 0 < \epsilon < 1$$

By union bound, for $0 < \epsilon < 1$, we get $\Pr[|X - \mathbb{E}(X)| \ge \epsilon \mathbb{E}(X)] \le 2 \exp(\frac{-\epsilon^2 \mathbb{E}(X)}{3})$

Remark 1 We usually apply Chernoff bound to show that the probability of bad approximation is low (Pick parameters such that $2\exp(\frac{-\epsilon^2\mathbb{E}(X)}{3}) \leq \delta$), then negate to get $\Pr[|X - \mathbb{E}(X)| \leq \epsilon\mathbb{E}(X)] \geq 1 - \delta$.

Remark 2 The fraction $\frac{3}{4}$ in the definition of FPRAS is arbitrary. In fact, any fraction $\frac{1}{2} + \alpha$ for $\alpha > 0$ suffices. For any $\delta > 0$, one can invoke $\mathcal{O}(\frac{1}{\delta})$ independent copies of $\mathcal{A}(I)$ then return the median. Then, Chebyshev's inequality tells us that the probability that the median is a correct estimation with probability greater than $\geq 1 - \delta$. This is also sometimes known as *probability amplification*.

2 DNF counting

Definition 3 (Disjunctive Normal Form (DNF)). A formula F on n Boolean variables x_1, \ldots, x_n is said to be in DNF:

- $F = C_1 \vee \cdots \vee C_m$ is a disjuntion of clauses
- $\forall i \in \{1, ..., m\}$, a clause $C_i = l_{i,1} \land \cdots \land l_{i,|C_i|}$ is a conjunction of literals
- $\forall i \in \{1, ..., n\}$, a literal $l_i \in \{x_i, \neg x_i\}$ is either the variable x_i or its negation.

Let $\alpha: \{1, \ldots, n\} \to \{0, 1\}$ be a truth assignment on the n variables. Formula F is said to be satisfiable if there exists a satisfying assignment α such that F evaluates to true under α (i.e. $F[\alpha] = 1$).

One can see that any clause with both x_i and $\neg x_i$ is trivially false. Since we can remove such clauses in a single scan of F, let us assume that F does not contain such trivial clauses.

Example Let $F = (x_1 \land \neg x_2 \land \neg x_4) \lor (x_2 \land x_3) \lor (\neg x_3 \land \neg x_4)$ be a Boolean formula on 4 variables x_1, x_2, x_3 , and x_4 , where $C_1 = x_1 \land \neg x_2 \land \neg x_4$, $C_2 = x_2 \land x_3$ and $C_3 = \neg x_3 \land \neg x_4$. One can draw the truth table and check that there are 9 satisfying assignments to F, one of which is $\alpha(1) = 1$, $\alpha(2) = \alpha(3) = \alpha(4) = 0$.

Remark Another common normal form for representing Boolean formulas is the *Conjunctive Normal Form* (CNF). Formulas in CNF are disjunctions of conjunctions (as compared to conjunctions of disjunctions in DNF). In particular, one can determine in polynomial time whether a DNF formula is satisfiable but it is \mathbb{NP} -complete to determine if a CNF formula is satisfiable.

Suppose F is a DNF Boolean formula. Let $f(F) = |\{\alpha : F[\alpha] = 1\}|$ be the number of satisfying assignments to F. If we let $S_i = \{\alpha : C_i[\alpha] = 1\}$ be the set of satisfying assignments to clause C_i , then we see that $f(F) = |\bigcup_{i=1}^m S_i|$. In the above example, $|S_1| = 2$, $|S_2| = 4$, $|S_3| = 4$, and f(F) = 9. In the following, we present two failed attempts to compute f(F) and then present Algorithm 1, a FPRAS for DNF counting via sampling.

2.1 Failed attempt 1: Computing f(F) via Principle of Inclusion-Exclusion

By definition of $f(F) = |\bigcup_{i=1}^{m} S_i|$, one may be tempted to apply PIE to expand:

$$|\bigcup_{i=1}^{m} S_i| = \sum_{i=1}^{m} |S_i| - \sum_{i < j} |S_i \cap S_j| + \dots$$

However, there are exponentially many terms and one can show that there exists instances where truncating the sum as a form of approximation can be arbitrarily bad.

2.2 Failed attempt 2: Sampling (wrongly)

Suppose we pick k assignments uniformly at random (u.a.r.). Let X_i be the indicator variable whether the i-th assignment satisfies F, and $X = \sum_{i=1}^k X_i$ be the total number of satisfying assignments out of the k sampled assignments. A u.a.r. assignment is satisfying with probability $\frac{f(F)}{2^n}$. By linearity of expectation, $\mathbb{E}(X) = k \frac{f(F)}{2^n}$. Unfortunately, since we only sample $k \in \text{poly}(n, \frac{1}{\epsilon})$ assignments, $\frac{k}{2^n}$ can be exponentially small. That is, this approach will not yield a FPRAS for DNF counting.

2.3 A FPRAS for DNF counting via sampling

Consider a m-by-f(F) Boolean matrix M where $M[i,j] = \begin{cases} 1 & \text{if assignment } \alpha_j \text{ satisfies clause } C_i \\ 0 & \text{otherwise} \end{cases}$

Let |M| denote the total number of 1's in M. Since $|S_i| = 2^{n-|C_i|}$, $|M| = \sum_{i=1}^m |S_i| = \sum_{i=1}^m 2^{n-|C_i|}$. As every column represents a satisfying assignment, there are exactly f(F) "topmost" 1's.

	$ \alpha_1 $	α_2		$\alpha_{f(F)}$
C_1	0	1		0
C_1 C_2	1	1		1
C_3	0	0		0
	:	:	٠	:
C_m	0	1		1

Table 1: Red 1's indicate the ("topmost") smallest index clause C_i satisfied for each assignment α_j

Lemma 4. Algorithm 1 samples a '1' in the matrix M uniformly at random at each step.

Proof. Recall that the total number of 1's in M is $|M| = \sum_{i=1}^{m} |S_i| = \sum_{i=1}^{m} 2^{n-|C_i|}$.

$$\begin{array}{ll} \Pr[C_i \text{ and } \alpha_j \text{ are chosen}] &=& \Pr[C_i \text{ is chosen}] \cdot \Pr[\alpha_j \text{ is chosen}|C_i \text{ is chosen}] \\ &=& \frac{2^{n-|C_i|}}{\sum_{i=1}^m 2^{n-|C_i|}} \cdot \frac{1}{2^{n-|C_i|}} \\ &=& \frac{1}{|M|} \end{array}$$

Algorithm 1 DNF-Count (F, ϵ)

```
X \leftarrow 0
                                                                                ▶ Empirical number of "topmost" 1's sampled
for k = \frac{9m}{\epsilon^2} times do
     C_i \leftarrow \text{Sample one of } m \text{ clauses, where } \Pr[C_i \text{ chosen}] = \frac{2^{n-|C_i|}}{|M|}
                                                                                                         ▶ Shorter clauses more likely
     \alpha_i \leftarrow \text{Sample one of } 2^{n-|C_i|} \text{ satisfying assignments of } C_i
                                                                                                                  \triangleright Flip coins for x \notin C_i
     IsTopmost \leftarrow True
     for l \in \{1, ..., i-1\} do
                                                                                                            \triangleright Check if \alpha_i is "topmost"
          if C_l[\alpha] = 1 then
                                                                                                              \triangleright Checkable in \mathcal{O}(n) time
               IsTopmost \leftarrow False
          end if
     end for
     if IsTopmost then
          X \leftarrow X + 1
     end if
end for
return \frac{|M| \cdot X}{k}
```

Lemma 5. In Algorithm 1, $\Pr[|\frac{|M| \cdot X}{k} - f(F)| \le \epsilon \cdot f(F)] \ge \frac{3}{4}$.

Proof. Let X_i be the indicator variable whether the *i*-th sampled assignment is "topmost", where $p = \Pr[X_i = 1]$. By Lemma 4, $p = \Pr[X_i = 1] = \frac{f(F)}{|M|}$. Let $X = \sum_{i=1}^k X_i$ be the empirical number of "topmost" 1's. Then, $\mathbb{E}(X) = kp$ by linearity of expectation. By picking $k = \frac{9m}{\epsilon^2}$, Chernoff bound gives:

$$\begin{array}{lll} \Pr[|X-kp| \geq \epsilon kp] & \leq & 2\exp(-\frac{\epsilon^2 kp}{3}) \\ & = & 2\exp(-\frac{3m \cdot f(F)}{|M|}) & \mathrm{Since} \ k = \frac{9m}{\epsilon^2} \ \mathrm{and} \ p = \frac{f(F)}{|M|} \\ & \leq & 2\exp(-3) & \mathrm{Since} \ |M| \leq m \cdot f(F) \\ & \leq & \frac{1}{8} \end{array}$$

Splitting up the absolute sign, we have: $\Pr[X \ge (1+\epsilon)kp] \le \frac{1}{8}$ and $\Pr[X \le (1-\epsilon)kp] \le \frac{1}{8}$. So,

1.
$$\Pr[X \ge (1+\epsilon)kp = (1+\epsilon)\frac{k \cdot f(F)}{|M|}] \le \frac{1}{8}$$

2.
$$\Pr[X \le (1 - \epsilon)kp = (1 - \epsilon)\frac{k \cdot f(F)}{|M|}] \le \frac{1}{8}$$

Multiplying both sides by $\frac{|M|}{k}$, union bound gives us:

$$\Pr[|\frac{|M| \cdot X}{k} - f(F)| \ge \epsilon \cdot f(F)] \le \Pr[X \le (1 - \epsilon) \frac{k \cdot f(F)}{|M|}] + \Pr[X \ge (1 + \epsilon) \frac{k \cdot f(F)}{|M|}] \le \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$$

Negating, we get:

$$\Pr[|\frac{|M| \cdot X}{k} - f(F)| \le \epsilon \cdot f(F)] \ge 1 - \frac{1}{4} = \frac{3}{4}$$

Lemma 6. Algorithm 1 runs in $poly(F, \frac{1}{\epsilon}) = poly(n, m, \frac{1}{\epsilon})$.

Proof. There are $k \in \mathcal{O}(\frac{m}{\epsilon^2})$ iterations. In each iteration, we spend $\mathcal{O}(m+n)$ sampling C_i and α_j , and $\mathcal{O}(nm)$ for checking if a sampled α_j is "topmost". In total, Algorithm 1 runs in $\mathcal{O}(\frac{m^2n(m+n)}{\epsilon^2})$ time. \square

Theorem 7. Algorithm 1 is a FPRAS for DNF counting.

Proof. By Lemmas
$$\frac{5}{2}$$
 and $\frac{6}{3}$.

3 Counting graph colourings

Definition 8 (Graph colouring). Let G = (V, E) be a graph on |V| = n vertices and |E| = m edges. Denote the maximum degree as Δ . Given valid q-colouring of G is an assignment $c: V \to \{1, \ldots, q\}$ such that no adjacent vertices have the same colour. i.e. $(u, v) \in E \Rightarrow c(u) \neq c(v)$.

Example (3-colouring of the Petersen graph)

For $q \ge \Delta + 1$, one can obtain a valid q-colouring by sequentially colouring a vertex with available colours greedily. In this section, we show a FPRAS for counting the graph colouring f(G) when $q \ge 2\Delta + 1$.

3.1 Sampling a colouring uniformly

When $q \ge 2\Delta + 1$, the Markov chain approach in Algorithm 2 allows us to sample a random colour in $\mathcal{O}(n\log\frac{n}{\epsilon})$ steps.

Algorithm 2 SampleColour($G = (V, E), \epsilon$)

Greedily colour the graph

for $k = \mathcal{O}(n \log \frac{n}{\epsilon})$ times do

Pick a random vertex v uniformly at random from V

Pick an available colour (different from N(v)) uniformly random

Colour v with new colour

end for

return Colouring

Claim 9. For $q \ge 2\Delta + 1$, the distribution of colourings returned by Algorithm 2 is ϵ -close to a uniform distribution on all valid colourings.

▶ May end up with same colour

Proof. Beyond the scope of the course.

3.2 FPRAS for counting graph colourings for $q \ge 2\Delta + 1$ and $\Delta \ge 2$

Fix an arbitrary ordering of edges in E. For $i=\{1,\ldots,m\}$, let $G_i=(V,E_i)$ be a sequence of graphs such that $E_i=\{e_1,\ldots,e_i\}$ be the first i edges. Define $\Omega_i=\{c:c$ is a valid colouring for $G_i\}$ be the set of all proper colourings of G_i , and denote $r_i=\frac{|\Omega_i|}{|\Omega_{i-1}|}$. One can see that $\Omega_i\subseteq\Omega_{i-1}$ as removal of e_i in G_{i-1} can only increase the number of valid colourings.

One can see that $\Omega_i \subseteq \Omega_{i-1}$ as removal of e_i in G_{i-1} can only increase the number of valid colourings. Furthermore, suppose $e_i = (u, v)$, then $\Omega_{i-1} \setminus \Omega_i = \{c : c(u) = c(v)\}$. Fix the colouring of, say the lower-indexed vertex, u. Then, there are $\geq q - \Delta = 2\Delta + 1 = \Delta + 1$ possible recolourings of v. Hence, $|\Omega_i| \geq (\Delta + 1)|\Omega_{i-1} \setminus \Omega_i| \geq (\Delta + 1)(\Omega_{i-1}| - |\Omega_i|)$. This implies that $r_i = \frac{|\Omega_i|}{|\Omega_{i-1}|} \geq \frac{\Delta + 1}{\Delta + 2} \geq \frac{3}{4}$ since $\Delta \geq 2$.

Since $f(G) = |\Omega_m| = |\Omega_0| \cdot \frac{|\Omega_1|}{|\Omega_0|} \cdot \frac{|\Omega_m|}{|\Omega_{m-1}|} = |\Omega_0| \cdot \prod_{i=1}^m r_i = q^m \cdot \prod_{i=1}^m r_i$, if we can find a good estimate of r_i for each r_i with high probability, then we have a FPRAS for counting the number of valid graph colourings for G.

Lemma 10. In Algorithm 3, for all $i \in \{1, ..., m\}$, $\Pr[|\widehat{r_i} - r_i| \leq \frac{\epsilon}{m} \cdot r_i] \geq \frac{3}{4m}$.

Proof. Let X_j be the indicator variable whether the *i*-th sampled colouring for Ω_{i-1} is a valid colouring for Ω_i , where $p = \Pr[X_j = 1]$. From above, we know that $p = \Pr[X_j = 1] = \frac{|\Omega_i|}{|\Omega_{i-1}|} \ge \frac{3}{4}$. Let $X = \sum_{j=1}^k X_j$ be the empirical fraction of colourings that is valid for both Ω_{i-1} and Ω_i , captured by $k \cdot \hat{r_i}$. Then, $\mathbb{E}(X) = kp$ by linearity of expectation. Picking $k = \frac{128m^3}{\epsilon^2}$, Chernoff bound gives:

$$\begin{array}{lll} \Pr[|X-kp| \geq \frac{\epsilon}{2m}kp] & \leq & 2\exp(-\frac{(\frac{\epsilon}{2m})^2kp}{3}) \\ & = & 2\exp(-\frac{32mp}{3}) & \text{Since } k = \frac{128m^3}{\epsilon^2} \\ & \leq & 2\exp(-8m) & \text{Since } p \geq \frac{3}{4} \\ & \leq & \frac{1}{4m} & \text{Since } \exp(-x) \leq \frac{1}{x} \text{ for } x > 0 \end{array}$$

Algorithm 3 Colour-Count (G, ϵ)

```
\begin{array}{ll} \widehat{r_1}, \dots, \widehat{r_m} \leftarrow 0 & \rhd \text{ Estimates for } r_i \\ \text{for } i = 1, \dots, m \text{ do} \\ \text{for } k = \frac{128m^3}{\epsilon^2} \text{ times do} \\ c \leftarrow \text{ Sample colouring of } G_{i-1} & \rhd \text{ Using Algorithm 2} \\ \text{ if Adding } c \text{ is a valid colouring for } G_i \text{ then} \\ \widehat{r_i} \leftarrow \widehat{r_i} + \frac{1}{k} & \rhd \text{ Update empirical count of } r_i = \frac{|\Omega_i|}{|\Omega_{i-1}|} \\ \text{ end if } \\ \text{ end for } \\ \text{ end for } \\ \text{ end for } \\ \text{ return } q^m \Pi_{i=1}^m \widehat{r_i} \end{array}
```

Dividing by k and negating, we have: $\Pr[|\widehat{r_i} - r_i| \le \frac{\epsilon}{2m} \cdot r_i] = \Pr[|X - kp| \ge \frac{\epsilon}{2m} kp] \ge 1 - \frac{1}{4m} = \frac{3}{4m}$.

Lemma 11. Algorithm 3 runs in $poly(F, \frac{1}{\epsilon}) = poly(n, m, \frac{1}{\epsilon})$.

Proof. There are m r_i 's to estimate. Each estimation has $k \in \mathcal{O}(\frac{m^3}{\epsilon^2})$ iterations. In each iteration, we spend $\mathcal{O}(n\log\frac{n}{\epsilon})$ sampling a colouring of G_{i-1} and $\mathcal{O}(n)$ checking if it is a valid colouring for G_i . In total, Algorithm 3 runs in $\mathcal{O}(mk(n\log\frac{n}{\epsilon}+n)) = \mathcal{O}(\frac{m^4n\log\frac{n}{\epsilon}}{\epsilon^2})$ time.

Theorem 12. Algorithm 3 is a FPRAS for counting the number of valid graph colourings for $q \ge 2\Delta + 1$ and $\Delta \ge 2$.

Proof. By Lemma 11, Algorithm 3 runs in poly $(n, m, \frac{1}{\epsilon})$ time. Since $1 + x \le e^x$ for all real x, we have $(1 + \frac{\epsilon}{2m})^m \le e^{\frac{\epsilon}{2}} \le 1 + \epsilon$. On the other hand, Bernoulli's inequality tells us that $(1 - \frac{\epsilon}{2m})^m \ge 1 - \frac{\epsilon}{2} \ge 1 - \epsilon$. Therefore, via Lemma 10,

$$\Pr[|q^{m}\Pi_{i=1}^{m}\widehat{r}_{i} - f(G)| \le \epsilon f(G)] = 1 - \Pr[|q^{m}\Pi_{i=1}^{m}\widehat{r}_{i} - f(G)| \ge \epsilon f(G)] \ge (\frac{3}{4m})^{m} \ge \frac{3}{4}$$