1 Approximation algorithms via rounding ILPs

Linear programming (LP) and integer linear programming (ILP) are versatile models but with different solving complexities - LPs are solvable in polynomial time while ILPs are NP-hard.

Definition 1 (Linear program (LP)). In canonical form, a LP is expressed as

$$
\begin{array}{ll}
\text { minimize } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq 0
\end{array}
$$

where \boldsymbol{x} is the vector of n variables (to be determined), \boldsymbol{b} and \boldsymbol{c} are vectors of (known) coefficients, and A is a (known) matrix of coefficients. $\boldsymbol{c}^{T} \boldsymbol{x}$ and $\operatorname{obj}(\boldsymbol{x})$ are known as the objective function and objective value of the LP respectively. For an optimal variable assignment $\boldsymbol{x}^{*}, \operatorname{obj}\left(\boldsymbol{x}^{*}\right)$ is the optimal objective.

ILPs are defined similarly with the additional constraint that variables take on integer values. As we will be relaxing ILPs into LPs, to avoid confusion, we use y for ILP variables to contrast against the x variables in LPs.

Definition 2 (Integer linear program (ILP)). In canonical form, a ILP is expressed as

$$
\begin{array}{ll}
\text { minimize } & \boldsymbol{c}^{T} \boldsymbol{y} \\
\text { subject to } & A \boldsymbol{y} \leq \boldsymbol{b} \\
& \boldsymbol{y} \geq 0 \\
& \boldsymbol{y} \in \mathbb{Z}^{n}
\end{array}
$$

where \boldsymbol{y} is the vector of n variables (to be determined), \boldsymbol{b} and \boldsymbol{c} are vectors of (known) coefficients, and A is a (known) matrix of coefficients. $\boldsymbol{c}^{T} \boldsymbol{y}$ and $\operatorname{obj}(\boldsymbol{y})$ are known as the objective function and objective value of the LP respectively. For an optimal variable assignment \boldsymbol{y}^{*}, obj $\left(\boldsymbol{y}^{*}\right)$ is the optimal objective.

In this lecture, we illustrate how we can model set cover and multi-commodity routing as ILPs and how to perform rounding to yield approximations for these problems. As per previous lectures, Chernoff bounds will be a useful inequality in our analysis toolbox.

Theorem 3 (Chernoff bound). For independent Bernoulli variables X_{1}, \ldots, X_{n}, let $X=\sum_{i=1}^{n} X_{i}$. Then,

$$
\begin{array}{ll}
\operatorname{Pr}[X \geq(1+\epsilon) \mathbb{E}(X)] \leq \exp \left(\frac{-\epsilon^{2} \mathbb{E}(X)}{3}\right) & \text { for } 0<\epsilon \\
\operatorname{Pr}[X \leq(1-\epsilon) \mathbb{E}(X)] \leq \exp \left(\frac{-\epsilon^{2} \mathbb{E}(X)}{2}\right) & \text { for } 0<\epsilon<1
\end{array}
$$

By union bound, for $0<\epsilon<1$, we get $\operatorname{Pr}[|X-\mathbb{E}(X)| \geq \epsilon \mathbb{E}(X)] \leq 2 \exp \left(\frac{-\epsilon^{2} \mathbb{E}(X)}{3}\right)$
Remark There is actually a tighter form of Chernoff bounds:

$$
\forall \epsilon>0, \operatorname{Pr}[X \geq(1+\epsilon) \mathbb{E}(X)] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mathbb{E}(X)}
$$

2 Set cover

Recall the minimum set cover problem.
Definition 4 (Minimum set cover problem). Given \mathcal{U}, \mathcal{S}, and $c: \mathcal{S} \rightarrow \mathbb{R}^{+}$, find a subset $S^{*} \subseteq \mathcal{S}$ such that:
(i) (Set cover): $\bigcup_{S_{i} \in S^{*}} S_{i}=\mathcal{U}$
(ii) (Minimum cost): $c\left(S^{*}\right)$ is minimized.

Example

Suppose there are $n=5$ vertices and $m=4$ subsets $S=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$, where the cost function is defined as $c\left(S_{i}\right)=2^{i}$. Then, the minimum set cover is $S=\left\{S_{1}, S_{2}, S_{3}\right\}$ with a cost of $c(S)=14$.

In the first lecture, we saw a greedy selection of sets that maximize the number of remaining uncovered items gave a H_{n}-approximation for set cover. Furthermore, in the special cases where $\Delta=\max _{i \in\{1, \ldots, m\}} \operatorname{deg}\left(S_{i}\right)$ and $f=\max _{i \in\{1, \ldots, n\}} \operatorname{deg}\left(x_{i}\right)$ are small, one can obtain H_{Δ}-approximation and f-approximation respectively.

We now show how to formulate set cover as an ILP, reduce it into a LP, and how to round the solutions to yield an approximation to the original set cover instance. Consider the following ILP:

ILP $_{\text {Set cover }}$

minimize	$\sum_{i=1}^{m} y_{i} \cdot c\left(S_{i}\right)$		\triangleleft Cost of chosen set cover
subject to	$\sum_{i=1, e_{j} \in S_{i}}^{m} y_{i} \geq 1$	$\forall j \in\{1, \ldots, n\}$	\triangleleft Every item e_{j} is covered by some set
	$y_{i} \in\{0,1\}$	$\forall i \in\{1, \ldots, m\}$	\triangleleft Indicator variable for whether set S_{i} is chosen

Upon solving $\operatorname{ILP}_{\text {Set cover }}$, the set $\left\{S_{i} \in\{1, \ldots, n\}: y_{i}^{*}=1\right\}$ is the optimal solution for a given set cover instance. However, as solving ILPs are NP-hard, we consider relaxing the integral constraint by replacing binary $y_{i} \in\{0,1\}$ variables by real-valued/fractional $x_{i} \in[0,1]$. Such a relaxation will yield the corresponding LP:

$\mathbf{L P}_{\text {Set cover }}$

$\begin{array}{llll}\text { minimize } & \sum_{i=1}^{m} x_{i} \cdot c\left(S_{i}\right) & & \triangleleft \text { Cost of chosen fractional set cover } \\ \text { subject to } & \sum_{i=1, e_{j} \in S_{i}}^{m} x_{i} \geq 1 & \forall j \in\{1, \ldots, n\} & \triangleleft \text { Every item } e_{j} \text { is fractionally covered } \\ & 0 \leq x_{i} \leq 1 & \forall i \in\{1, \ldots, m\} & \triangleleft \text { Relaxed indicator variables }\end{array}$
Since LPs can be solved in polynomial time, we can find the optimal fractional solution to $\mathrm{LP}_{\text {Set cover }}$ in polynomial time.

Observation As the set of solutions of $\operatorname{ILP}_{\text {Set cover }}$ is a subset of $\operatorname{LP}_{\text {Set cover }}, \operatorname{obj}\left(\boldsymbol{x}^{*}\right) \leq \operatorname{obj}\left(\boldsymbol{y}^{*}\right)$.

Example The corresponding ILP for the above set cover instance is:

$\operatorname{minimize}$	$2 y_{1}+4 y_{2}+8 y_{3}+16 y_{4}$	
subject to	$y_{1}+y_{4} \geq 1$	\triangleleft Sets covering e_{1}
	$y_{1}+y_{3} \geq 1$	\triangleleft Sets covering e_{2}
	$y_{3} \geq 1$	\triangleleft Sets covering e_{3}
	$y_{2}+y_{4} \geq 1$	\triangleleft Sets covering e_{4}
	$y_{1}+y_{4} \geq 1$	\triangleleft Sets covering e_{5}
	$\forall i \in\{1, \ldots, 4\}, y_{i} \in\{0,1\}$	

After relaxing:

$$
\begin{array}{ll}
\operatorname{minimize} & 2 x_{1}+4 x_{2}+8 x_{3}+16 x_{4} \\
\text { subject to } & x_{1}+x_{4} \geq 1 \\
& x_{1}+x_{3} \geq 1 \\
& x_{3} \geq 1 \\
& x_{2}+x_{4} \geq 1 \\
& x_{1}+x_{4} \geq 1 \\
& \forall i \in\{1, \ldots, 4\}, 0 \leq x_{i} \leq 1 \quad \triangleleft \text { Relaxed indicator variables }
\end{array}
$$

Solving it using a LP solver ${ }^{1}$ yields: $x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=0$. Since the solved \boldsymbol{x}^{*} are integral, \boldsymbol{x}^{*} is also the optimal solution for the original ILP. In general, the solved \boldsymbol{x}^{*} may be fractional, which does not immediately yield a set selection.

In the following, we describe two ways to round the fractional assignments \boldsymbol{x}^{*} into binary variables \boldsymbol{y} so that we can interpret them as proper set selections.

2.1 (Deterministic) Rounding for small f

Recall that the vertex cover problem is a special case when $f=2$. We round \boldsymbol{x}^{*} as follows:

$$
\forall i \in\{1, \ldots, m\}, \text { set } y_{i}= \begin{cases}1 & \text { if } x_{i}^{*} \geq \frac{1}{f} \\ 0 & \text { else }\end{cases}
$$

Theorem 5. The rounded \boldsymbol{y} is a feasible solution to $I L P_{\text {Set cover }}$.
Proof. Since \boldsymbol{x}^{*} is a feasible (not to mention, optimal) solution for $\mathrm{LP}_{\text {Set cover }}$, in each constraint, at least one $x_{i}^{*} \geq \frac{1}{f}$. Hence, every element is covered by some set y_{i} in the rounding.

Theorem 6. The rounded \boldsymbol{y} is a f-approximation to $I L P_{\text {Set cover }}$. That is, obj $(\boldsymbol{y}) \leq f \cdot \operatorname{obj}\left(\boldsymbol{y}^{*}\right)$.
Proof. By the rounding, $y_{i} \leq f \cdot x_{i}^{*}, \forall i \in\{1, \ldots, m\}$. Therefore, $\operatorname{obj}(\boldsymbol{y}) \leq f \cdot \operatorname{obj}\left(\boldsymbol{x}^{*}\right) \leq f \cdot \operatorname{obj}\left(\boldsymbol{y}^{*}\right)$.

2.2 (Randomized) Rounding for general f

If f is large, a f-approximation in the previous subsection is unsatisfactory. By introducing randomness in the rounding process, we show that one can obtain a $\ln (n)$-approximation (in expectation) with arbitrarily high probability through probability amplification.

Consider the following rounding procedure:

1. Interpret each fractional solution x_{i}^{*} as probability for picking S_{i}. That is, $\operatorname{Pr}\left(y_{i}=1\right)=x_{i}^{*}$.
2. For each i, independently set y_{i} to 1 with probability x_{i}^{*}.

Theorem 7. $\mathbb{E}(\operatorname{obj}(\boldsymbol{y}))=\operatorname{obj}\left(\boldsymbol{x}^{*}\right)$
Proof.

$$
\begin{aligned}
\mathbb{E}(o b j(\boldsymbol{y})) & =\mathbb{E}\left(\sum_{i=1}^{m} y_{i} \cdot c\left(S_{i}\right)\right) & & \\
& =\sum_{i=1}^{m} \mathbb{E}\left(y_{i}\right) \cdot c\left(S_{i}\right) & & \text { By linearity of expectation } \\
& =\sum_{i=1}^{m} \operatorname{Pr}\left(y_{i}=1\right) \cdot c\left(S_{i}\right) & & \text { Since each } y_{i} \text { is an indicator variable } \\
& =\sum_{i=1}^{m} x_{i}^{*} \cdot c\left(S_{i}\right) & & \text { Since } \operatorname{Pr}\left(y_{i}=1\right)=x_{i}^{*} \\
& =o b j\left(\boldsymbol{x}^{*}\right) & &
\end{aligned}
$$

Although we expect the rounded selection to yield an objective cost that is close to the optimum of the LP (which may be even better than the optimal of the ILP), we need to consider whether all constraints are satisfied.

Theorem 8. For any $j \in\{1, \ldots, n\}$, item e_{j} is not covered with probability $\leq e^{-1}$.

[^0]Proof. For any $j \in\{1, \ldots, n\}$,

$$
\begin{aligned}
\operatorname{Pr}\left[\text { Item } e_{j} \text { not covered }\right] & =\operatorname{Pr}\left[\sum_{i=1, e_{j} \in S_{i}}^{m} y_{i}=0\right]=\Pi_{i=1, e_{j} \in S_{i}}^{m}\left(1-x_{i}^{*}\right) \\
& \leq \Pi_{i=1, e_{j} \in S_{i}}^{m} e^{-x_{i}^{*}}=e^{-\sum_{i=1, e_{j} \in S_{i}}^{m}-x_{i}^{*}} \leq e^{-1}
\end{aligned}
$$

The first inequality is because $(1-x) \leq e^{x}$ and the last inequality holds because the \boldsymbol{x}^{*} satisfies the $j^{t h}$ constraint in the LP that $\sum_{i=1, e_{j} \in S_{i}}^{m} x_{i}^{*} \geq 1$.

Since $e^{-1} \approx 0.37$, we would expect the rounded \boldsymbol{y} not to cover several items. However, one can amplify the success probability by considering independent roundings and taking the union (See Algorithm 1).

```
Algorithm 1 ApproxSetCoverILP \((\mathcal{U}, \mathcal{S}, c)\)
    ILP \(_{\text {Set cover }} \leftarrow\) Construct ILP of problem instance
    LP \(_{\text {Set cover }} \leftarrow\) Relax integral constraints on indicator variables \(\boldsymbol{x}\) to \(\boldsymbol{y}\)
    \(\boldsymbol{x}^{*} \leftarrow\) Solve \(\mathrm{LP}_{\text {Set cover }}\)
    \(T \leftarrow \emptyset \quad \triangleright\) Selected subset of \(\mathcal{S}\)
    for \(k \cdot \ln (n)\) times (for any constant \(k>1\) ) do
        for \(i \in\{1, \ldots, m\}\) do
            \(y_{i} \leftarrow\) Set to 1 with probability \(x_{i}^{*}\)
            if \(y_{i}=1\) then
                \(T \leftarrow T \cup\left\{S_{i}\right\} \quad \triangleright\) Add to selected sets \(T\)
            end if
        end for
    end for
    return \(T\)
```

Similar to Theorem 6, we can see that $\mathbb{E}(\operatorname{obj}(T)) \leq(k \cdot \ln (n)) \cdot \operatorname{obj}\left(\boldsymbol{y}^{*}\right)$. Furthermore, Markov's inequality tells us that the probability of $\operatorname{obj}(T)$ being z times larger than its expectation is at most $\frac{1}{z}$.

Theorem 9. ApproxSetCoverilp gives a valid set cover with probability $\geq 1-n^{1-k}$.
Proof. $\forall j \in\{1, \ldots, n\}$,
$\operatorname{Pr}\left[\right.$ Item e_{j} not covered by $\left.T\right]=\operatorname{Pr}\left[e_{j}\right.$ not covered by all $k \ln (n)$ roundings $] \leq\left(e^{-1}\right)^{k \ln (n)}=n^{-k}$
Taking union bound over all n items, $\operatorname{Pr}[T$ is not a valid set cover $] \leq \sum_{i=1}^{n} n^{-k}=n^{1-k}$. So, T covers all n items with probability $\geq 1-n^{1-k}$.

Note that the success probability of $1-n^{1-k}$ can be further amplified by taking several (polynomial number of) independent samples ApproxSetCoverILP, then returning the lowest cost valid set cover sampled. With z samples, $\operatorname{Pr}[$ All repetitions fail $] \leq n^{z(1-k)}$, so we succeed with probability $\geq 1-n^{z(1-k)}$.

3 Minimizing congestion in multi-commodity routing

A multi-commodity routing (MCR) problem involves routing multiple (s_{i}, t_{i}) flows across a network with the goal of minimizing congestion, where congestion is defined as the largest ratio of flow over capacity of any edge in the network. In this section, we discuss two variants of the multi-commodity routing problem. In the first variant (special case), we are given the set of possible paths \mathcal{P}_{i} for each $\left(s_{i}, t_{i}\right)$ source-target pairs. In the second variant (general case), we are given only the network. In both cases, [RT87] showed that one can obtain an approximation of $\mathcal{O}\left(\frac{\log (n)}{\log \log (n)}\right)$ with high probability.

Definition 10 (Multi-commodity routing problem). Consider a directed graph $G=(V, E)$ where each edge $e=(u, v) \in E$ has a capacity $c(u, v)$. The in-set/out-set of a vertex v is denoted as in $(v)=$ $\{(u, v) \in E: u \in V\}$ and out $(v)=\{(v, u) \in E: u \in V\}$ respectively. Given k triplets $\left(s_{i}, t_{i}, d_{i}\right)$, where $s_{i} \in V$ is the source, $t_{i} \in V$ is the target, and $d_{i} \geq 0$ is the demand for the $i^{\text {th }}$ commodity respectively, denote $f(e, i)$ as the fraction of d_{i} that is flowing through edge e. The task is to minimize the congestion parameter λ by finding paths p_{i} for each $i \in[k]$, such that:
(i) (Valid sources): $\sum_{e \in o u t\left(s_{i}\right)} f(e, i)-\sum_{\left.e \in \operatorname{in(s} s_{i}\right)} f(e, i)=1, \forall i \in[k]$
(ii) (Valid sinks): $\sum_{e \in \operatorname{in}\left(t_{i}\right)} f(e, i)-\sum_{e \in o u t\left(t_{i}\right)} f(e, i)=1, \forall i \in[k]$
(iii) (Flow conservation): $\sum_{e \in o u t(v)} f(e, i)-\sum_{e \in \operatorname{in}(v)} f(e, i)=0, \forall e \in E, \forall i \in[k], \forall v \in V \backslash \cup_{i=1}^{k}\left\{s_{i} \cup t_{i}\right\}$
(iv) (Single path): All demand for commodity i passes through a single path p_{i} (no repeated vertices).
(v) (Congestion factor): $\forall e \in E, \sum_{i=1}^{k} d_{i} \mathbb{1}_{e \in p_{i}} \leq \lambda \cdot c(e)$, where indicator $\mathbb{1}_{e \in p_{i}}=1 \Longleftrightarrow e \in p_{i}$.
(vi) (Minimum congestion): λ is minimized.

Example Consider the following flow network with $k=3$ commodities with edge capacities as labelled:

For demands $d_{1}=d_{2}=d_{3}=10$, there exists a flow assignment such that the total demands flowing on each edge is below its capacity:

Although the assignment attains congestion $\lambda=1$ (due to edge $\left(s_{3}, a\right)$), the path assignments for commodities 2 and 3 violate the property of "single path". Forcing all demand of each commodity to flow through a single path, we have a minimum congestion of $\lambda=1.25$ (due to edges $\left(s_{3}, s_{2}\right)$ and $\left(a, t_{2}\right)$):

3.1 Special case: Given sets of $s_{i}-t_{i}$ paths \mathcal{P}_{i}

For each commodity $i \in[k]$, we are to select a path p_{i} from a given set of valid paths \mathcal{P}_{i}, where each edge in all paths in \mathcal{P}_{i} have capacities $\geq d_{i}$. Because we intend to pick a single path for each commodity to send all demands through, constraints (i)-(iii) of MCR are fulfilled trivially. Using $y_{i, p}$ as indicator variables whether path $p \in \mathcal{P}_{i}$ is chosen, we can model the following ILP:

ILP MCR-Given-Paths

$\begin{array}{ll}\text { minimize } & \lambda \\ \text { subject to } & \sum_{i=1}^{k} d_{i} \sum_{p \in \mathcal{P}_{i}, e \in p} y_{i, p} \leq \lambda \cdot c(e) \\ & \sum_{p \in \mathcal{P}_{i}} y_{i, p}=1 \\ & y_{i, p} \in\{0,1\}\end{array}$
$\forall e \in E$
$\forall i \in[k]$ $\forall i \in[k], p \in \mathcal{P}_{i} \quad \triangleleft$ Indicator variable for path $p \in \mathcal{P}_{i}$

Relax the integral constraint on $y_{i, p}$ to $x_{i, p} \in[0,1]$ and solve the corresponding LP. Let us denote $\lambda^{*}=\operatorname{obj}\left(\mathrm{LP}_{\mathrm{MCR} \text {-Given-Paths }}\right)$ and \boldsymbol{x}^{*} as a fractional path selections that achieves λ^{*}. Then, to obtain a valid path selection, for each $i \in[k]$, pick path $p \in \mathcal{P}_{i}$ with weighted probability $\frac{x_{i, p}^{*}}{\sum_{p \in \mathcal{P}_{i}} x_{i, p}^{*}}$.

Remark 1 For a fixed i, a path is selected exclusively (only one!) (cf. set cover's roundings where we may pick multiple sets for an item).

Remark 2 The weighted sampling is independent across different commodities. That is, the choice of path amongst \mathcal{P}_{i} does not influence the choice of path amongst \mathcal{P}_{j} for $i \neq j$.

Theorem 11. $\mathbb{E}(\operatorname{obj}(\boldsymbol{y})) \leq \operatorname{obj}\left(\boldsymbol{x}^{*}\right)$
Proof. Fix an arbitrary edge $e \in E$. For each commodity i, define an indicator variable $Y_{e, i}$ whether edge e is part of the chosen path for commodity i. By randomized rounding, $\operatorname{Pr}\left[Y_{e, i}=1\right]=\sum_{p \in \mathcal{P}_{i}, e \in p} x_{i, p}$. Denoting $Y_{e}=\sum_{i=1}^{k} d_{i} \cdot Y_{e, i}$ as the total demand on edge e in the all k chosen paths:

$$
\begin{aligned}
\mathbb{E}\left(Y_{e}\right) & =\mathbb{E}\left(\sum_{i=1}^{k} d_{i} \cdot Y_{e, i}\right) & & \\
& =\sum_{i=1}^{k} d_{i} \cdot \mathbb{E}\left(Y_{e, i}\right) & & \text { By linearity of expectation } \\
& =\sum_{i=1}^{k} d_{i} \sum_{p \in \mathcal{P}_{i}, e \in p} x_{i, p} & & \text { Since } \operatorname{Pr}\left[Y_{e, i}=1\right]=\sum_{p \in \mathcal{P}_{i}, e \in p} x_{i, p} \\
& \leq \lambda^{*} \cdot c(e) & & \text { By MCR constraint and optimality of the solved LP }
\end{aligned}
$$

Since the above analysis holds for all edges, $\frac{\mathbb{E}\left(Y_{e}\right)}{c(e)} \leq \lambda^{*}$ for any edge e, so $\mathbb{E}(o b j(\boldsymbol{y})) \leq \lambda^{*}=\operatorname{obj}\left(\boldsymbol{x}^{*}\right)$.
Theorem 12. $\operatorname{Pr}\left[\operatorname{obj}(\boldsymbol{y}) \geq \frac{2 c \log n}{\log \log n} \max \left\{1, \lambda^{*}\right\}\right] \leq \frac{1}{n^{c}}$
Proof. Since each edge in all paths in \mathcal{P}_{i} have capacities $\geq d_{i}, \frac{Y_{e}}{c(e)} \in[0,1]$. Recall $\mathbb{E}(o b j(\boldsymbol{y})) \leq \lambda^{*}$. Then, apply 2 the tight form of Chernoff bounds on $\left\{\frac{Y_{e}}{c(e)}\right\}_{e \in E}$ with $(1+e)=\frac{2 \log n}{\log \log n}$.

3.2 General: Given only a network

In the general case, we may not be given path sets \mathcal{P}_{i} and there may be exponentially many $s_{i}-t_{i}$ paths in the network. However, we show that one can still formulate an ILP and round it (slightly differently) to yield the same approximation factor. Consider the following:

ILP $_{\text {MCR-Given-Network }} \mathrm{t}$

$\operatorname{minimize}$	λ		\triangleleft Congestion parameter λ
subject to	$\sum_{e \in \operatorname{out}\left(s_{i}\right)} f(e, i)-\sum_{e \in \text { in }\left(s_{i}\right)} f(e, i)=1$	$\forall i \in[k]$	\triangleleft Valid sources
	$\sum_{e \in \operatorname{in}\left(t_{i}\right)} f(e, i)-\sum_{e \in o u t\left(t_{i}\right)} f(e, i)=1$	$\forall i \in[k]$	\triangleleft Valid sinks
	$\sum_{e \in \text { out }(v)} f(e, i)-\sum_{e \in \text { in(v) }} f(e, i)=0$	$\forall e \in E$,	\triangleleft Flow conservation
		$\forall i \in[k]$,	
		$\forall v \in V \backslash \cup \cup_{i=1}^{k}\left\{s_{i} \cup t_{i}\right\}$	

Relax the integral constraint on $y_{i, p}$ to $x_{i, p} \in[0,1]$ and solve the corresponding LP. To extract the path candidates \mathcal{P}_{i} for each commodity, perform flow decomposition ${ }^{3}$. For each extracted path p_{i} for commodity i, treat the minimum $\min _{e \in p_{i}} f(e, i)$ on the path as the selection probability (as per $x_{e, i}$ in the previous section). By selecting the path p_{i} with probability $\min _{e \in p_{i}} f(e, i)$, one can show by similar arguments as before that $\mathbb{E}(\operatorname{obj}(\boldsymbol{y})) \leq \operatorname{obj}\left(\boldsymbol{x}^{*}\right) \leq \operatorname{obj}\left(\boldsymbol{y}^{*}\right)$.

References

[RT87] Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365-374, 1987.

[^1]
[^0]: ${ }^{1}$ Using Microsoft Excel. See tutorial: http://faculty.sfasu.edu/fisherwarre/lp_solver.html Or, use an online LP solver such as: http://online-optimizer.appspot.com/?model=builtin:default.mod

[^1]: ${ }^{2}$ See Corollary 2 of https://courses.engr.illinois.edu/cs598csc/sp2011/Lectures/lecture_9.pdf for details.
 ${ }^{3}$ See https://www.youtube.com/watch?v=zgutyzA9JM4\&t=1020s (17:00 to 29:50) for a recap on flow decomposition.

