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Lecture 5: Approximation Algorithms V
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Approximation algorithms via rounding ILPs

Linear programming (LP) and integer linear programming (ILP) are versatile models but with different
solving complexities — LPs are solvable in polynomial time while ILPs are NP-hard.

Definition 1 (Linear program (LP)). In canonical form, a LP is expressed as

minimize cTx
subject to Ax ≤ b

x ≥ 0

where x is the vector of n variables (to be determined), b and c are vectors of (known) coefficients, and
A is a (known) matrix of coefficients. cTx and obj(x) are known as the objective function and objective
value of the LP respectively. For an optimal variable assignment x∗, obj(x∗) is the optimal objective.

ILPs are defined similarly with the additional constraint that variables take on integer values. As we
will be relaxing ILPs into LPs, to avoid confusion, we use y for ILP variables to contrast against the x
variables in LPs.

Definition 2 (Integer linear program (ILP)). In canonical form, a ILP is expressed as

minimize cTy
subject to Ay ≤ b

y ≥ 0
y ∈ Zn

where y is the vector of n variables (to be determined), b and c are vectors of (known) coefficients, and
A is a (known) matrix of coefficients. cTy and obj(y) are known as the objective function and objective
value of the LP respectively. For an optimal variable assignment y∗, obj(y∗) is the optimal objective.

In this lecture, we illustrate how we can model set cover and multi-commodity routing as ILPs and
how to perform rounding to yield approximations for these problems. As per previous lectures, Chernoff
bounds will be a useful inequality in our analysis toolbox.

Theorem 3 (Chernoff bound). For independent Bernoulli variables X1, . . . , Xn, let X =
∑n
i=1Xi.

Then,

Pr[X ≥ (1 + ε)E(X)] ≤ exp(−ε
2E(X)
3 ) for 0 < ε

Pr[X ≤ (1− ε)E(X)] ≤ exp(−ε
2E(X)
2 ) for 0 < ε < 1

By union bound, for 0 < ε < 1, we get Pr[|X − E(X)| ≥ εE(X)] ≤ 2 exp(−ε
2E(X)
3 )

Remark There is actually a tighter form of Chernoff bounds:

∀ε > 0,Pr[X ≥ (1 + ε)E(X)] ≤ (
eε

(1 + ε)1+ε
)E(X)

2 Set cover

Recall the minimum set cover problem.

Definition 4 (Minimum set cover problem). Given U , S, and c : S → R+, find a subset S∗ ⊆ S such
that:

(i) (Set cover):
⋃
Si∈S∗ Si = U

(ii) (Minimum cost): c(S∗) is minimized.
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Example

S1

S2

S3

S4

e1

e2

e3

e4

e5

Suppose there are n = 5 vertices and m = 4 subsets S = {S1, S2, S3, S4}, where the cost function is
defined as c(Si) = 2i. Then, the minimum set cover is S = {S1, S2, S3} with a cost of c(S) = 14.

In the first lecture, we saw a greedy selection of sets that maximize the number of remaining
uncovered items gave a Hn-approximation for set cover. Furthermore, in the special cases where
∆ = maxi∈{1,...,m} deg(Si) and f = maxi∈{1,...,n} deg(xi) are small, one can obtain H∆-approximation
and f -approximation respectively.

We now show how to formulate set cover as an ILP, reduce it into a LP, and how to round the
solutions to yield an approximation to the original set cover instance. Consider the following ILP:

ILPSet cover

minimize
∑m
i=1 yi · c(Si) / Cost of chosen set cover

subject to
∑m
i=1,ej∈Si

yi ≥ 1 ∀j ∈ {1, . . . , n} / Every item ej is covered by some set

yi ∈ {0, 1} ∀i ∈ {1, . . . ,m} / Indicator variable for whether set Si is chosen

Upon solving ILPSet cover, the set {Si ∈ {1, . . . , n} : y∗i = 1} is the optimal solution for a given set
cover instance. However, as solving ILPs are NP-hard, we consider relaxing the integral constraint by
replacing binary yi ∈ {0, 1} variables by real-valued/fractional xi ∈ [0, 1]. Such a relaxation will yield
the corresponding LP:

LPSet cover

minimize
∑m
i=1 xi · c(Si) / Cost of chosen fractional set cover

subject to
∑m
i=1,ej∈Si

xi ≥ 1 ∀j ∈ {1, . . . , n} / Every item ej is fractionally covered

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . ,m} / Relaxed indicator variables

Since LPs can be solved in polynomial time, we can find the optimal fractional solution to LPSet cover in
polynomial time.

Observation As the set of solutions of ILPSet cover is a subset of LPSet cover, obj(x
∗) ≤ obj(y∗).

Example The corresponding ILP for the above set cover instance is:

minimize 2y1 + 4y2 + 8y3 + 16y4

subject to y1 + y4 ≥ 1 / Sets covering e1

y1 + y3 ≥ 1 / Sets covering e2

y3 ≥ 1 / Sets covering e3

y2 + y4 ≥ 1 / Sets covering e4

y1 + y4 ≥ 1 / Sets covering e5

∀i ∈ {1, . . . , 4}, yi ∈ {0, 1}
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After relaxing:

minimize 2x1 + 4x2 + 8x3 + 16x4

subject to x1 + x4 ≥ 1
x1 + x3 ≥ 1
x3 ≥ 1
x2 + x4 ≥ 1
x1 + x4 ≥ 1
∀i ∈ {1, . . . , 4}, 0 ≤ xi ≤ 1 / Relaxed indicator variables

Solving it using a LP solver1 yields: x1 = 1, x2 = 1, x3 = 1, x4 = 0. Since the solved x∗ are integral, x∗

is also the optimal solution for the original ILP. In general, the solved x∗ may be fractional, which does
not immediately yield a set selection.

In the following, we describe two ways to round the fractional assignments x∗ into binary variables
y so that we can interpret them as proper set selections.

2.1 (Deterministic) Rounding for small f

Recall that the vertex cover problem is a special case when f = 2. We round x∗ as follows:

∀i ∈ {1, . . . ,m}, set yi =

{
1 if x∗i ≥ 1

f

0 else

Theorem 5. The rounded y is a feasible solution to ILPSet cover.

Proof. Since x∗ is a feasible (not to mention, optimal) solution for LPSet cover, in each constraint, at
least one x∗i ≥ 1

f . Hence, every element is covered by some set yi in the rounding.

Theorem 6. The rounded y is a f -approximation to ILPSet cover. That is, obj(y) ≤ f · obj(y∗).

Proof. By the rounding, yi ≤ f · x∗i ,∀i ∈ {1, . . . ,m}. Therefore, obj(y) ≤ f · obj(x∗) ≤ f · obj(y∗).

2.2 (Randomized) Rounding for general f

If f is large, a f -approximation in the previous subsection is unsatisfactory. By introducing randomness
in the rounding process, we show that one can obtain a ln(n)-approximation (in expectation) with
arbitrarily high probability through probability amplification.

Consider the following rounding procedure:

1. Interpret each fractional solution x∗i as probability for picking Si. That is, Pr(yi = 1) = x∗i .

2. For each i, independently set yi to 1 with probability x∗i .

Theorem 7. E(obj(y)) = obj(x∗)

Proof.
E(obj(y)) = E(

∑m
i=1 yi · c(Si))

=
∑m
i=1 E(yi) · c(Si) By linearity of expectation

=
∑m
i=1 Pr(yi = 1) · c(Si) Since each yi is an indicator variable

=
∑m
i=1 x

∗
i · c(Si) Since Pr(yi = 1) = x∗i

= obj(x∗)

Although we expect the rounded selection to yield an objective cost that is close to the optimum
of the LP (which may be even better than the optimal of the ILP), we need to consider whether all
constraints are satisfied.

Theorem 8. For any j ∈ {1, . . . , n}, item ej is not covered with probability ≤ e−1.

1Using Microsoft Excel. See tutorial: http://faculty.sfasu.edu/fisherwarre/lp_solver.html

Or, use an online LP solver such as: http://online-optimizer.appspot.com/?model=builtin:default.mod
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Proof. For any j ∈ {1, . . . , n},

Pr[Item ej not covered] = Pr[

m∑
i=1,ej∈Si

yi = 0] = Πm
i=1,ej∈Si

(1− x∗i )

≤ Πm
i=1,ej∈Si

e−x
∗
i = e

−
∑m

i=1,ej∈Si
−x∗i ≤ e−1

The first inequality is because (1− x) ≤ ex and the last inequality holds because the x∗ satisfies the jth

constraint in the LP that
∑m
i=1,ej∈Si

x∗i ≥ 1.

Since e−1 ≈ 0.37, we would expect the rounded y not to cover several items. However, one can amplify
the success probability by considering independent roundings and taking the union (See Algorithm 1).

Algorithm 1 ApproxSetCoverILP(U ,S, c)
ILPSet cover ← Construct ILP of problem instance
LPSet cover ← Relax integral constraints on indicator variables x to y
x∗ ← Solve LPSet cover

T ← ∅ . Selected subset of S
for k · ln(n) times (for any constant k > 1) do

for i ∈ {1, . . . ,m} do
yi ← Set to 1 with probability x∗i
if yi = 1 then

T ← T ∪ {Si} . Add to selected sets T
end if

end for
end for
return T

Similar to Theorem 6, we can see that E(obj(T )) ≤ (k · ln(n)) · obj(y∗). Furthermore, Markov’s
inequality tells us that the probability of obj(T ) being z times larger than its expectation is at most 1

z .

Theorem 9. ApproxSetCoverILP gives a valid set cover with probability ≥ 1− n1−k.

Proof. ∀j ∈ {1, . . . , n},

Pr[Item ej not covered by T ] = Pr[ej not covered by all k ln(n) roundings] ≤ (e−1)k ln(n) = n−k

Taking union bound over all n items, Pr[T is not a valid set cover] ≤
∑n
i=1 n

−k = n1−k. So, T covers
all n items with probability ≥ 1− n1−k.

Note that the success probability of 1− n1−k can be further amplified by taking several (polynomial
number of) independent samples ApproxSetCoverILP, then returning the lowest cost valid set cover
sampled. With z samples, Pr[All repetitions fail] ≤ nz(1−k), so we succeed with probability ≥ 1−nz(1−k).

3 Minimizing congestion in multi-commodity routing

A multi-commodity routing (MCR) problem involves routing multiple (si, ti) flows across a network with
the goal of minimizing congestion, where congestion is defined as the largest ratio of flow over capacity
of any edge in the network. In this section, we discuss two variants of the multi-commodity routing
problem. In the first variant (special case), we are given the set of possible paths Pi for each (si, ti)
source-target pairs. In the second variant (general case), we are given only the network. In both cases,

[RT87] showed that one can obtain an approximation of O( log(n)
log log(n) ) with high probability.

Definition 10 (Multi-commodity routing problem). Consider a directed graph G = (V,E) where each
edge e = (u, v) ∈ E has a capacity c(u, v). The in-set/out-set of a vertex v is denoted as in(v) =
{(u, v) ∈ E : u ∈ V } and out(v) = {(v, u) ∈ E : u ∈ V } respectively. Given k triplets (si, ti, di), where
si ∈ V is the source, ti ∈ V is the target, and di ≥ 0 is the demand for the ith commodity respectively,
denote f(e, i) as the fraction of di that is flowing through edge e. The task is to minimize the congestion
parameter λ by finding paths pi for each i ∈ [k], such that:
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(i) (Valid sources):
∑
e∈out(si) f(e, i)−

∑
e∈in(si)

f(e, i) = 1,∀i ∈ [k]

(ii) (Valid sinks):
∑
e∈in(ti)

f(e, i)−
∑
e∈out(ti) f(e, i) = 1,∀i ∈ [k]

(iii) (Flow conservation):
∑
e∈out(v) f(e, i)−

∑
e∈in(v) f(e, i) = 0,∀e ∈ E,∀i ∈ [k],∀v ∈ V \∪ki=1{si∪ ti}

(iv) (Single path): All demand for commodity i passes through a single path pi (no repeated vertices).

(v) (Congestion factor): ∀e ∈ E,
∑k
i=1 di1e∈pi ≤ λ · c(e), where indicator 1e∈pi = 1 ⇐⇒ e ∈ pi.

(vi) (Minimum congestion): λ is minimized.

Example Consider the following flow network with k = 3 commodities with edge capacities as labelled:

s1

s2

s3

a

b

c

t1

t2

t3

13

7

20

58

17

8

11
19

7
6

5

For demands d1 = d2 = d3 = 10, there exists a flow assignment such that the total demands flowing
on each edge is below its capacity:

s1

s2

s3

a

b

c

t1

t2

t3

10 10
s1

s2

s3

a

b

c

t1

t2

t3

5

5

5

5
5 5

s1

s2

s3

a

b

c

t1

t2

t3

5

55

5

5
5

Although the assignment attains congestion λ = 1 (due to edge (s3, a)), the path assignments for
commodities 2 and 3 violate the property of “single path”. Forcing all demand of each commodity to
flow through a single path, we have a minimum congestion of λ = 1.25 (due to edges (s3, s2) and (a, t2)):

s1

s2

s3

a

b

c

t1

t2

t3

10 10
s1

s2

s3

a

b

c

t1

t2

t3

10

10
10

s1

s2

s3

a

b

c

t1

t2

t3

10

10

1010

3.1 Special case: Given sets of si − ti paths Pi

For each commodity i ∈ [k], we are to select a path pi from a given set of valid paths Pi, where each
edge in all paths in Pi have capacities ≥ di. Because we intend to pick a single path for each commodity
to send all demands through, constraints (i)-(iii) of MCR are fulfilled trivially. Using yi,p as indicator
variables whether path p ∈ Pi is chosen, we can model the following ILP:

ILPMCR-Given-Paths

minimize λ / Congestion parameter λ

subject to
∑k
i=1 di

∑
p∈Pi,e∈p yi,p ≤ λ · c(e) ∀e ∈ E / Congestion factor relative to selected paths∑

p∈Pi
yi,p = 1 ∀i ∈ [k] / Exactly one path chosen from each Pi

yi,p ∈ {0, 1} ∀i ∈ [k], p ∈ Pi / Indicator variable for path p ∈ Pi

Relax the integral constraint on yi,p to xi,p ∈ [0, 1] and solve the corresponding LP. Let us denote
λ∗ = obj(LPMCR-Given-Paths) and x∗ as a fractional path selections that achieves λ∗. Then, to obtain a

valid path selection, for each i ∈ [k], pick path p ∈ Pi with weighted probability
x∗i,p∑

p∈Pi
x∗i,p

.
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Remark 1 For a fixed i, a path is selected exclusively (only one!) (cf. set cover’s roundings where we
may pick multiple sets for an item).

Remark 2 The weighted sampling is independent across different commodities. That is, the choice of
path amongst Pi does not influence the choice of path amongst Pj for i 6= j.

Theorem 11. E(obj(y)) ≤ obj(x∗)

Proof. Fix an arbitrary edge e ∈ E. For each commodity i, define an indicator variable Ye,i whether edge
e is part of the chosen path for commodity i. By randomized rounding, Pr[Ye,i = 1] =

∑
p∈Pi,e∈p xi,p.

Denoting Ye =
∑k
i=1 di · Ye,i as the total demand on edge e in the all k chosen paths:

E(Ye) = E(
∑k
i=1 di · Ye,i)

=
∑k
i=1 di · E(Ye,i) By linearity of expectation

=
∑k
i=1 di

∑
p∈Pi,e∈p xi,p Since Pr[Ye,i = 1] =

∑
p∈Pi,e∈p xi,p

≤ λ∗ · c(e) By MCR constraint and optimality of the solved LP

Since the above analysis holds for all edges, E(Ye)
c(e) ≤ λ

∗ for any edge e, so E(obj(y)) ≤ λ∗ = obj(x∗).

Theorem 12. Pr[obj(y) ≥ 2c logn
log logn max{1, λ∗}] ≤ 1

nc

Proof. Since each edge in all paths in Pi have capacities ≥ di, Ye

c(e) ∈ [0, 1]. Recall E(obj(y)) ≤ λ∗. Then,

apply2 the tight form of Chernoff bounds on { Ye

c(e)}e∈E with (1 + e) = 2 logn
log logn .

3.2 General: Given only a network

In the general case, we may not be given path sets Pi and there may be exponentially many si− ti paths
in the network. However, we show that one can still formulate an ILP and round it (slightly differently)
to yield the same approximation factor. Consider the following:

ILPMCR-Given-Network t

minimize λ / Congestion parameter λ
subject to

∑
e∈out(si) f(e, i)−

∑
e∈in(si)

f(e, i) = 1 ∀i ∈ [k] / Valid sources∑
e∈in(ti)

f(e, i)−
∑
e∈out(ti) f(e, i) = 1 ∀i ∈ [k] / Valid sinks∑

e∈out(v) f(e, i)−
∑
e∈in(v) f(e, i) = 0 ∀e ∈ E, / Flow conservation

∀i ∈ [k],
∀v ∈ V \ ∪ki=1{si ∪ ti}

Relax the integral constraint on yi,p to xi,p ∈ [0, 1] and solve the corresponding LP. To extract the
path candidates Pi for each commodity, perform flow decomposition3. For each extracted path pi for
commodity i, treat the minimum mine∈pi f(e, i) on the path as the selection probability (as per xe,i in
the previous section). By selecting the path pi with probability mine∈pi f(e, i), one can show by similar
arguments as before that E(obj(y)) ≤ obj(x∗) ≤ obj(y∗).
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