Advanced Algorithms 6 November 2018

Lecture 8: Streaming and Sketching Algorithms II
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

Recall that the k" moment of a stream S is defined as Z?Zl( f;). In this lecture, we will continue
the analysis for estimating the zeroth moment of a stream, and show an algorithm that estimates the
k" moment of a stream, due to [AMS96]. We will see how Tricks 1 and 2 from the previous lecture can
be used to improve the estimation precision and amplify the success probabilities in our analysis.

Remark In this lecture, we will often upper-bound probabilities using the following fact: If event A
implies event B, then Pr[A] < Pr[B]. One can visualize the probability space as follows:

1 Estimating the zeroth moment of a stream (Continued)

Recall the definition of pairwise independent hash functions and the algorithm presented at the end of
the last lecture (Algorithm 1 due to [FMS85]). Let D be the number of distinct elements in the stream S.

Definition 1 (Family of pairwise independent hash functions). H,, ,, is a family of pairwise independent
hash functions if

e (Hash definition): Yh € Hpm, h:{1,...,n} = {1,...,m}
o (Uniform hashing): Vo € {1,...,n}, Prpey, . [M(x) =1] =

1
m

1
m?2

o (Pairwise independent) Yo,y € {1,...,n}, v #y, Pruen, . [h(x) =i Ah(y) = j] =

Algorithm 1 FM(S = {a1,...,an})
h < Random hash from #, ,
Z+0
for a;, € S do > Items arrive in streaming fashion
7Z = max{Z,zEROS(h(a;))} > ZEROS(h(a;)) = # trailing zeroes in binary representation of h(a;)
end for
return 22 - /2 > Estimate of D

Since the hash h is deterministic after picking a random hash from H,, ,,, h(a;) = h(a;),Va, = a; € [n].

Lemma 2. If Xq,...,X,, are pairwise independent indicator random variables and X = Z?:l X;, then
Var(X) < E[X].
Proof.
Var(X) = > ", Var(X;) The X;’s are pairwise independent
= Yo (E[X}] - (E[X;])?) Definition of variance
< > E[XZ Ignore negative part
= > EX)] X2 = X, since X;’s are indicator random variables
= E}L, X, Linearity of expectation
= E[X] Definition of expectation



Theorem 3. There exists a constant C > 0 such that Pr[% <2Z..92< 3D] > C.
Proof. We will prove Pr[(£ > 27.4/2) or (22-v/2 > 3D)] < 1—C by separately analyzing Pr[2 > 27.1/2]
and Pr[24 - /2 > 3D], then applying union bound. Define indicator variables

X 1 if zeros(h(a;)) >r
“ 10 otherwise

and X, = > 1" X;, = [{a; € S : ZEROS(h(a;)) > r}|. Notice that X,, < X,,_; <--- < X5 < X since
zZEROS(h(a;)) > r + 1 = zEROS(h(a;)) > r. Now,

EX:] = ERZ, Xi] Since X, =370 Xi,
= Y EX;,] By linearity of expectation
= Y, Pr[X;,=1] Since X;, are indicator variables
= 2111 2% Since h is a uniform hash — r zeros in coin flips
D

= 5 Since h hashes same elements to the same value
Denote 71 as the smallest integer such that 2™ - /2 > 3D, and m as the largest integer such that
2m2 /2 < %. We see that if 74 < Z < 7o, then 27 - V2is a 3-approximation of D.
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o If Z> 7y, then 22 -2 >27 .2 > 3D
oIfZSTQ,then22~ﬂ§272-ﬂ<%

Pr[Z > < Pr[X, >1] Since Z>m = X, >1
< % By Markov’s inequality
= 2% Since E[X,] = %
< g Since 27 - /2 > 3D
Pr[iZ <m] < Pr[X,41 =0 Since Z <1 = X;41 =0
< PrlE[Xp41] — Xrp41 = E[X,41]]  Implied
< Pr|Xn+1 — E[Xr41]] > E[X,41]] Adding absolute sign
< % By Chebyshev’s inequality
E[X .41
S @E[)&-ﬁ By Lemma 2
< == Since E[X,] = £
< % Since 27 - /2 < %

Putting together,

Pr((£ >27.V2)or (27-V2>3D)] < Pr[2 >27.2]+Pr27.v2>3D] By union bound
< 22 From above
= 73
= 1-C ForC:1—¥>0

O

Although the analysis tells us that there is a small success probability (C'=1 — ¥ ~ 0.0572), one

can use t independent hashes and output the mean %Ele(QZi -v/2) (Recall Trick 1). With ¢ hashes,

the variance drops by a factor of %, improving the analysis for Pr[Z < 75]. When the success probability

C > 0.5, one can then call the routine &k times independently and return the median (Recall Trick 2).
While Tricks 1 and 2 allows us to strength the success probability C', more work needs to be done

to improve the approximation factor from 3 to (1 4 €). To do this, we look at a slight modification of
Algorithm 1, due to [BYJKT02].



Algorithm 2 FM+(S = {a1,...,am},€)

N <— n?

t+ S €0(L) > For some constant ¢ > 28

h Random hash from H,, v > Hash to a larger space

T+ 0 > Maintain ¢ smallest h(a;)’s

for a; € S do > Items arrive in streaming fashion
T < t smallest values from T U {h(a;)} > If [T U {h(a;)}| < t, take everything

end for

Z = maxger T

return % > Estimate of D

Remark For a cleaner analysis, we treat the integer interval [N] as a continuous interval in Theorem
4. Note that there may be a rounding error of % but this is relatively small and a suitable ¢ can be
chosen to make the analysis still work.

Theorem 4. In FM+, for any given 0 < e < &, Pr[|t — D| < eD] > 2.

Proof. We first analyze Pr[Z} > (1+¢)D] and Pr[Y < (1—¢)D] separately. Then, taking union bounds
and negating yields the theorem’s statement.

If % > (1 +¢€)D, then % > 7 = t** smallest hash value, implying that there are > t hashes

smaller than %. Since the hash uniformly distributes [n] over [N], for each element aj,

tN
tN (1+e)D t
Prh(a;) < - —
the) < G gp! ="~ ~ a7 oD
Let dy,...,dp be the D distinct elements in the stream. Define indicator variables

X, — 1 if h(d;) < (1+e)
0 otherwise

and X = ZD_l X; is the number of hashes that are smaller than (13_]ng From above, Pr[X; = 1] =

. By linearity of expectation, E[X] = Then, by Lemma 2, Var(X) < E[X]. Now,

(1+€) - (1+€)

Pr[tfl > (1+€)D] < Pr[X >{] Since the former implies the latter
= Pr[X —E[X] >t¢—E[X]] Subtracting E[X] from both sides
< Pr[X —E[X] > §t] Since E[X] = g5 < (1 - §)t
< Pr[|X - E[X]| > §t] Adding absolute sign
< \(:?7(2?2) By Chebyshev’s inequality
< % Since Var(X) < ]E[X]
< Aoy Since E[X] = g < (1 - §)t
< 4 Simplifying Wlth t=S5%and (1-5)<1

Similarly, if % < (1 —¢€)D, then % < Z = t'" smallest hash value, implying that there are < t

hashes smaller than (127) 5. Since the hash uniformly distributes [n] over [N], for each element a;,

tIN

tN {i-oD t
Prlh(a;) < — _
thie) s a=5p! ="~ ~@a=ap
Let dy,...,dp be the D distinct elements in the stream. Define indicator variables

. N
0 otherwise



andY = 21 1 Y; is the number of hashes that are smaller than From above, Pr[Y; = 1] = L+

(1 )D =D
By linearity of expectation, E[Y] = (176). Then, by Lemma 2, Var(Y) < E[Y]. Now,
Pr[ifl < (1-¢€)D] < Pr[y <{ Since the former implies the latter
= Pr[Y —E[Y] <t¢t—E[Y]] Subtracting E[Y] from both sides
< Pr[Y —E[Y] < —et] Since E[Y] = ﬁ > (1+e)t
< Pr[—(Y —E[Y)) > €] Swap sides
< Pr[|]Y —E[Y]]| > €] Adding absolute sign
< V{ﬁ rt}};) By Chebyshev’s inequality
< ]EEEE)/Q Since Var(Y) < E[Y]
< 1:;?26” Since E[Y] = ( < (14 2e)t
< 3 Simplifying with t =5 and (1+42¢) <3
Putting together,
Pr[|tf — D| > eD]] < Pr[Z > (1+¢)D]]+Pr[Y < (1—€)D]] By union bound
< 4/c+3/c From above
< T/e Simplifying
< 1/4 For ¢ > 28

2 Estimating the k" moment of a stream

In this section, we describe algorithms from [AMS96] that estimates the k" moment of a stream, first
for k = 2, then for general k. Recall that the k' moment of a stream S is defined as Fj, = Z?Il(fj)k.

21 k=2

For each element i € [n], we associate a random variable r; €, ., {—1,+1}.

Algorithm 3 AMS-2(S ={ay,...,am})

For each i € [n], assign r; €. {—1,+1} > For now, this takes O(n) space

Z <0

for a; € S do > Items arrive in streaming fashion
Z—Z+r > At theend, Z =" 7 f;

end for

return 72 > Estimate of F» = > 1 (fi)?

Lemma 5. In AMS-2, if random variables {r;};c|n) are pairwise independent, then E[Z?| =" A=
Fy. That is, AMS-2 is an unbiased estimator for the 2" moment.

Proof.
E[Zz] = E[(ZZ 1 Tzfz) } Since Z = Z?:l ’I“ifi at the end

= E[Ez 1 Z + 2 El<z<g<n T ’r]flfj] Expanding (2?21 ’rifi)Q
= Y E[r 2f2] +23 cicjen Elririfif;] Linearity of expectation
= S ElFlfE 23 cicj<n Elrirjlfif;  fi’s ave (unknown) constants
= Zz 1 f2 + 221<1<]<n [’I"ﬂ’]]fzfj Since (7’02 = 1,Vi (S [TL}
= YL fP+2 Zl<z<]<n [ri|E[r;]fif; Since {r;}ic[n) are pairwise independent
= D P2 cicj<n 0 fifi Since E[r;] = 0,Vi € [n]
= Yr.f? Simplifying
= K Since F» = Y"1 | (fi)?

O
Lemma 6. In AMS-2, if random variables {r;};c(,) are 4-wise independent, then Var{Z?] < 2(E[Z?])2.



Proof. As before, E[r;] = 0 and E[r?] = 1 for all i € [n]. By 4-wise independence, the expectation
of any product of < 4 different r;’s is the product of their expectation, which is zero. For instance,
E[rirjriry] = Elri|E[r;]E[rk]E[r;] = 0. Note that 72 = r} =1 and r; = r}

i

E[zY] = E((>r, rifi)t] Since Z = Y1, r;f; at the end
= Y ElA 6 i<n El[rfr3]f2f7 Linearity of expectation and 4-wise independence
= S+ 6> 1<icj<n 21 Since E[r}] = E[r?] = 1,Vi € [n]

The coefficient of >3, _, o, E[rfr3] f7 f7 is (3)(3) = 6. All other terms besides Y1 E[r#]f} and
6> 1<ici<n E[rfr3]f2 f7 evaluate to 0 because of 4-wise independence.

Var[Z?] = E[(Z%)?] - (E[Z?])? Definition of variance
S A6 iy [P 17— (B[27)? From above
S A6 i F2F7 — (12, f7)? By Lemma 5 since 4-wise ind. = pairwise ind.

= 4 Zl§i<j<n fizfj7 Expand and simplify
< 200, f?)2 Upper bound
= 2(E[Z?%])? By Lemma 5

O
Theorem 7. In AMS-2, if {r;}icn) are 4-wise independent, Pr[|Z* — F3| > eFy] < % for any € > 0.
Proof.

Pr[|Z% — Fy| > eFy) Pr[|Z% — E[Z?]| > €E[Z?]] By Lemma 5

Var(Z?2)

< @z By Chebyshev’s inequality
< 2E[Z%)? Bv L 6

= gﬁE[ZQ])Q y Lemma

—

O
Claim 8. O(klogn) bits of randomness suffices to obtain a set of k-wise independent random variables.

Proof. Recall the definition of hash family #,,,,. In a similar fashion', we consider hashes from the
family (for prime p):

e )
{h’ak—l»ak—Za-u»ahaO : h({E) = Zi:ll a;z’  mod p
= ap_12¥ ' +ap_2zF 2+ +ax+ay modp,
vak*h ag—2,...,01,00 € ZP}
This requires k random coefficients, which can be stored with O(klogn) bits. O

Observe that the above analysis only require {r; };c[,) to be 4-wise independent. Claim 8 implies that
AMS-2 only needs O(4logn) bits to represent {7;};c[n-

Although the failure probability E% is large for small €, one can repeat t times and output the mean
(Recall Trick 1). With ¢ € O(Z%) samples, the failure probability drops to % € O(1). When the
failure probability is < 0.5, one can then call the routine k times independently, and return the median
(Recall Trick 2). On the whole, for any given € > 0 and 6 > 0, O(w) space suffices to yield a
(1 + €)-approximation algorithm that succeeds with probability > 1 — 4.

2.2 General &k

The assumption of known m in AMS-K can be removed via reservoir sampling?. The idea is as follows:
Initially, initialize stream length and J as both 0. When a; arrives, choose to replace J with ¢ with
probability % If J is replaced, reset r to 0 and start counting from this stream suffix onwards. It can
be shown that the choice of J is uniform over current stream length.

Lemma 9. In AMS-K, E[Z] = Y1, fF = F}.. That is, AMS-K is an unbiased estimator for the k"
moment.

1See https://en.wikipedia.org/wiki/K-independent_hashing
2See https://en.wikipedia.org/wiki/Reservoir_sampling


https://en.wikipedia.org/wiki/K-independent_hashing
https://en.wikipedia.org/wiki/Reservoir_sampling

Algorithm 4 AMS-K(S = {a1,...,an})

m <+ |S]
Jeu.a‘r. [m]
r<+0
for a; € S do
if ¢ > J and a; = ay then
rer+1 > At theend, r =|{i € [m]: i > J and a; = a,}|
end if
end for
Z «m(rk — (r — 1)%)
return 7

> For now, assume we know m =

Bl

> Pick a random index

> Items arrive in streaming fashion

= # a; in suffix of stream

> Estimate of Fj = Z?Zl(fi)k

Proof. When J = i, there are f; choices for J. By telescoping sums, we have:

E[Z|J:i] = %[ ( F (fz_l)k)]_F%[ (fz ) (fz_
= Pl = F= D)+ ((fi = DF = (fi =2)%) +
mfk
file
E[Z] S E[Z]|J=4]-Pr[J=1i] Condition on the
= YL EZ|J=4 L Since choice of J
= Yo7 fhL From above
= Y fF Simplifying
= B Since Fj, = Y1,
Lemma 10. For every n positive reals f1, fa,..., fn,
(Zfl) Zf2k 1 nl= 1/k ka:
i=1 i=1

Proof. Let M = max;cy,
(i f) (i 257 (i f) (M50 )

(i Ji) iy £ DR, fF)
(Siy fi) (ST, fl)ER—D/k

A ODAIR /A O DI /o ke
n! VRS i)

A IAIA

Remark f; =n'/* f,=...= f, =11is a tight example for Lemma

1
f

"))

2))] + [m (1% + 0%)]

+(1’“+

choice of J
is uniform at random

1t

] fi, then f; < M for any i € [n] and MF <3 fF. Hence,

Pulling out a M*~! factor
Since M* <Y | fF
Merging the last two terms

Fact: (327, fi)/n < (i, ff/n)V/*
Merging the last two terms

O

10, up to a constant factor.

Theorem 11. In AMS-K, Var(Z) < kn'~ % (E[Z])?
Proof. Let us first analyze E[Z2].
E[Z°] = 2[1F =02+ (2" = 1%+ -+ (ff = (L — DF)? (A)
+ (1P =082+ (2 =12 4 (fy - (o= DY)
+ ...
+ (15 =052 4 (25 = 1) 4 oot (ff = (fu = 1))
< mfl 1EE 09 k2 @) ke R (1)) (B)
+ k1R R f k2R (2R 1R b R R (fE — (fy - D)F)
+ ...
+ ok AR 08) ke 28 (28 1) e ke £ (f = (Fa = 1Y)
< mlk- PP R S ke 2 (©)
= k-m-Fyq (D)
= k-Fy Fyy (E)



(A) By definition of E[Z?] (condition on J and expand in the same style as the proof of Theorem 9).

(B) VO <b<a,ad" —bF=(a—b)(a* 1 +a* 2+ - +abF 2+ b)) < (a — b)ka* !, witha=b+1

(C) Telescope each row, then ignore remaining negative terms
(D) Fopr =20, [
(E) Fl:Z?:lfi:m

Then,

Var(Z) = E[Z% - (E[Z])® Definition of variance
< [E[Z?] Ignore negative part
< k-Fi -Fy_q From above
< knl_l/kaZ By Lemma 10

kn'=/k(E[Z])? By Theorem 9
O

Remark Proofs for Lemma 10 and Theorem 11 were omitted in class. The above proofs are presented
in a style consistent with the rest of the scribe notes. Interested readers can refer to [AMS96] for details.

Remark One can apply an analysis similar to the case when k& = 2, then use Tricks 1 and 2.

Claim 12.

For k > 2, a lower bound of ©(n*~%) is known.

Proof. Theorem 3.1 in [BYJKS04] gives the lower bound. See [IW05] for algorithm that achieves it. [
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