
Advanced Algorithms 13 November 2018

Lecture 9: Streaming and Sketching Algorithms III
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Graph sketching

Definition 1 (Streaming connected components problem). Consider a graph of n vertices and a stream
S of edge updates {〈et,±〉}t∈N+ , where edge et is either added (+) or removed (-). Assume that S is
“well-behaved” where existing edges are not added and edge deletions can only occur after additions.

At time t, the edge set Et of the graph Gt = (V,Et) is the set of edges present after accounting for all
stream updates up to time t. How much memory do we need if we want to be able to query the connected
components for Gt for any t ∈ N+?

Let m be the total number of distinct edges that appear in the stream up to time t. There are two
ways to represent connected components on a graph:

1. Every vertex stores a label where vertices in the same connected component has the same label

2. Explicitly build a tree for each connected component — This yields a maximal forest

For today, we are interested in building a maximal forest for Gt. This can be done with memory size
of O(m) words1, or — in the special case of only edge additions — O(n) words2. However, these are
unsatisfactory as m ∈ O(n2) on a complete graph, and we may have edge deletions. In this lecture, we
will show that one can maintain a data structure with O(n log4 n) memory, with a randomized algorithm
that succeeds in building the maximal forest with success probability ≥ 1− 1

n10 .

Remark We say event X holds with high probability (w.h.p.) if Pr[X] ≥ 1 − 1
nc for some constant

c ≥ 2.

1.1 Coordinator model

For a change in perspective3, consider the following computation model where each vertex acts in-
dependently from each other. Then, upon request of connected components, each vertex sends some
information to a centralized coordinator to perform computation and outputs the maximal forest.

This model will be helpful in our analysis of the algorithm later as each vertex will send O(log4 n)
amount of data (a local sketch of the graph) to the coordinator, totalling O(n log4 n) memory as required.

1.2 Warm up: Finding the single cut

Definition 2 (The single cut problem). Fix an arbitrary subset A ⊆ V . Suppose there is exactly 1 cut
edge (u, v) between A and V \A. How do we output the cut edge (u, v) using O(log n) bits of memory?

Without loss of generality, assume u ∈ A and v ∈ V \ A. Note that this is not a trivial problem on
first glance since it already takes O(n) bits for any vertex to enumerate all adjacent edges. To solve the
problem, we use a bit trick which exploits the fact that any edge (a, b) ∈ A will be considered twice by
vertices in A. Since one can uniquely identify each vertex with O(log n) bits, consider the following:

• Identify an edge by the concatenation the identifiers of its endpoints (say, u ◦ v if id(u) < id(v))

• Locally at every vertex u, maintain XORu = ⊕{id(ei) : ei ∈ S ∧ ei has a endpoint u}

• Vertices send the coordinator their sum and the coordinator computes XORA ⊕ {XORu : u ∈ A}
1Toggle edge additions/deletion per update. Compute connected components on demand.
2Use the Union-Find data structure. See https://en.wikipedia.org/wiki/Disjoint-set_data_structure
3In reality, the algorithm simulates all the vertices’ actions so it is not a real multi-party computation setup.

1

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Example Suppose V = {v1, v2, v3, v4, v5} where id(v1) = 000, id(v2) = 001, id(v3) = 010, id(v4) =
011, and id(v5) = 100. Then, id((v1, v3)) = id(v1) ◦ id(v3) = 000010, and so on. Suppose S =
{〈(v1, v2),+〉, 〈(v2, v3),+〉, 〈(v1, v3),+〉, 〈(v4, v5),+〉, 〈(v2, v5),+〉, 〈(v1, v2),−〉} and we query for the cut
edge (v2, v5) with A = {v1, v2, v3} at t = |S|. The figure below shows the graph G6 when t = 6:

v1

v2

v3

v4

v5

A

Vertex v1 sees {〈(v1, v2),+〉, 〈(v1, v3),+〉, and 〈(v1, v2),−〉}. So,

XOR1 ⇒ 000000 Initialize
⇒ 000000⊕ id((v1, v2)) = 000000⊕ 000001 = 000001 Due to 〈(v1, v2),+〉
⇒ 000001⊕ id((v1, v3)) = 000001⊕ 000010 = 000011 Due to 〈(v1, v3),+〉
⇒ 000011⊕ id((v1, v2)) = 000011⊕ 000001 = 000010 Due to 〈(v1, v2),−〉

Repeating the simulation for all vertices,

XOR1 = 000010 = id((v1), (v2))⊕ id((v1), (v3))⊕ id((v1), (v2))
= 000001⊕ 000010⊕ 000001

XOR2 = 000110 = id((v1), (v2))⊕ id((v2), (v3))⊕ id((v2), (v5))⊕ id((v1), (v2))
= 000001⊕ 001010⊕ 001100⊕ 000001

XOR3 = 001000 = id((v2), (v3))⊕ id((v1), (v3))
= 001010⊕ 000010

XOR4 = 011100 = id((v4), (v5))
= 011100

XOR5 = 010000 = id((v4), (v5))⊕ id((v2), (v5))
= 011100⊕ 001100

Thus, XORA = XOR1 ⊕ XOR2 ⊕ XOR3 = 000010 ⊕ 000110 ⊕ 001000 = 001100 = id((v2, v5)) as
expected. Notice that adding and deleting edges both add the edge ID to each vertex’s XOR sum, and
every edge in A contributes an even number of times to the coordinator’s XOR sum.

Claim 3. XORA = ⊕{XORu : u ∈ A} is the identifier of the cut edge.

Proof. For any edge (a, b) such that a, b ∈ A, id((a, b)) is in both XORa and XORb. So, XORa⊕XORb

will cancel out the contribution of id((a, b)). Hence, the only remaining value in XORA = ⊕{XORu :
u ∈ A} will be the cut edge since only one endpoint lies in A.

Remark Bit tricks are often used in the random linear network coding literature (e.g. [HMK+06]).

1.3 Warm up 2: Finding one cut out of k > 1 cut edges

Definition 4 (The k cut problem). Fix an arbitrary subset A ⊆ V . Suppose there is exactly k cut edge

(u, v) between A and V \ A, and we are given an estimate k̂ such that k̂
2 ≤ k ≤ k̂. How do we output a

cut edge (u, v) using O(log n) bits of memory, with high probability?

A straight-forward idea is to independently mark each edge, each with probability 1/k̂. In expectation,
we expect one edge to be marked. Denote the set of marked cut edges by E′.

Pr[|E′| = 1]
= k · Pr[Cut edge (u, v) is marked, and others are not]

= k · (1/k̂)(1− (1/k̂))k−1 Each edge is marked independently w.p. 1/k̂

≥ (k̂/2)(1/k̂)(1− (1/k̂))k̂ Since k̂
2 ≤ k ≤ k̂

≥ 1
2 · 4

−1 Since 1− x ≥ 4−x for x ≤ 1/2
≥ 1

10

2

Remark The above analysis assumes that the vertices can mark the edges locally so that it is consistent
globally (i.e. both endpoints of any edge make the same decision whether to mark the edge or not). This
can be done with a sufficiently large string of shared randomness. We discuss this in Section 1.4.

From above, we know that Pr[|E′| = 1] ≥ 1/10. If |E′| = 1, we can re-use the idea from Section
1.2. However, if |E′| 6= 1, then XORA may correspond erroneously to another edge in the graph. In the
above example, id((v1, v2))⊕ id((v2, v4)) = 000001⊕ 001011 = 001010 = id((v2, v3)).

To fix this, we use random bits as edge IDs instead of simply concatenating vertex IDs. That is,
randomly assign (in a consistent manner) each edge with a random ID of k = 20 log n bits. Since the
XOR of random bits is random, for any edge e, Pr[XORA = id(e) | |E′| 6= 1] = (1

2)k = (1
2)20 logn. Hence,

Pr[XORA = id(e) for some edge e | |E′| 6= 1]
≤

∑
e∈(V2) Pr[XORA = id(e) | |E′| 6= 1] Union bound over all possible edges

=
(
n
2

)
(1
2)20 logn There are

(
n
2

)
possible edges

= 2−18 logn Since
(
n
2

)
≤ n2 = 22 logn

= 1
n18 Rewriting

Now, we can correctly distinguish |E′| = 1 from |E′| 6= 1 and Pr[|E′| = 1] ≥ 1
10 . For any given ε > 0,

there exists a constant C(ε) such that if we repeat t = C(ε) log n times, the probability that all t tries
fail to extract a single cut is (1− 1

10)t ≤ 1
n1+ε .

1.4 Maximal forest with O(n log4 n) memory in streaming edge updates

Recall that Bor̊uvka’s algorithm4 builds a minimum spanning tree by iteratively finding the cheapest edge
leaving connected components and adding them into the MST. The number of connected components
decreases by at least half per iteration, so it converges in O(log n) iterations.

For any arbitrary cut, the number of edge cuts is k ∈ [0, n]. Iterating through k̂ = 20, 21, . . . , 2dlogne,
one can use Section 1.3 to find one such cut edge:

• If the guess k̂ � k, the marking probability will select nothing (in expectation).

• If k̂ � k, more than one edge will get marked, which we will then detect (and ignore) since XORA

will likely not be a valid edge ID.

Algorithm 1 ComputeSketches(S = {〈e,±〉, . . . }, ε,R)

for i = 1, . . . , n do
XORi ← 0(20 logn)∗log3 n . Initialize log3 n copies

end for
for Edge update {〈e = (u, v),±〉} ∈ S do . Edge updates arrive in streaming fashion

for b = log n times do . Simulate Bor̊uvka
for i ∈ {1, 2, . . . , log n} do . log n guesses of k̂

for t = C(ε) log n times do . Amplify success probability
Rb,i,t ← Randomness for this specific instance based on R
if Edge e is marked with probability k̂ = 2i, according to Rb,i,t then

Compute id(e) using R
XORu[b, i, t]← XORu[b, i, t]⊕ id(e)
XORv[b, i, t]← XORv[b, i, t]⊕ id(e)

end if
end for

end for
end for

end for
return XOR1, . . . , XORn

Using a source of randomness R, every vertex in ComputeSketches maintains O(log3 n) copies of
edge XORs using random (but consistent) edge IDs and marking probabilities:

• dlog ne times for Bor̊uvka simulation later

4See https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

3

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Algorithm 2 StreamingMaximalForest(S = {〈e,±〉, . . . }, ε)
R ← Generate O(log2 n) bits of shared randomness . For edge IDs and marking probabilities
XOR1, . . . , XORn ← ComputeSketches(S, ε,R)
F ← (VF = V,EF = ∅) . Initialize empty forest
for b = log n times do . Simulate Bor̊uvka

C ← ∅ . Candidate edges
for Every connected component A in F do

for i ∈ {1, 2, . . . , dlog ne} do . Guess that A has [2i−1, 2i] cut edges
for t = C(ε) log n times do . Amplify success probability

Rb,i,t ← Randomness for this specific instance
XORA ← ⊕{XORu[b, i, t] : u ∈ A}
if XORA = id(e) for some edge e = (u, v) then

C ← C ∪ {(u, v)} . Add cut edge (u, v) to candidate edges
Go to next connected component in F

end if
end for

end for
end for
EF ← EF ∪ C, removing cycles in O(1) if necessary . Add candidate edges

end for
return F

• dlog ne times for guesses of cut size k

• C(ε) · log n times to amplify success probability of Section 1.3

Then, StreamingMaximalForest simulates Bor̊uvka using the output of ComputeSketches:

• Find one out-going edge from every connected component A using the idea from Section 1.3

• Join connected components by adding edges to graph

Since each edge ID uses O(log n) memory and O(log3 n) copies were maintained per vertex, a total of
O(n log4 n) memory suffices. At each step, we fail to find one cut edge leaving a connected component
with probability ≤ (1 − 1

10)t, which can be be made to be in O(1
n10). Applying union bound over all

O(log3 n) computations of XORA, we see that Pr[Any XORA corresponds wrongly some edge ID] ≤
O(log3 n

n18) ⊆ O(1
n10). So, StreamingMaximalForest succeeds with high probability.

Remark One can drop the memory constraint per vertex from O(log4 n) to O(log3 n) by using a
constant t instead of t ∈ O(log n) such that the success probability is a constant larger than 1/2. Then,
simulate Bor̊uvka for d2 log ne steps. See [AGM12] (Note that they use a slightly different sketch).

Theorem 5. Any randomized distributed sketching protocol for computing spanning forest with success
probability ε > 0 must have expected average sketch size Ω(log3n), for any constant ε > 0.

Proof. See [NY18].

Claim 6. Polynomial number of bits provide sufficient independence for the procedure described above.

Remark One can generate polynomial number of bits of randomness with O(log2 n) bits. Interested
readers can check out small-bias sample spaces5. The construction is out of the scope of the course, but
this implies that the shared randomness R can be obtained within our memory constraints.

References

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 459–467. SIAM, 2012.

5See https://en.wikipedia.org/wiki/Small-bias_sample_space

4

https://en.wikipedia.org/wiki/Small-bias_sample_space

[HMK+06] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun Shi, and
Ben Leong. A random linear network coding approach to multicast. IEEE Transactions on
Information Theory, 52(10):4413–4430, 2006.

[NY18] Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming span-
ning forest computation. arXiv preprint arXiv:1807.05135, 2018.

5

	Graph sketching
	Coordinator model
	Warm up: Finding the single cut
	Warm up 2: Finding one cut out of k > 1 cut edges
	Maximal forest with O(n log4 n) memory in streaming edge updates

