Advanced Algorithms 27 November 2018

Lecture 11: Graph Sparsification II
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

In the previous lecture, we introduced graph sparsification as a way to obtain a subgraph with fewer
edges but similar pairwise distances. In this lecture, we will look at preserving cuts.

1 Preserving cuts
Definition 1 (Cut and minimum cut). Consider a graph G = (V, E).

e For SCV,S#0,S#V,Cq(S,V\S)={(u,v) :ue€S,veV\S} is anon-trivial cut in G

e Define cut size Eg(S,V \ S) =3 .con(s,v\s) w(€)
For unweighted G, w(e) =1 for alle € E, so Eg(S,V\S) =|Ca(S,V\ S)|

o Minimum cut size of the graph G is denoted by u(G) = mingcv, sz, s2v Ea(S,V \ S)
o A cut Cq(S,V\S) is said to be minimum if Eq(S,V \ S) = n(G)

Given an undirected graph G = (V, E), our goal in this lecture is to construct a weighted graph
= (V, E') with E' C E and weight function w : E/ — RT such that

(1—€)-Eg(S,V\S) < Eu(S,V\S)<(1+e)-Eg(S,V\S)

for every S C V, S # 0,5 # V. Recall Karger’s random contraction algorithm [Kar93]':

Algorithm 1 RANDOMCONTRACTION(G = (V, E))
while [V]| > 2 do
e « Pick an edge uniformly at random from F

G+ GJe > Contract edge e
end while
return The remaining cut > This may be a multi-graph

Theorem 2. For a fixred minimum cut S* in the graph, RANDOMCONTRACTION returns it with proba-
bility > 1/(3).

Proof. Fix a minimum cut S* in the graph. Suppose |S*| = k. To successfully return S*, none of the
edges in S* must be selected in the whole contraction process.

By construction, there will be n — ¢ vertices in the graph at step : of RANDOMCONTRACTION. Since
u(G) = k, each vertex has degree > k (otherwise that vertex itself gives a cut smaller than k), so there
are > (n —i)k/2 edges in the graph. Thus,
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Corollary 3. There are < (g) minimum cuts in a graph.

Proof. Since RANDOMCONTRACTION successfully produces any given minimum cut with probability
>1/(3), there can be at most () many minimum cuts. O

1Also, see https://en.wikipedia.org/wiki/Karger%27s_algorithm


https://en.wikipedia.org/wiki/Karger%27s_algorithm

Remark There exists (multi-)graphs with (%) minimum cuts: Consider a cycle where there are @
edges between every pair of adjacent vertices.

In general, we can bound the number of cuts that are of size at most « - u(G) for a > 1.
Theorem 4. In an undirected graph, the number of a-minimum cuts is less than n>®

Proof. See Lemma 2.2 and Appendix A (in particular, Corollary A.7) of a version? of [Kar99)]. O

1.1 Warm up: G =K,
Consider the following procedure to construct H:
L. Let p = Q('&n)
2. Independently put each edge e € E into E’ with probability p
3. Define w(e) = % for each edge e € E’
One can check® that this suffices for G = K,,.

1.2 Uniform edge sampling

For a graph G with minimum cut size u(G) = k, consider the following procedure to construct H:

1. Set p = Clog” for some constant ¢
2. Independently put each edge e € E into E’ with probability p
3. Define w(e) = ]% for each edge e € E'
Theorem 5. With high probability, for every S CV,S #0,S #V,
(1—€)-Eg(S,\V\S) < Ex(S,V\S) < (1+¢) Eq(S,V\5)
Proof. Fix an arbitrary cut (S,V \ S). Suppose Eg(S,V \ S) =k’ = « - k for some o > 1.
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Let X, be the indicator for the edge e € C (S, V'\ S) being selected into E’. By construction, E[X;] =
Pr[X; = 1] = p. Then, by linearity of expectation, E[|Cy (S, V \ 9)|] = 3 cop(s,v\s) E[Xi] = k'p. As
we put 1/p weight on each edge in E', E[Ex(S,V \ S)] = k’. Using Chernoff bound, for sufficiently large
¢, we get:

Pr[Cut (S,V \ S) is badly estimated in H]
= Pr[|Eg(S,V\S)—E[Eg(S,V\S)]| >e- k'] What it means to be badly estimated
62 ’
< 2e” =t Chernoff bound
620L
— e = Since k' = ok
< p10e For sufficiently large ¢

2Version available at: http://people.csail.mit.edu/karger/Papers/skeleton-journal.ps
3Fix a cut, analyze, then take union bound.


http://people.csail.mit.edu/karger/Papers/skeleton-journal.ps

Using Theorem 4 and union bound over all possible cuts in G,

Pr[Any cut is badly estimated in H]

oo
2o A da From Theorem 4 and above
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n=o° Loose upper bound
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Theorem 6. [Kar9/] For a graph G, consider sampling every edge independently with probability p.
into E', and assign weights 1/p. to each edge e € E'. Let H = (V,E’) be the sampled graph and
suppose pw(H) > Cli’#, for some constant c. Then, with high probability, every weighted cut size in H is
(well-estimated) within (1 £ €) of the original cut size in G.

Theorem 6 can be proved by using a variant of the earlier proof. Interested readers can see Theorem
2.1 of [Kar94].

1.3 Non-uniform edge sampling

Unfortunately, uniform sampling does not work well on graphs with small minimum cut.

Running the uniform edge sampling will not sparsify the above dumbbell graph as u(G) = 1 leads to
large sampling probability p.

Before we describe a non-uniform edge sampling process [BK96], we first define k-strong components.
Definition 7 (k-connected). A graph is k-connected if the value of each cut of G is at least k.

Definition 8 (k-strong component). A k-strong component is a mazimal k-connected vertex-induced
subgraph. For an edge e, define its strong connectivity / strength k. as the mazimum k such that e is in
a k-strong component. We say an edge is k-strong if ke > k.

Remark The (standard) connectivity of an edge e is the minimum cut size that separates its endpoints.
In particular, an edge’s strong connectivity is no more than the edge’s (standard) connectivity since a
cut size of k implies there is no k-connected component containing both endpoints.

Lemma 9. The following holds for k-strong components:
1. ke is uniquely defined for every edge e
For any k, the k-strong components are disjoint.

For any 2 values ki,ka (k1 < ka), ka-strong components are a refinement of ki-string components

1
ZEEE ke <n—-1
Intuition: If there are a lot of edges, then many of them have high strength.

Proof.

e

k1-strong components
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ko-strong components



1. By definition of maximum

2. Suppose, for a contradiction, there are two intersecting k-strong components. Since their union is
also k-strong, this contradicts the fact that they were maximal.

3. For k1 < ko, a ko-strong component is also ki-strong, so it is a subset of some ki-strong component.

4. Consider a minimum cut Cg(S,V'\ S). Since k. > u(G),Ve € Cg(S,V'\ 5), these edges contribute

< u(G) - k% < u(G) - ﬁ = 1 to the summation. Remove these edges from G and repeat the

argument on any remaining connected components. Since each cut removal contributes at most 1

to the summation and the process stops when we reach n components, Y 5 ki <n-1.
O
For a graph G with minimum cut size u(G) = k, consider the following procedure to construct H:
1. Set g = 0125” for some constant ¢
2. Independently put each edge e € E into £’ with probability p. = 7
3. Define w(e) = pi = % for each edge e € E’
1
Lemma 10. E[|E'[] < O(%2")
Proof. Let X, be the indicator whether edge e was selected into E’. By construction, E[X.] = Pr[X, =
1] = pe. Then,
E[[E'] = E[} .cpXe By definition
= > cerE[Xc] Linearity of expectation
= D ecrPe Since E[X.] = Pr[X. = 1] = p.
= ceB e Since pe = -
g(n—1) Since ZeeEk—le <n-1
€ O("lz’zg") Since ¢ = CIS# for some constant ¢
O

Remark One can apply Chernoff bounds to argue that |E’| is highly concentrated around its expec-
tation.

Theorem 11. With high probability, for every S CV,S # 0,5 #V,
(1—¢€)-Eg(S,V\S)<Ep(S,V\S)<(1+¢€)- -Eg(S,V\59)

Proof. Let k1 < ko < --+ < ks be all possible strength values in the graph. Consider G as a weighted
graph with edge weights % for each edge e € E, and a family of unweighted graphs Fi,..., Fs where
F, = (V,E;) where E; ={e € E : k. > k;}. Observe that:

e s < |E| since each edge has only 1 strength value

e By construction of F;’s, if an edge e has strength ¢ in F;, k. =¢in G

=G

e For each ¢, Fj;; is a subgraph of F;

i—ki—1

By defining ko = 0, one can write G = >_©_, k 7

will appear in F;, F;_1,..., F} and the terms will telescope to yield a weight of %

F;. This is because an edge with strength k;

The sampling process in G directly translates to a sampling process in each graph in {Fj};cs) —
When we add an edge e into E’, we also add it to the edge sets of F_, ..., Fs. For each i € [s], Theorem
6 tells us that every cut in Fj is well-estimated with high probability. Then, a union bound over {F; };c[,]
will tell us that any cut in G is well-estimated with high probability.
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