Advanced Algorithms 11 December 2018

Lecture 13: Online Algorithms and Competitive Analysis II
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

We begin this lecture by describing and analyzing a randomized algorithm for the paging problem,
then discuss a general online problem called the k-server problem.

1 Paging (Continued)

Definition 1 (Paging problem [ST85]). Suppose we have a fast memory (cache) that can fit k pages
and an unbounded sized slow memory. Accessing items in the cache costs 0 units of time while accessing
items in the slow memory costs 1 unit of time. After accessing an item in the slow memory, we can bring
it into the cache by evicting an incumbent item if the cache was full. What is the best online strategy for
maintaining items in the cache to minimize the total access cost on a sequence of queries?

1.1 Random Marking Algorithm (RMA) — A O(log k)-competitive algorithm
for paging against oblivious adversaries

Consider the Random Marking Algorithm (RMA):
e Initialize all pages as marked
e Upon request of a page p

— If p is not in cache,

x If all pages in cache are marked, unmark all
*x Evict a random unmarked page

— Mark page p

Example Suppose k=3, 0= (2,5,2,1,3).

Suppose the cache is initially: Cache
Marked? v v V

[t
w
>

When o(1) = 2 arrives, all pages were un- Cache 1 2 4
marked. Suppose the random eviction chose page
o
‘3’. The newly added page ‘2’ is then marked. Marked? X « X

When o0(2) = 5 arrives, suppose random evic- Cache 1 9
tion chose page ‘4’ (between pages ‘1’ and ‘4’). The
7
newly added page ‘5’ is then marked. Marked? X «/ v

ot

When ¢(3) = 2 arrives, page ‘2’ in the cache is Cache 1 2
marked (no change). Marked? X « o

ot

When o(4) = 1 arrives, page ‘1’ in the cache Cache
is marked. At this point, any page request that is
not from {1, 2,5} will cause a full unmarking of all
pages in the cache.

—_
[\
(@31

Marked? v vV

When o(5) = 3 arrives, all pages were un- Cache 1 2 3
marked. Suppose the random eviction chose page
‘5’. The newly added page ‘3’ is then marked.

Marked? X X

We denote a phase as the time period between 2 consecutive full unmarking steps. That is, each
phase is a maximal run where we access k distinct pages. In the above example, {2,5,2,1} is such a
phase for k = 3.

Observation As pages are only unmarked at the beginning of a new phase, the number of unmarked
pages is monotonically decreasing within a phase.

Theorem 2. RMA is O(log k)-competitive against any oblivious adversary.

Proof. Let P; be the set of pages at the start of phase i. Since requesting a marked page does not incur
any cost, it suffices to analyze the first time any request occurs within the phase.

e Denote N as the set of new requests (page that are not in P;).
e Denote O as the set of old requests (pages that are in P;).
e By definition, |O| < k and |[N| + |O| = k. Define m; = |N|.

Since every new request incurs a unit cost, the cost due to N is m;.

Phase ¢
o= new new new old new old)
1st 27?(1
ll =3 12 =4
For j € {1,...,]|O|}, consider the first time the j*" old request x; occurs. There are k — (j — 1)

possibilities for z;. Say, there are [; distinct new requests before it. Assuming all previous requests
kicked out an old page from the cache, there are > k —[; — (j — 1) old pages remaining in the cache. So,

Pr[z; is not cache when requested] < (k U= 1))7((jk ll) G=1) — kf(l;ﬁfl). Then
Cost dueto O < Z‘jo‘l — ljj 0 Summing over all distinct |O] old requests
< ZJ I o D, Since I; < m; = [N
< my- Z] Lo Since O] <k
= my;- Z?=1 % Rewriting
= m;- Hy Since Y ;. + = H,

Hence, cgara(Phase i) = (Cost due to N) + (Cost due to O) < m; +m; - Hy.

We now analyze OPT’s performance. By definition of phases, among all requests between two con-
secutive phases (say, i — 1 and), a total of k + m,; distinct pages are requested. So, OPT has to incur
at least > m; to bring in these new pages. To avoid double counting, we lower bound copr(o) by both
odd and even i: copr(0) > Y qq ;M and copr(0) > D en ; Mi- Together,

2 corr(e)> ¥t 3 ez Yo
odd i even %
Therefore, we have:
crma(o) < Z m; +m; - Hy) = (’)(logk)Zmi < O(logk) - copr(o)
O

Remark In the above example, k = 3, phase 1 = (2,5,2,1), P, = {1,3,4}, N = {5}, O = {2,1}.
Although ‘2’ appeared twice, we only care about analyzing the first time it appeared.

2 Yao’s Minimax Principle

Given the sequence of random bits used, a randomized algorithm behaves deterministically. Hence, one
may view a randomized algorithm as a random choice from a distribution of deterministic algorithms.

Let X be the space of problem inputs and A be the space of all possible deterministic algorithms.
Denote probability distributions over A and X by p, = Pr[A = a] and ¢, = Pr[X = z] respectively.
Define c(a,) as the cost of algorithm a € A on input z € X.

Theorem 3 ([Yao77]).
C =maxE,[c(A,z)] > minEy[c(a, X)] = D

zeX acA
Proof.

c = g1z C Sum over all possible inputs x
> >, Eple(A4, 7)) Since C' = maxzex Ep[c(A4, z))
= Y., >, Pac(a,x) Definition of Eplc(4, z)]
= >.,Pad_4q:c(a,r) Swap summations
= ., PaEqlc(a, X)] Definition of Eq[c(a, X)]
> >.,ba-D Since D = minge 4 Eylc(a, X))
= D Sum over all possible algorithms a

O

Implication If one can argue that any deterministic algorithm cannot do well on a given distribution
of random inputs, then no randomized algorithm can do well on all inputs.

2.1 Application to the paging problem

Theorem 4. Any (randomized) algorithm has competitive ratio Q(log k) against an oblivious adversary.

Proof. Fix an arbitrary deterministic algorithm A. Let n = k+ 1 and |o| = m. Consider the following
random input sequence o where the i-th page is drawn from {1,...,k 4+ 1} uniformly at random.

By construction of ¢, the probability of having a cache miss is %ﬂ for A, regardless of what A does.
Hence, E[ca(0)] = 775

On the other hand, an optimal offline algorithm may choose to evict the page that is requested
furthest in the future. As before, we denote a phase as a maximal run where there are k distinct page
requests. This means that E[copr(0)] = Expected number of phases = Fxpected I’;'Ease Tongth "
To analyze the expected length of a phase, suppose there are i distinct pages so far, for 0 < ¢ < k. The

probability of the next request being new is k;ri;l, and one expects to get kff{il requests before having
i + 1 distinct pages. Thus, the expected length of a phase is Zf:o kfﬁil = (k+1) - Hgy1. Therefore,
E[COPT(U)] - (k+1§7'lHk+1'

Putting together, we have M Hy 1 = O(logk). O

lcopr(@)] —

Remark The length of a phase is essentially the coupon collector problem with n = k + 1 coupons.

3 The k-server problem

Definition 5 (k-server problem [MMS90]). Consider a metric space (V,d) where V is a set of n points
and d:V xV — R is a distance metric between any two points. Suppose there are k servers placed on
V and we are given an input sequence o = (v1,va,...). Upon request of v; € V, we have to move one
server to point v; to satisfy that request. What is the best online strategy to minimize the total distance
travelled by servers to satisfy the sequence of requests?

Remark We do not fix the starting positions of the k servers, but we compare the performance of
OPT on o with same initial starting positions.

The paging problem is a special case of the k-server problem where the points are all possible pages,
the distance metric is unit cost between any two different points, and the servers represent the pages in
cache of size k.

3.1 Progress

It is conjectured that a deterministic k-competitive algorithm exists and a randomized (log k)-competitive
algorithm exists. The table below shows the current progress on this problem.

Competitive ratio Type
[MMS90] k-competitive, for k = {2,n — 1} Deterministic
[FRRI0] 20(klogk)_competitive Deterministic
[Gro91] 20(F)_competitive Deterministic
[KP95] (2k — 1)-competitive Deterministic
[BBMN11] poly(log n, log k)-competitive Randomized
[Leel8] O(log® k)-competitive Randomized

Remark [BBMN11] uses a probabilistic tree embedding, a concept we have seen in earlier lectures.

3.2 Special case: Points on a line

Consider the metric space where V' are points on a line and d(u, v) is the distance between points u,v € V.
One can think of all points lying on the 1-dimensional number line R.

3.2.1 Greedy is a bad idea

A natural greedy idea would be to pick the closest server to serve any given request. However, this can
be arbitrarily bad. Consider the following:

0 1+e 2+4c¢

Without loss of generality, suppose all servers currently lie on the left of “0”. For € > 0, consider the
sequence 0 = (14+¢,24+¢,14¢,2+¢,...). The first request will move a single server s* to “1 +¢”. By
the greedy algorithm, subsequent requests then repeatedly use s* to satisfy requests from both “1 4 €”
and “2 4 € since s* is the closest server. This incurs a total cost of > |o| while OPT could station 2
servers on “1 +¢” and “2 + ¢” and incur a constant total cost on input sequence o.

3.2.2 Double coverage — A k-competitive algorithm for points on a line

The double coverage algorithm does the following:
e If request r is on one side of all servers, move the closest server to cover it

e If request r lies between two servers, move both towards it at constant speed until r is covered

Before */} Before *;,. —
After After
T T

Theorem 6. Double coverage (DC) is k-competitive on a line.
Proof. Without loss of generality,
e Suppose location of DC’s servers on the line are: z1 < x5 < --- < g

e Suppose location of OPT’s servers on the line are: y; < yo < -+ < yg

Define potential function ® = &1 + &5 = k - Zle |wi — yil + 22 ;(xj — @), where @y is k times the
“paired distances” between x; and y; and ® is the pairwise distance between any two servers in DC.
For a given request r at time step t, we will first analyze OPT’s action then DC’s action. We analyze the
change in potential A(®) by looking at A(®1) and A(P3) separately, and further distinguish the effects
of DC and OPT on A(®) via Apc(®) and Appr(P) respectively.

Suppose OPT moves server s* by a distance of x = d(s*,) to reach the point r, copr(t) > x. Since s*
moved by x, A(®;) < kz. Since OPT does not move DC’s servers, A(®) = 0. Hence, Appr(P:) < kz.

There are three cases for DC, depending on where r appears.

1. r appears exactly on a current server position
DC does nothing. So, cpc(t) =0 and Ape(®,) = 0. Hence,

cpol(t) + A(@t) = Cpc(t) + Apc(®:) + Aopr (D) <0+ kzx+0=kx <k-copr(t)

2. r appears on one side of all servers x1,...,xy (say r > x without loss of generality)
DC will move server xj by a distance y = d(zy,r) to reach point . That is, cpc(t) = y. Since
OPT has a server at r, yx > r. So, Apc(®1) = —ky. Since only z; moved, Apc(P2) = (K — 1)y.
Hence,

cpo(t) + A(Py) = cpo(t) + Apc(P:) + Aopr(P) <y—ky+ (k— Dy +kx =kax <k-copr(t)

3. r appears between two servers x; < r < Tjy1
Without loss of generality, say r is closer to z; and denote z = d(x;,7). DC will move server x;
by a distance of z to reach point r, and server x;11 by a distance of z to reach x;11 — 2. That is,
cpo(t) = 2z.

Claim 7. At least one of x; or x; 41 is moving closer to its partner (y; or y;41 respectively).

Proof. Suppose, for a contradiction, that both z; and x;;1 are moving away from their partners.
That means y; < x; < r < ;11 < y;+1 at the end of OPT’s action (before DC moved «; and z;41).
This is a contradiction since OPT must have a server at r but there is no server between y; and
Yi+1 by definition. O

Since at least one of x; or x; 41 is moving closer to its partner, Apc(®1) <z —2z=0.

Meanwhile, since z; and ;41 are moved a distance of z towards each other, (z;y1 — x;) = —2z
while the total change against other pairwise distances cancel out, so Apc(Py) = —2z.

Hence,
cpe(t) + A(®:) = cpe(t) + Apc(®r) + Aopr(P:) <22 — 22+ kx = kx < k- copr(t)

In all cases, we see that cpc(t) + A(P;) < k- copr(t). Hence,

‘t ‘1 cpe(t) + A(®) < 21@1 k-copr(t) Summing over all inputs in the sequence o
= Zt 1 ¢cpe(t) + (<I>|c,| —®y) < k-copr(o) Telescoping
= Zt ‘1 cpec(t) < k-copr(o) Since ®; > 0 = ®
= cpo(o) < k-copr(o) Since cpe(o) = W7 epe(t)

O

Remark One can generalize the approach of double coverage to points on a tree. The idea is as follows:
For a given request point r, consider the set of servers S such that for s € S, there is no other server s’
between s and r. Move all servers in S towards r “at the same speed” until one of them reaches 7.

References

[BBMN11] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. In Foundations of Computer Science
(FOCS), 2011 IEEE 52nd Annual Symposium on, pages 267-276. IEEE, 2011.

[FRRO0]

[Gro91]

[KP95]

[Leels]

[MMS90]

[ST85]

[Yao77)

Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. In Founda-
tions of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages 454-463.
IEEE, 1990.

Edward F Grove. The harmonic online k-server algorithm is competitive. In Proceedings
of the twenty-third annual ACM symposium on Theory of computing, pages 260-266. ACM,
1991.

Elias Koutsoupias and Christos H Papadimitriou. On the k-server conjecture. Journal of the
ACM (JACM), 42(5):971-983, 1995.

James R. Lee. Fusible hsts and the randomized k-server conjecture. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 438-449, 2018.

Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11(2):208-230, 1990.

Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202-208, 1985.

Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In Foundations of Computer Science, 1977., 18th Annual Symposium on, pages 222-227.
IEEE, 1977.

	Paging (Continued)
	Random Marking Algorithm (RMA) — A O(logk)-competitive algorithm for paging against oblivious adversaries

	Yao's Minimax Principle
	Application to the paging problem

	The k-server problem
	Progress
	Special case: Points on a line
	Greedy is a bad idea
	Double coverage — A k-competitive algorithm for points on a line

