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Local Graph Algorithms are, in a rough sense, algorithms where each

part of the output is determined as a function of only a local area in the

graph, that is, a small neighborhood. These algorithms capture fundamen-

tal aspects of distributed systems and especially computer networks. Thus,

they have been studied extensively since the 1980s. Furthermore, over the

last decade, these local techniques have turned out to be a key ingredient

for processing big graphs and performing graph computations in times that

are sublinear in the graph size, or even just a constant.

Throughout this chapter, we present an introduction to the basics of

local graph algorithms, in two parts:

� Much of our focus will be on Distributed Local Algorithms. These

algorithm work in a setting where there is one process on each node

of the graph and these processes compute the solution via local com-

munications. A good example to keep in mind is a computer network,

e.g., the Internet. The setting and its mathematical computational

model will be made more concrete and formal soon.

� Towards the end of the chapter, we discuss Centralized Local Al-

gorithms, which use methods of the same avor and solve graph
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problems in sublinear-time, most often being poly-logarithmic time

or even just a constant.

8.1 The Distributed LOCAL Model

We work with the LOCAL model, which was �rst formalized by Linial [Lin87,

Lin92]. The model de�nition is as follows.

Definition 8.1. (The LOCAL model) We consider an arbitrary n-node

graph G = (V, E) where V = {1, 2, . . . , n}, which abstracts the communi-

cation network. Unless noted otherwise, G is a simple, undirected, and

unweighted graph. There is one process on each node v 2 V of the net-

work. At the beginning, the processes do not know the graph G, except

for knowing1 n, and their own unique identi�er in {1, 2, . . . , n}. The

algorithms work in synchronous rounds. Per round, each node/process

performs some computation based on its own knowledge, and then

sends a message to all of its neighbors, and then receives the mes-

sages sent to it by its neighbors in that round. In each graph problem

in this model, we require that each node learns its own part of the

output, e.g., its own color in a graph coloring.

Comment: We stress that the model does not assume any limitation on

the size of the messages, or on the computational power of the processes.

Because of this, it is not hard to see that, any t-round algorithm in the

LOCAL model induces a function which maps the t-hop neighborhood of

each node to its output (why?). For instance, a t-round algorithm for graph

coloring maps the topology induced by vertices within distance t of a vertex

v to the coloring of vertex v. The converse of this statement is also true,

meaning that if for a given graph problem, such a function exists, then

there is also a t-round algorithm for solving that problem. Hence, one can

say that the LOCAL model captures the locality of graph problems in a

mathematical sense.

Observation 8.2. Any graph problem on any n-node graph G can be solved

in O(n) rounds. In fact, using D to denote the diameter of the graph,

any problem can be solved in O(D) rounds.

1Most often, the algorithms will use only the assumption that nodes know an upper

bound N on n such that N 2 [n,nc] for a small constant c � 1.
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8.2 Coloring a Rooted Tree

We start by examining the graph coloring problem, and in a very special

case, coloring rooted trees. This basic-looking problem already turns out

to have some quite interesting depth, as we see in this section.

The setting is as follows. We consider an arbitrary rooted tree T =

(V, E), such that V = {1, 2, . . . , n}, and where each node v knows its parent

p(v) in T . The objective is to �nd a proper coloring of T , that is, a color

assignment φ : V → {1, 2, . . . , q} such that there does not exist any node v

with φ(v) = φ(p(v)). Of course, we are interested in using a small number

of colors q, and we seek fast algorithms for computing such a coloring, that

is, algorithms that use a small number of rounds.

Clearly, each tree can be colored using just 2 colors. However, comput-

ing a 2-coloring in the LOCAL model is not such an interesting problem,

due to the following simple observation:

Observation 8.3. Any LOCAL algorithm for 2-coloring an n-node directed

path requires at least Ω(n) rounds.

In contrast, 3-coloring has no such unfortunate lower bound, and in

fact, entails something quite non-trivial: it has a tight round complexity of
1
2
log� n�O(1). Recall the de�nition of the log-Star function:

log�(x) =

{
0 if x � 1
1+ log�(log x) if x > 1

To prove this tight 1
2
log� n � O(1) round complexity, in the next two

subsections, we explain the following two directions of this result:

� First, in Section 8.2.1, we explain a log� n + O(1) round algorithm

for 3-coloring rooted trees. The upper bound can actually be im-

proved to 1
2
log� n+O(1) rounds [SV93], and even to exactly 1

2
log� n

rounds [RS14], but we do not cover those re�nements. There are

four known methods for obtaining O(log� n)-round algorithms [CV86,

SV93, NS93, FHK16]. The algorithm we describe is based on an idea

of [NS95] and some extra step from [GPS87]. The approach of [CV86]

will be covered in Exercise 8.1.

� Then, in Section 8.2.2, we prove the above bound to be essentially

optimal by showing that any deterministic algorithm for 3-coloring
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rooted trees requires at least 1
2
log� n−O(1) rounds. This result was

�rst proved by [Lin87, Lin92]. We explain a somewhat streamlined

proof, based on [LS14]. The lower bound holds also for randomized

algorithms [Nao91], but we will not cover that generalization, for the

sake of simplicity. Furthermore, essentially the same lower bound can

be obtained as a direct corollary of Ramsey Theory. We will have a

brief explanation about that, at the end of this subsection.

8.2.1 3-Coloring Rooted Trees in log� n+O(1) Rounds

Theorem 8.4. Any n-node rooted-tree can be colored with 3 colors, in

log� n+O(1) rounds.

Notice that the initial numbering 1, 2, . . . , n of the vertices is already a

coloring with n colors. We explain a method for gradually improving this

coloring, by iteratively reducing the number of colors. They key ingredient

is a single-round color-reduction method, based on Sperner families, which

achieves the following:

Lemma 8.5. Given a k-coloring φold of a rooted tree where k � C0 for

a constant2 C0, in a single round, we can compute a k 0-coloring φnew,
for k 0 = log k+ log log k/2+ 1.

Proof. Let each node u send its color φold(u) to its children. We now

describe a method which allows each node v to compute its new coloring

φnew(v), based on φold(v) and φold(u) where u is the parent of v, with no

further communication.

Consider an arbitrary one-to-one mappingM : {1, 2, . . . , k}→ Fk 0 , �xed
a priori, where Fk 0 denotes the set of all the subset of size k 0/2 of the set
{1, 2, . . . , k 0}. Notice that such a one-to-one mapping exists, because

|Fk 0 | =
 
k 0

k 0/2

!
� 2k 0/

p
2k 0 � k.

For each node v, we compute the new color φnew(v) 2 {1, 2, . . . , k 0} of v as
follows. Let u be the parent of v. Since both M(φold(v)) and M(φold(u))

are subsets of size k 0/2, and because φold(v) 6= φold(v) and M is a one-

to-one mapping, we know that M(φold(v)) \M(φold(u)) 6= ;. Let φnew(v)
2We assume this constant lower bound C0 mainly to simplify our job and let us not

worry about the rounding issues.
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be any arbitrary color in M(φold(v)) \M(φold(u)). Since each node v gets

a color φnew(v) 2 M(φold(v)) \ M(φold(u)) that is not in the color set

M(φold(u)) of its parent, φnew(v) 6= φnew(u) 2 M(φold(u)). Hence, φnew
is a proper coloring.

Remark 8.1. Notice that in the above proof, the main property that we

used is that none of the color-sets M(i) 2 Fk 0 is contained in another

M(j) 2 Fk 0, for i 6= j. Generally, a family of sets such that none of

them is contained in another is called a Sperner Family. In particular,

`-element subsets of a k 0-element set form a Sperner family, the size of

which is maximized by setting ` = bk 0/2c, as we did above. More gen-

erally, Sperner's theorem shows that any Sperner family on a ground

set of size k 0 has size at most
�

k 0

bk 0/2c
�
[Spe28]. See [Lub66] for a short

and cute proof of Sperner's theorem, via a simple double counting.

We can now iteratively apply the above method, abstracted in the state-

ment of Lemma 8.5, to reduce the number of colors. After one round, we

go from an initial n-coloring to a (logn + log logn/2 + 1)-coloring. After

one more round, we get to a coloring which has no more than log logn +

O(log log logn) colors. More generally, after at most log� n +O(1) repeti-

tions, we get to a coloring with no more than C0 colors, for a constant C0.

At this point, we cannot apply the above routine anymore. However, we

can use an easier method that repeatedly uses two rounds to shave o� one

color, until arriving at a 3-coloring. We explain this next. Overall, we use

log� n+O(1) rounds to get a 3-coloring.

Lemma 8.6. Given a k-coloring φold of a rooted tree where k � 4, in two

rounds, we can compute a (k− 1)-coloring φnew.

Proof. First, use one round where each node u sends its color φold(u) to

its children. Then, let each node v set its temporary coloring φ 0
old(v) =

φold(u), where u is the parent of v. For the root node r, this rule is not

well-de�ned. But that is easy to �x. De�ne φ 0
old(r) 2 {1, 2, 3} \ φold(r).

Observe that φ 0
old is a proper k-coloring, with the following nice additional

property: for each node u, all of its children have the same color φ 0
old(u).

Now, use another round where each node u sends its color φ 0
old(u) to

its children. Then, de�ne the new color φnew(v) as follows. For each node

v such that φ 0
old(v) 6= k, let φnew(v) = φ 0

old(v). For each node v such that

φ 0
old(v) = k, let φnew(v) be a color in {1, 2, 3} \ {φ 0

old(u), φold(v)}.
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Notice that since only nodes of color k are changing their color, these

nodes are non-adjacent. Each of them switches to a color that is di�erent

than what is held by its parent and its children. Hence, the new coloring

φnew(v) is proper.

Proof of Theorem 8.4. The proof follows by applying Lemma 8.5 for log� n+
O(1) iterations, until getting to a coloring with no more than C0 = O(1)

colors, and then applying the method of Lemma 8.6 for C0 − 3 = O(1)

iterations, until getting to a 3-coloring.

8.2.2 3-Coloring Directed Paths Needs 1
2
log� n−O(1) Rounds

Theorem 8.7. Any deterministic algorithm for 3-coloring n-node directed

paths needs at least log� n
2

− 2 rounds.

For the sake of contradiction, suppose that there is an algorithm A
that computes a 3-coloring of any n-node directed path in t rounds for

t < log� n
2

− 2. When running this algorithm for t rounds, any node v can

see at most the k-neighborhood around itself for k = 2t + 1, that is, the

vector of identi�ers for the nodes up to t hops before itself and up to t hops

after itself. Hence, if the algorithm A exists, there is a mapping from each

such neighborhood to a color in {1, 2, 3} such that neighborhoods that can

be conceivably adjacent are mapped to di�erent colors.

We next make this formal by a simple and abstract de�nition. For

simplicity, we will consider only a restricted case of the problem where

the identi�ers are set monotonically increasing along the path. Notice this

restriction only strengthens the lower bound, as it shows that even for this

restricted case, there is no t-round algorithm for t < log� n
2

− 2.

Definition 8.8. We say B is a k-ary q-coloring if for any set of identi�ers

1 � a1 < a2 < � � � < ak < ak+1 � n, we have the following two properties:

P1: B(a1, a2, . . . , ak) 2 {1, 2, . . . , q},

P2: B(a1, a2, . . . , ak) 6= B(a2, . . . , ak+1).

Observation 8.9. If there exists a deterministic algorithm A for 3-coloring

n-node directed paths in t < log� n
2

− 2 rounds, then there exists a k-ary

3-coloring B, where k = 2t+ 1 < log� n− 3.
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Proof. Suppose that such an algorithm A exists. We then produce a k-ary

3-coloring B by examining A. For any set of identi�ers 1 � a1 < a2 <

� � � < ak � n, de�ne B(a1, a2, . . . , ak) as follows. Simulate algorithm A on

an imaginary directed path where a consecutive portion of the identi�ers

on the path are set equal to a1, a2, . . . , ak. Then, let B(a1, a2, . . . , ak) be

equal to the color in {1, 2, 3} that the node at+1 receives in this simulation.

We now argue that B as de�ned above is a k-ary 3-coloring. Prop-

erty P1 holds trivially. We now argue that property P2 also holds. For

the sake of contradiction, suppose that it does not, meaning that there

exist a set of identi�ers 1 � a1 < a2 < � � � < ak < ak+1 � n such that

B(a1, a2, . . . , ak) = B(a2, . . . , ak+1). Then, imagine running algorithm A on

an imaginary directed path where a consecutive portion of identi�ers are set

equal to a1, a2, . . . , a2t+2. Then, since B(a1, a2, . . . , ak) = B(a2, . . . , ak+1),

the algorithm A assigns the same color to at+1 and at+2. This is in contra-

diction with A being a 3-coloring algorithm.

To prove Theorem 8.7, we show that a k-ary 3-coloring B where k <

log� n− 3 cannot exist. The proof is based on the following two lemmas:

Lemma 8.10. There is no 1-ary q-coloring with q < n.

Proof. A 1-ary q-coloring requires that B(a1) 6= B(a2), for any two identi-

�ers 1 � a1 < a2 � n. By the Pigeonhole principle, this needs q � n.

Lemma 8.11. If there is a k-ary q-coloring B, then there exists a (k− 1)-

ary 2q-coloring B 0.

Proof. For any set of identi�ers 1 � a1 < a2 < � � � < ak−1 � n, de�ne

B 0(a1, a2, . . . , ak−1) to be the set of all possible colors i 2 {1, . . . , q} for

which 9ak > ak−1 such that B(a1, a2, . . . , ak−1, ak) = i.

Notice that B 0 is a subset of {1, . . . , q}. Hence, it has 2q possibilities,

which means that B 0 has property P1 and it assigns each set of identi�ers

1 � a1 < a2 < � � � < ak−1 � n to a number in 2q. Now we argue that B 0

also satis�es property P2.

For the sake of contradiction, suppose that there exist identi�ers 1 �
a1 < a2 < � � � < ak � n such that B 0(a1, a2, . . . , ak−1) = B 0(a2, a3, . . . , ak).
Let q� = B(a1, a2, . . . , ak) 2 B 0(a1, a2, . . . , ak−1). Then, we must have q� 2
B 0(a2, a3, . . . , ak). Thus, 9ak+1 > ak such that q� = B(a2, a3, . . . , ak, ak+1).
But, this means B(a1, a2, . . . , ak) = q� = B(a2, a3, . . . , ak, ak+1), which is
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in contradiction with B being a k-ary q-coloring. Having reached at a

contradiction by assuming that B 0 does not satisfy P2, we conclude that it

actually does satisfy P2. Hence, B 0 is a (k− 1)-ary 2q-coloring.

Proof of Theorem 8.7. For the sake of contradiction, suppose that there

is an algorithm A that computes a 3-coloring of any n-node directed path

in t rounds for t � log� n
2

− 2. As stated in Observation 8.9, if there exists

an algorithm A that computes a 3-coloring of any n-node directed path in

t rounds for t � log� n
2

− 2, then there exists a k-ary 3-coloring B, where

k = 2t + 1 < log� n − 3. Using one iteration of Lemma 8.11, we would

get that there exists a (k − 1)-ary 8-coloring. Another iteration would

imply that there exists a (k − 2)-ary 28-coloring. Repeating this, after

k < log� n − 3 iterations, we would get a 1-ary coloring with less than n

colors. However, this is in contradiction with Lemma 8.10. Hence, such an

algorithm A cannot exist.

An Alternative Lower Bound Proof Via Ramsey Theory:

Let us �rst briey recall the basics of Ramsey Theory. The simplest case

of Ramsey's theorem says that for any `, there exists a number R(`) such

that for any n � R(`), if we color the edges of the n-node complete graph

Kn with two colors, there exists a monochromatic clique of size ` in it, that

is, a set of ` vertices such that all of the edges between them have the same

color. A simple example is that among any group of at least 6 = R(3)

people, there are either at least 3 of them which are friends, or at least 3

of them no two of which are friends.

A similar statement is true in hypergraphs. Of particular interest for

our case is coloring hyperedges of a complete n-vertex hypergraph of rank

k, that is, the hypergraph where every subset of size k of the vertices de�nes

one hyperedge. By Ramsey theory, it is known that there exists an n0 such

that, if n � n0, for any way of coloring hyperedges of the complete n-vertex

hypergraph of rank k with 3 colors, there would be a monochromatic clique

of size k + 1. That is, there would be a set of k + 1 vertices a1, . . . , ak in

{1, . . . , n} such that all of their
�
k+1
k

�
= k subsets with cardinality k have

the same color.

In particular, consider an arbitrary k-ary coloring B, and let B de�ne the

colors of the hyperedges {a1, . . . , ak} when 1 � a1 < a2 < � � � < ak � n. For
the remaining hyperedges, color them arbitrarily. By Ramsey's theorem,

we would get the following: there exist vertices 1 � a1 < a2 < � � � < ak <
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ak+1 � n such that B assigns the same color to hyperedges {a1, . . . , ak}

and {a2, . . . , ak+1}. But this is in contradiction with the property P2 of B

being a k-ary coloring. The value of n0 that follows from Ramsey theory

is such that k = O(log� n0). In other words, Ramsey's theorem rules out

o(log� n)-round 3-coloring algorithms for directed paths. See [CFS10] for

more on hypergraph Ramsey numbers.
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8.3 Deterministic Coloring of General Graphs

8.3.1 Take 1: Linial’s Coloring Algorithm

In the previous section, we discussed distributed LOCAL algorithms for

coloring oriented trees. In this section, we start the study of LOCAL coloring

algorithms for general graphs. Throughout, the ultimate goal would be to

obtain (∆ + 1)-coloring of the graphs | that is, an assignment of colors

{1, 2, . . . , ∆ + 1} to vertices such that no two adjacent vertices receive the

same color | where ∆ denotes the maximum degree. Notice that by a

simple greedy argument, each graph with maximum degree at most ∆ has

a (∆ + 1)-coloring: color vertices one by one, each time picking a color

which is not chosen by the already-colored neighbors. However, this greedy

argument does not lead to an e�cient LOCALprocedure for �nding such a

coloring3.

In this section, we start with presenting an O(log� n)-round algorithm

that computes a O(∆2) coloring. This algorithm is known as Linial's color-

ing algorithm [Lin87, Lin92]. In the next section, we see how to transform

this coloring into a (∆+ 1)-coloring.

Theorem 8.12. There is a deterministic distributed algorithm in the LOCAL

model that colors any n-node graph G with maximum degree ∆ using

O(∆2) colors, in O(log� n) rounds.

Conceptually, the algorithm can be viewed as a more general variant of

the algorithm we discussed in Section 8.2.1. In particular, the core piece

is a single-round color reduction method, conceptually similar to that of

Lemma 8.5. However, here, each node has to ensure that the color it picks

is di�erent than all of its neighbors, and not just its parents.

For that purpose, we will work with a generalization of Sperner families

(used in Lemma 8.5), which are called cover free families :

Definition 8.13. Given a ground set {1, 2, . . . , k 0}, a family of sets S1, S2,

. . . , Sk � {1, 2, . . . , k 0} is called a ∆-cover free family if for each set of

indices i0, i1, i2, . . . , i∆ 2 {1, 2, . . . , k}, we have Si0 \
�
[∆j=1 Sij

�
6= ;. That

is, if no set in the family is a subset of the union of ∆ other sets.

3The straightforward transformation of this greedy approach to the LOCALmodel would

be an algorithm that may need Ω(n) rounds.
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Notice that in particular, a Sperner family is simply a 1-cover free family,

i.e., no set is a subset of any other set.

Given this de�nition, and the single-round color reduction method that

what we saw in Lemma 8.5 for rooted trees using Sperner families, the

reader can already sees the analogous single-round color reduction method

for general graphs using cover free families. This new single-color reduction

will allow us to transform any k-coloring to a k 0-coloring. This will be

elaborated later on in Lemma 8.16. We would like to have k 0 be as small as

possible, as a function of k and ∆. In the following, we prove the existence of

a ∆-cover free families with a small enough ground set size k 0. In particular,
Lemma 8.14 achieves k 0 = O(∆2 log k) and Lemma 8.15 shows that this

bound can be improved to k 0 = O(∆2), if k � ∆3.

Lemma 8.14. For any k and ∆, there exists a ∆-cover free family of size

k on a ground set of size k 0 = O(∆2 log k).

Proof. We use the probabilistic method [AS04] to argue that there exists

a ∆-cover free family of size k on a ground set of size k 0 = O(∆2 log k).

Let k 0 = C∆2 log k for a su�ciently large constant C � 2. For each i 2
{1, 2, . . . , k}, de�ne each set Si � {1, 2, . . . , k 0} randomly by including each

element q 2 {1, 2, . . . , k 0} in Si with probability p = 1/∆. We argue that this

random construction is indeed a ∆-cover free family, with high probability,

and therefore, such a cover free family exists.

First, consider an arbitrary set of indices i0, i1, i2, . . . , i∆ 2 {1, 2, . . . , k}.

We would like to argue that Si0 \
�
[∆j=1 Sij

�
6= ;. For each element q 2

{1, 2, . . . , k 0}, the probability that q 2 Si0 \
�
[∆j=1 Sij

�
is at exactly 1

∆
(1 −

1
∆
)∆ � 1

4∆
. Hence, the probability that there is no such element q that is

in Si0 \
�
[∆j=1 Sij

�
is at most (1 − 1

4∆
)k

0 � exp(−C∆ log k/4). This is an

upper bound on the probability that for a given set of indices set of indices

i0, i1, i2, . . . , i∆ 2 {1, 2, . . . , k}, the respective sets violate the cover-freeness

property that Si0 \
�
[∆j=1 Sij

�
6= ;.

There are k
�
k−1
∆

�
way to choose such a set of indices i0, i1, i2, . . . , i∆ 2

{1, 2, . . . , k}, k ways for choosing the central index i0 and
�
k−1
∆

�
ways for

choosing the indices i1, i2, . . . , i∆. Hence, by a union bound over all these
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choices, the probability that the construction fails is at most

k

 
k− 1

∆+ 1

!
� exp(−C∆ log k/4) � k(

e(k− 1)

∆+ 1
)∆+1 � exp(−C∆ log k/4)

� exp
�
log k+ (∆+ 1)(log k+ 1) − C∆ log k/4

�
� exp(−C∆ log k/8)� 1,

for a su�ciently large constant C. That is, the random construction suc-

ceeds to provide us with a valid ∆-cover free family with a positive proba-

bility, and in fact with a probability close to 1. Hence, such a ∆-cover free

family exists.

Lemma 8.15. For any k and ∆ � k1/3, there exists a ∆-cover free family

of size k on a ground set of size k 0 = O(∆2).

Remark 8.2. One can easily generalize this lemma's construction, by tak-

ing higher-degree polynomials, to a ground set of size k 0 = O(∆2 log2k 0 k),
where no assumption on the relation between k and ∆ would be needed.

Proof of Lemma 8.15. Here, we use an algebraic proof based on low-

degree polynomials. Let q be a prime number that is in [3∆, 6∆]. Notice

that such a prime number exists by Bertrand's postulate (also known as

Bertrand-Chebyshev Theorem). Let Fq denote a �eld of characteristic q.

For each i 2 {1, 2, . . . , k}, associate with set Si | to be constructed |

a distinct degree d = 2 polynomial gi : Fq → Fq over Fq. Notice that

there are qd+1 > ∆3 � k such polynomials and hence such an association

is possible. Let Si be the set of all evaluation points of gi, that is, let

Si = {(a, gi(a)) |a 2 Fq}. These are subsets of the k 0 = q2 cardinality set

Fq � Fq. Notice two key properties:

(A) for each i 2 {1, 2, . . . , k}, we have |Si| = q.

(B) for each i, i 0 2 {1, 2, . . . , k} such that i 6= i 0, we have |Si \ Si 0 | � d.
The latter property holds because, in every intersection point, the degree

d polynomial gi − gi 0 evaluates to zero, and each degree d polynomial has

at most d zeros. Now, the ∆ cover-freeness property follows trivially from

(A) and (B), because for any set of indices i0, i1, i2, . . . , i∆ 2 {1, 2, . . . , k},

we have

|Si0 \
�
[∆j=1 Sij

�
| � |Si0 | −

∆∑
j=1

|Si0 \ Sij |

� q − ∆ � d = q− 2∆ � ∆ � 1.
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Lemma 8.16. Given a k-coloring φold of a graph with maximum degree

∆, in a single round, we can compute a k 0-coloring φnew, for k 0 =

O(∆2 log k). Furthermore, if k � ∆3, then the bound can be improved

to k 0 = O(∆2).

Proof Sketch. Follows from the existence of cover free families as proven in

Lemma 8.14 and Lemma 8.15. Namely, each node v of old color φold(v) = q

for q 2 {1, dots, k} will use the set Sq � {1, . . . , k 0} in the cover free family

as its color-set. Then, it sets its new color φnew(v) = q
0 for a q 0 2 Sq such

that q 0 is not in the color-set of any of the neighbors.

Proof of Theorem 8.12. The proof will be via iterative applications of

Lemma 8.16. We start with the initial numbering of the vertices as a

straightforward n-coloring. With one application of Lemma 8.16, we trans-

form this into a O(∆2 logn) coloring. With another application, we get

a coloring with O(∆2(log∆ + log logn)) colors. With another application,

we get a coloring with O(∆2(log∆ + log log logn)) colors. After O(log� n)
applications, we get a coloring with O(∆2 log∆) colors. At this point, we

use one extra iteration, based on the second part of Lemma 8.16, which

gets us to an O(∆2)-coloring.

8.3.2 Take 2: Kuhn-Wattenhofer Coloring Algorithm

In the previous section, we saw anO(log� n)-round algorithm for computing

a O(∆2)-coloring. In this section, we explain how to transform this into a

(∆+1)-coloring. We will �rst see a very basic algorithm that performs this

transformation in O(∆2) rounds. Then, we see how with the addition of a

small but clever idea of [KW06], this transformation can be performed in

O(∆ log∆) rounds. As the end result, we get an O(∆ log∆+ log� n)-round
algorithm for computing a (∆+ 1)-coloring.

Warm up: One-By-One color Reduction

Lemma 8.17. Given a k-coloring φold of a graph with maximum degree ∆

where k � ∆+ 2, in a single round, we can compute a (k− 1)-coloring

φnew.
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Proof. For each node v such that φold(v) 6= k, set φnew(v) = φold(v). For

each node v such that φold(v) = k, let node v set its new color φnew(v)

to be a color q 2 {1, 2, . . . , ∆ + 1} such that q is not taken by any of the

neighbors of u. Such a color q exists, because vhas at most ∆ neighbors.

The resulting new coloring φnew is a proper coloring.

Theorem 8.18. There is a deterministic distributed algorithm in the LOCAL

model that colors any n-node graph G with maximum degree ∆ using

∆+ 1 colors, in O(∆2 + log� n) rounds.

Proof. First, compute an O(∆2)-coloring in O(log� n) rounds using the

algorithm of Theorem 8.12. Then, apply the one-by-one color reduction of

Lemma 8.17 for O(∆2) rounds, until getting to a (∆+ 1)-coloring.

Parallelized Color Reduction

Lemma 8.19. Given a k-coloring φold of a graph with maximum degree ∆

where k � ∆+ 2, in O(∆dlog( k
∆+1

)e) rounds, we can compute a (∆+ 1)-

coloring φnew.

Proof. If k � 2∆+1, the lemma follows immediately from applying the one-

by-one color reduction of Lemma 8.17 for k − (∆ + 1) iterations. Suppose

that k � 2∆ + 2. Bucketize the colors {1, 2, . . . , k} into b k
2∆+2

c buckets,

each of size exactly 2∆+ 2, except for one last bucket which may have size

between 2∆+ 2 to 4∆+ 3. We can perform color reductions in all buckets

in parallel (why?). In particular, using at most 3∆ + 2 iterations of one-

by-one color reduction of Lemma 8.17, we can recolor nodes of each bucket

using at most ∆ + 1 colors. Considering all buckets, we now have at most

(∆ + 1)b k
2∆+2

c � k/2 colors. Hence, we managed to reduce the number of

colors by a 2 factor, in just O(∆) rounds. Repeating this procedure for

dlog( k
∆+1

)e iterations gets us to a coloring with ∆ + 1 colors. The round

complexity of this method is O(∆dlog( k
∆+1

)e), because we have dlog( k
∆+1

)e
iterations and each iteration takes O(∆) rounds.

Theorem 8.20. There is a deterministic distributed algorithm in the LOCAL

model that colors any n-node graph G with maximum degree ∆ using

∆+ 1 colors, in O(∆ log∆+ log� n) rounds.

Proof. First, compute an O(∆2)-coloring in O(log� n) rounds using the

algorithm of Theorem 8.12. Then, apply the parallelized color reduction
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of Lemma 8.19 to transform this into a (∆ + 1)-coloring, in O(∆ log∆)

additional rounds.

8.3.3 Take 3: Kuhn’s Algorithm via Defective Coloring

In the previous section, we saw an algorithm that computes a (∆ + 1)-

coloring in O(∆ log∆+ log� n) rounds. We now present an algorithm that

improves this round complexity to O(∆ + log� n) rounds, based on a De-

fective Coloring method of Kuhn [Kuh09].

Theorem 8.21. There is a deterministic distributed algorithm in the LOCAL

model that colors any n-node graph G with maximum degree ∆ using

∆+ 1 colors, in O(∆+ log� n) rounds.

It is worth noting that this linear-in-∆ round complexity remained as

the state of the art, and it looked as if it might be the best possible for

deterministic algorithms4, until 2015. But then came a breakthrough of

Barenboim [Bar15] which computed a (∆ + 1)-coloring in O(∆3/4 log∆ +

log� n) rounds. This was followed by a beautiful and very recent work of

Fraigniaud, Heinrich, and Kosowski [FHK16], which improved the round

complexity of (∆+1)-coloring further toO(∆1/2 log∆2.5+log� n) rounds. We

will not cover these recent advances in our lectures, but the papers should

be already accessible and easy to follow, given what we have covered so far.

What is the optimal round complexity for deterministic (∆ + 1)-coloring

algorithms remains an intriguing and long-standing open problem { an

ultimate goal would be to deterministically compute a (∆ + 1) coloring in

poly log(n) rounds.

Definition 8.22. For a graph G = (V, E), a color assignment φ : V →
{1, 2, . . . , k} is called a d-defective k-coloring if the following property is

satis�ed: for each color q 2 {1, 2, . . . , k}, the subgraph of G induced by

vertices of color q has maximum degree at most d. In other words, in

a d-defective coloring, each node v has at most d neighbors that have

the same color as v.

Notice that a standard proper k-coloring | where no two adjacent nodes

have the same color | is simply a 0-defective k-coloring.

4Randomized algorithms have a very di�erent story: We will see a simple O(logn)-

round randomized ∆ + 1 coloring algorithm in the next sections, and we will also touch

upon further improvements on the randomized track.
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Lemma 8.23. Given a d-defective k-coloring φold of a graph with max-

imum degree ∆, in a single round, we can compute a d 0-defective k 0-

coloring φnew, for k
0 = O

 �
∆−d

d 0−d+1

�2
log k

!
.

Proof. Proof to be added here. See pages 10 to 13 of this handwritten

lecture note5, for now.

In a sense, this color reduction reduces the number of colors signi�cantly,

while increasing the defect only slightly.

Proof of Theorem 8.21. First, compute an 0-defective C∆2-coloring, in

O(log� n)-rounds, using the algorithm of Theorem 8.12. Here, C is a su�-

ciently large constant, as needed in Theorem 8.12. We will now see how to

improve this to ∆+ 1 colors.

The method is recursive. Let T(∆) denote the complexity of (∆ + 1)-

coloring graphs with maximum degree ∆, given the initial O(∆2)-coloring.

to perform a recursive method, we would like to decompose the graph into

a few subgraphs of degree at most ∆/2 and proceed recursively. In the

following, we explain how to do this, using defective coloring as a tool.

We start with an (C∆2)-coloring, as computed before, for a large enough

constant C > 0. Then, we use one iteration of Lemma 8.23 to transform

this into a ( ∆
log∆

)-defective O(log3∆)-coloring. Then, use another iteration

of Lemma 8.23 to transform this into a ( ∆
log log∆

)-defective O(log3 log∆)-

coloring. One more iteration gets us to a ( ∆
log log log∆

)-defectiveO(log3 log log∆)-

coloring. After O(log�∆) iterations, we get a (∆
2
)-defective k 00-coloring for

k 00 = O(1).
Now, each of these k 00 color classes induces a subgraph with maximum

degree ∆/2. That is, we have decomposed the graph G into O(1) dis-

joint subgraphs G1, G2, . . . , GO(1), each with maximum degree at most ∆/2.

Hence, by recursion, we can color each of them using ∆/2+ 1 colors, all in

parallel, in T(∆/2) rounds. Formally, to be able to invoke the recursion, we

should provide to each Gi an initial coloring with C(∆/2)2 coloring. Notice

that this can be computes easily in at most O(log� n) time, using Linial's

recoloring method as covered in Theorem 8.12. This allows us to invoke the

recursive coloring procedure, and get a ∆/2+1 coloring for each Gi. When

paired with the corresponding subgraph Gi index i, these color form an

5http://people.csail.mit.edu/gha�ari/DGA14/Notes/L02.pdf

http://people.csail.mit.edu/ghaffari/DGA14/Notes/L02.pdf
http://people.csail.mit.edu/ghaffari/DGA14/Notes/L02.pdf
http://people.csail.mit.edu/ghaffari/DGA14/Notes/L02.pdf
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∆/2 � O(1) = O(∆) coloring of the whole graph. This can be transformed

into a ∆ + 1 coloring, in O(∆) extra rounds, using the one-by-one color

reduction method of Lemma 8.17.

As a result, we get the recursion

T(∆) = O(log�∆) + T(∆/2) +O(∆).

Recalling the Master theorem for recursions [CLRS01], we easily see that

the answer of this recursion is T(∆) = O(∆). Hence, including the initial

O(log� n)-rounds, this is an overall round complexity of O(∆+ log� n).
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8.4 Network Decomposition

In the previous sections, we zoomed in on one particular problem, graph

coloring, and we discussed a number of algorithms for it. In this section

and the next two, we will discuss a method that is far more general and

can be used for a wide range of local problems. The key concept in our

discussion will be network decompositions �rst introduced by [ALGP89],

also known as low-diameter graph decomposition [LS91].

8.4.1 Definition and Applications

Let us start with de�ning this concept.

Definition 8.24. (Weak Diameter Network Decomposition) Given a graph

G = (V, E), a (C,D) weak diameter network decomposition of G is a

partition of G into vertex-disjoint graphs G1, G2, . . . , GC such that

for each i 2 {1, 2, . . . , C}, we have the following property: the graph

Gi is made of a number of vertex-disjoint and mutually non-adjacent

clusters X1, X2, . . . , X`, where each two vertices v, u 2 Xj have distance
at most D in graph G. We note that we do not bound the number `. We

refer to each subgraph Gi as one block of this network decomposition.

Definition 8.25. (Strong Diameter Network Decomposition) Given a graph

G = (V, E), a (C,D) strong diameter network decomposition of G is a

partition of G into vertex-disjoint graphs G1, G2, . . . , GC such that for

each i 2 {1, 2, . . . , C}, we have the following property: each connected

component of Gi has diameter at most D.

Notice that a strong diameter network decomposition is also a weak

diameter network decomposition. For

Network decompositions can be used to solve a wide range of local

problems. To see the general method in a concrete manner, let us go back

to our beloved (∆+ 1)-coloring problem.

Theorem 8.26. Provided an (C,D) weak-diameter network decomposition

of a graph G, we can compute a ∆+ 1 coloring of G in O(CD) rounds.

Proof. We will color graphs G1, G2, . . . , GC one by one, each time con-

sidering the coloring assigned to the previous subgraphs. Suppose that

vertices of graphs graphs G1, G2, . . . , Gi are already colored using colors in
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{1, 2, . . . , ∆ + 1}. We explain how to color Gi+1 in O(D) rounds. Consider

the clusters X1, X2, . . . , X` of Gi+1 and notice their two properties: (1) they

are mutually non-adjacent, (2) for each cluster Xj, its vertices are within

distance D of each other (where distances are according to the base graph

G). For each cluster Xj, let node vj 2 Xj who has the maximum identi�er

among nodes of Xj be the leader of Xj. Notice that leaders of clusters X1,

X2, . . . , X` can be identi�ed in O(D) rounds (why?). Then, let vj aggregate

the topology of the subgraph induced by Xj as well as the colors assigned

to nodes adjacent to Xj in the previous graphs G1, G2, . . . , Gi. This again

can be done in O(D) rounds, thanks to the fact that all the relevant infor-

mation is within distance D + 1 of vj. Once this information is gathered,

node vj can compute a (∆+ 1)-coloring for vertices of Xj, while taking into

account the colors of neighboring nodes of previous graphs, using a simple

greedy procedure. Then, node vj can report back these colors to nodes of

Xj. This will happen for all the clusters X1, X2, . . . , X` in parallel, thanks

to the fact that they are non-adjacent and thus, their coloring choices does

not interfere with each other.

8.4.2 Randomized Algorithm for Network Decomposition

Theorem 8.27. There is a randomized LOCAL algorithm that computes

a (C,D) weak-diameter network decomposition of any n-node graph

G, for C = O(logn) and D = O(logn), in O(log2 n) rounds, with high

probability6.

We remark that, as we will see in Exercise 8.8, the round complexity

of this construction can be improved to O(logn) rounds. On the other

hand, as we see in Exercise 8.9, the two key parameters C and D are nearly

optimal and one cannot improve them simultaneously and signi�cantly.

Network Decomposition Algorithm: Suppose that we have already computed

subgraphs G1, . . . , Gi so far. We now explain how to compute a subgraph

Gi+1 � G\
�
[ij=1Gj

�
, in O(logn) rounds, which would satisfy the properties

of one block of a weak diameter network decomposition.

Let each node v pick a random radius ru from an geometric distribution

with parameter ε, for a desired (free parameter) constant ε 2 (0, 1). That

6Throughout, we will use the phrase with high probability to indicate that an event

happens with probability at least 1− 1
nc

, for a desirably large but �xed constant c � 2.



220 CHAPTER 8. LOCAL GRAPH ALGORITHMS

is, for each integer y � 1, we have Pr[ru = y] = ε(1−ε)y−1. We will think of

the vertices within distance ru of u as the ball of node u. Now for each node

v, let Center(v) be the node u� among nodes u such that distG(u, v) � ru
that has the smallest identi�er. The is, Center(v) = u� is the smallest-

identi�er node whose ball contains v. De�ne the clusters of Gi by letting all

nodes with the same center de�ne one cluster, and then discarding nodes

who are at the boundary of their cluster. That is, any node v for which

distG(v, u) = ru where u = Center(v) remains unclustered.

There are two properties to prove: one that the clusters have low di-

ameter, and second, that after C iterations, all nodes are clustered. In the

following two lemmas, we argue that with high probability, each cluster

has diameter O(logn/ε) and after C = O(log1/ε n) iterations, all nodes are

clustered.

Lemma 8.28. With high probability, the maximum cluster diameter is at

most O(logn/ε). Hence, this clustering can be computed in O(logn/ε)

rounds, with high probability.

Proof. The proof is simple and is left as an exercise.

Lemma 8.29. For each node v, the probability that v is not clustered

| that v is on the boundary of its supposed cluster and thus it gets

discarded | is at most ε.

Proof. Notice that

Pr [v is not clustered ] =∑
u2V

Pr [v is not clustered |Center(v) = u] � Pr[Center(v) = u]

For each vertex u, let before(u) denote the set of all vertices whose iden-

ti�er is less than that of u. De�ne the following events

� E1 =
�
ru = distG(v, u)

�
.

� E2 =
�
ru � distG(v, u)

�
.

� E3 =
�
8u 0 2 before(u), ru 0 < distG(v, u

0)
�
.
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We have

Pr [v is not clustered |Center(v) = u]

= Pr[E1 \ E3 | E2 \ E3]
=

Pr[E1 \ E2 \ E3]
Pr[E2 \ E3]

=
Pr[E1 \ E3]
Pr[E2 \ E3]

=
Pr[E3] � Pr[E1|E3]
Pr[E3] � Pr[E2|E3]

=
Pr[E1]
Pr[E2] = ε,

where in the penultimate equality, we used the property that the event E3
is independent of events E1 and E2, and the last equality follows from the

probability distribution function of the exponential distribution (recall that

this is exactly the memoryless property of the exponential distribution).

Hence, we can now go back and say that

Pr [v is not clustered ]

=
∑
u2V

Pr[v is not clustered |Center(v) = u] � Pr[Center(v) = u]

=
∑
u2V

ε � Pr[Center(v) = u] = ε.

Corollary 8.30. After C = O(log1/ε n) iterations, all nodes are clustered,

with high probability.

8.4.3 Deterministic Algorithm for Network Decomposition

In this section, we explain a deterministic LOCAL algorithm that achieves

the following network decomposition.

Theorem 8.31. There is a deterministic LOCAL algorithm that computes

a (C,D) strong-diameter network decomposition of any n-node graph

G, for C = 2O(
p

logn) and D = 2O(
p

logn), in 2O(
p

logn) rounds.
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In the exercises, we will see how to use this algorithm to compute an

(O(logn), O(logn)) strong-diameter network decomposition, still in the

same running time of 2O(
p

logn).

The result of Theorem 8.31 is due to [PS92]. Here, we will present

a slightly weaker but simple result, due to [ALGP89], that computes the

following:

Theorem 8.32. There is a deterministic LOCAL algorithm that computes

a (C,D) strong-diameter network decomposition of any n-node graph

G, for C = 2O(
p

logn log logn) and D = 2O(
p

logn log logn), in 2O(
p

logn log logn)

rounds.

Towards this goal, we �rst need to introduce a helper tool, ruling sets,

and present an e�cient algorithm for computing them.

Ruling Sets

Definition 8.33. Given a graph G = (V, E) and a set W � V, an (α,β)-

ruling set of W in G is a subset S � W such that the following two

properties are satis�ed:

(A) For each two vertices v, u 2 S, we have distG(v, u) � α

(B) For each vertex v 2 W, there exists a vertex u 2 S such that

distG(v, u) � β.

For instance, if W = V , a maximal independent set S � V is simply a

(2, 1)-ruling set. Moreover, letting Gk be the supergraph of G where each

two vertices with distance at most k are connected, a set S � V that is a

maximal independent set in Gk is actually a (k+ 1, k)-ruling set in G.

Lemma 8.34. Given a graph G = (V, E) and a set W � V, there is a

deterministic LOCAL algorithm that computes a (k, k logn)-ruling set

of W in G, in O(k logn) rounds.

Proof. The algorithm is recursive. Let W0 be the set of vertices whose

identi�er ends in a 0 bit, and let W1 be the set of vertices whose identi�er

ends in a 1 bit. Recursively compute (k, k(logn − 1))-ruling sets S0 and

S1 of W0 and W1, respectively, in O(k(logn − 1)) rounds. Notice that the

parameter of the recursion is the length of the binary representation of the
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identi�ers. Now, let S = S0 [ S�1 where S�1 is the set of all vertices in S1
who do not have any S0-vertex within their distance k. Note that S can be

computed from S0 and S1, in k rounds. One can see that S is a (k, β)-ruling

set of W for β = k(logn− 1) + k = k logn (why?).

Constructing the Network Decomposition

Here, we describe the network decomposition algorithm that establishes

Theorem 8.32. The construction uses a free parameter d, which we will set

later on, in order to optimize some trade o�.

The construction is iterative, and works in logd n similar iterations. Let

us start with the description of the �rst iteration.

Partition vertices into two classes, high-degree vertices H whose degree

is at least d, and low-degree vertices L whose degree is at most d − 1.

Compute a (3,O(logn))-ruling set S of the H vertices in G, in O(logn)

rounds, using Lemma 8.34. Now for the set of all vertices in V who have at

least one S-vertex within their distance O(logn), bundle them around the

closest S-vertex, breaking ties based on the identi�ers. Hence, each bundle

induces a subgraph of radius at most O(logn) and has at least d+1 vertices

(why?). Furthermore, the set of nodes that remain unbundled induces a

graph with maximum degree at most d− 1.

Compute a d-coloring of the subgraph induced by unbundled vertices

in O(d+ log� n) rounds, using the algorithm we discussed in Theorem 8.21.

Each of these d colors will be one of the subgraphs Gi in our network

decomposition's partition, and each vertex of each color class is simply

its own cluster. Note that clearly the clusters of the same class are non-

adjacent.

We are now essentially done with the �rst iteration. To start the sec-

ond iteration, we will switch to a new graph G2, de�ned as follows. We will

imagine contracting each bundle into a single new node in G2. We call these

the level-2 nodes. In G2, two level-2 nodes are connected if their bundles

include adjacent vertices in G = G1. Notice that one round of communi-

cation on G2 can be performed in O(logn) rounds of communication on

the base graph G = G1, simply because each of the bundles has diameter

O(logn).

Now the construction for level-2 works similar to that of level-1, but on

the graph G2. Again, we partition level-2 vertices into high and low-degree,



224 CHAPTER 8. LOCAL GRAPH ALGORITHMS

by comparing to threshold d. Then, we compute a (3,O(logn))-ruling set of

high-degree level-2 vertices, with respect to the graph G2. We then bundle

nodes around these ruling set vertices into bundles of diameter O(logn) in

G2. Afterward, we color the level-2 vertices that remain unbundled using

d colors. Notice that each level-2 vertex is actually one of the bundles in

level-1, and hence, by this coloring, we color all the vertices of that bundle

using the same color. Therefore, this is not a proper color of G1, but each
color of this level does induce a block satisfying the conditions of network

decomposition (why?).

Afterward, we repeat to level 3, by contracting the bundles of level-2,

producing the graph G3 as a result, and continuing the process on G3.

Lemma 8.35. Each level i bundle has at least (d+ 1)i−1 vertices. There-

fore, logd n levels of iteration su�ce.

Proof. Follows by a simple induction and observing that each level i bundle

includes at least d+ 1 level (i− 1) bundles.

Lemma 8.36. Each level i bundle has diameter O(logn)i in G. Hence,

the algorithm for level i can be performed in O(logn)i � O(d + log� n)
rounds.

Proof. Follows by a simple induction and observing that each level i bundle

is a graph of diameter O(logn) on the level (i− 1) graph Gi−1.

Corollary 8.37. Overall the algorithm takes at most d�O(logn)logd n rounds.
At the end of all levels, we get a (C,D) strong-diameter network de-

composition for C = d logd n and D = O(logn)logd n. Setting d =

2O(
p

logn log logn), we get round complexity of d�O(logn)logd n = 2O(
p

logn log logn)

and C = d logd n = 2O(
p

logn log logn) and D = O(logn)logd n = 2O(
p

logn log logn).
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8.5 Maximal Independent Set

The Maximal Independent Set (MIS) problem is a central problem in the

area of local graph algorithms, in fact arguably the most central one. One

partial reason for this central role is that many other problems, including

graph coloring and maximal matching, reduce to MIS, as we soon see.

8.5.1 Definition and Reductions

Let us start with recalling the de�nition of MIS:

Definition 8.38. Given a graph G = (V, E), a set of vertices S � V is

called a Maximal Independent Set (MIS) if it satis�es the following two

properties:

(1) the set S is an independent set meaning that no two vertices v, u 2
S are adjacent,

(2) the set S is maximal | with regard to independence | meaning

that for each node v /2 S, there exists a neighbor u of v such that

u 2 S.

Lemma 8.39. Given a LOCAL algorithm A that computes an MIS on

any N-node graph in T(N) rounds, there is a LOCAL algorithm B that

computes a ∆+ 1 coloring of any n-node graph with maximum degree

∆ in T(n(∆+ 1)) rounds.

In particular, we will soon see an O(logn) round randomized algorithm

for computing an MIS on n-node graphs, which by this lemma, implies an

O(logn) round randomized algorithm for (∆+ 1) coloring.

Proof of Lemma 8.39. Let G be an arbitrary n-node graph with maxi-

mum degree ∆, for which we would like to compute a (∆+ 1)-coloring.

Let H = G � K∆+1 be an n(∆ + 1)-vertex graph generated by taking

∆ + 1 copies of G. Hence each node v 2 G has ∆ + 1 copies in H, which

we will refer to as v1, v2, . . . , v∆+1. Then, add additional edges between

all copies of each node v 2 G, that is, each two copy vertices vi and vj are

connected in H.

Run the algorithm A on H. The resulting MIS produces a maximal

independent set S. For each node v 2 G, the color of v will the the number
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i such that the vi 2 S. Clearly, each node receives at most one color, as

at most one copy vi of v 2 G can be in S. However, one can see that each

node v 2 G receives actually exactly one color. The reason is that each

neighboring node u 2 G can have at most one of its copies in S. Node v

has at most ∆ neighbors u and ∆+ 1 copies vi. Hence, there is at least one

copy vi of v for which no adjacent copy ui of neighboring vertices u 2 G is

in the set S. By maximality of S, we must have vi 2 S.
Unfortunately, the best deterministic algorithms for computing an MIS

remain slow: An O(∆ + log� n)-round algorithm follows by computing a

∆ + 1 coloring and then iterating through the colors and greedily adding

vertices to the MIS. A 2O(
p

logn)-round algorithm follows from the network

decomposition method, by using the decomposition of Theorem 8.31 along

with the general method of Theorem 8.26. Improving these bounds remains

a long-standing open problem. In contrast, there is an extremely simple

randomized algorithm that computes an MIS in merely O(logn) rounds,

as we see next.

8.5.2 Luby’s MIS Algorithm

We now present the so called Luby's algorithm | presented essentially

simultaneously and independently by Luby [Lub85] and Alon, Babai, and

Itai [ABI86] | that computes an MIS in O(logn) rounds, with high prob-

ability.

Luby’s Algorithm: The algorithm is made of iterations, each of which has

two rounds, as follows:

� In the �rst round, each node v picks a random real number rv 2 [0, 1]

and sends it to its neighbors7. Then, node v joins the (eventual) MIS

set S if and only if node v has a strict local maxima, that is, if rv > ru
for all neighbors u of v.

� In the second round, if a node v joined the MIS, then it informs

its neighbors and then, node v and all of its neighbors get removed

from the problem. That is, they will not participate in the future

iterations.
7One can easily see that having real numbers is unnecessary and values with O(logn)-

bit precision su�ce.
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Analysis: It is easy to see that the algorithm always produces an indepen-

dent set, and eventually, this set is maximal. The main question is, how

long does it take for the algorithm to reach a maximal independent set?

Theorem 8.40. Luby's Algorithm computes a maximal independent set

in O(logn) rounds, with high probability.

Proof. Consider an arbitrary iteration i and suppose that the graph in-

duced on the remaining vertices is Gi, which hasmi edges. In the following,

we will argue that the graph Gi+1 which will remain for the next iteration

has in expectation at most mi/2 edges. By a repeated application of this,

we get that the graph that remains after 4 logn iterations has at most

m0/2
4 logn � 1/n2 edges. Hence, by Markov's inequality, the probability

that the graph G4 logn has at least 1 edge is at most 1/n2. That is, with

high probability, G4 logn has no edge left, and thus, the algorithm �nishes

in 4 logn+ 1 iterations, with high probability.

Given the above outline, what remains is to prove that

E[mi+1 |Gi is any graph with mi edges] � mi/2.

For that, let us consider an edge e = {u, v} and a neighbor w of u, as

depicted in Figure 8.1. If w has the maximum number among N(w), the

set of neighbors of w in the remaining graph, then w joins the MIS and

hence nodes w and u and thus also the edge e = {u, v} get removed. In this

case, we say node w killed edge e = {u, v}. However, unfortunately, there

is a possible double counting in that an edge e might be killed by many

neighbors w1, w2, w3, etc, and thus we cannot lower bound the number of

removed edges easily by counting how many edges are killed in this manner.

To circumvent this, we make a slight adjustment: we say that node w

single-handedly kills e = {u, v} (from the side of u) if rw is the maximum

random number among those of nodes in N(w) [ N(u). Notice that this

limits the number of double-counting of an edge being killed to 2, meaning

that at most one node wmight single-handedly kill e = {u, v} (from the side

of u) and at most one node w 0 might single-handedly kill e = {u, v} (from

the side of v). Hence, we can lower bound the number of removed edges

by estimating the number of single-handedly killed edges and dividing that

by 2. We next make this concrete.

Consider two neighboring nodes w and u. The probability that w has

the maximum among N(w) [N(u) is at least 1
d(w)+d(u)

. In that case, node
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w

u v

Figure 8.1: Node w killing edge e = {u, v}

w single-handedly kills d(u) edges incident on u (from the side of u).

Similarly, the probability that u has the maximum among N(w) [ N(u)

is at least 1
d(w)+d(u)

, and in that case, u single-handedly kills d(w) edges

incident on w (from the side of w). Therefore, by linearity of expectation,

and given that we are counting each edge killed at most twice (once from

each endpoint), we cay say the following: the total expected number of

removed edges is at least

E[mi −mi+1] �
∑

{w,u}2Ei

� d(u)

d(w) + d(u)
+

d(w)

d(w) + d(u)

�
/2 = mi/2.

8.6 Sublogarithmic-Time Randomized Coloring

Here, we explain a randomized algorithm that achieves the following:

Theorem 8.41. There is a randomized LOCAL algorithm that computes a

∆(1 + ε)-coloring in O(
p
logn) rounds8, for any constant ε > 0, with

high probability.

8We remark that a much faster algorithm, with a round complexity of 2O(
p

log logn), is

known. We will cover that result in the next sections.
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We present the algorithm in two parts: we �rst explain the algorithm

assuming that ∆ � 2
p

logn, and then we extend the algorithm to larger ∆

using a small additional step.

8.6.1 The algorithm for low-degree graphs

Theorem 8.42. There is a randomized algorithm that computes a ∆(1+ε)

coloring of the graph in Θ(
p
logn/ε) rounds, for any constant ε > 0,

assuming9 that ∆ � 2
p

logn.

Suppose that each vertex has degree at most 2
p

logn. Consider running

the following algorithm for Θ(
p
logn/ε) iterations. In each iteration, each

node v picks a random color among the colors not previously taken by any

of its neighbors. If no neighbor of v picked the same color, then v takes

this color as its permanent coloring, and gets removed from the problem.

The neighbors update their palette of remaining colors, by removing the

colors taken by the colored neighbors.

In Lemma 8.43 below, we show that after Θ(
p
logn/ε) iterations for

any ε 2 (0, 1], with high probability, each connected component of the re-

maining graph has at diameter at most Θ(
p
logn/ε). Hence, each of these

components can be colored in Θ(
p
logn/ε) additional steps, deterministi-

cally. Therefore, once we prove Lemma 8.43, we have essentially completed

the proof of Theorem 8.42.

Lemma 8.43. After Θ(
p
logn/ε) iterations, with high probability, each

connected component in the subgraph induced by the remaining nodes

has at diameter at most Θ(
p
logn/ε).

Proof. We show that with high probability, no path of length C
q
logn/ε

can have all of its vertices remain, for a large enough constant C > 3.

We start with some simple observations. Notice that in every iteration,

the palette size of each node is at least a (1 + ε) factor larger than its

number of remaining neighbors, i.e., its degree in the remaining graph.

Hence, in each iteration, each node gets colored with probability at least

ε/(1+ ε) � ε/2, even independent of its neighbors (why?).

Consider an arbitrary path P = v0, v1, . . . , v` where ` = Θ(
p
logn/ε). In

each iteration, each of these vertices gets removed with probability at least

9As mentioned before, we will soon see how to remove this assumption.
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ε, regardless of the coloring of the other vertices. Hence, the probability

that all these nodes remain for k = C
p
logn/ε iterations is at most

(1− ε/2)`k � exp(−`kε/2) � exp(−C2 logn/(2ε)).

Now, there are at most n∆` ways for choosing the path P, because there

are n choices for the starting point and then ∆ choices for each next hop.

Hence, by a union bound, the probability that any such path remains is at

most

n � ∆` � exp(−C logn/(2ε))

= exp(logn+ ` log∆− C2 logn/(2ε))

� exp(logn+ C
q
logn/ε �

q
logn− C2 logn/(2ε))

= exp(logn+ C logn/ε− C2 logn/(2ε)) � 1/nC.

8.6.2 The extension to high-degree graphs

We now see how to extend Theorem 8.42 to higher degree graphs, using

one extremely simple step.

Theorem 8.44. There is a randomized algorithm that computes a ∆(1+ε)

coloring of the graph in Θ(
p
logn/ε) rounds, for any constant ε > 0.

Suppose that ∆ � 2
p

logn, as otherwise Theorem 8.42 su�ces. Partition

G into k = αε2∆/ logn vertex-disjoint subgraphs G1, G2, G3, . . . , Gk by

putting each vertex in one of these subgraphs at random. Here, α is a

su�ciently small positive constant α > 0. In Lemma 8.45, we argue that,

with high probability, each subgraph has degree at most ∆
k
(1 + ε/3) =

O(logn). This will be by a simple application of the Cherno� bound.

Hence, it can be colored using ∆
k
(1+ε/3)(1+ε/3) � ∆

k
(1+ε) colors, via the

method of Theorem 8.42, in Θ(
p
logn/ε) rounds. We use di�erent colors

for di�erent subgraphs, and color them all in parallel. Hence, overall, we

get a coloring with k � ∆
k
(1+ ε) = ∆(1+ ε) colors, in Θ(

p
logn/ε) rounds.

Lemma 8.45. With high probability, each subgraph Gi has maximum de-

gree at most ∆
k
(1+ ε/3).
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The lemma follows in a straightforward manner from the Cherno� bound,

and a union bound. The Cherno� bound is among the most basic concen-

tration of measure tools. In a rough sense, it shows that the sum of inde-

pendent (indicator) random variables has a distribution well-concentrated

around its expected value. More concretely, the probability that this sum

deviates signi�cantly from its expected value is exponentially small in the

expected value. The mathematical statement is as follows:

Theorem 8.46. (Cherno� Bound) Suppose X1, X2, . . . , Xη are indepen-

dent random variables taking values in {0, 1}. Let X =
∑`

i=1 Xi denote

their sum and let µ = E[X] denote the sum's expected value. For any

δ > 0, we have

Pr[X /2 [µ(1− δ), µ(1+ δ)] � 2e−δ2µ/3.

Proof of Lemma 8.45. Consider each node v 2 G. Let X1, X2, . . .X∆ be

the indicator random variables of whether the ith neighbor of v picks the

same subgraph as v does. Let X =
∑`

i=1 Xi and µ = E[X]. Notice that

µ = ∆/k. Given that k = αε2∆/ logn, we get that µ � logn
αε2

. Hence, by

Cherno� bound, we have

Pr[X � µ(1+ ε/3)] � 2e−ε2µ/18 � e1−logn/(18α) � 1/n3,

where the last inequality holds for small enough α, e.g., α = 0.01.

Now, we know that the probability of one node v having a degree (in its

own subgraph) higher than the desired threshold ∆(1+ε/3)
k

is at most 1/n3.

By a union bound over all nodes v, we get that the probability of having

such a node is at most 1/n2. In other words, with high probability, each

node has degree at most ∆(1+ε/3)
k

in its own subgraph.
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8.7 Exercises

Exercise 8.1. In Lemma 8.5, we saw a single-round algorithm for re-

ducing the number of colors exponentially. Here, we discuss another

such method, which transforms any k-coloring of any rooted-tree to a

2 log k-coloring, so long as k � C0 for a constant C0.

The method works as follows. Let each node u send its color φold(u)

to its children. Now, each node v computes its new color φnew(v) as

follows: Consider the binary representation of φold(v) and φold(u),

where u is the parent of v. Notice that each of these is a log2 k-bit value.

Let iv be the smallest index i such that the binary representations of

φold(v) and φold(u) di�er in the ith bit. Let bv be the i
th
v bit of φold(v).

De�ne φnew(v) = (iv, bv). Prove that φold(v) is well-de�ned, and that it

is a proper (2 log k)-coloring.

Exercise 8.2. In Theorem 8.4, we saw that on a tree graph where each

node knows its parent, a 3-coloring can be computed in O(log� n) rounds.
This result heavily relies on each node knowing its parent, and no such

result is true in unrooted trees, that is, when nodes do not know which

neighbor is their parent.

In particular, it is known that there exists ∆-regular graphs with

girth | that is, the length of the shortest cycle | being at least

Ω(log∆ n) and chromatic number at least10 Ω(∆/ log∆) [Bol78]. Use

this existence to prove that any deterministic o(logd n)-round algorithm

for coloring trees requires at least Ω(∆/ log∆) colors.

Exercise 8.3. Here, we use the concept of cover free families, as de�ned

in De�nition 8.13, to obtain an encoding that allows us to recover

information after superimposition. That is, we will be able to decode

even if k of the codewords are superimposed and we only have the

resulting bit-wise OR.

More concretely, we want a function Enc : {0, 1}logn → {0, 1}m | that

encodes n possibilities using m-bit strings for m � log2n | such that

the following property is satis�ed: 8S, S 0 � {1, ..., n} such that |S| � k

and |S 0| � k, we have that ∨i2SEnc(i) 6= ∨i2S 0Enc(i). Here ∨ denotes

the bit-wise OR operation.

10This lower bound on the chromatic number is tight as triangle-free graphs with max-

imum degree ∆ have chromatic number O(log∆/ log log∆) [Kim95, Jam11, PS15].
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Present such an encoding function, with a small m, that depends

on n and k. What is the best m that you can achieve?

Exercise 8.4. This exercise has two parts:

(A) Design a single-round algorithm that transforms any given k-

coloring of a graph with maximum degree ∆ into a k 0-coloring for
k 0 = k− d k

2(∆+1)
e, assuming k 0 � ∆+ 1.

(B) Use repetitions of this single-round algorithm, in combination

with the O(log� n)-round O(∆2)-coloring of Theorem 8.12, to ob-

tain an O(∆ log∆+ log� n)-round (∆+ 1)-coloring algorithm.

Exercise 8.5. Here, we see yet another deterministic method for com-

puting a (∆ + 1)-coloring in O(∆ log∆ + log� n) rounds. First, using

Theorem 8.12, we compute an O(∆2)-coloring φold in O(log
� n) rounds.

What remains is to transform this into a (∆+1)-coloring, in O(∆ log∆)

additional rounds.

The current O(∆2)-coloring φold can be written using C log∆ bits,

assuming a su�ciently large constant C. This bit complexity will be

the parameter of our recursion. Partition G into two vertex-disjoint

subgraphs G0 and G1, based on the most signi�cant bit in the color

φold. Notice that each of G0 and G1 inherits a coloring with C log∆− 1

bits. Solve the ∆ + 1 coloring problem in each of these independently

and recursively. Then, we need to merge these colors, into a ∆ + 1

coloring for the whole graph.

(A) Explain an O(∆)-round algorithm, as well its correctness proof,

that once the independent (∆ + 1)-colorings of G0 and G1 are

�nished, updates only the colors of G1 vertices to ensure that the

overall coloring is a proper (∆+ 1)-coloring of G = G0 [G1.

(B) Provide a recursive time-complexity analysis that proves that over-

all, the recursive method takes O(∆ log∆) rounds.

Exercise 8.6. Explain how given a (C,D) network decomposition of graph

G, a maximal independent set can be computed in O(CD) rounds.

Exercise 8.7. Prove Lemma 8.28.
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Exercise 8.8. Improve the round complexity of the algorithm stated in

Theorem 8.27 to O(logn) rounds.

Exercise 8.9. We here see that the network decomposition obtained in

Theorem 8.27 has the nearly best possible parameters. In particular, it

is known that there are n-node graphs that have girth11 Ω(logn/ log logn)

and chromatic number Ω(logn)[AS04, Erd59]. Use this fact to argue

that on these graphs, an (o(logn/ log logn), o(logn)) network decompo-

sition does not exist.

Exercise 8.10. Given an n-node undirected graph G = (V, E), a d(n)-

diameter ordering of G is a one-to-one labeling f : V → {1, 2, . . . , n}

of vertices such that for any path P = v1, v2, . . . , vp on which the la-

bels f(vi) are monotonically increasing, any two nodes vi, vj 2 P have

distG(vi, vj) � d(n).
Use the network decomposition of Theorem 8.27 to argue that each

n-node graph has an O(log2 n)-diameter ordering.

Exercise 8.11. Consider the following simple 1-round randomized algo-

rithm: each node v picks a random real number rv 2 [0, 1] and then, v

joins a set S if its random number is a local minima, that is, if rv < ru
for all neighbors u of v. Prove that, with high probability, the set S is

a (2,O(logn))-ruling set.

11Recall that the girth of a graph is the length of its shortest cycle.
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