1 Distributed Hypergraph Coloring

Design a single-round distributed vertex coloring algorithm for \(r \)-uniform hypergraphs with the smallest number of colors possible.

More precisely, the network is modeled as an \(r \)-uniform hypergraph \(H = (V, E) \) where \(n = |V| \) and for each hyperedge \(e \in E \), we have \(e \subset V \) and \(|e| = r \). Nodes have ids 1 to \(n \). The maximum node-degree is at most \(\Delta \), i.e., \(\forall v \in V, |\{e \in E | v \in e\}| \leq \Delta \). A legal \(k \)-coloring \(C \) of \(H \) is a mapping from \(V \) to \(\{1, 2, \ldots, k\} \) such that no hyperedge \(e \) is monochromatic, that is,

\[
\forall e \in E, |\{x | x \in \{1, 2, \ldots, k\}, u \in e, C(u) = x\}| \geq 2.
\]

Design a deterministic coloring function that for any \(r \)-uniform hypergraph \(H \) with \(n \) nodes and maximum degree \(\Delta \), receives the id of each node \(v \) and also (the ids of the other nodes in each of) the hyperedges incident on \(v \) in \(H \) and outputs the color of \(v \) in a way that the colors of all nodes together form a legal \(k \)-coloring of \(H \). Try to find the smallest possible \(k \). Note that \(k \) will be a function of \(n \), \(r \), and \(\Delta \).

Bonus Points Prove a non-trivial lower bound on \(k \) as a function of \(n \), \(r \) and \(\Delta \).