
Conditional Hardness Results for Massively Parallel Computation

from Distributed Lower Bounds

Mohsen Ghaffari
ETH Zurich

ghaffari@inf.ethz.ch

Fabian Kuhn
University of Freiburg

kuhn@cs.uni-freiburg.de

Jara Uitto
ETH Zurich & U. of Freiburg

jara.uitto@inf.ethz.ch

April 14, 2019

Abstract

We present the first conditional hardness results for massively parallel algorithms for some
central graph problems including (approximating) maximum matching, vertex cover, maximal
independent set, and coloring. In some cases, these hardness results match or get close to the
state of the art algorithms. Our hardness results are conditioned on a widely believed conjecture
in massively parallel computation about the complexity of the connectivity problem. We also note
that it is known that an unconditional variant of such hardness results might be somewhat out
of reach for now, as it would lead to considerably improved circuit complexity lower bounds and
would concretely imply that NC1 (P. We obtain our conditional hardness result via a general
method that lifts unconditional lower bounds from the well-studied LOCAL model of distributed
computing to the massively parallel computation setting.

1 Introduction and Related Work

We present conditional hardness results for massively parallel algorithms for some central graph
problems. Our main technical contribution is a general method that lifts unconditional lower bounds
from the more classic LOCAL model of distributed computing to the massively parallel computation
setting. We start with a review of the massively parallel computation setting and the state of the
art for graph problems, and we then present our results.

1.1 Massively Parallel Computation: Model and State of the Art

Massively parallel computation and the emergence of several popular practical frameworks for it —
such as MapReduce [DG04], Hadoop [Whi12], Spark [ZCF+10], and Dryad [IBY+07] — has been one
of the impactful developments of the past 10 to 15 years in computer science. There is also a growing
interest from theoretical computer science to build the theoretical foundations of computation in
these settings. This growth is fueled by the understanding that (such coarse-grained notions of)
parallelism will be an essential necessity in the future of computation, as the data sets are growing
faster than the capacity of single processors. Karloff et al. [KSV10] introduced a theoretical model,
by now referred to as the Massively Parallel Computation (MPC) model, as a simple abstraction that
captures essential aspects of parallelism in these settings. This model and algorithmic developments
in it have been receiving increasingly more attention over the past few years [KSV10,GSZ11,LMSV11,
BKS13, ANOY14, BKS14, HP15, AG15, RVW16, IMS17, CLM+18, Ass17, ABB+19, GGK+18, HLL18,
BFU18,ASW18,BEG+18,ASS+18,Ona18,GKMS18,GU19,BHH19,ACK19].

The MPC model: We have a number of machines, each with S bits of memory, that can commu-
nicate with each other in synchronous rounds. Per round, each machine can send O(S) bits to the
other machines in total, it can receive O(S) bits from other machines, and it can also perform some
local computation, ideally of time at most poly(S). We assume that the number of machines M is
at least at large as N/S, where N is the size of the input, but ideally not much larger. For graph
problems, the input size is N = O(m+ n), where m denotes the number of edges and n denotes the
number of vertices. We sometimes refer to S as local memory of the system while M ·S is the global
memory of the system. The common interpretation is that, when trying to apply such algorithms to
a setting, the parameter S will be dictated to us by what is physically available, and we then should
achieve the best round complexity for that local memory. Hence, the main objective is to obtain
MPC algorithms that have a small round complexity for as small as possible local memory. Ideally,
the algorithm should be using global memory that is almost equal to the input size; though we note
that minimizing the global memory is sometimes treated as secondary target.

State of the Art for Graph Problems: Several graph problems have been studied in the MPC
model. We briefly review the state of the art for some of the central graph problems.

One of most central problems is connectivity, i.e., identifying the connected components of a
graph. Karloff et al. [KSV10] showed that this problem can be solved in O(log n) rounds using
machines with local memory S = nα for any constant α ∈ (0, 1), using Boruvka-style algorithms.
Whether this round complexity can be improved remains unknown but there is strong evidence to
suggest that this bound is the best possible: Beame et al. [BKS13] showed that a natural class of
algorithms cannot run in o(log n) rounds. The problem is even open for the seemingly trivial case
where the algorithm should distinguish whether the input is one n-node cycle or two n/2-node cycles.
The problem has come to be believed to be inherently hard by now, and is conjectured to require
Ω(log n) rounds. Proving the Ω(log n) lower bound might be hard, however. In fact, as argued by
Roughgarden et al. [RVW16], proving any super-constant round complexity MPC lower bound for

1

any problem in P and for S = nα is presumably a difficult task, as it would imply strong circuit
complexity lower bounds and particularly show that NC1 (P. That is, it would show that there is
a problem in P that does not admit a logspace-uniform circuit family of fan-in 2 with poly(n) gates
and O(log n) depth. Recently, Andoni et al. [ASS+18] showed that if each component of the input
has diameter at most D, then the round complexity can be improved to O(logD · log logMS/n n). For
much larger local memory, there are faster algorithms. Lattanzi et al. [LMSV11] gave an O(1)-round
algorithm for the strongly superlinear memory regime, where S = n1+ε for a constant ε > 0. An
O(1)-round algorithm for near-linear local memory of S = O(n log3 n) is implicit in the sketching
work of Ahn, Guha, and McGregor for the streaming setting [AGM12a,AGM12b], and an O(1)-round
algorithm for linear local memory S = O(n) is implied by the results of Jurdinski and Nowicki [JN18].

Another central graph problem in the recent developments has been maximum matching and its
approximation, as well as other closely related problems such as vertex cover and maximal indepen-
dent set (MIS). The filtering method of Lattanzi et al. [LMSV11] gives an O(1) round algorithm
for maximal matching, and thus a 2-approximation of maximum matching, for strongly superlinear-
local memory S = n1+Ω(1). However, the task is significantly harder for lower memory regimes. A
recent breakthrough of Czumaj et al. [CLM+18] gave an O((log log n)2)-round algorithm for (1 + ε)-
approximation of maximum matching when S = Õ(n), for any constant ε > 0. The round complexity
was improved later to O(log log n) by Assadi et al. [ABB+19] and Ghaffari et al. [GGK+18]. Sim-
ilar approaches give O(log log n)-round algorithms for (2 + ε)-approximation of minimum vertex
cover [GGK+18] and for computing a maximal independent set, both for S = Õ(n). Behnezhad et
al. [BHH19] also gave an O(log log n)-round algorithm for maximal matching and 2-approximation
of vertex cover. When the local memory is strongly sublinear S = nα for a constant α ∈ (0, 1)
— which is the ideal target memory regime as the size of the graphs is constantly growing — the
best known results are considerably slower: (A) An Õ(

√
log ∆) round algorithm due to Ghaffari

and Uitto [GU19] for (1 + ε)-approximate maximum matching, maximal independent set, maximal
matching, and 2-approximation of vertex cover and an algorithm of Onak [Ona18] with the same
round complexity for (1 + ε)-approximate maximum matching. Here ∆ denotes the maximum de-
gree. (B) An Õ(

√
log λ) + O(log3 log n)-round algorithms by Behnezhad et al. [BBD+19] for graphs

with arboricity at most λ for (1 + ε)-approximation of maximum matching, maximal independent
set, maximal matching, and 2-approximation of vertex cover.

Another basic graph problem that was studied recently is vertex coloring: Harvey et al. [HLL18]
gave anO(1)-round algorithm for (1+o(1))∆-coloring for strongly superlinear local memory S = n1+ε,
Assadi et al. [ACK19] gave an O(1)-round algorithm for (∆+1)-coloring for near-linear local memory
S = O(n log3 n), and Chang et al. [CFG+19] gave a (∆+1)-coloring for the strongly sublinear memory
regime of S = nα for any constant α ∈ (0, 1) that runs in O(

√
log logn) rounds.

To the best of our knowledge, there are no hardness or conditional hardness (and particularly
super-constant) results known for any of the above problems in the MPC setting, including matching
approximation, vertex cover approximation, maximal independent set, and coloring. The only ex-
ception is the hardness for the connectivity problem discussed above: an Ω(log n)-round lower bound
is conjectured and widely believed to hold in the strongly sublinear local memory regime, even for
distinguishing one cycle from two cycles.

1.2 Our Contribution

We present conditional hardness results for several of the above graph problems — matching and
vertex cover approximation, vertex coloring, maximal independent set, etc. — for the strongly
sublinear memory regime where each machine has memory S = nα for any constant α ∈ (0, 1). Our
hardness results apply to any component-stable MPC algorithm, which means algorithms where the
outputs in one connected component are independent of other components. See Section 2 for a formal

2

definition. To the best of our knowledge, all known algorithms in the literature are component-stable
or can easily be made component-stable with no asymptotic increase in the round complexity. Our
conditional hardness results are based on the popular conjecture mentioned above that distinguishing
one cycle from two cycles needs Ω(log n) rounds, in the strongly sublinear memory regime. The
hardness can be based also on a seemingly even more robust assumption that Ω(logD) rounds
are needed for D-diameter s-t connectivity where the algorithm should say YES when s and t are
endpoints of a path of length at most D and it should say NO when s and t are disconnected.

Perhaps of a more conceptual significance, our hardness results are obtained by lifting uncondi-
tional lower bounds from the classic LOCAL model of distributed computing to the MPC model. The
LOCAL model was introduced by Linial [Lin87] and it has been studied extensively since the 1980s.
By now, it hosts a range of algorithmic and lower bound techniques, developed specifically to cope
with the issue of locality in decentralized computation or to exhibit the limitations that it imposes.
The issue of locality (roughly speaking, having to determine each part of the output without a view
of the global topology) appears to be at the heart of the technical difficulty in massively parallel
computation, especially with strongly sublinear memory. Hence, we are hopeful that the connection
exhibited in this paper will strengthen the ties between the two models and lead to further devel-
opments, including conditional hardness results for a wider range of problems in MPC. Previously,
connections between these two models where made in the direction of importing algorithms from
the LOCAL model to the MPC model [CLM+18,GGK+18,BBD+19,GU19,Ona18,ACK19,CFG+19],
sometimes implicitly, and often with considerable speed-ups. In this paper, we are exhibiting a
connection in the reverse (and conceptually harder) direction, by exporting hardness results from
the LOCAL model to the MPC model. This can also be viewed as the possibility of transferring
component-stable MPC algorithms to the LOCAL model (with a certain slow down, and conditioned
on the hardness of connectivity). To state our results, we first review the LOCAL Model.

Distributed LOCAL Model [Lin87]: The communication network is abstracted as an n-node
graph G = (V,E), with one processor on each node. Initially, each processor knows only its own
neighbors. Processors communicate in synchronous message passing rounds where per round each
processor can send one message to each of its neighbors. The processors want to solve a graph
problem about their network G — e.g., compute coloring or a matching of G — and at the end, each
processor/node should know its own part of the output, e.g., its color or its matching mate, if it is
matched. The measure of complexity is the round complexity of graph problems, i.e., the number of
rounds until which all nodes output and terminate.

Our Hardness Results — Matching, Vertex Cover, MIS: Our main result is an Ω(log log n)
conditional hardness for any constant approximation of maximum matching, which also applies to
any constant approximation of vertex cover or for computing a maximal independent set.

Theorem 1.1. Unless there is an o(log n) round MPC algorithm for connectivity with local memory
S = nα for a constant α ∈ (0, 1) and any poly(n) global memory, there is no component-stable MPC
algorithm with local memory S = nα and poly(n) global memory that computes a constant approxi-
mation of maximum matching, a constant approximation of vertex cover, or a maximal independent
set in o(log log n) rounds. For maximal matching, the lower bound holds even on trees.

This result is obtained via lifting an Ω(
√

log n/ log log n) round lower bound of Kuhn, Moscibroda,
and Wattenhofer [KMW16] in the LOCAL model for the same problems to the MPC model. We note
that for trees, this hardness comes close to the state of the art algorithm for maximal matching, which
runs in O((log log n)3) round algorithm [BBD+19]. For general graphs, obtaining a poly(log log n)-
round strongly sublinear memory MPC algorithm, or even one that is faster than Õ(

√
log n) [GU19,

Ona18], remains an intriguing open question.

3

Our Hardness Results — Coloring: By lifting a celebrated lower bound of Linial [Lin87], we
show that even the seemingly trivial problem of constant coloring nodes of a cycle needs at least
Ω(log(log∗ n)) rounds — conditioned on the hardness of connectivity. This Ω(log(log∗ n)) bound is
tight. Perhaps as more substantial hardness, we also show that it is probably difficult to improve
on the O(

√
log log n) round (∆ + 1)-vertex coloring algorithm of Chang et al. [CFG+19], by showing

that any o(
√

log log n)-round randomized MPC algorithm would imply a faster than 2O(
√

logn)-round
LOCAL algorithm for the same problem, hence improving a well-known result of Panconesi and
Srinivasan from 1992 [PS92]; the latter remains one of the central and long-standing open problems
of the LOCAL model (see, e.g., [BE13,GKM17]).

Theorem 1.2. Suppose that there is no o(log n) round MPC algorithm for connectivity with local
memory S = nα for a constant α ∈ (0, 1) and any poly(n) global memory. Then, if there is a
component-stable MPC algorithm with local memory S = nα and poly(n) global memory that solves
(∆ + 1)-coloring in o(

√
log log n) rounds, then there is a deterministic LOCAL algorithm that solves

(∆ + 1)-coloring in 2o(
√

logn) rounds.

Our Hardness Results — Lovász Local Lemma and Sinkless Orientation: Our lifting
method can be applied to essentially any LOCAL-model hardness result. By applying it to a recent
lower bound of Brandt et al. [BFH+16], we can prove that any MPC algorithm for a constructive
version of the Lovász Local Lemma — even when the bad events of the LLL satisfy much stronger
local union bound requirements — needs at least Ω(log log log n) rounds. This hardness holds even
for a very special instance of the LLL, where we should orient the edges of a d-regular graph where
d ≥ 4 such that each node has at least one outgoing edge.

Theorem 1.3. Suppose that there is no o(log n) round MPC algorithm for connectivity with local
memory S = nα for a constant α ∈ (0, 1) and any poly(n) global memory. Then, there is no
component-stable MPC algorithm with local memory S = nα and poly(n) global memory that in
o(log log log n) rounds solves the Lovász Local Lemma problem, or even solves the special instance
known as sinkless orientation where we should orient the edges of a d-regular graph, where d ≥ 4,
such that each node has at least one outgoing edge.

From LOCAL to MPC Hardness — Our Main Technical Contribution: All the discussed
conditional hardness results are based on one main technical result, which shows that a LOCAL model
lower bound for a graph problem P together with a fast sublinear local memory component-stable
MPC algorithm can be used to build a fast sublinear local memory MPC algorithm for connectivity.

Theorem 1.4. Let P be a graph problem that has a D = T (n)-round lower bound in the randomized
LOCAL model with shared randomness. Suppose that T (n) ≤ logγ n for a constant γ ∈ (0, 1) and that
that there is an o(logD)-round component-stable MPC algorithm AP for P, with strongly sublinear
local memory. Then, there exist strongly sublinear local memory MPC algorithms that solve D-
diameter s-t connectivity in o(log n) rounds and that can distinguish one n-node cycle from two
n/2-node cycles in time o(log n).

In Section 5, we show that the relevant existing randomized LOCAL lower bounds also hold if the
nodes have access to an arbitrary amount of shared randomness. Theorems 1.1 to 1.3 then directly
follow from Theorem 1.4 and from these shared randomness LOCAL lower bounds (Theorem 5.1
and Corollaries 5.2, 5.4 and 5.5).

1.3 The General Structure of Our Hardness Proofs

All our conditional hardness results are obtained using two ingredients: (A) The best known uncon-
ditional lower bound for randomized LOCAL algorithms for the same problem, and (B) The assumed

4

hardness about the connectivity problem. In a very rough and informal sense, the connection goes
as follows: Suppose that there is a problem P and it has a lower bound of D rounds in the LOCAL
model. Then, we show that if there is a component-stable MPC algorithm with strongly sublinear
memory that solves this problem in o(logD) rounds, then this algorithm must somehow be able to
“see some faraway information” very fast. More concretely, for a certain network graph (from the
family of graphs for which the LOCAL lower bound holds), a node v in this graph is able “detect”
some information that is related to the parts of the graph that are further than D hops from v, in
o(logD) rounds of the MPC model. We call such an MPC algorithm farsighted. Then, we use this far-
sightedness property to build another MPC algorithm that solves the connectivity problem in certain
D-diameter graphs in o(logD) rounds. The latter is in contradiction with the assumed hardness in
(B), which completes the line of argument and shows that there cannot be any component-stable MPC
algorithm for problem P that has strongly sublinear local memory and round complexity o(logD).

Some comments are in order. First, to turn the above vague intuition into a formal connection,
we need to build a number of formal concepts related to locality. This, for instance, includes a notion
of sensitivity to distant information, which allows us to formalize the above line of thought about
the MPC algorithm being “farsighted”. We are hopeful that the framework developed here may find
applications besides the results presented in this paper. As described above, the overall argument
is composed of two steps: (I) showing that MPC algorithms that are more than exponentially faster
compared to the LOCAL bound must be farsighted, and (II) farsighted component-stable MPC al-
gorithms allow us to build a fast connectivity algorithm that is in contradiction with the assumed
hardness. We explain these two parts in Section 3 and Section 4, respectively.

Second, regarding the hardness of connectivity, we discuss two separate conditional hardness
assumptions in Section 4. One of these, which is about the connectivity problem in low-diameter
instances (which we call D-diameter s-t connectivity) appears to be considerably more stable in the
sense that if the hardness of this connectivity problem goes down slightly, our conditional hardness
results also get weakened to the same extent. The other is the more standard one cycle vs. two cycles
Ω(log n) lower bound, which we show to imply the assumed hardness of the former.

Third, for the LOCAL-model lower bounds to be applicable to our framework, it is important
that they apply to randomized LOCAL algorithms that also have access to shared randomness. Al-
though common lower bounds from the LOCAL model only assume private randomness, in Section 5,
we explain how to extend a number of them to also incorporate shared randomness, without any
asymptotic loss in their round complexity.

2 Formal Definitions

Graph-Theoretic Notations and Definitions. Given a graph G = (V,E) and a subset S ⊆ V
of its nodes, we use G[S] to denote the subgraph of G induced by the nodes in S. Further, for a node
v ∈ V and an integer r ≥ 0, we use Nr(v) := {u ∈ v : dG(u, v) ≤ r} to denote the set of nodes in the
r-hop neighborhood of v. Further, the r-hop neighborhood of a node v ∈ V is defined as the graph
G[Nr(v)] induced by the set of nodes within distance at most r from v.

When arguing about distributed algorithms and their relation to MPC algorithms, we often have
to consider graphs from the viewpoint of a specific node. We thus define the notion of a centered
graph as a graph G = (V,E) together with a distinguished center v ∈ V . A centered graph G with
center v has radius rad(G) if the maximum distance of between v and any other node in G is rad(G).
Two centered graphs G and G′ with centers v and v′ are called r-hop-isomorphic for an integer r ≥ 0
if there is an isomorphism ϕ between the r-hop neighborhoods G[Nr(v)] and G′[Nr(v

′)] that maps v
to v′, i.e., ϕ(v) = v′. We note that by definition, G is r-hop isomorphic to itself for any r ≥ 0.

5

Distributed Graph Problems. We consider graph problems, where when applied to a graph
G = (V,E) each node v ∈ V has to output some label from a given alphabet Σ (e.g., a color
in the vertex coloring problems or an indicator 1 or 0 when computing an independent set). For
simplicity, we do not explicitly treat output labels for edges, however all our arguments directly
extend to allowing output labels for edges. Alternatively, outputs for edges can also be delegated to
the incident nodes (e.g., in a matching, each node can output whether it is matched and if yes, which
neighbor its matching partner is).

LOCAL model algorithms. Let G be some family of graphs. We consider randomized LOCAL
algorithms that are run on a graph G = (V,E) from G and where the nodes in V have access to
shared randomness. Each node is given an upper bound n on the number of nodes of G as input.
Each node is further given a unique ID from a domain N := {1, . . . , N}, where N ≥ n. For some
integer r ≥ 0, let TG,r be the set of possible labeled r-hop neighborhoods of n-node graphs in G,
where each node is given a unique label from N . For a running time function t(n), a t(n)-round
randomized LOCAL algorithm is formally defined as a function

fLOCAL : SL × TG,t(n) → Σ,

where SL is a shared string of random bits and Σ is the set of possible output labels of the distributed
problem solved by the algorithm. To determine its output, a node v ∈ G, collects its labeled t(n)-hop
neighborhood and it applies the function fLOCAL to it and the shared randomness SL. An algorithm
is said to be correct with high probability (w.h.p.) if for any n-node graph G in G and any possible
ID assignment to the nodes of G, it outputs a correct solution with probability at least 1−1/n (where
the probability is taken over the shared randomness SL).

MPC algorithms: Let n ≥ 1 and M ≥ 1 be integers and let G be some family of graphs. We
consider randomized MPC algorithms that are run on an n-node graph G = (V,E) from G. The
system is composed of M machines, all of whom have access to shared randomness SP . Each node
of G is given a unique ID from a domain {1, . . . , N}, where N = nO(1). Each edge of G is given as
input to one of the M machines. In the end, the algorithm needs to assign one output in Σ to each
node and each machine needs to know the outputs of all nodes for which it initially holds edges. The
algorithm is said to be correct w.h.p. if it outputs a correct solution with probability at least 1− 1/n
(where the probability is taken over the shared randomness SP).

For our conditional lower bounds, we consider a natural class of MPC algorithms, which we call
component-stable, where the outputs of nodes in different connected components are independent.
Formally, assume that for a graph G, DG denotes the initial distribution of the edges of G among
the M machines and the assignment of unique IDs to the nodes of G. For a subgraph H of G let
DH be defined as DG restricted to the nodes and edges of H. Let Hv be the connected component
of node v. An MPC algorithm A is called component-stable if for each node v ∈ V , the output of v
depends (deterministically) on the node v itself, the initial distribution and ID assignment DHv of
the connected component Hv of v, and on the shared randomness SM .

3 Distributed Lower Bounds Imply Farsighted MPC Algorithms

We will now present the key part of transferring an existing LOCAL model lower bound for a given
graph problem to an argument that says that, for any MPC algorithm that solves the problem, the
output of some nodes has to depend on far-away nodes. We will see in Section 4.2 how this property
of an MPC algorithm can be used to prove a conditional time lower bound in the MPC model. We

6

first formally define what it means for an MPC algorithm to depend on far-away information in the
graph.

Definition 3.1 ((r, ε)-Sensitive MPC Algorithm). For an integer r ≥ 0 and some ε > 0, an MPC
algorithm A for some graph problems is called (r, ε)-sensitive w.r.t. two r-hop-isomorphic centered
graphs G = (V,E) and G′ = (V ′, E′) with centers v ∈ V and v′ ∈ V ′ if the following is true.

We consider two dependent runs of A, one on G and one on G′. In both runs, each node in
the isomorphic r-hop neighborhoods G[Nr(v)] and G′[Nr(v

′)] are assigned the same uniformly chosen
random IDs from the ID space of algorithm A. All the remaining nodes, in G and G′, are assigned
independently and uniformly chosen random IDs from the ID space of algorithm A. Each edge {u,w}
of G or G′ is labeled by the set of IDs {ID(u), ID(w)}. For each edge label, we independently choose
a machine uniformly at random and we give all edges with that label to that machine. That is, in
particular, the corresponding edges of G[Nr(v)] and G′[Nr(v

′)] are given to the same machines in
both runs (note that for a sufficiently large ID space, with very high probability, these are the only
edges where the machines are not chosen independently).

Then, if the MPC algorithm A is run on G and G′ with the same shared randomness, the proba-
bility that the two centers v and v′ output different values is at least ε (the probability is taken over
the choice of random IDs, the random distribution of the edges, and the shared randomness).

We note that in the above definition, it is fine if G and G′ are isomorphic beyond distance r
from the centers and in particular if G and G′ are the same graph. We next show that for every
graph problem P for which there is a T (n)-round LOCAL lower bound, there exists a (T (k), 1/kO(1))-
sensitive pair of centered graphs G and G′ of size k ≤ nδ for a suitably small constant δ > 0.

Lemma 3.1. Let P be a graph problem for which there is no T (n)-round LOCAL algorithm that
solves P on n-node graphs from a given family G with probability at most 1 − 1/n. Assume that
this holds for any sufficiently large n, even if the LOCAL algorithm has access to shared randomness
and even if all nodes initially know n. Then, for every MPC algorithm AMPC that solves P with
probability at least 2/3, for every constant δ > 0 and some t(n) for which log t(n) = Θ(log T (n)),
there are two t(n)-hop-isomorphic centered graphs G and G′ of size less than nδ such that AMPC is
(t(n), 1/nδ)-sensitive w.r.t. G and G′.

Proof. We first note that when running AMPC on a graph G of size at most nδ, we can boost the
probability that AMPC succeeds to 1 − 1/n by adding O(log n) additional independent copies of G.
These additional components can be produced by using the public randomness of the MPC algorithm.

Let δ > 0 be an arbitrarily chosen constant. For convenience, we define k := bnκδc for a sufficiently
small constant κ > 0 and we define ε := n−δ. Let us assume that there are not two centered graphs G
and G′ of size at most k such that the given MPC algorithm AMPC is (T (k), ε)-sensitive w.r.t. G and
G′ (holds also if G = G′). We use this fact to construct a T (k)-round randomized LOCAL algorithm
ALOCAL to solve P on graphs of size k with probability at least 1− 1/k, which is a contradiction to
the assumption of the lemma that no such algorithm exists. Note that because T (k) can grow at
most linearly with k (because every graph problem on graphs of size k can be solved in time at most
k in the LOCAL model). The choice of k then implies that log T (k) = Θ(log T (n)) and we can thus
choose t(n) = T (k). The contradiction thus implies the claim of the lemma.

We start the discussion by describing how to construct a LOCAL algorithm ALOCAL from the given
MPC algorithm AMPC. We then show that ALOCAL solves P with the right success probability.

Construction of the LOCAL algorithm. For convenience, we will use R := T (k), such that we
can construct an R-round LOCAL algorithm. In order to prove the existence of such an algorithm
ALOCAL, we have to prove that there is a function fLOCAL that takes an arbitrary labeled R-hop

7

neighborhood and an arbitrary bit string S and that maps this to an output label. The label is
the output of a node v in ALOCAL if v’s labeled R-hop neighborhood is as given and if the shared
randomness of ALOCAL is equal to S. For every labeled k-node graph G, the function should produce
a valid solution for P on G for at least a (1 − 1/k)-fraction of all possible bit strings S. We next
show how to construct such a function fLOCAL.

Assume that we are given a sufficiently long bit string S. For simplicity, we will assume that S is
given as two strings S0 and S1 (S0 could for example consist of the entries of S at even positions and
S1 could consist of the entries of S at odd positions). Assume further that we are given a labeled
R-hop neighborhood, which is given as a centered graph H of radius at most R, where each node
of H is labeled with a unique ID. Let vH be the center node of the centered graph H. Further,
let H be the family of all k-node centered graphs that are R-hop-isomorphic to H. That is, H is
the set of centered graphs, where the R-hop neighborhood of the center is equal to H (without the
labels). We use the short notation ID(H) for the given assignment of IDs to H and we call the triple
(ID(H),S0,S1) the input of the LOCAL algorithm.

Let H = H1, . . . ,Hq be an enumeration of all graphs in H. W.l.o.g., assume that the possible
set of output labels of a node are L := {1, . . . , `} for some ` ≥ 2. For each graph Ha, we compute a
probability distribution over the ` possible output labels by evaluating the following random process.
We first assign a uniformly random ID to each node u ∈ Ha that is not in the R-hop neighborhood
of the center node v of Ha. That is, we assign a uniformly random ID to each node of Ha that is not
in H and thus does not have an ID assigned yet. Now, we deterministically compute an output label
for the center node v as follows. We use the shared random bit string S0 to determine the assignment
of the edges of Ha to the M machines of the MPC model. This assignment is done in way such that
we use disjoint parts of S0 to determine the machine of each possible edge, where each possible edge
is identified by the two IDs of its two nodes. This guarantees that if we choose S0 as a uniformly
random bit string, the edges are assigned to machines independently. We further make sure that the
assignment is done in a way such that if S0 is chosen uniformly at random, the assignment of edges to
machines is also done uniformly at random. Given the assignment of IDs and the distribution of the
edges of Ha among the M machines, we then run the MPC algorithm AMPC with the second shared
random bit string S1. Note that after fixing the input I = (ID(H),S0,S1), and the random IDs of
the nodes that are not in H, AMPC is a deterministic algorithm. For each output label x ∈ {1, . . . `},
we define pa,x(I) as the probability that node v outputs label x. We set

fLOCAL(I) = fLOCAL(ID(H),S0,S1) := arg max
x∈{1,...,`}

|H|∑
a=1

pa,x(I),

that is, algorithm ALOCAL outputs the label that has the largest probability when using a random
graph from H for the given input I.

Correctness of the LOCAL algorithm. Let I be the set of possible inputs (ID(H),S0,S1). For an
input I ∈ I and a pair of graphs Ha, Hb ∈ H, we define Pa,b(I) :=

∑`
x=1 pa,x(I) · pb,x(I), which is the

probability that when running the above process on graphs Ha and Hb with input I, the centers of Ha

and Hb output the same value. Similarly, for each Ha ∈ H, we define Pa(I) :=
∑`

x=1 p
2
a,x(I), which is

is the probability that two independent runs on Ha result in the same output. Because we assumed
that there are no two centered graphs G and G′ of size at most k such that the given MPC algorithm
AMPC is (T (k), ε)-sensitive w.r.t. G and G′, we know that for every Ha, Hb ∈ H, Pa,b(I) ≥ 1 − ε
and Pa(I) ≥ 1 − ε if I is chosen uniformly at random. We thus have

∑
I∈I Pa,b(I) ≥ (1 − ε)|I| and∑

I∈I Pa(I) ≥ (1− ε)|I|. We call an input I ∈ I good for the pair (Ha, Hb) if Pa,b(I) ≥ 1− ε1/3 and

we call I good for Ha if Pa(I) ≥ 1− ε1/3. Let η > 0 be the fraction of inputs that are not good for a

8

pair (Ha, Hb). We have ε|I| ≥
∑

I∈I(1− Pa,b(I)) ≥ η · ε1/3 · |I| and thus η ≤ ε2/3. Hence, for every

pair (Ha, Hb), at least a (1− ε2/3)-fraction of all inputs I ∈ I is good for (Ha, Hb). Similarly, we get
that for every Ha ∈ H, at least a (1− ε2/3)-fraction of all inputs I ∈ I is good for Ha.

Assume that I is good for some pair (Ha, Hb) ∈ H2. Then if ε is chosen such that ε1/3 < 1/2,
there exists an output label x ∈ {1, . . . , `} for which pa,x(I) ≥ 1 − ε1/3 and pb,x(I) ≥ 1 − ε1/3. To
see this, let x be the output label that maximizes pa,x(I), let y be the output label that maximizes
pb,y(I), and assume that pa,x = 1−α and pb,y(I) = 1− β. W.l.o.g., assume that α ≥ β. The value of
Pa,b(I) is a convex combination of all the pa,z(I)-values and it is thus maximized if pb,z(I) is non-zero
only if pa,z(I) = pa,x(I) = 1 − α. We thus get that Pa,b(I) ≤ 1 − α and thus α ≤ ε1/3 because we
know that Pa,b(I) ≥ 1 − ε1/3. Because we assumed that ε1/3 < 1/2, we get that α < 1/2 (and thus
also β < 1/2). In this case, Pa,b(I) can only be larger than 1/2 if x = y, which proves that there is an
x for which pa,x(I) ≥ 1− ε1/3 and pb,x(I) ≥ 1− ε1/3. With the same argument, we can also conclude
that if I is good for Ha, there is an output label x for which pa,x(I) ≥ 1− ε1/3. In the following, we
say that x is a dominant output label for input I and graph Ha if pa,x(I) ≥ 1− ε1/3.

We further define when an input I ∈ I is good for the graph H, the common central R-
neighborhood in all graphs Ha ∈ H. We say that I ∈ I is good for H if it is good for at least
a (1− ε1/3)-fraction of all the pairs (Ha, Hb) (where we assume that a < b). Let η be the fraction of
inputs that is not good for H. Further, let P be the set of possible pairs (Ha, Hb) with a < b. We
have at least η|I|ε1/3|P| combinations of I ∈ I and (Ha, Hb) ∈ P such that I is not good for (Ha, Hb).
Because for every pair, a (1 − ε2/3)-fraction of the inputs is good, we have η|I|ε1/3|P| ≤ ε2/3|P||I|
and thus η ≥ ε1/3. Hence, at least an (1− ε1/3)-fraction of all inputs I ∈ I is good for H.

We next show that if an input I is good for H, then there is an output label x that is dominant
for almost all graphs Ha ∈ H and further, x is also the output value of ALOCAL for H on input I.
We first define a graph GI,H = (H, EI,H) on the node set H = {H1, . . . ,Hq}. The graph contains an
edge {Ha, Hb} ∈ EI,H if input I is good for Ha and Hb. Recall that in this case (if Ha and Hb are
connected by an edge in GI,H), there is an output label x that is dominant for I and Ha and for I
and Hb. This implies that for each connected component of GI,H, there is an output label x that is
dominant for I and all graphs Ha in the connected component. If I is good for H, the graph GI,H
contains a (1 − ε1/3)-fraction of all the

(
q
2

)
possible edges. This implies that GI,H has a connected

component of size at least (1−ε1/3)q. We call this component the giant component for GI,H. Clearly,
if ε is chosen below a sufficiently small constant, the dominant output value of this giant component
is also the output value of the constructed LOCAL algorithm ALOCAL. Note that if H consists only
of a single graph H1 = H, I is good for H1 if and only if it is good for H and in this case, the giant
component consists of the single graph H1.

We next put the above definitions together and we define an input I ∈ I to be well-behaved for
a graph Ha ∈ H if a) I is good for Ha, b) I is good for H, and c) Ha is part of the giant component
of GI,H. We next show that if ε1/3 < 1/2, for every Ha ∈ H, at least a (1 − ε1/3 − 3ε2/3)-fraction
of all inputs I ∈ I are well-behaved for Ha. To show this, let degI(Ha) be the degree of node Ha in
graph GI,H. We know that for every Hb ∈ H \ {Ha}, at least a (1− ε2/3)-fraction of all inputs I, I
is good for the pair (Ha, Hb). We therefore have∑

I∈I
degI(Ha) ≥

∑
Hb 6=Ha

(1− ε2/3)|I| = (1− ε2/3)(q − 1)|I|.

Let γ be the fraction of inputs I ∈ I for which degI(Ha) < ε1/3q − 1 ≤ ε1/3(q − 1). We have

γ|I| · ε1/3(q − 1) + (1− γ)|I|(q − 1) ≥ (1− ε2/3)(q − 1)|I|,

which together with ε1/3 < 1/2 implies that γ < 2ε2/3. Note that if I is good for H, the giant
component has size at least (1 − ε1/3)q and thus if degI(Ha) ≥ ε1/3q − 1, Ha is part of the giant

9

component. Hence, the fraction of inputs that are not good for Ha is at most ε2/3, the fraction of
inputs that are not good for H is at most ε1/3 and among the inputs that are good for H, the fraction
where Ha is not in the giant component is at most 2ε2/3. Overall, the fraction of inputs for which
Ha is well-behaved is thus at least 1− ε1/3 − 3ε2/3.

It finally remains to show that the LOCAL algorithn ALOCAL succeeds with sufficiently large
probability. It suffices to show that ALOCAL has a large success probability if each node ID is chosen
independently and uniformly at random from a sufficiently large domain. A randomized LOCAL
algorithm can always do this as a first step. Let us therefore assume that we have a graph G = (V,E)
of size at most k on which we want to solve problem P. If each node v ∈ V independently chooses a
uniformly random node ID from a domain of size at least n3, the probability that two nodes choose
the same ID is less than 1/n (even for k = n). We now show that the algorithm ALOCAL correctly
solves the graph problem P on G if the IDs are chosen independently and uniformly at random and
if the shared randomness S0 and S1 is also chosen uniformly at random. Let ID(G) be the given
random ID assignment. Consider some node v ∈ V of G and let Hv be the centered graph induced
by the R-hop neighborhood of v. Let Hv be the set of centered graphs with at most k nodes that
are R-hop-isomorphic to Hv. Note that G is one such graph. Assume that for the input Iv induced
by the given ID assignment to Hv and the given shared randomness S0 and S1, G is well-behaved.
Then, the output of v by the LOCAL algorithm ALOCAL is the same as the output of the given MPC
algorithm AMPC with probability at least 1 − ε2/3 because the input Iv is good for G and good for
Hv and G is in the giant component of GIv ,Hv . The probability that the input Iv is well-behaved is
at least 1 − ε1/3 − 3ε2/3 and thus, the probability that v outputs the same value in ALOCAL and in
AMPC is at least 1− ε1/3− 4ε2/3 (when running AMPC by using the shared randomness of ALOCAL as
described above). By using a union bound over all at most k nodes of G, we thus get that ALOCAL

and AMPC output the same solution with probability at least 1−k(ε1/3 +4ε2/3). The MPC algorithm
AMPC outputs a correct solution with probability 1−1/n if the random ID assignment was successful
in assigning unique IDs. The success probability of AMPC is thus at least 1−2/n and thus the success
probability of ALOCAL is at least 1 − k(ε1/3 + ε2/3) − 2/n. Recall that k = bnκδc and that ε = n−δ

for sufficiently small constants δ > 0 and κ > 0. By choosinig δ and κ appropriately, the success
probability of ALOCAL is thus better than 1− 1/k, which is a contradition to the assumption that no
such LOCAL algorithm exists.

4 Farsighted MPC Algorithms Imply Super Fast Connectivity

In Section 4.1, we discuss our conditional hardness assumption for the connectivity problem. Then, in
Section 4.2, we explain how to combine this with the result of Section 3, which shows that distributed
lower bounds imply that MPC algorithms that are too fast must be farsighted, in order to obtain our
conditional hardness results.

4.1 Hardness Assumption for the Connectivity Problem

As the base assumption of our conditional hardness results, we assume that any MPC algorithm with
local memory nα for a constant α ∈ (0, 1) and global memory poly(n) needs Ω(logD) rounds to solve
the following D-diameter s-t connectivity problem:

Definition 4.1 (The D-diameter s-t connectivity problem). Given two special nodes s and t in the
graph, the algorithm should determine whether they are connected or not, in a way that provides the
following (rather weak) guarantee: If s and t are in the same connected component and that component
is a path of length at most D with s and t at its two endpoints, then the algorithm should output

10

YES, with probability 1− 1/ poly(n). If s and t are in different connected components, the algorithm
should output NO, with probability 1− 1/poly(n). In other cases, the output can be arbitrary.

We remark that the above problem can be solved in O(logD) rounds, using the algorithm of
Andoni et al. [ASS+18], using local memory nα for any constant α ∈ (0, 1) and global memory poly(n).
Furthermore, we also note that, if we take an Ω(logD) hardness for the above problem for granted,
we can relax the probability guarantee to 2/3 and still have an Ω(logD) round conditional hardness.
This is because any algorithm that guarantees a 2/3 probability of success can be amplified to provide
success probability of at least 1− 1/ poly(n), with no asymptotic round complexity overhead: simply
use O(log n) parallel repetitions and then take the majority output.

We conjecture and more concretely assume Ω(logD) to be a lower bound on the time needed for
D-diameter s-t connectivity. We think that this itself is a robust and reliable hardness assumption.
To add to the justification of this assumption, in the remainder of this subsection, we relate this
assumption to the more standard Ω(log n) round hardness for the problem of distinguishing the case
where the input graph is one cycle from the case where it is two cycles:

Lemma 4.1. Suppose that every MPC algorithm with local memory nα for a constant α ∈ (0, 1)
and global memory poly(n) that can distinguish one n-node cycle from two n/2-node cycles requires
Ω(log n) rounds. Then, any MPC algorithm with local memory nα for a constant α ∈ (0, 1) and global
memory poly(n) that solves D-diameter s-t connectivity for D ≤ logγ n for a constant γ ∈ (0, 1)
requires Ω(logD) rounds.

Proof. Let us start with a proof outline. For the sake of contradiction, suppose that there is an
MPC algorithm A with local memory nα for a constant α ∈ (0, 1) and global memory poly(n) that
solves D-diameter s-t connectivity in o(logD) rounds. We use this to argue that there is such
an MPC algorithm B that solves the one cycle vs. two cycles problem in o(log n) rounds. This
argument has two steps. In the first step, we build an o(logD) round algorithm A′ for the following
connected component identification problem: for any component that is a path of length at most
D, the algorithm should produce the same label for all of the nodes of this component, with high
probability. On the other hand, with high probability, no two nodes of different components should
receive the same label. In the second step, we build the algorithm B for the one cycle vs. two cycles
problem by repeated applications of algorithm A′ on certain inputs.

First Step: We now build algorithm A′ for connected component identification using poly(n)
parallel repetitions of algorithm A for D-diameter s-t connectivity in carefully devised input graphs.
Our parallel repetitions are divided into at most n groups, where in each of them we set t to be one of
the nodes in the graph with degree exactly 1. Then, in each group, we have O(n) tests, one for each
possibility of node s that has degree 1 or 2 in the graph. The test consists of O(log n) runs of A, on
graphs defined as follows: In each run, we make s keep exactly one of its edges (chosen randomly if
it has 2 edges), and then run A on this instance. If in any of the O(log n) runs algorithm A answers
YES, we can conclude that s is in the same component as t. Moreover, if s is in the same component
as t and this component is a path of length at most D, then, with high probability, at least one of
the runs makes s and t the two endpoints of a path of length at most D and we get a YES answer.
Hence, we conclude that, over the groups for different t, each node s in a path of length at most D
learns the identifiers of the two endpoints of its path (each identifier is indicated by the index of the
group in which the answer was YES). Any node s outputs the minimum of the identifiers that it has
learned, as the label of its component. If node s does not learn any identifiers in this way, it outputs
its own identifier as its component label. With high probability, the identifiers learned by each node
s are degree-1 nodes in the component that holds s and if the component is a path of length at most
D, then the node s learns the identifiers of both of the endpoints of its path. Hence, in any path of

11

length at most D, all nodes output the same label (the minimum ID of the two endpoints). Moreover,
any two nodes that output the same label must necessarily be in the same component. Algorithm
A′ runs in the same round complexity as algorithm A, because the former is simply poly(n) parallel
repetitions of the latter.

Second Step: We build B for solving the one cycle vs. two cycles problem using algorithm A′ as
follows: We have O(log n/ logD) sequential iterations. In the first iteration, we remove each edge
with probability 1/

√
D and then run algorithm A′. Hence, A′ assigns a label to each vertex. Notice

that each connected component after the random removal of edges has length O(
√
D log n) with high

probability. Since A′ is guaranteed to not assign the same label to nodes of different components,
each label is held by at most O(

√
D log n)� nα nodes. In one round, we move all nodes of the same

label to one machine (along with their edges), using one machine for each label. Notice that due
to the way A′ is defined, it might label two nodes v and u the same even though they are further
than D hops away, and it might even label some node w that is on the shortest path between v and
u differently than the (common) label of v and u. Each machine relabels the nodes that it receives
with new labels, in a way that each new label is exactly a connected component of the nodes that it
receives. We then contract all nodes that have the same label (i.e., all edges whose both endpoints
have the same label). That is, we now have a graph with one vertex for each of the labels and two
labels are connected iff there are two connected vertices that had those two labels. Since A′ with
high probability does not label nodes of different components with the same label, the result of the
contraction keeps each input cycle separate (if there are two cycles). It also keeps them cycles —
that is, one cycle if we had one input cycle, and two cycles if we had two input cycles — because
each label corresponds to a connected component after the edge removals, and thus each contracted
part is an induced connected subgraph of the cycle, that is, either a path in it or the entire cycle.
The other iterations run similarly, and we continue until all edges are contracted. Eventually, we
have either one label or two labels, which corresponds to the input being one cycle or two cycles.

We now analyze the number of iterations needed until termination. Define the excess number of
labels to be the number of labels (i.e., nodes) in the graph minus the number of connected components.
We can see that the expected number of excess labels in the resulting new graph is at most O(n/D).
The reason is as follows: let’s call a node bad if after the sampling of edges, it is in a component that
is longer than D. The probability of each node being bad is at most 2(1− 1√

D
)D = exp(−Θ(

√
D))�

1/D2. Let’s call a component short if it has fewer than D1/4 vertices. The probability of a node
being in a short component is at most D1/4/

√
D = O(1

D1/4). The number of new labels is at most the
number of bad nodes or those in short components, plus the number of components that have length
at least

√
D (and no more than D). In expectation, the former is at most O(n/D1/4), and the latter

is necessarily at most n/
√
D —because each component of length at least

√
D consumes at least

√
D

nodes. Hence, in expectation, the number of new labels is O(n/D1/4). That is, in expectation, in
one iteration, the number of excess labels goes down by a factor of O(D1/4). After O(log n/ logD)
repeated application of the same procedure, the number of excess labels is 1/ poly(n). Hence, by
Markov’s inequality, with probability 1− 1/poly(n), there is no excess label. That is, we have either
one label or two labels, depending on whether the input was one cycle or two cycles. Hence, we can
solve the one cycle vs. two cycles problem via O(log n/ logD) repetitions of algorithm A′. Since A′
runs in o(logD) rounds, the algorithm B that we have built runs in o(log n) rounds.

4.2 Solving Connectivity, Assuming a Farsighted MPC Algorithm

From Lemma 3.1, we know that for every MPC algorithm AMPC that solves P in o(log t(n)) rounds,
there are two t(n)-hop-isomorphic centered graphs G and G′ of size less than nδ such that AMPC

12

is (t(n), 1/nδ)-sensitive w.r.t. G and G′. In this section, we leverage that to obtain an o(log T (n))
round algorithm for D-diameter s-t where D = T (n), hence putting us in contradiction with the
assumed hardness for the latter. Having arrived at this contradiction, we can conclude that any MPC
algorithm for P needs at least Ω(log T (n)) rounds.

Throughout this argument, we limit T (n) to be at most Θ(log n/ log logn), which suffices for all
our hardness results. Indeed, limiting it to any T (n) ≤ logγ n for any positive constant γ > 0 would
also suffice, as our final hardness bound is log T (n) and thus polynomial changes in T (n) appear as
constant factor changes in our final hardness result.

Lemma 4.2. Let P be a graph problem that has a D = T (n)-round lower bound in the randomized
LOCAL model with shared randomness. Suppose that T (n) ≤ logγ n for a constant γ ∈ (0, 1) and
that that there is an o(logD)-round component-stable MPC algorithm AMPC that solves P with local
memory nα for a constant α ∈ (0, 1). Then, we obtain an MPC algorithm Bst−conn with local memory
nβ for an arbitrary constant β ∈ (0, 1) with round complexity o(logD) for D-diameter s-t connectivity.

Proof. From Lemma 3.1, we know that for a t(n) such that log t(n) = Θ(log T (n)), there are two
t(n)-hop-isomorphic centered graphs G and G′ of size less than nδ such that AMPC is (t(n), 1/nδ)-
sensitive w.r.t. G and G′. We use this to conclude that then there must be an MPC algorithm Bst−conn
with round complexity o(log T (n)) for D-diameter s-t connectivity, where D = T (n).

We now describe how we build the algorithm Bst−conn. This algorithm is made of O(nδ+o(1))
parallel repetitions of some weaker algorithm B′st−conn, which we will describe later, and that when s
and t are endpoints of a path of length at most D it outputs YES with probability at least n−(δ+o(1))

and when s and t are in different components, it outputs NO with high probability. The output of
Bst−conn is YES if an only if the output of at least one of the parallel repetitions of B′st−conn is YES.
This parallel repetition amplifies the success probability to 1− 1/ poly(n).

Before describing how we build B′st−conn, let us recall the meaning of the aforementioned sensitivity
of AMPC w.r.t G and G′: We consider two dependent runs of AMPC, one on G and one on G′. In
both runs, each node in G or G′ has an independently and uniformly chosen ID from the ID space
of algorithm AMPC, where for D = t(n), the nodes in the isomorphic r-hop neighborhoods G[ND(v)]
and G′[ND(v′)] are assigned the same random IDs. Each edge {u,w} of G or G′ is labeled by the set
of IDs {ID(u), ID(w)}. For each edge label, we independently choose a machine uniformly at random
and we give all edges with that label to that machine. That is, in particular, the corresponding
edges of G[ND(v)] and G′[ND(v′)] are given to the same machines in both runs. Then, if the MPC
algorithm AMPC is run on G and G′ with the same shared randomness, the probability that the two
center nodes v and v′ output different values is at least 1/nδ.

We now describe how we build B′st−conn. This will be by simulating AMPC on G and G′. By the
definition of the problem, we only need to say YES, when s and t are endpoints of a path of length
at most D. In all other cases, we can output NO. If we are in the case that s-t is a path of length
at most D, then we would like that each of the nodes on this path “simulates” exactly one layer of
the BFS of G or G′, in our run of AMPC: For instance, node s will simulate node v in the run on G
and node v′ in the run on G′. Moreover, node t will simulate all of the nodes outside G[Nr(v)] and
G′[Nr(v)], in the respective runs. This should allow us to detect that v has a different output in the
two runs, with probability at least 1/nδ. However, there are two issues to handle: (1) the length of
the s-t path might be less than D so we cannot give exactly one layer to each node, (2) nodes do not
know which layer to simulate. We next discuss how we handle these two issues:

Let us first discuss the first issue: If node s has more than one edge, we output NO. Otherwise,
node s samples an integer random variable ` uniformly distributed in [1, D] and it virtually replaces
its edge {s, w} in G — or its edge {s, w′} in the run on G′ — with a path of length ` starting at s
and ending at v. This length ` is a guess for the length to be added to the path so that it becomes

13

a path of length exactly D. Notice that the guess is correct with probability 1/D � n−o(1). Then,
node s is responsible for simulating the behavior of all the nodes in this path of length `. Let us now
think that we are in the good event and we have a path of length exactly D.

We now discuss the second issue: We make each node of degree 2 (including those simulated by
s, in the description given above, when replacing one edge with a path of length P`) guess its BFS
layer number from [1, D − 1] at random. With probability at least (1/D)D ≥ n−o(1), as D ≤ logγ n,
the nodes on the s-t path have guessed layers exactly from 1 to D. Now, two consecutive nodes on
the path with consecutive layer numbers can communicate with each other and simulate the behavior
of each edge that is between the corresponding two consecutive layers of BFS. Node t is responsible
for simulating all nodes outside G[ND(v)] and G′[ND(v′)], in the runs on G and G′ respectively.
We randomly fix the labels of nodes in G[ND(v)] and G′[ND(v′)] and the distribution of the related
edges on different machines, using the same randomness. Then, we conduct the following two step
experiment: in the first step, node t samples the outside topology according to G. In the second step,
node t samples the outside topology according to G′. In each case, we then run algorithm AMPC on
this simulated graph. Algorithm B′st−conn outputs YES if and only if the output of s, which is set to
be v in the first run and v′ in the second run, in algorithm AMPC is different in the two steps.

Now we analyze the behavior of algorithm B′st−conn. If t is in a different component than s,
then the fact that t is taking different topologies in different steps does not change the topology, ID
assignments, and the distribution of the edges of the component of node s. Hence, the component-
stable algorithm AMPC will output the same result at node v in both steps, with high probability.
Thus, in this case, algorithm B′st−conn outputs NO, with high probability. On the other hand, suppose
that t is in the same component as s and the component is a path of length at most D. Then our
guesses of path length addition ` and numbering of the nodes on the path have been correct with
probability at least n−o(1) and thus we have a correct simulation of algorithm AMPC on G and G′.
Then, since AMPC is (t(n), 1/nδ)-sensitive w.r.t. G and G′ as we showed in Lemma 3.1, this algorithm
would output different values in the two steps with probability at least nδn−o(1). Hence, B′st−conn
outputs YES, with probability at least n−(δ+o(1)), as desired.

We can now provide a proof for our main technical theorem.

Proof of Theorem 1.4. The statement of Lemma 4.2 is equivalent to the first claim of Theorem 1.4
(the existence of an o(logD) strongly sublinear local memory MPC algorithm to solve D-diameter
s-t connectivity). By Lemma 4.1, this also implies a strongly sublinear local memory MPC algorithm
that distinguishes a single cycle of length n from two cycles of length n/2 in time o(log n).

5 Distributed Lower Bounds with Shared Randomness

In this section, we prove that existing distributed LOCAL model lower bounds also hold if the nodes
have access to shared randomness. We start with the lower bounds of [KMW16] for approximating
minimum vertex cover and maximum matching.

Theorem 5.1. Any randomized LOCAL model algorithm to compute an poly log(n)-approximate
solution for the minimum vertex cover, maximum matching, or the minimum dominating set problem

in n-node graphs requires at least Ω
(√ logn

log logn

)
rounds. This holds even if the nodes of the graph know

n and if they have access to an unlimited amount of shared randomness.

Proof. The proof follows by using the same argument as in [KMW16]. In [KMW16], for the minimum
vertex cover problems, it is shown that there exists an n-node graph G = (V,E) that contains an
induced bipartite subgraph B = (U0∪̇U1, EB) such that |U0| ≥ (1 − 1/(1 + 2α))n and every node

14

in U0 has exactly one neighbor in U1 and such that for some r = Θ(
√

log n/ log log n), the r-hop
neighborhoods of all nodes in u ∈ U0 ∪ U1 are isomorphic. Note that since U0 is an independent set,
the set V \ U0 is a vertex cover and thus G has a vertex cover of size at most n/(1 + 2α). Assume
that assignment of node IDs is done uniformly at random. Then all nodes u ∈ U0∪U1 have the same
distribution over the possible r-hop views and thus, in any r-round distributed vertex cover algorithm
with a random ID assignment, all nodes in U0 ∪ U1 join the vertex cover with the same probability.
This is clearly also true if public randomness is available. Because the edges between U0 and U1 need
to be covered, this probability has to be at least n/2. In expectation, any r-round distributed vertex
cover algorithm will therefore compute a vertex cover of size at least |U0|/2 ≥ αn/(1 + 2α) and thus,
the expected approximation ratio is at least α. The lower bound for the minimum dominating set
problem follows because a dominating set of size d on the line graph of a graph G directly implies a
vertex cover of size 2d on G and a vertex cover of size s on G directly implies a dominating set of
size s on the line graph of G.

For the maximum matching problem, [KMW16] shows that there is an n-node graph G = (V,E)
that contains two disjoint sets of edges E0 and E1: For a given α ≤ poly log n and a suitably chosen
constant c > 1, E0 is a matching of size at least (1−1/(cα))n/2, any matching that does not contain
edges of E0 has size at most n/(cα), and every edge in E1 shares a vertex with at least cα other
edges in E1. Further, it is shown that for some r = Θ(

√
log n/ log logn), the r-hop neighborhoods

of all edges in E0 ∪ E1 are identical. Thus, as before, if the IDs are chosen uniformly at random,
even with shared randomness, for all r-round distributed matching algorithms, all edges in E0 ∪ E1

need to join the matching with the same probability. As edges in E1 share an endpoint with cα other
edges in E1, this probability can be at most 1/(cα). However, this means that at most n/(2cα) edges
of the matching E0 of size (1− 1/(cα))n/2 are added to the matching in expectation. By choosing c
appropriately, this again implies that the expected approximation ratio cannot be better than α.

As a maximal matching is a 2-approximation for the maximum matching problem, the above
theorem directly also implies the same lower bound for computing a maximal matching. More
generally, we obtain the following corollary.

Corollary 5.2. Any randomized LOCAL model algorithm to compute maximal matching or a maximal

independent set (MIS) in n-node graphs requires at least Ω
(√ logn

log logn

)
rounds. This holds even if the

nodes of the graph know n and if they have access to an unlimited amount of shared randomness.
Furthermore, the maximal matching lower bound even holds on n-node trees.

Proof. The lower bound for maximal matching on general graphs follows directly because a maximal
matching is a 2-approximation for the maximum matching problem (and also for the minimum
vertex cover problem). The lower bound holds on trees because in the constructions of [KMW16],
the isomorphic local neighborhoods are trees. For maximal matching, where the validity of a solution
is defined by a local condition, any violation of this condition at a node v in a graph G also occurs if
we only run the algorithm on the local neighborhood of v (and thus on a tree). The lower bound on
the MIS problem follows because a maximal matching on G is an MIS on the line graph of G.

We next discuss a conditional randomized LOCAL lower bound that is particularly interesting for
the distributed (∆ + 1)-coloring problem. Chang, Kopelowitz, and Pettie [CKP16] showed that for
every so-called locally checkable labeling (LCL) problem P, the randomized complexity of P in the
LOCAL model on graphs of size n is at least the deterministic complexity of P in the LOCAL model
on graphs of size

√
log n. We next show that the argument of [CKP16] also works if the randomized

LOCAL algorithm has access to shared randomness.

15

Theorem 5.3. Let Gn,∆ be the family n-graphs with maximum degree ∆ and assume that the best
deterministic LOCAL algorithm for solving a locally checkable graph problem P on graph in Gn,∆ has
a time complexity of T (n,∆). Then, every randomized LOCAL algorithm for solving P on graphs of
size n from G has a time complexity of at least T (

√
log n,∆). This holds even if the nodes of the

randomized algorithm know n and if they have access to shared randomness.

Proof. The proof works in the same way as the proof of [CKP16], we therefore only sketch it here.
Assume that we are given a shared memory randomized LOCAL algorithm AR for P that runs in time
t(n,∆) and succeeds with probability at least 1 − 1/n. When applying AR on a graph G of size n,
each node initially has an c log n-bit unique ID for some constant c ≥ 1 and access to a shared random
bit string S of sufficient length. Given the ID assignment and S, the behavior of AR is deterministic.
Let Hn,∆ be the set of labeled graphs in Gn,∆, where each node is labeled with a unique O(log n)-bit
ID. We say that a shared bit string S is successful for a labeled graph G ∈ Hn,∆ if AR computes a
correct solution on G when using S as the shared randomness. If there is a shared bit string S∗ that
is successful for all G ∈ Hn,∆, we can always run AR with S∗ and obtain a deterministic algorithm
AD.

If for each bit string S, there is a graph G ∈ Hn,∆ for which S is not successful, the success
probability of AR cannot be better than 1 − 1/|Hn,∆| (because for some G ∈ Hn,∆, at least a

1/|Hn,∆|-fraction of all strings S are not successful). We have |Hn,∆| ≤ 2(n2)+cn logn < 2n
2

as long as

n ≥ n0 for a sufficiently large constant n0. Thus, if the success probability of AR is 1− 2−n
2
, we can

derandomize it to a deterministic algorithm. In order to obtain a randomized algorithm with such
a high success probability, we define N := 2n

2
and we lie to AR about the number of nodes n and

pretend it is actually N . We can do this by running AR on a graph G′ ∈ GN,∆, such that the original
n-node graph G is a connected component of G′. To obtain the output on the component G, we only
need to run the algorithm on G and because P is a locally checkable labeling problem, any valid
output on G′ also implies that the output is valid when considering just the connected component
G. The running time of the resulting deterministic algorithm is t(N,∆) = t(2n

2
,∆).

The (∆ + 1)-coloring problem is a locally checkable problem for which the above argument holds.
Recall that the fastest known deterministic LOCAL algorithm for solving (∆ + 1)-coloring in general
graphs of size n has a time complexity of 2O(

√
logn) [PS92] and showing the existence of a deterministic

2o(
√

logn)-round LOCAL algorithm for (∆ + 1)-coloring would be considered a major breakthrouh in
the area of distributed graph algorithms (see, e.g., [BE13, GKM17]). For ∆ = 2, i.e., on paths and
rings, the deterministic time complexity of (∆ + 1)-coloring is known to be Ω(log∗ n) [Lin87].

Corollary 5.4. Unless the deterministic complexity of (∆ + 1)-coloring in the LOCAL model can be
improved to 2o(

√
logn), any randomized LOCAL model algorithm to compute (∆ + 1)-coloring in n-

node graphs requires at least 2Ω(
√

log logn) rounds. Further, any randomized LOCAL model algorithm to
compute a O(1)-coloring of n-node rings requires at least Ω(log∗ n) rounds. Both results hold even if
the nodes of the graph know n and if they have access to an unlimited amount of shared randomness.

Proof. The results follow directly from Theorem 5.3 and in the case of the unconditional lower
bound for ring networks, from Linial’s Ω(log∗ n) lower bound for deterministically coloring n-node
rings [Lin87].

We remark that in [Nao91], Naor showed that the randomized time complexity of coloring an
n-node ring with O(1) colors is Ω(log∗ n). However, the result does not trivially extend to algorithms
that have access to shared randomness and we therefore used Theorem 5.3 to prove this lower in
a straightforward way. As the following corollary shows, we can also use Theorem 5.3 to lift the
Ω(log log n) randomized lower bound for sinkless orientation of Brandt et al. [BFH+16] to a setting
with shared randomness.

16

Corollary 5.5. Any randomized LOCAL model algorithm to compute a sinkless orientation requires
Ω(log log n) rounds. This holds even if the nodes of the graph know n and if they have access to an
unlimited amount of shared randomness.

Proof. In [CKP16], Chang et al. show that computing a sinkless orientation deterministically in the
LOCAL model requires at least Ω(log n) rounds. By Theorem 5.3, we therefore obtain an Ω(log log n)
lower bound for randomized algorithms even if shared randomness is available.

References

[ABB+19] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff
Stein. Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive
Graphs. In the Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1616–1635, 2019.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear Algorithms for (∆+ 1) Vertex
Coloring. In the Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 767–786. SIAM, 2019.

[AG15] Kook Jin Ahn and Sudipto Guha. Access to Data and Number of Iterations: Dual Primal
Algorithms for Maximum Matching Under Resource Constraints. In the Proceedings of
the Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 202–211,
2015.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing Graph Structure via
Linear Measurements. In the Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 459–467. SIAM, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph Sketches: Sparsification,
Spanners, and Subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of Database Systems, pages 5–14. ACM, 2012.

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Par-
allel Algorithms for Geometric Graph Problems. In Proceedings of the Symposium on
Theory of Computing (STOC), pages 574–583, 2014.

[Ass17] Sepehr Assadi. Simple Round Compression for Parallel Vertex Cover. arXiv preprint
arXiv:1709.04599, 2017.

[ASS+18] Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang, and Peilin Zhong. Parallel
Graph Connectivity in Log Diameter Rounds. In the Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 674–685, 2018.

[ASW18] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively Parallel Algorithms for
Finding Well-Connected Components in Sparse Graphs. arXiv preprint arXiv:1805.02974,
2018.

[BBD+19] Soheil Behnezhad, Sebastian Brandt, Masha Derakhshan, Manuela Fischer, Mohammad-
Taghi Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel computation of
matching and MIS in sparse graphs. Manuscript, 2019.

17

[BE13] L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, 2013.

[BEG+18] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and
Saeed Seddighin. Approximating Edit Distance in Truly Subquadratic Time: Quantum
and Mapreduce. In the Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1170–1189, 2018.

[BFH+16] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A Lower Bound for the Distributed Lovász
Local Lemma. In Proceedings of the Symposium on Theory of Computing (STOC), pages
479–488. ACM, 2016.

[BFU18] Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the linear-memory barrier
in mpc: Fast mis on trees with nε memory per machine. arXiv preprint arXiv:1802.06748,
2018.

[BHH19] Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G Harris. Exponentially
faster massively parallel maximal matching. arXiv preprint arXiv:1901.03744, 2019.

[BKS13] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In Proceedings of the 32Nd ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), pages 273–284, 2013.

[BKS14] Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 212–223, 2014.

[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (∆ + 1) Coloring in Congested Clique, Massively Parallel Computation,
and Centralized Local Computation. Manuscript, 2019.

[CKP16] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An Exponential Separation Between
Randomized and Deterministic Complexity in the LOCAL Model. In the Proceedings of
the Symposium on Foundations of Computer Science (FOCS), 2016.

[CLM+18] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak, and
Piotr Sankowski. Round Compression for Parallel Matching Algorithms. In Proceedings
of the Symposium on Theory of Computing (STOC), pages 471–484, 2018.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on Operating Systems Design
& Implementation (OSDI), pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt
Rubinfeld. Improved Massively Parallel Computation Algorithms for MIS, Matching,
and Vertex Cover. In the Proceedings of the Symposium on Principles of Distributed
Computing (PODC). arXiv:1802.08237, 2018.

[GKM17] M. Ghaffari, F. Kuhn, and Y. Maus. On the complexity of local distributed graph prob-
lems. In Proceedings of the Symposium on Theory of Computing (STOC), pages 784–797,
2017.

18

[GKMS18] Buddhima Gamlath, Sagar Kale, Slobodan Mitrović, and Ola Svensson. Weighted match-
ings via unweighted augmentations. arXiv preprint arXiv:1811.02760, 2018.

[GSZ11] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simu-
lation in the MapReduce framework. In the Proceedings of the International Symposium
on Algorithms and Computation (ISAAC), pages 374–383. Springer, 2011.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications
in massively parallel computation and centralized local computation. In the Proceedings
of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1636–1653, 2019.

[HLL18] Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and Local Ratio Algo-
rithms in the MapReduce Model. In the Proceedings of the Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 43–52, 2018.

[HP15] James W Hegeman and Sriram V Pemmaraju. Lessons from the congested clique applied
to mapreduce. Theoretical Computer Science, 608:268–281, 2015.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. SIGOPS Operating
Systems Review, 41(3):59–72, 2007.

[IMS17] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient Massively Parallel Methods
for Dynamic Programming. In Proceedings of the Symposium on Theory of Computing
(STOC), pages 798–811, 2017.

[JN18] Tomasz Jurdziński and Krzysztof Nowicki. MST in O(1) Rounds of Congested Clique.
In the Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2620–2632. SIAM, 2018.

[KMW16] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local Computation: Lower
and Upper Bounds. J. ACM, 63(2):17:1–17:44, 2016.

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation
for MapReduce. In the Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 938–948, 2010.

[Lin87] Nathan Linial. Distributive Graph Algorithms-Global Solutions from Local Data. In
the Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
331–335, 1987.

[LMSV11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a
Method for Solving Graph Problems in MapReduce. In the Proceedings of the Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 85–94, 2011.

[Nao91] Moni Naor. A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring.
SIAM J. Discrete Math., 4(3):409–412, 1991.

[Ona18] Krzysztof Onak. Round Compression for Parallel Graph Algorithms in Strongly Sublinear
Space. CoRR, abs/1807.08745, 2018.

[PS92] Alessandro Panconesi and Aravind Srinivasan. Improved Distributed Algorithms for Col-
oring and Network Decomposition Problems. In Proceedings of the Symposium on Theory
of Computing (STOC), pages 581–592. ACM, 1992.

19

[RVW16] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits: (On
Lower Bounds for Modern Parallel Computation). In the Proceedings of the Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 1–12, 2016.

[Whi12] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In 2nd USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), 2010.

20

	Introduction and Related Work
	Massively Parallel Computation: Model and State of the Art
	Our Contribution
	The General Structure of Our Hardness Proofs

	Formal Definitions
	Distributed Lower Bounds Imply Farsighted MPC Algorithms
	Farsighted MPC Algorithms Imply Super Fast Connectivity
	Hardness Assumption for the Connectivity Problem
	Solving Connectivity, Assuming a Farsighted MPC Algorithm

	Distributed Lower Bounds with Shared Randomness

