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Abstract

We provide a simple new randomized contraction approach to the global minimum cut prob-
lem for simple undirected graphs. The contractions exploit 2-out edge sampling from each vertex
rather than the standard uniform edge sampling. We demonstrate the power of our new approach
by obtaining better algorithms for sequential, distributed, and parallel models of computation.
Our end results include the following randomized algorithms for computing edge connectivity,
with high probability1:

• Two sequential algorithms with complexitiesO(m log n) andO(m+n log3 n). These improve
on a long line of developments including a celebrated O(m log3 n) algorithm of Karger
[STOC’96] and the state of the art O(m log2 n(log log n)2) algorithm of Henzinger et al.
[SODA’17]. Moreover, our O(m+ n log3 n) algorithm is optimal when m = Ω(n log3 n).

• An Õ(n0.8D0.2 + n0.9) round distributed algorithm, where D denotes the graph diame-
ter. This improves substantially on a recent breakthrough of Daga et al.[STOC’19], which

achieved a round complexity of Õ(n1−1/353D1/353 + n1−1/706), hence providing the first
sublinear distributed algorithm for exactly computing the edge connectivity.

• The first O(1) round algorithm for the massively parallel computation setting with linear
memory per machine.
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1We use the phrase with high probability (whp) to indicate that a statement holds with probability 1 − O(n−γ),
for any desired constant γ ≥ 1.
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1 Introduction and Related Work

Computing the minimum cut is one of the classic graph problems, with a range of applications —
e.g., in analyzing the failure robustness of a network or in identifying the communication bottlenecks
— and it has been studied extensively since the 1960s [FF56, FF62, GH61]. Of particular interest
to the present paper is the case of simple undirected graphs: here, the objective is to identify the
smallest set of edges whose removal disconnects the graph. This is often called the edge connectivity
problem. Our main contribution is to propose a simple randomized contraction process that, when
combined with some other ideas, leads to faster algorithms for the edge connectivity problem in a
number of computational settings. Next, in Section 1.1, we overview some of the previous algorithmic
developments, in Section 1.2 we state our improvements for various computational settings, and in
Section 1.3, we provide a brief overview of this randomized contraction process.

1.1 Related Work

Here, we discuss three lines of developments from prior work that are most directly related to
our work. Some other results that are relevant as a point of comparison for our algorithms will
be mentioned later, when describing our particular results for different computational settings.
Moreover, we refer to [KT15, Section 1] for a nice survey of other work on this problem.

(I) In 1993, Karger presented his random contraction idea for minimum cut [Kar93]: contract
randomly chosen edges, one by one, until only two nodes remain. The edges in between are the
minimum cut with probability Ω(1/n2). Thus, via O(n2 log n) repetitions, we can identify the
minimum cut, with high probability. Thanks to its extreme simplicity and elegance and a range of
corollaries, this has by now become a well-known result and a standard ingredient of many textbooks
and classes on algorithms. Shortly after, Karger and Stein [KS93] presented a bootstrapped version
of this contraction idea, which sets up a recursion that judiciously chooses which instances to re-run,
and gives an algorithm for the minimum cut problem with time complexity O(n2 log3 n).

(II) In 1996, Karger [Kar96] provided the first algorithm for minimum cut that has a near-linear
complexity in the number of edges; it runs in O(m log3 n) time. This algorithm uses a different
approach: it performs a certain packing of spanning trees, a la Tutte and Nash-Williams [Tut61,
NW61], and then reads the cuts defined by removal of any two edges from a tree, and reports
the minimum such cut. This near-linear time algorithm is randomized (and Monte Carlo) and the
question of obtaining a deterministic near-linear time algorithm (or even a near-linear time Las
Vegas randomized algorithm) remained open for a long time.

(III) In 2015, Kawarabayashi and Thorup [KT15] gave the first such deterministic algorithm,
which in O(m log12 n) time computes a minimum cut in simple graphs (i.e., solves the edge con-
nectivity problem). Their key new idea was to exploit that in simple graphs, all non-singleton
min-cuts are very sparse, and hence we can contract all edges that are not in sparse cuts. These
contractions lead to a graph with Õ(m/δ) edges, where δ denotes the minimum degree, while pre-
serving all non-singleton2 minimum cuts. This sparser (multi-)graph is then solved using older and
slower algorithms. To find the sparse cuts, Kawarabayashi and Thorup [KT15] used a deterministic
near-linear time diffusion-based algorithm, inspired by page rank [PBMW99]. Later, Henzinger,
Rao, and Wang [HRW17] provided a faster deterministic algorithm following a similar framework,
but based on computing flows to find sparse cuts. Overall, this algorithm computes the minimum
cut in O(m log2 n(log log n)2) time. This improved on the O(m log3 n) algorithm of Karger [Kar96]
and is the state of the art time complexity for edge connectivity. We remark that Karger’s algo-
rithm [Kar96] works also for weighted graphs, while those of [KT15], [HRW17], and ours are limited
to simple unweighted graphs (i.e., the edge connectivity problem).

2A cut in which exactly one node is on one side and all the other nodes are on the other side is called a singleton
or a trivial cut. It is trivial to read the size of all singleton cuts — i.e., node degrees — and identify their minimum.

1



1.2 Our Results

In the next four subsubsections, we overview the algorithmic improvements that we obtain for com-
puting edge connectivity in various computational settings. Tables 1 and 2 summarize the previous
state of the art as well as our algorithms. As a rough summary, we note that our improvement
is more substantial quantitatively for settings of distributed and massively parallel computation —
which includes a polynomially improved distributed algorithm and the first constant time massively
parallel algorithm with linear local memory as detailed in Table 2. In contrast, the sequential im-
provements — which includes an optimal sequential algorithm for graphs with at least n log3 n edges,
as detailed in Table 1 — is probably accessible and interesting for a broad range of readers.

1.2.1 Improvements in Sequential Algorithms

Our Contribution: For the sequential setting, our main end-result is summarized below:

Theorem 1.1. Given a simple input graph G, with n vertices and m edges it is possible to find its
minimum cut in min{O(m + n log3 n),O(m log n)} time, with high probability. Moreover, we can
obtain a cactus representation of all the minimum cuts in min{O(m+n logO(1) n),O(m log n)} time.

The proof appears in Theorems 4.2 and 4.6. For minimum cut, the O(m + n log3 n) bound
ensures that the algorithm has an optimal complexity whenever m = Ω(n log3 n). The O(m log n)
part of the complexity bound is interesting for sparser graphs. It moreover improves on the state of
the art O(m log2 n · (log log n)2) algorithm [HRW17].

1.2.2 Improvements in Distributed Algorithms

Setting: We use the standard message-passing model of distributed computing (i.e., CONGEST [Pel00]):
there is one processor on each graph node, which initially knows only its own edges, and per round
each processor can send one O(log n)-bit message to each of its neighbors. At the end, each processor
should know its own part of the output, e.g., which of its edges are in the identified cut.

State of the Art: Recently, Daga et al. [DHNS19] gave the first distributed algorithm that com-
putes the exact min-cut in simple graphs in sublinear number of rounds. Their algorithm runs
in Õ(n1−1/353D1/353 + n1−1/706) rounds, where D denotes the network diameter. In contrast, for
graphs with a small edge-connectivity λ, a sublinear-time algorithm was known due to Nanongkai
and Su [NS14], with round complexity Õ((D +

√
n)λ4). They also provide a 1 + ε approximation

for any constant ε > 0, which runs in Õ(D +
√
n) rounds, and was an improvement on a 2 + ε

approximation of Ghaffari and Kuhn [MK13] with a similar round complexity.

Our Contribution: We obtain an algorithm that runs in Õ
(
n0.8D0.2 + n0.9

)
rounds, which provides

a considerable improvement on the barely sublinear complexity of Daga et al. [DHNS19]. The overall
algorithm is also considerably simpler.

Theorem 1.2. Given a simple input graph G, with n vertices and m edges it is possible to find its
minimum cut in the CONGEST model in Õ

(
n0.8D0.2 + n0.9

)
rounds, with high probability.

1.2.3 Improvements in Massively Parallel Algorithms

Setting: Parallel algorithms and especially those for modern settings of parallel computation (such
as MapReduce [DG04], Hadoop [Whi12], Spark [ZCF+10], and Dryad [IBY+07]) have been receiving
increasing attention recently, due to the need for processing large graphs. We work with the Mas-
sively Parallel Computation (MPC) model, which was introduced by Karloff et al. [KSV10] and has
by now become a standard theoretical model for the study of massively parallel graph algorithms.
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Sequential RAM Classic Parallel PRAM
work work depth

simple graphs,

previous results
O(m log2 n(log log n)2) [HRW17] O(m log4 n) O(log3 n)[GG18]

simple graphs,
*our results*

min{O(m log n),O(m+ n log3 n)} O(m log2 n+ n log4 n) O(log3 n)

Table 1: Comparison of results, in the Sequential and PRAM settings. See Sections 1.2.1 and 1.2.4.

In the MPC model, the graph is distributed among a number of machines. Each machine has a
limited memory S — known as the local memory — and thus can send or receive at most S words,
per round. The number of machines M is typically assumed to be just enough to fit all the edges,
i.e., O(m/S) or slightly higher. We refer to M · S as the global memory. The main measure is the
number of rounds needed to solve the problem, given a predetermined limited local memory.

State of the Art: In the super-linear regime of local memory where S = n1+ε for some constant
ε > 0, many graph problems —particularly, including minimum cut [LMSV11] — can be solved in
O(1) rounds, using a relatively simple filtering idea. Much of the recent activities in the area has
been on achieving similarly fast algorithms for various problems in the much harder memory regimes
where S in nearly linear or even sublinear in n [CLM+18, GGK+18, BEG+18, ASS+18, ABB+19,
GU19, BBD+19, BFU19, ASW19, GKMS19, CFG+19, BHH19, GKU19]. For minimum cut, in the
nearly linear memory regime where S = Õ(n) regime, the best known algorithm is much slower and
runs in O(log3 n) rounds [LMSV11].

Our Contribution: We give the first algorithm with O(1) round complexity while using only O(n)
memory per machine and O(m+ n log5 n) global memory. This settles the complexity of minimum
cut in the nearly-linear memory regime.

Theorem 1.3. Given a simple input graph G, with n vertices and m edges it is possible to find
its minimum cut in O(1) rounds, with high probability, using O(n) local memory per machine and
O(m+ n log5 n) global memory.

1.2.4 Improvements in PRAM Parallel Algorithms

For the standard PRAM model of parallel algorithms (Concurrent Write Exclusive Read), our al-
gorithm improves the total work while achieving the same depth complexity as the state of the
art [GG18]. We get an algorithm with O(log3 n) depth and O(m log2 n + n log4 n) work. This im-
proves on the work complexity of the state of the art algorithm of Geissman and Gianinazzi [GG18],
which has O(log3 n) depth and O(m log4 n) work.

Theorem 1.4. There exists a CREW PRAM algorithm that for a simple graph with n vertices and
m edges computes its minimum cut using O(m log2 n + n log4 n) work, with O(log3 n) depth. The
algorithm returns a correct answer with high probability.

1.3 Our Method, In a Nutshell

Our main technical contribution is a simple, and plausibly practical, randomized contraction process
that transforms any n-node graph with minimum cut λ to a multi-graph with O(n/λ) vertices and
only O(n) edges, while preserving all non-singleton3 minimum cuts with high probability. This can

3A cut in which exactly one node is on one side is called a singleton cut, or sometimes a trivial cut. In most
computational settings, it is trivial to read the size of all singleton cuts — that is, degrees of nodes — and identify their
minimum. Thus, the problem of computing the edge connectivity effectively boils down to assuming the minimum cut
size is at most the minimum degree and identifying the smallest non-singleton cut.
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Modern Parallel MPC Distributed CONGEST
local

memory
total

memory
rounds rounds

simple graphs,

previous results

O(n)
O(n1+ε)

O(m)
O(m)

O(log3 n) [LMSV11]
O(1) [LMSV11]

Õ(n1−1/353D1/353 + n1−1/706) [DHNS19]

simple graphs,

*our results*
O(n) O(m+ n log5 n) O(1) Õ(n0.8D0.2 + n0.9)

Table 2: Comparison of results, in the massively parallel computation and distributed computation settings. The
previous results for the MPC model show two lines, for different regimes of local memory. See Sections 1.2.2 and 1.2.3.

also be viewed as a simple graph compression for (non-trivial) minimum cuts. We then solve the
minimum cut problem on this remaining sparse (multi-)graph, using known algorithms.

The aforementioned contraction process itself has two parts, and some careful repetition for
success amplification, as we overview next: (A) The main novelty of this paper is the first contraction
part, which we refer to as random 2-out contraction: for each node v, we randomly choose 2 of its
edges (with replacement and independent of other choices) — we view these as “outgoing” edges
from node v, proposed by v for contraction — and we contract all chosen edges simultaneously. We
prove that this reduces the number of vertices to O(n/λ) while preserving any non-trivial minimum
cut with a constant probability. In fact, we show the number of vertices is in O(n/δ) ≤ O(n/λ),
where δ denotes the minimum degree. Furthermore, the contraction preserves any non-singleton
cut with size at most 2 − ε factor of the minimum cut size, with a constant probability, for any
constant ε ∈ (0, 1]. (B) For the second part, we use some known techniques (e.g., sparse-certificates
or a modification of Karger’s contraction [Kar93] with an early stopping rule), which transforms
the graph after the first part of contractions to have also only O(n) edges—i.e., within an O(λ)
factor of the number of vertices—while preserving any cut of size O(λ). (C) Finally, we use O(log n)
repetitions of the combination of these two parts, and a carefully designed “majority” voting per
edge, to amplify the success probability and conclude that with high probability, all non-trivial
minimum cuts are preserved, while having O(n/δ) ≤ O(n/λ) vertices and O(n) edges.

Related Work on k-Out: We note that random k-out subgraphs have been studied in the literature
of random graphs. See for instance the work of Frieze et al. [FJ17] which shows that if δ ≥ (1/2+ε)n,
then a k-out subgraph (to be precise, sampling k edges per node and without replacement) is whp
k-connected, for k = O(1). We leverage a somewhat opposite property of k-out: that with some
constant probability, it does not contract any edge for a singleton minimum cut (hence, the subgraph
is not even connected), while still significantly reducing the number of vertices.

In a very recent paper [HKT+19], Holm et al. have shown that if k ≥ c log n, then the k-
out contraction of a simple graph with n vertices has only O(n/k) edges (their k-out definition is
slightly different, but easily converted to ours). If such a result was true for k = 2, then this would
simplify our constructions, but proving it for close to constant k seems far out of reach with current
techniques. The probability of destroying a min-cut with a k-out sample grows exponentially in
k, so the techniques from [HKT+19] are not relevant to our min-cut computation. Conversely, the
results presented here have no impact on the targets from [HKT+19]. After 2-out sampling, we do
contract edges with highly connected end-points to get down to O(n) edges, but this is only valid
because we only care about small cuts. In short, the only relation to [HKT+19] is that both our
work and theirs study and show algorithmic benefits of k-out sampling.

Roadmap: In Section 2, we describe our contraction process and state its guarantees. Later, in Sec-
tion 3, we outline how by using this contraction process and some other algorithmic ideas, we obtain
faster min cut algorithms for various computational settings. The details of the implementations in
various computational settings appear later, in separate sections.

4



2 Our Contraction Process

Basic Definitions and Notations: We are working with a simple and we use n to denote its
number of vertices, m to denote its number of edges, δ to denote its minimum degree, and λ to
denote its edge connectivity, i.e., the smallest number of edges whose removal disconnect the graph.
When dealing with different graphs, we may use subscript notation to say which graph we are
working with. For a graph H, we let nH denote the number of nodes, mH the number of edges, δH
the minimum degree, and λH the edge connectivity of H.

We define a cut in a graph by the set of vertices that are on one side of this cut. If a cut is
defined by some set of vertices S ⊂ V , the edges of the cut are the edges of the graph that have
exactly one endpoint in S. Furthermore, we denote the set of edges of cut S by C(S), and the size
of a cut C(S) by |C(S)|. We call the cut C(S) a non-singleton iff |S| > 1. We say that C(S) is a
minimum cut, if for each cut S′, we have |C(S)| ≤ |C(S′)|. For a given value α ≥ 1, we say that a
cut C(S) is an α minimum cut, or α-small, iff |C(S′)| ≤ αλ.

For any edge set D from G, we denote by G/D the result of contracting the edges from D in
G. In this paper, we identify a cut with the cut edges connecting the two sides. The contraction of
D preserve a given cut C if and only if C ∩D = ∅. The understanding here is that all edges have
identifiers, that is, they are not just vertex pairs, so when we do contractions and remove self-loops,
it is well-defined which edges survived.

2.1 Contraction Outline

Our main result is captured by the following statement. While stating this result, to make things
concrete, we also mention the sequential time related for implementing it. The complexity for other
computational settings is discussed in the later sections.

Theorem 2.1. Let G be a simple graph with m edges, n nodes, and min-degree δ. Fix an arbitrary
constant ε ∈ (0, 1]. In O(m log n) time, we can randomly contract the graph to a multi-graph Ĝ with

O(n/δ) nodes and O(n) edges such that, whp, Ĝ preserves all non-trivial (2− ε)-min-cuts of G.

At the heart of the above result is a contraction captured by Theorem 2.2 which preserves each
particular small cut with a constant probability. We discuss later in Section 2.4 how we amplify the
success probability so that we preserve all nearly minimum cuts whp, thus giving the above theorem,
without sacrificing the number of nodes or edges.

Theorem 2.2. Let G be a simple graph with m edges, n nodes, and min-degree δ, and fix an arbitrary
constant ε ∈ (0, 1]. Then, in O(m) time, we can randomly contract the graph down to O(n/δ) nodes
and O(n) edges such that, for any fixed non-trivial (2− ε)-min-cut, we preserve the cut with at least
with a constant probability pε > 0.

Outline of the Contraction Process of Theorem 2.2: Our contraction process has two parts.
The first part is contracting a random 2-out and, as formally stated in Theorem 2.4, we show
that this step reduces the number of vertices to O(n/δ). The second part, as formally stated in
Lemma 2.9, then reduces the number of edges to O(n). For this second part, a different method
which achieves the same result but allows more efficient parallel implementations is provided in
Lemma 6.2. Each of these processes preserves any particular non-singleton (2 − ε) minimum cut
with at least a constant probability. Hence, their composition has a constant probability of that
cut. After both contraction processes, we have O

(
n
δ

)
= O(nλ ) nodes and O

(
n
δ · λ

)
= O(n) edges.

We comment that for our distributed algorithm, we actually do not need the part about reducing
the number of edges. However, instead, we desire and prove another nice property from the random
out contractions: that the summation of the diameters of the 3-out is Õ

(
n
δ

)
. In fact, we show in

5



Section 5 that by choosing a subset of the edges of the 3-out, we can define Õ
(
n
δ

)
components, each

with O(log2 n) diameter (clearly, contracting this subset of 3-out preserves any cut, if the full set of
that 3-out preserved it).

We next discuss the two parts of the contraction process for reducing the number of vertices and
edges, separately, in the next two subsections. In the last subsection of this section, we discuss how
we amplify to success to preserve all non singleton (2− ε) minimum cuts.

2.2 Reducing the number of vertices

Here, we propose and analyze an extremely simple contraction process: each node proposes k ran-
domly sampled incident edges and we contract all proposed edges. More formally, we contract all
connected components of a subgraph obtained by a random selection of k incident edges for each
vertex of the graph (sampled independently from the original graph, with repetitions). We call this
random subgraph a random k-out subgraph, and we call the related contraction process a random
k-out contraction. We show that a random 2-out contraction reduces the number of nodes to O(n/δ)
whp, while preserving any fixed nontrivial nearly minimum cut with a constant probability. Next,
we formalize the notion of random k-out contractions, and prove their properties.

2.2.1 Random k-out contractions

Definition 2.3. Let consider a graph G = (V,E). Let Ij, for j ∈ {1, . . . , k}, be a set of edges
obtained by selecting for each node a uniformly random incident edge.

• we call a graph G(k) = (V,
⋃k
j=1 Ij) a random k-out subgraph of G

• a random k-out contraction of a graph G, is a multigraph obtained by contracting connected
components of G(k)

• we say that a node v supplied an edge e to the set Ij, if during the construction of Ij, the
random selected edge for v was e,

• we use the phrase “cut C(S) is preserved by the random k-out contraction” to indicate that

C(S) ∩
⋃k
j=1 Ij = ∅.

Firstly, we show the following properties of random 2-out contractions.

Theorem 2.4. A random 2-out contraction of a graph with n vertices and minimum degree δ has
O(nδ ) vertices, with high probability, and preserves any fixed non singleton (2− ε) minimum cut, for
any constant ε ∈ (0, 1], with some constant probability at least pε > 0.

Proof Outline. The proof consists of two parts, which are presented in two separate subsubsections.
First, in Section 2.2.2, we prove that the number of nodes after contractions is O

(
n
δ

)
, whp. Then,

in Section 2.2.3, we show that a random 1-out contraction preserves a fixed non-singleton (2 − ε)
minimum cut with probability that is at least some positive constant qε > 0. This implies that a
2-out contraction (which is simply 2 independent 1-out contractions) has probability of preserving
this cut at least pε = q2ε > 0.

2.2.2 Number of nodes after 2-out contraction

In this part of proving Theorem 2.4, we bound the number of nodes after a 2-out contraction.

Lemma 2.5. The number of connected components in a random 2-out subgraph of a simple graph
with n vertices and the minimum degree δ is O

(
n
δ

)
, with high probability.

6



Proof. We consider a random process that starts with a graph G′ = (V, ∅) and gradually adds to
G′ the edges of a random 2-out subgraph G(2). During this process, each vertex can be in one of
three states: processed, active, or unprocessed. The process is performed in phases. Each phase
starts in an arbitrary unprocessed vertex v (marked as active) and builds a set of vertices reachable
from v (which also became active as long as they are not processed) by the random edges of active
vertices. During the process, we maintain a counter κ that is incremented only at the end of a phase
that creates a new connected component in G(2), and only if that component is smaller than some
threshold value x. The final bound on the number of connected components is the final value of
κ+ n

x . Basically, processed vertices are the vertices that are in connected components that are taken
into account either in the counter κ or they are among at most n

x components of size at least x.
Thus, if at the end of a phase we can reach a processed vertex from v, we did not create a connected
component that is not already included in the bound, and we do not increase the counter κ.

Let us consider following random variables Xi: if phase i ended with increasing κ, Xi = 1,
otherwise Xi = 0. In other words, Xi takes value 1 only if the ith phase ends with creating new
connected component that is smaller than x. Furthermore, if at the end of the phase, we can reach
a processed vertex from v then Xi = 0, therefore

P (Xi = 1|X1X2 . . . Xi−1) ≤ P (Xi = 1|X1X2 . . . Xi−1 ∧ all processed vertices not reachable from v) .

Bound on the probability of incrementing counter κ: Let Av denotes the set of active vertices
in the current phase that started in v. We start with Av = {v}, and then we repeat the following
sampling events, one by one. If there is a vertex u from Av where we have not generated all its
sample edges, we pick the first such vertex u added in Av and generate its next sample edge (u,w)
uniformly at random among the at least δ edges incident to u. We say that the sample is “caught”
if w ∈ Av. We terminate when there are no more samples to do from Av and mark all vertices from
Av as processed.

If Av ends up at final size x, we know we have performed exactly 2x sampling events, and that
the samples were caught exactly x + 1 times. The probability that a given sample is caught is at
most (x − 1)/δ. The order in which we generate the samples is completely defined in the above
process. There are

(
2x
x+1

)
choices for placing the x + 1 caught samples among all samples. The

probability that we get this particular sequence of caught and not-caught samples is bounded by
the probability that the subsequence of x+ 1 samples that are supposed to get caught actually get
caught. This happens with probability at most ((x − 1)/δ)x+1. We conclude that the probability
that we terminate with |Av| = x is upperbounded by Px =

(
2x
x+1

)
((x − 1)/δ)x+1. Then P1 = 0 and

P2 = 4/δ3. Moreover, for x ≥ 2, we have

Px+1/Px =

(
2x+2
x+2

)
(x/δ)x+2(

2x
x+1

)
((x− 1)/δ)x+1

=
(2x+ 2)(2x+ 1)

(x+ 2)x

(
x

x− 1

)x+1 x

δ
< 4e

x+1
x−1

x

δ
≤ 4e3x

δ
.

The last expression is bounded by 1/2 for x ≤ x∗ = δ/(8e3). Thus the probability that we end
up with |Av| ≤ x∗ is bounded by

P≤x∗ =

x∗∑
x=2

Px < 2P2 ≤ 8/δ3.

Value of κ at the end of the process: We have

P (Xi = 1|X1 . . . Xi−1) ≤ P (Xi = 1|X1 . . . Xi−1 ∧ all processed vertices not reachable from v) ≤ 8/δ3.
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Hence, variables Xi|X1X2 . . . Xi−1 are stochastically dominated by independent random variables

Yi that take value 1 with probability 8/δ3. We can conclude that P

(∑
i
Xi ≤ µ

)
< P

(∑
i
Yi > µ

)
[Doe18, Lemma 8.7]. By a Chernoff bound, for any µ ≥ 8n/δ3 ≥ E

[∑
i
Yi

]
, and for ε < 1 we have

P

(∑
i

Xi > (1 + ε)µ

)
< P

(∑
i

Yi > (1 + ε)µ

)
≤ exp

(
−µε

2

3

)
. (1)

while for ε ≥ 1 we have

P

(∑
i

Xi > (1 + ε)µ

)
< P

(∑
i

Yi > (1 + ε)µ

)
≤
(

eε

(1 + ε)1+ε

)
µ (2)

For δ ≤
√
n, by Eq. (1), the value of κ is larger than n

δ , with probability at most exp (−Θ(
√
n)).

For δ ≥
√
n, n/δ3 ≤ 1/

√
n, hence we can apply Eq. (2) with µ = 1/

√
n and 1 + ε =

√
n, which gives

that the value of κ is larger than some constant c (which is always O(nδ )) with probability at most

(e/n)
c
2 . Therefore, for any x ≤ x∗ the number of connected components of G(2) smaller than x is

O(nδ ), with high probability. Thus, for x = x∗, we get the number of all connected components of

G(2) is O(nδ ) +O( nx∗ ) = O(nδ ).

2.2.3 Preserving a fixed non singleton minimum cut

In this part of the proof of Theorem 2.4, we analyze the probability of preserving a fixed non
singleton minimum cut C(S). Before that, we recall a small helper inequality:

Claim 2.6. For any x and y such that 0 < x ≤ y < 1, we have 1− x >
(
e
− 1

1−y
)
x

Proof. This inequality follows from the fact that for any α > 1, (1− 1
α)α−1 > e−1. If we set x = 1

α ,

we have (1− x)
1
x
−1 > e−1, which implies 1− x > e−

1
1−xx ≥

(
e
− 1

1−y
)
x
.

Lemma 2.7. Probability of preserving a fixed non singleton (2 − ε) minimum cut C(S), for any
constant ε ∈ (0, 1], by a random 1-out contraction is at least some constant qε > 0.

Proof. Let us denote by:

• c(v) the number of edges incident to v that are in C(S),

• d(v) the degree of a node v,

• N(S) the set of nodes incident to the edges in C(S).

The probability that a random 1-out contraction does not contract any edge from C(S) is∏
v∈N(S)

(
1− c(v)

d(v)

)
.

To analyze this expression, we first argue that for any node v ∈ N(S), c(v)
d(v) ≤ x < 1, for some

constant x. For that, let us denote by α = |C(S)|. Then, the size of a cut defined by the set of
vertices S \ {v} is α + d(v) − 2c(v). On the one hand, we have that C(S) is (2− ε) minimum cut,
hence |C(S \ {v})| ≤ (2 − ε)λ + d(v) − 2c(v). On the other hand, |C(S \ {v})| ≥ λ. Putting those

two things together gives that (1− ε)λ+ d(v) > 2c(v), which implies that c(v)
d(v) ≤

(1−ε)λ+1
2d(v) ≤ 1− ε

2 .
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Now, we are ready to analyze
∏

v∈N(S)

(
1− c(v)

d(v)

)
, which is the probability that a random 1-out

contraction does not contract any edge from C(S). We know that for each v value of c(v)
d(v) is upper

bounded by 1−ε/2 < 1, hence we can use c(v)
d(v) as x and 1− ε

2 as y in Claim 2.6. Let z = e
− 1

1−y = e
− 1
ε
2 .

Notice that for any ε ∈ (0, 1], we have z ∈ (0, e−2] ⊆ (0, 0.2). Then, we have:

∏
v∈N(S)

(
1− c(v)

d(v)

)
> z

∑
v∈N(S)

c(v)
d(v)

Furthermore, since a degree of a vertex can not be smaller than λ, we can conclude that the
probability that we do not contract any edge from C(S) is at least

z

∑
v∈N(S)

c(v)
d(v)

≥ z
∑

v∈N(S)

c(v)
λ

= z
2(2−ε)λ/λ

= z
2(2−ε)

= e−4(2−ε)/ε > 0.

2.3 Reducing the number of edges

In this section, we explain how we reduce the number of edges in the graph resulting after 2-out
contractions — which we now know to have O(n/λ) vertices — down to O(n) edges, while preserving
the minimum cut. The method is based on sparse certificates and it preserves the minimum cut
deterministically. A second method, based on Karger’s random contraction process but stopped
earlier, is presented in Section 6, as it allows for a more efficient implementation in parallel models.

Reducing the number of edges via sparse certificates: We can reduce the number of edges in
the contracted graph from Theorem 2.4 using the general k-edge connectivity certificate of Ibaraki
and Nagamochi [NI92]. They have shown an algorithm that, given a multigraph M and a number
k, in linear time can find a subgraph H with less than kn edges so that if a cut has c edges in M ,
then the cut between same vertex sets has at least min{k, c} edges in H. Cuts with at most k edges
in M are thus fully preserved in H. This way H is a certificate of k-edge connectivity in M . Based
on this, [KT19] suggested contracting all edges e not in H. Since the end-points of an edge not in
H must be k-edge connected in M , and thus k + 1 connected in H, contracting e preserves any cut
of size at most k. Summing up, we get

Lemma 2.8 ([KT19, NI92]). Given a multigraph M with mM edges and nM nodes and a number
k, in O(mM ) time, we can identify and contract an edge set D such that M/D preserves all cuts of
size at most k in M , and such that M/D has at most nMk edges.

Given a simple graph G, we can first apply Theorem 2.4 and then Lemma 2.8 with k = 2δ ≥ 2λ,
to get the following lemma statement:

Lemma 2.9. Given a simple graph G with n nodes, m edges, and minimum degree δ, in O(m) time

we can perform some randomized contractions yielding a graph Ĝ with O(n/δ) nodes and O(n) edges
which with at least a constant probability pε preserves any given non-trivial (2− ε)-small cut.

2.4 Amplifying success and preserving all nontrivial small cuts

We next prove Theorem 2.1, by using Theorem 2.2 and a careful “repetition and voting”.

Proof of Theorem 2.1. To prove this statement, we build a process that amplifies the success prob-
ability of Theorem 2.2 and preserves a particular given non-trivial (2 − ε)-small cut C of G with
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high probability 1−n−γ . Karger [Kar00] has proved that the number of (2− ε)-small cuts is O(n3).
Hence, by a union bound, we conclude that all non-trivial (2− ε)-small cut of G are preserved with
high probability 1− 1/nγ

′
where γ′ = γ − 3 is an arbitrarily large constant.

To build such a contraction with amplified success, we apply Lemma 2.9 for q = O((log n)/pε) =

O(log n) times, with independent random variables, yielding contracted multigraphs Ĝ1, . . . , Ĝq.

Each Ĝi preserves our non-trivial (2 − ε)-small cut C with probability at least pε, so the expected

number of Ĝi that preserve C is at least µ = pεq. Using a standard Chernoff bound (see, e.g.,

[MR95, Theorem 4.2]), the probability that less than r = µ/2 = pεq/2 of the Ĝi preserve C is upper
bounded by exp(−µ/8) = exp(−pεq). For any given γ, this is O(n−γ) for q ≥ 8(lnn)γ/pε.

We now take each edge e in G, and ask how many Ĝi it is preserved in. Since each Ĝi has O(n)
edges, it can only preserve O(n) edges. Therefore the total number of edge preservation from all

the Ĝi is q · O(n). Therefore, the number of edges that are preserved at least r times is at most
q · O(n)/r = O(γn/pε) = O(n). If an edge is not preserved r times, then, by assumption, it is not
in any non-trivial (2− ε)-small cut, so we contract it.

Since all but O(n) edges of G got contracted, the resulting graph Ĝ has at most O(n) edges.
Moreover, our contractions did not contract any edge from any non-trivial (2 − ε)-min-cuts, whp.
Finally, note that the original graph G had min-degree δ. As proved in [KT19], if a cut of G has

size less than δ, it must have at least δ vertices on either side. Therefore, if a node in Ĝ has degree
below δ, then it must be contracted from at least δ vertices in G, so we have at most n/δ nodes in

Ĝ with degree below δ. On the other hand, we can have at most 2m
Ĝ
/δ = O(n/δ) nodes in Ĝ with

degree at least δ. Hence, we conclude that the total number of nodes in Ĝ is O(n/δ).
Overall, we spend O(mq) = O(m log n) time, both on generating the q contracted multigraphs

Ĝi and on counting for each edge in G how many Ĝi it is preserved in (since surviving edges preserve

their id doing contractions, we can with each edge id record which Ĝi it is preserved in).

3 General Algorithm Outline and Overview of Applications

We now overview the applications of Theorem 2.1 to various models of computing. On the very top
level, all the algorithms we present fit the following description:

1. Compute the contraction Ĝ of the input graph G as indicated by Theorem 2.1.

2. Compute the minimum cut of Ĝ using an algorithm that works for multi-graphs.

3. If the computed cut of Ĝ is smaller than minimum degree of G, output it as a minimum
cut of G. Otherwise, output the minimum degree of G (and the corresponding vertex) as a
(singleton) minimum cut.

Next, we give a brief description of our algorithms for different models. More detailed versions of
these algorithms, as well as the formal definitions of the PRAM, MPC and CONGEST models, follow
in the subsequent sections.

3.1 Sequential model

In Section 4, we give two sequential algorithms for computing edge connectivity with high probability,
both of which follow the above outline. The first algorithm has a complexity of O(m log n) and
follows rather directly from combining Theorem 2.1 with running the minimum cut algorithm of
Gabow [Gab91] on the contracted graph Ĝ. The detailed description is presented Section 4.1.

The second algorithm has a complexity of O(m + n log3 n). For this algorithm, in Section 4.2,
we present a more elaborate way of implementing a contraction similar to the one provided by
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Theorem 2.1 but in just O(m+n log n α(n, n)) time, where α denotes the inverse Ackerman function.
This process is based on a careful usage of the union-find data structure, and some other probabilistic
ideas. Then, we solve the minimum cut problem on the resulting multi-graph, which has O(n) edges,
using Karger’s algorithm [Kar00] in O(n log3 n) time, for a total complexity of O(m+n log n α(n, n)+
n log3 n) = O(m+n log3 n). We note that any improvement on Karger’s algorithm for multi-graphs
would immediately lead to an improvement in our algorithm.

3.2 CONGEST model

In Section 5, we provide a distributed algorithm that solves the edge connectivity problem in
Õ(n0.8D0.2 + n0.9) rounds (as stated in Theorem 1.2). This improves substantially on a recent
breakthrough of Daga et al. [DHNS19] that achieved the first sublinear round complexity, running
in Õ(n1−1/353D1/353 + n1−1/706) rounds. Furthermore, the new algorithm is considerably simpler.
This result is presented . We next review the setup and the outline how this improvement is achieved.

Model Description: The CONGEST model is a synchronous message passing model for networked
computation. The communication network is abstracted as a graph G = (V,E), with n vertices.
There is one processor on each node of the network, each with unique identifier from {1, . . . ,poly(n)}.
Initially, the network topology is not known to the nodes, except for some global parameters such
as as constant factor upper bound on the number n of nodes. The computation is performed in
synchronous rounds, each round consists of the phase of (possibly unlimited) local computation
and the phase of communication. In the communication phase, each processor is allowed to send a
message of size O(log n) to each of its neighbors.

For the Minimum Cut problem, the question is to identify the edges with the smallest cardinality
whose removal disconnects the network. The output will be in a distributed format, meaning that
each processor/node should know its own edges in the identified cut.

The algorithm of Daga et al.: The algorithm of Daga et al. [DHNS19] is actually a mixture of
a new algorithm designed for graphs with large edge connectivity, run along an older algorithm of
Nanongkai and Su [NS14], which is well-suited for graphs with small edge connectivity and runs in
Õ((D+

√
n)λ4). The new algorithm runs in O(n/δ1/88) ∈ O(n/λ1/88) rounds, hence the faster of the

two algorithms gives the round complexity of Õ(n1−1/353D1/353+n1−1/706). A key component in this
O(n/λ1/88) rounds algorithm is a procedure based on some variant of expander decompositions that
carefully determines parts of the graph that can be contracted, while preserves any non-singleton
minimum cut. To be more precise, they provide an algorithm that in sublinear time of Õ(n/δ1/88)
rounds, finds a number k = O(n/δ44) of disjoint connected subgraphs V1, . . . , Vk, with a total induced

diameter of
∑k

i=1D(Vi) = O(n/δ1/40), such that contracting these subgraphs preserves any non-

singleton minimum cut. They then explain an algorithm that in Õ(D+k+
∑k

i=1D(Vi) = O(n/δ1/40)
extra rounds, identifies the minimum cut of the contracted graph.

Our Improvement: Our proposal is to replace the clever and somewhat sophisticated procedure
of Daga et al. [DHNS19] for finding these contractions with just a random 3-out contractions4.
From Lemma 2.5, we know that the number k of components is Õ(n/δ). In Lemma 5.1, we prove an

additional nice property: that the components of 3-out has a summation of diameters
∑k

i=1D(Vi) =
O(n/δ). Hence, just plugging 3-out in the framework of Daga et al. [DHNS19], we can improve their
O(n/δ1/88) ∈ O(n/λ1/88) round algorithm to run in just O(n/δ) = O(n/λ) rounds. Combining this
again with the Õ((D +

√
n)λ4)-round algorithm of Nanongkai and Su [NS14] gives us our claimed

Õ(n0.8D0.2 + n0.9) round complexity5.

4We note that in fact 2-out would also suffice here. However, the proof for the counterpart of Lemma 5.1 for 2-out
is slightly more detailed, and thus, we leave that to the full version of this paper.

5We believe that by plugging in the result of our contraction — concretely, Õ(n/δ) components, each of diameter
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3.3 MPC model

In Section 6, we give an algorithm that computes a minimum cut of a simple graph in O(1) round
of the MPC model, which proves Theorem 1.3. The algorithm is based on our contraction process,
after which the input graph is sufficiently small and can be gathered in the memory of a single
machine, which can compute the result locally. In Section 6, we focus on efficient implementation
of the contraction process.

Lemma 6.1. Given a simple input graph G, with n vertices, m edges, and minimum degree δ it is
possible to execute Θ(log n) contraction processes, each resulting with a graph with O

(
n
δ

)
vertices and

O(n) edges, in O(1) rounds of the MPC model, with O(m) +O(n log5 n) global memory, and O(n)
memory limit for a single machine. With high probability one of computed contractions preserves a
fixed non singleton minimum cut of G.

The first part of the contraction process (i.e., contracting a random 2-out) requires us to generate
G(2) and identify its connected components. To generate G(2), each vertex decides independently.
Since G(2) has onlyO(n) edges, we can gather them inO(1) rounds in the memory of a single machine
which then identifies the connected components locally. To reduce the number of edges, instead of
using sparse certificates, we use Karger’s uniform random contractions, with an early stop. That is,
we contract edges one by one, uniformly at random, until the number of edges reaches O(n). We
will show that this process preserves the minimum cut with a constant probability. Furthermore,
it allows us to provide a more efficient implementation in the MPC model, with just O(n) local
memory. To implement this process, we use a known connection between the edges selected for
contraction in Karger’s process and the edges of a minimum spanning tree of the graph, when we
set iid random weights for the edges. Then, the implementation needs to identify this MST, as well
as a cut off point in Karger’s process — discarding some of the edges of the MST — so that the
number of edges remaining uncontracted is O(n). To solve these two problems, we make use of the
following two tools, in a black-box fashion:

• A parallel MST computation [GN18, JN18], which allows in O(1) rounds computes an MST
and thus identifies the contracted edges and their order of contraction, if we were to run the
full contraction process of Karger.

• An approach based on linear graph sketching [AGM12], which allows us to estimate the num-
ber of uncontracted edges corresponding to each time of the contraction process (i.e., weight
threshold in the MST), all in O(1) rounds, hence allowing us to identify a cut-off point for
the contraction process where the number of remaining edges falls in O(n).

3.4 PRAM model

In Section 7, we give an implementation of the Minimum Cut algorithm for simple graphs in the
CREW PRAM model that proves Theorem 1.4. As in the case of sequential model, the algorithm
consists of the contraction process followed by application of the state of the art algorithm for general
graph. In Section 7 we focus on providing an implementation of the contraction process.

O(log2 n), such that contracting them preserves any particular non-trivial minimum-cut with a constant probability,
as we shown in Remark 5.2 — into the algorithm of Nanongkai and Su [NS14], we can improve also the complexity

of their algorithm to Õ((D +
√
n/λ)λ4). We have discussed this with one of the authors Hsin-Hao Su. However, this

claim should be taken with a grain of salt until all the details are written. If correct, that would lead to a further
improved overall round complexity of Õ(n0.8D0.2 +n8/9). Moreover, it would give a (1+ε)-approximation of minimum

cut with round complexity Õ((D +
√
n/λ)), for any constant ε > 0, hence matching the lower bound of Ghaffari and

Kuhn [MK13] for any distributed approximation algorithm on simple graphs.
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Lemma 7.1. Given a simple input graph G, with n vertices, m edges, and minimum degree δ it
is possible to execute Θ(log n) contraction processes, each resulting with a graph with O

(
n
δ

)
vertices

and O(n) edges, on a CREW PRAM machine, with O(m log2 n) work and depth O(log2 n). With
high probability one of computed contractions preserves a fixed non singleton minimum cut of G.

For the first part of the contraction process (Theorem 2.4), one has to compute connected
components, which can be computed in CREW PRAM model in O(m) work and O(log n) depth
[PR99], with high probability. For the second part, similar to the MPC model, we use the second
method of edge sparsification via Karger contractions, as outlined in Section 3.3. For that, to identify
the cut-off point in the contraction sequence, we use a Minimum Spanning Maximal-Forest(MSF)
algorithm [PR99] together with a binary search (over the random weights) approach: binary search
gives us some weight threshold for the edges that we use for computing MSF, and the MSF algorithm
show us what are the connected components corresponding to contracted super-vertices. Since we
have O(log n) sequential queries for the binary search part and O(log n) depth for MSF algorithm,
in total we require O(log2 n) depth for this part of the algorithm. The work that is being done in
this part is O(m log2 n), as we have to compute Θ(log2 n) Minimum Spanning Maximal-Forests, and
each requires O(m) work.

4 Minimum Cut in the sequential model

4.1 An O(m log n) Algorithm for Minimum Cut

To find the edge connectivity of G in O(m log n) time, we essentially just apply Gabow’s algo-

rithm [Gab91] to the contracted multigraph Ĝ from Theorem 2.1. We note that within this time
bound, using another algorithm of Gabow [Gab16], we can find the cactus representation described
in [DKL76] which elegantly represents all min-cuts of G. In particular, we use Gabow’s result in the

form described in the lemma below with M = Ĝ, mH = O(n), nH = O(n/δ), and k = δ, yielding a
running time of O(kmH log nH) = O(nδ log n) = O(m log n).

Lemma 4.1 ([Gab91]). Given a multigraph M with mM edges and nM nodes, and a number k, in
O(kmM log nM ) time, we can decide if the edge connectivity λM is below k, and if so, decide λM it
exactly.

Proof. Gabow [Gab91] states the running time as O(mM + nMλ
2
M log nM )) where λM is the edge

connectivity of M . Since λM is no bigger than the average degree, his bound is bounded by
O(mMλM log nM )). Moreover, using Matula’s linear-time approximation algorithm [WM93], we
can decide the edge connectivity of λM within a factor 3, hence either decide that it is big-
ger than k, which we report, or that it is at most 3k, implying that Gabow’s algorithm runs in
O(mMλM log nM )) = O(mMk log nM ) time.

We are now ready to show how we find the edge connectivity of G in O(m log n) time.

Theorem 4.2. Let G be a simple graph with m edges and n nodes. Then, in O(m log n) time, whp,
we can find the edge connectivity of G as well as a cactus representation of all its minimum cuts.

Proof. As described above, we apply Lemma 4.1 to Ĝ with k = δ in O(nδ log n) = O(m log n)

time. If the edge connectivity of Ĝ is above δ, the edge connectivity of G is δ, and all min-cuts
are trivial. Moreover, we can easily build a min-cut cactus representation for this case: a star
graph with two parallel edges to all min-degree vertices in G. Otherwise the edge connectivity of
G is the minimum of δ and that of Ĝ. In this case, we can apply Lemma 4.1 to Ĝ, which runs in
O(nδ log n) = O(m log n) time. Furthermore, we can also apply Gabow’s cactus algorithm [Gab16]

to Ĝ in O(m log n) time. In [KT19], it is detailed how we convert the cactus of Ĝ to one of G.
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Corollary for Dynamic Graphs: Goranci et al. [GHT18] have shown how the edge contraction
from [KT19] preserving all 3/2-small cuts can be used in an incremental (edge insertions only)
algorithm maintaining edge connectivity. By plugging Theorem 2.1 instead of the algorithm from
[KT19] in their framework, we get the following corollary.

Corollary 4.3. We can maintain the exact edge connectivity of an incremental dynamic simple
graph, whp, in O(log n) amortized time per edge insertion.

We note the above bound holds against an adaptive user where future updates may depend on
answers to previous queries.

4.2 Faster Contractions and an O(m+ n log3 n) Algorithm for Minimum Cut

We now present a faster contraction algorithm for dense graphs. Later in Theorem 4.6, we explain
how this leads to an O(m+ n log3 n) algorithm for edge connectivity.

4.2.1 Faster Contraction via Data Structures

Theorem 4.4. Let G be a simple graph with m edges, n nodes, and min-degree δ. We have a
randomized algorithm, running in O(m + n log(n)α(n, n)) time, contracting edges of G so that the

resulting multigraph Ĝ has O(n) edges and O(n/δ) nodes, and preserves all non-trivial (2− ε)-small
cuts of G whp.

Note: In the above statement, α is the extremely slow-growing inverse Ackermann function that
Tarjan [Tar75] used to bound the complexity of the union-find data structure. He showed that union-
find with u unions and f finds over s elements, initialized as a singleton sets, can be supported in
O(s+ α(f, u)f) total time. Here α is decreasing in df/ue. We have α(f, u) = α(u, u) if f ≤ u and
α(f, u) = O(1) if, say, f ≥ u log log log u. In general, we will use union-find to grow certain forests
efficiently, in the following classic way. We are growing a forest F , and the union-find sets are the
node sets spanned by the trees in F . Initially, the forest has no edges, and the nodes are singleton
set. If we get an edge (u, v), we can use finds on u and v to check if they are spanned by a tree in
F . If not, we can add (u, v) to the forest.

Outline: Our main tool to prove Theorem 4.4 is the following on-line data structure version of the
contraction process in Lemma 2.9. After presenting this lemma, we use it to prove Theorem 4.4.

Lemma 4.5. Let G be a given a simple graph with n nodes, m edges, and minimum degree δ. We
will construct a randomized O(n) space data structure D̂ that we feed edges from G in any order, but
without repetitions. When given an edge, the data structure will answer “preserve” or “contract”.
The order we feed edges to D̂ may adaptively depend on previous answers made be D̂. The data
structure provides the following two guarantees:

• The data structure D̂ answers preserve to at most O(n) edges.

• Let e∗ be any edge of G belonging to some (2− ε)-small cut C∗ of G. Then, with probability at

least pε/2, D̂ will answer preserve if queried on e∗ 6. Here pε is the constant probability from
Theorem 2.4.

Finally, if the number of edges fed to D̂ is f , then the total time spent by the data structure is
O(n+ α(f, n)f).

6As a subtle point, note that we are not claiming that we with constant probability simultaneously will preserve
all edges from C∗.
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Proof. The proof has steps that mimic that process of Lemma 2.9, but in a more efficient way and
as a data structure. In particular, we will have a part for 2-out contraction, and a more elaborate
part that mimics the effect of sparse-certificates. Next, we present these two parts.

First part: Given the graph G, first we make a 2-out sample S. We color all the components of
the graph with edge set S in O(n) time so that different components have different colors, i.e., we
identify the components. For each vertex v, we store its component color c(v). These component
colors are the vertices in G/S. An edge (u, v) from G corresponds to an edge (c(u), c(v)) in G/S.
Here edges preserve their edge identifies, so if another edge (u′, v′) has c(u) = c(u′) and c(v) = c(v′),
then (c(u), c(v)) and (c(u′), c(v′)) are viewed as distinct parallel edges.

By Theorem 2.4, whp, G/S has nG/S = O(n/δ) vertices. If this is not the case, we create a
trivial data structure contract to all edges, so assume nG/S = O(n/δ) vertices. By Theorem 2.4, the
probability that C∗ is preserved in G/S is at least pε. Assume below that C∗ is preserved in G/S.

Second part: This part intends to mimic the effect of sparse certificates—intuitively (though, not
formally) similar to growing 4δ maximal forests, one after another. In particular, we initialize ` = 4δ
union-find data structures to grow edge-disjoint forests F1, . . . , F` over the vertices in G/S. Initially,
there are no edges in the forests. From a union-find perspective, we can think of it as if we have `
disjoint copies of the nodes in G/S, so to ask if c(u) is connected to c(v) in Fi, we ask if c(u)i is in
the same set as c(v)i.

When given an edge (u, v) from G, we can ask if it is connected in some Fi in the sense that
c(u) and c(v) belong to the same tree in Fi. If not, we can (c(u), c(v)) to Fi. Note that if (u, v) got
contracted in G/S, then c(u) = c(v), and then c(u) and c(v) are trivially connected in every forest
Fi. We will follow the rule that each edge (u, v) from G may be added as an edge (c(u), c(v)) to a
single forest Fi. This way the forests remain edge-disjoint, so if c(u) and c(v) are connected in k
different forests Fi, then c(u) and c(v) are k-connected by the edges added to all the forests. This
implies that u and v must be k + 1 connected in G/S.

Now, consider our edge e∗ = (u∗, v∗) from our (2 − ε)-small cut C∗ of G which we assumed
was preserved in G/S. Then c(u∗) and c(v∗) are at most |C| < 2δ connected in G/S, so c(u∗) and
c(v∗) are connected in less than half of the 4δ forests Fi. This leads to the following randomized
algorithm to handle a new edge (u, v) from G. We randomly pick s = dlog2 2/pεe = O(1) indices
i1, . . . , is ∈ {1, . . . , `} and ask if c(u) and c(v) are connected in all the forests Fi1 , . . . , Fis . If not, we
add (c(u), c(v)) to a single one of them, and answer “preserve”. Otherwise, we answer ‘contract”.
The latter would be a mistake on e∗, but assuming that G/S preserved C∗, we know that c(u∗) and
c(v∗) are connected in less than half the forests, and then the probability of this mistake is bounded
by 1/2s < pε/2.

Overall error probability: For the overall error probability on answering “contract” on e∗, we
also have to consider the possibility that the G/S did not preserve C∗. This happened with at most
1−pε. We conclude that the probability that we answer “preserve” on e∗ is at least pε/2 as desired.

The number of preserved edges: The edges we add to Fi form a forest over the O(n/δ) nodes
in G/S, so we can only add O(n/δ) edges to each of the ` = 4δ different Fi. Thus we conclude that
there are at most O(n) edges that we add to the edge-disjoint forests Fi.

Time complexity: Each time we get an edge, we check connectivity of s = O(1) forest, so we make
O(f) find operations. We have ` copies of each node in G/S, so the total number of elements is
`nG/S = O(n). We conclude that the total time spent by our data structure is O(n+α(f, n)f).

Having this helper data structure version of a single contraction process, we are now ready to
prove Theorem 4.4. That is, we present an O(m+ n log(n)α(n, n)) time contraction down to O(n)
edges and O(n/δ), while preserving all non-singleton (2− ε) minimum cuts, with high probability.
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Proof of Theorem 4.4. We are going to use the data structure from Lemma 4.5 in much the same
way as we used contracted graph from Lemma 2.9. Concretely, we want to amplify the success using
certain repetition and voting rules so that we preserve all non-singleton (2− ε) minimum cuts, with
high probability. Below we present a direct translation, and later we show how to tune it.

The procedure: Let p′ε = pε/2 be the error probability from Lemma 4.5. We apply the lemma

q′ = O((log n)/p′ε) = O(log n) times, initializing independent data structures D̂1, . . . , D̂q′ .

Consider any edge e∗ belonging to some (2 − ε)-small cut C∗ of G. Each D̂i preserves e∗ with

probability at least p′ε, so the expected number of D̂i preserving e∗ is at least µ′ = p′εq
′. By

Chernoff, the probability that less than r′ = µ′/2 = p′εq
′/2 of the Ŝi want to preserve e∗ is bounded

by exp(−µ′/8) = exp(−p′εq′). For any given γ, this is O(n−γ) for q′ ≥ 8(lnn)γ/p′ε = 16(lnn)γ/pε.

We can now take each edge e in G, and query all the Ŝi counting how many answer preserve.
If this number is less than r′, then we contract e. Otherwise we say that e was voted preserved.
However e could still be lost as a self-loop due to other contractions.

The number of preserved edges: Since each Ŝi answers preserve for O(n) edges, the total number

of preserve answers from all the Ŝi is q′ · O(n). The number of edges that are preserved r′ times is

therefore q · O(n)/r′ = O(γn/pε) = O(n). All other edges are contracted, so the resulting graph Ĝ
ends up with O(n) edges, as desired for Theorem 4.4.

We preserving all small cuts: As described above, our edge e∗ from some (2− ε)-small cut was
voted preserved with probability 1 − O(n−γ). This implies that with probability 1 − O(n−γ

′
) with

γ′ = γ − 2, every edge e belonging to any (2 − ε)-small cut is preserved. In particular, given any
(2− ε)-small cut C, we get that all edges in C are voted preserved meaning that none of them are
contracted directly. Because C is a cut this implies that all of C survives the contractions, that is,
none of the edges in C can be lost as self-loops due to other contractions. Thus we conclude that,
whp, Ĝ preserves all (2− ε)-small cuts C in G.

An issue with the complexity, and fixing it: Unfortunately, our total run time is still bad
because for every edge in G, we query all q data structures D̂i. However, as our last trick, we
maintain a union-find data structure telling which vertices in G that have already been identified
due to previous contractions. We now run through the edges of G as before, but if we get to an edge
(u, v) where u and v have already been identified, then we skip the edge since contracting it would

have no effect. All the above analysis on the properties of Ĝ is still valid.
With the above change, checking if end-points have already been identified, we claim that we

can make at most O(n) queries to the data structures. We already saw that we could only vote
preserve O(n) times. However, if the data structures instead vote to contract (u, v), then this is a

real contraction reducing the number of vertices in Ĝ, so this can happen at most n− 1 times.
Every time we query the data structures, we query all q = O(log n) of them. In each we

have f = O(n) queries, so the time spent in each is O(α(n, n)n), adding up to a total time
of O(n(log n)α(n, n)). In addition, the top-level union-find data structure over the contracted

vertices in Ĝ uses O(n + α(m,n)m) � O(m + n log log log n) time, so our total time bound is
O(n(log n)α(n, n)). This completes the proof of Theorem 4.4.

4.2.2 Faster Minimum Cut in Dense Graphs

We can now complete our O(m+ n log3 n) algorithm.

Theorem 4.6. We can find the edge connectivity and some min-cut of a simple graph G with m
edges and n nodes in O(m+n log3 n) whp. We can also find the cactus representation of all min-cuts
of G in O(m+ n logO(1) n) time.
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Proof. Much like we used Gabow’s algorithm’s [Gab91, Gab16] on the contracted graph in The-
orem 2.1 to prove Theorem 4.2, we now apply Karger’s [Kar00] edge connectivity algorithm to
the contracted graph in Theorem 4.4, and his algorithm with Panigrahi [KP09] to get the cactus
representation.

Note that because we only spend O(m + n(log n)α(n, n)) time on constructing the contracted
graphs, we would instantly get better results, if somebody found an improvement to Karger’s algo-
rithm [Kar00]. However, due to parallel edge resulting from contractions, it has to be an algorithm
working for general graphs, so we cannot, e.g., use the recent algorithm of Henzinger et al. [HRW17].

5 Minimum Cut in the CONGEST model

To obtain the Õ
(
n0.8D0.2 + n0.9

)
bound claimed by Theorem 1.2, we use the general approach

proposed by Daga et al. [DHNS19], except that we replace a key component of their work (a con-
traction based on expander decompositions that preserves nontrivial minimum cuts) with random
3-out contractions. This leads to a substantial simplification and time complexity improvement.

In their work [DHNS19], Daga et al. propose an algorithm that given a partition of vertices into
disjoint connected sets P = {V1 ∪ V2 · · · ∪ Vk}, such that the edges on non singleton minimum cuts
are only between the sets of vertices — i.e., contracting these sets preserves non-trivial minimum cut
— finds the minimum cut of the graph G/P in time Õ(D(V )+k+

∑k
i=1D(Vi)). Here, G/P is a graph

in which we contract all sets V1, V2 . . . Vk into vertices and D(S) is a diameter of a graph induced by
S. We will make use of this algorithm, in a black-box fashion. But let us briefly discuss how Daga
et al. used it: They provide an algorithm based on expander decompositions that in sublinear time
of Õ(n/δ1/88), finds such a partition with sublinear k = O(n/δ44) and

∑k
i=1D(Vi) = O(n/δ1/40).

This leads to an Õ(n/δ1/88) rounds algorithm, which is sublinear for graph with sufficiently large
minimum cut. They then obtain their round complexity by combining this algorithm for graphs
with large minimum cuts with the algorithm by Nanongkai and Su [NS14] for graphs with small
minimum cut.

To get a faster algorithm, we observe that random 3-out contractions provide a vastly simpler
and also more efficient way of contracting the graph into fewer nodes (where contractions have small
diameter on average), while preserving non-trivial minimum cuts, as desired in the algorithm of
Daga et al. [DHNS19]. As a result, by plugging in 3-out contractions in the approach of Daga et al.,
we obtain an Õ(n/δ) round algorithm. This is a substantial improvement on the Õ(n/δ1/88) round
algorithm of Daga et al. (notice that these algorithms will be applied for graphs with large minimum
cut and thus large δ). Again, combining this with the algorithm of Nanongkai and Su [NS14] for
graphs with small minimum cut gives the final round complexity.

In the next two subsections, we first analyze the diameter of the components of a 3-out, and
then plug this property into the framework of Daga et al. [DHNS19] to obtain our faster distributed
edge connectivity algorithm.

5.1 Diameter of the components of 3-out subgraph

We now upper bound the total diameter of the connected components of the 3-out subgraph7.

Lemma 5.1. With high probability, the summation of the diameters of the components of a random
3-out is in O(n poly(log n)/δ).

7As mentioned before, a similar statement holds for a random 2-out. However, the proof is slightly more detailed,
and thus, we leave that to the full version of this paper.
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Proof Sketch. If δ ≤ log2 n, the statement holds trivially. Suppose δ ≥ log2 n. We analyze the
diameter in two phases. In the first phase, we expose a 2-out, which provides that we have O(n/δ)
connected components, hence we have O(n/δ) connected components of size O(log n).

Now, we consider components that have diameter Ω(log n) and decompose each of these com-
ponents into fragments of L = Θ(log n) length: for that, we take a BFS tree of the component and
chop it in levels that are multiples of Θ(log n). Hence, each fragment has diameter O(log n) and
also at least L = Θ(log n) nodes. We call these normal fragments. Those O(n/δ) components that
have size less than O(log n) are called small and we call their nodes small nodes.

In the second phase, we expose the 3rd choice of each vertex, as follows: let us start with an
arbitrary vertex v. If v is one of the components with less than Θ(log n) vertices, we stop the process
and say that v arrives at a small fragment. Otherwise, we expose the 3rd choice of the nodes in
the fragment of v, one by one. Each edge connects us to some fragment. If any of these fragments
is a small fragment, again we stop the process and say that v arrived at a small fragment. If the
total number of nodes in the fragments reachable in this step is at least δ/2, we stop the process.
Otherwise, the next edge has at least a (δ−δ/2)/δ chance of connecting us to a new fragment. Hence,
over the course of the O(log n) edges of one fragment, whp, we should either get to fragments with
a total of at least δ/2 nodes, or get to Ω(log n) new fragments.

We continue the process in a BFS manner, level by level (one fragment per level), and expose
the 3rd choice from nodes of each of the new fragments. That is, we go over the newly found
fragments one by one, and inside each, we expose the edges of each of the nodes sequentially. The
process continues one fragment depth per iteration, until we either arrive at a small fragment or the
total number of nodes reachable has exceeded δ/2. So long as neither of these two happened, per
layer, with high probability, each fragment connects us to at least Ω(log n) new fragments. Here,
new means that these are fragments that were not reachable by the connections of the previously
exposed fragments. Hence, the number of fragments is growing exponentially with the (fragment)
depth of the BFS. Therefore, within O(log δ) BFS layers, whp, we have either arrived at either at
least δ/2 vertices or one small small fragment. Moreover, this holds with high probability for any
starting vertex v: within R = O(log δ log n) distance in the exposed edges, it can reach to either at
least δ/2 vertices or to one of the O(n/δ) small nodes.

Let us consider an arbitrary connected component C of the 3-out. Let NC be the number of
vertices in it. Let s and t be two vertices of C that have the maximum distance from each other,
in C, say they have distance dC (which is the diameter of C). Moreover, suppose that C contains
XC many small nodes. We first show that dC ≤ (NCδ + XC) · O(log2 n). Take the shortest path

between s and t and mark dC/O(log2 n) vertices that are pairwise at least 2R + 1 = Ω(log2 n)
apart from each other. From each of these marked vertices, within R distance, we reach either δ/2
nodes or at least one small node. These O(log2 n) neighborhoods are disjoint, as the marked nodes
have distance at least 2R + 1 on the shortest path between s and t and thus also on the shortest
path connecting them. Since there are only XC small nodes in this component, there must be at
least dC/O(log2 n)−XC marked vertices that reach at least δ/2 nodes, in their R distance. Hence,
NC ≥ (dC/O(log2 n) − XC)δ/2. This implies dC ≤ (NCδ + XC) · O(log2 n). Now, summing up the
diameters of all components, we get
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∑
component C

dC ≤
∑

component C

((
NC
δ

+XC

)
·O(log2 n)

)

= O(log2 n)

 ∑
component C

NC
δ

+
∑

component C
XC


≤ O(log2 n)(O(n/δ) +O(n/δ))

≤ O
(
n log2 n

δ

)
.

Remark 5.2. We can choose a subset of the edges of the 3-out so that the spanning subgraph defined
by them has O(n/δ poly(log n)) components, each with diameter poly(log n). If contracting the 3-out
preserves a cut, contracting this subset of edges also preserves it.

Proof Sketch. Consider the spanning graph defined by the edges of a 3-out (and discard all graph
edges not in it). Mark each node randomly with probability O(log n)/δ. Also, mark all small nodes.
Then, perform a BFS from each marked node for R = O(log2 n) depth, all simultaneously, while
assigning each node to the first BFS that reaches it. Hence, we are growing vertex-disjoint BFS
trees. As shown in the proof of Lemma 5.1, each node has either at least δ/2 nodes or at least one
small node in its distance R = O(log2 n). Hence, each node will be in one of the BFS trees, with
high probability. Each BFS tree is one of our components, and we remove the contracted edges
connecting different final BFS trees. Since we have n poly(log n)/δ randomly marked nodes and
O(n/δ) small nodes, the total number of BFSs and thus also the total number of components is
O(n/δ poly(log n)). The diameter of each component is clearly at most 2R = O(log2 n).

5.2 Improved Distributed Algorithm

Lemma 5.3. Given any simple input graph G with n vertices, m edges, minimum degree δ, and
minimum cut size λ, it is possible to identify its minimum cut in Õ

(
n
δ

)
= Õ

(
n
λ

)
rounds of the

CONGEST model, w.h.p.

Proof. Consider a 3-out contraction of the input graph. Since we consider simple graphs, we have
that the graph diameter has a small diameter D(G) = O

(
n
δ

)
. By Lemma 2.5 we have that in the

contracted graph we have at mostO
(
n
δ

)
vertices. By Lemma 5.1 we have that in the 3 out contraction

the sum of diameters of contracted subgraphs is Õ
(
n
δ

)
. Therefore, we can identify the minimum cut

of the graph obtained by a 3-out contraction in Õ
(
n
δ + n

δ + npoly logn
δ

)
= Õ

(
n
δ

)
= Õ

(
n
λ

)
rounds, by

applying the algorithm of Daga et al. [DHNS19].

By combining Lemma 5.3 with the algorithm of [NS14], which is best suited for graphs with small
edge connectivity λ, we get our round complexity of Õ

(
n0.8D0.2 + n0.9

)
, as claimed in Theorem 1.2:

Proof of Theorem 1.2. In Lemma 5.3, we provided an algorithm with round complexity Õ
(
n
λ

)
.

Nanongkai and Su [NS14] gave an algorithm that runs in O(λ4 log2 n(D +
√
n log∗ n)) = Õ(λ4(D +√

n)) rounds. We now explain that by running both algorithms and taking the faster of the two, we
can obtain an algorithm with complexity Õ

(
n0.8D0.2 + n0.9

)
. For graphs with diameter D ∈ O(

√
n),

the second algorithm requires Õ(
√
nλ4) rounds. Taking the minimum of this and our algorithm that

runs in Õ
(
n
λ

)
gives an algorithm that runs in Õ

(
n0.9

)
rounds. For graphs with diameter D ∈ Ω(

√
n),
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the algorithm of Nanongkai and Su runs in Õ(Dλ4) rounds. Taking the minimum of this and our
algorithm that runs in Õ

(
n
λ

)
gives an algorithm that runs in Õ(n0.8D0.2) rounds. Hence, running

both algorithms and taking the faster of the two runs in Õ
(
n0.8D0.2 + n0.9

)
time.

6 Minimum Cut in the MPC model

The MPC model is a model of parallel (or distributed) computing, in which the computation is
executed in synchronous rounds, by a set of p machines, each with local memory of size S. Every
rounds consists of the phase of local computation and the phase of communication. In the phase
of local computation each machine can execute some, possibly unbounded computation (although
we could consider only computation that takes time polynomial in S, or even only Õ(S) step
computations). In the phase of communication, the machines simultaneously exchange O(log n)-bit
messages, in a way that each machine is sender and receiver up to O(S) messages.

The global memory is the total amount of memory that is available, i.e. if there are p machines,
each with S memory, their global memory is pS. Ideally, for an input of size N , the values of p and
S are chosen in a way that the global memory is O(N). Assuming that the global memory limit is
set to be O(N), we have two main quality measures of the algorithms in the MPC model: the first
one is the number of rounds that are required by the algorithm to finish computation, the second is
the limit on the local memory of a single machine.

For graph problems in the MPC model, we distinguish two significantly different variants of the
MPC model, depending on relation between the limit on local memory S and the number of vertices
of the input graph, which is usually denoted by n. More precisely, those variants are S ∈ Θ̃(n) and
S ∈ O(n1−ε) for some constant ε > 0. In this paper, we focus on the variant in which the limit on
the local memory is O(n) words, each of length O(log n) bits.

Sometimes, we also consider the algorithms that have global memory limit larger than N . It
can be achieved in two ways: by setting higher limit on the local memory of a single machine, or by
increasing the number of machines. The first variant of this relaxation is stronger – a single machine
with enlarged memory limit can simulate several machines with a smaller limit. Therefore, if we
have two MPC machines, both with the same global memory, the one with larger limit on the local
memory can simulate the one with a smaller limit on local memory.

In particular, in this section we give a Minimum Cut algorithm for simple graphs in the MPC
model, that proves Theorem 1.3, i.e. the algorithm requires O(1) rounds of computation, uses
O(m+ n log5 n) global memory, while respecting O(n) memory limit on a singe machine.

6.1 Minimum Cut for simple graphs in O(1) rounds of the MPC model: Outline

The remaining part of this section is dedicated to give a proof of Theorem 1.3. To do so, it is enough
to use a variant of contraction process that preserves a fixed non singleton minimum cut with a
constant probability, described in in Theorem 2.2. The reason is that a simple implementation of
probability amplification method described in Section 2.4 requires us to execute Θ(log n) contraction
processes from Theorem 2.2. Since each of the results fits into local memory of a single machine, at
this point we can just identify a minimum cut of each of contracted graphs, and take the smallest
as a minimum cut of the input graph (if it is no larger than the minimum degree.

In order to provide an efficient Minimum Cut algorithm it is enough to provide an efficient
implementation of the algorithm emerging from Theorem 2.2.

Lemma 6.1. Given a simple input graph G, with n vertices, m edges, and minimum degree δ it is
possible to execute Θ(log n) contraction processes, each resulting with a graph with O

(
n
δ

)
vertices and

O(n) edges, in O(1) rounds of the MPC model, with O(m) +O(n log5 n) global memory, and O(n)
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memory limit for a single machine. With high probability one of computed contractions preserves a
fixed non singleton minimum cut of G.

In the remaining part of this section we provide an algorithm that proves Lemma 6.1. We can
easily implement the 2-out contraction process, as captured by Theorem 2.4, which is the first part of
Theorem 2.2. This is a simple connected components computation on a graphs that have O(n) edges
each. Having only linear number of edges allows us to gather all the edges in the memory of a single
machine and solve the problem locally. The more challenging part is reduce the number of edges
to O(n). We next describe how we do this in O(1) round of computation with O(n) local memory
and using O(m) + Õ(n) global memory. In order to achieve a local memory of O(n), we present a
second randomized method for reducing the number of edges, which can be seen as a counterpart
of the Nagamochi-Ibaraki sparse certificates, stated in Lemma 2.8. In this second method, instead
we use Karger’s random contraction method, but stopped early enough. Next, we outline this as a
general method, and then explain how to implement that in the MPC model.

Reducing the number of edges via Karger contractions: We next explain Karger’s random
contraction process [Kar93] and how it can help us to reduce the number of edges while preserving
the minimum cut. A single random contraction on a graph is executed as follows. We select an edge
uniformly at random, replace both endpoints of this edge with a single super-vertex and remove any
self loops that were created in the process (note that this process does not remove parallel edges).
A random contraction process of Karger is a sequence of single contractions, each executed on the
result of the previous one.

Lemma 6.2. Random contraction process of Karger applied on an unweighted multigraph M with
nM vertices and minimum cut size λM , and executed so long as the when contracted graph G′ has
Ω(nMλM ) edges, has a constant probability of contracting an edge from a fixed (2−ε) minimum cut,
for a constant ε. Hence, we can perform this process iteratively, after a 2-out contraction, so long
as Ω(n) edges remain and obtain a contracted graph Ĝ with O(n/δ) nodes and O(n) edges, which
with at least a constant probability pε preserves any given non-trivial (2− ε)-small cut.

Proof. We argue about the first part of the lemma. The guarantee about the application after 2-out
follows immediately, as Theorem 2.4 shows that 2-out has O(n/δ) ≤ O(n/λ) vertices.

As long as the number of edges in the graph is larger than cnMλ, the probability that by
contracting an edge chosen uniformly at random we contract an edge from a fixed (2-ε) minimum

cut is at most (2−ε)λ
cnMλM

= (2−ε)
cnM

. Since the number of contractions that can be executed on a nM
node graph is at most nM − 1, we have that the probability that a contraction process that did not
reduced the number of edges below cλMnM threshold contracted some edge from a fixed minimum
cut is at least (

1− (2− ε)
cnM

)
nM

> e
− (2−ε)
cnM

nM

= e
− (2−ε)

c

Since we can not contract a graph to a single node without contracting an edge from the fixed (2−ε)
minimum cut, at some point the contraction process reduced the number of edges to O(nMλ).

To apply this theorem algorithmically, we have to be able to stop the contraction process just
after the first step that reduced the number of edges below the threshold cnλ, as continuation of
the contraction process would decrease the probability of preserving the fixed minimum cut. Given
a contraction process, we define the cut-off problem as problem of identifying the first contraction
after which the number of the remaining edges is O(nMλ).

Contractions via MST, and the Cut-Off Problem: As first observed by Karger [Kar93], one
can think about the random contraction process as computing MST via Kruskal’s algorithm [Kru56]
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on a graph with weights assigned randomly from a large enough set of weights. This view provides
as alternative formulation of the cut-off problem — i.e., identifying the first contraction after which
the number of the remaining edges is O(nMλM ) —, which we use in our implementation.

To understand the connection between random contraction process and computing MST on a
graph with randomly assigned weights, let us consider the following implementation of the contrac-
tion process. By definition of a single contraction, in each step of the process, we want to select an
edge uniformly at random. One way to do that is to apply a random permutation on the edges, and
for each contraction use the first edge (in the ordering defined by the random permutation), that is
still between the (super-)vertices. One way of defining a random permutation on a set of elements is
to assign to them random weights and sort them according to the assigned edges. As long as during
the assignment there was no collisions, this ordering defines uniformly random permutation on the
elements. Thus, we can argue that the random contraction process with random ordering defined by
the randomly assigned weights, does exactly the same thing as the Kruskal’s MST algorithm [Kru56]
on the graph with exactly the same weights. In each step, both algorithms use exactly the same
edge: Kruskal’s algorithm adds it to the MST (and merges some two connected components), and
contraction algorithms contracts this edge (and replaces two (super)vertices into one). Hence, after
k steps of both algorithms, the set of connected components in Kruskal’s algorithm corresponds
to the set of (super)vertices of the contraction process. To avoid the collisions during the random
assignment of the weights, we can choose them from the range {1, . . . , n10M}, which is small enough
to represent the weights on O(log n) bit words, but large enough to provide high probability that
there is no collision during the assignment.

For our purpose we want to stop the contraction process at the first contraction that caused the
number of remaining edges to drop below some cnMλM threshold. As we already mentioned, we can
express this problem using language of MST computation: we want to identify the smallest weight
x, such that the number of edges between connected components of the graph induced by the edges
lighter than x is smaller than cnMλM . Hence, in order to identify a cut-off point, it is enough to
compute the number of edges between connected components of the input graph after each step of
Kruskal’s algorithm. In fact, it is enough to know a constant approximation of this number, as the
only thing we care about is to get less than cnMλM edges, for some c. In order to make Lemma 6.2
work, it is enough to provide that c is a constant and we do not need to know its exact value.

6.2 Karger’s contraction process in MPC

As mentioned above, the Karger contraction process can be computed via MST computation. To
implement several processes in parallel, we use an approach presented in the paper [GN18], which
uses parallel MST computation to do so.

The O(1) round Congested Clique algorithm for the MST problem [JN18] can be implemented in
O(m)+O(n log3 n) total communication, which means that in can be executed on the MPC machine
with total memoryO(m+n log3 n), and local memoryO(n). Hence, for graphs with m ∈ O(n log2 n),
execution of Θ(log n) independent instances of the algorithm requires O(log n · (m + n log3 n)) =
O(n log4 n) global memory.

In order to give a O(m) algorithm that works for denser graphs, we use the fact that the MST
algorithm is based on the Karger-Klein-Tarjan random sampling (KKT sampling) approach to the
MST problem. On the top level, it allows to reduce a single instance of the MST problem to two,
such that the first has O(mp) edges and the second has O(np−1).

More importantly, for p−1 ∈ Ω(log n), the total communication required by the reduction step
is O(np−1 log2 n) [PS16, Now18]. Hence, if at the beginning we use one step of KKT sampling,

with p−1 ∈ Θ(log n), the first instance has only O
(

m
logn

)
edges. Since we have Θ(log n) contraction

processes to simulate, the total communication complexity of solving all first instances in parallel is
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O
(

log n ·
(

m
logn + n log3 n

))
= O(m+ n log4 n). The reduction step, in all MST instances we solve

in parallel, requires O(log n · (n log3 n)) = O(n log4 n) global memory. Each of the second instances
has O(n log n) edges, hence we can solve Θ(log n) of them using O(log n · (n log n + n log3 n)) =
O(n log4 n) global memory. Summarizing, solving O(log n) instances of the MST problem requires
O(m+ n log4 n) global memory.

The computed MST’s give us an ordering in which the contraction processes merge connected
components. Still, for each MST / contraction process, we have to identify the cut-off point – a step
in the contraction process after which the number of the edges between the connected components
/ super-vertices cross some threshold cn.

6.3 Identifying a cut-off point for Karger’s contractions in MPC

The idea is to compute a constant approximation of the number of edges that are left after each
contraction. If we have a guarantee that the exact value is at most α times smaller / larger than the
actual value, and we pick the threshold value cn to be sufficiently high, then the actual number of
edges is at least cn

α , which is sufficiently large to provide that we do not contract an edge from a fixed
minimum cut with at least positive constant probability. On the other hand, if we cross the threshold,
we have that the number of edges is at most α · cn, which is O(n). To compute approximation of
the number of edges after each contraction step, we propose a sketch based approach. Firstly, let
us recall an implementation of linear graph sketches, and its application to approximate degree
estimation. Then, we show an MPC algorithm, that given a sequence of contractions (i.e. computed
MST) of a graph, can compute a constant approximation of the number of the remaining edges after
each step of contraction process.

Degree estimation via linear sketches: One of the base ideas behind linear graph sketches is
that it is possible to encode the set of edges with exactly one endpoint in some set of vertices C on
a vector v(C), in such a way that:

• the number of non zero entries in N(C) is twice the number of the edges that have exactly one
endpoint in C (actually one can decode the set of edges, but here decoding size is sufficient)

• the encoding functionN(C) is linear, i.e. for two sets C1, C2 ⊆ V , N(C1)+N(C2) = N(C1∪C2)

The other building block is a linear sparse recovery data structure. Such data structure allows to
encode vectors on some small space, recover the non zero coordinates of a vector if the vector is
sparse and it is linear. This means that if a connected component C has small degree, we recover
all the edges in a following way:

• compute N(v) for each vertex v from C

• compute a sketch of N(v) for each vertex v from C

• add the sketches of all v, to obtain a sketch of C

• extract the edges from a sketch of C

The example implementation of the sparse recovery data structure is provided by Cormode and
Firmani [CF14]: given that we want to recover coordinates of a vector with at most O(1) non zero
coordinates, the size of the data structure is O(log n) bits.

On the top level, the linear graph sketch consists of O(log n) instances of a linear data structure
that allows us to recover, with a positive constant probability, the edges with exactly one endpoint
in C, if the degree of C is O(1). To obtain a random edge, it selects a uniformly random edge
from the recovered set. Let us recall the analysis of this implementation of linear sketch provided
by Cormode and Firmani [CF14]. Let Gi be a random subgraph of G, in which we include each
edge with probability 1

2i
. The linear sketch is an application of O(1) recovery data structure, to

Gi, for all i ∈ {1, . . . , 2 log n}. Let us consider a connected component C - there exists j, such that
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the expected degree of C in Gj is at least s
4 and at most s

2 , for some s ∈ O(1). With constant
probability degree of C in Gj is positive and smaller than s, hence s sparse recovery data structure
can extract the edges outgoing from C in Gj .

The idea of extracting approximate degree of C is to use Θ(log n) independent sets of sketches,
and count the number of successful recovery on level i, for all i ∈ {1, . . . , 2 log n}. Since some levels
have at least positive constant probability of success, having Θ(log n) trials give high probability,
that some levels will succeed Θ(log n) times. If the number of trials is sufficiently large, the number
of successful trials will be the largest for j such that the expected value of degree of C in Gj is at
least s

4 and at most s
2 . Hence, identifying j gives us an approximate degree of C in G.

The space complexity of a single sketch is O(log n) words (one word / O(log n) bits per Gi),
hence whole degree estimator consist of O(log2 n) words.

Using degree estimators to find a cut-off point: The proposed degree estimator is a linear
function and works with high probability. The idea is to compute such estimator for each vertex of
the graph, and sum them up accordingly to the contractions that are executed on the graph. Since,
there are at most O(n) steps, and the estimators are correct in each of them with high probability, by
the union bound they work properly in all steps, with high probability, even though the estimators
in consecutive steps are dependent.

The problem is that total amount of information is too large to keep in the memory of a single
machine. To bypass this issue, we use the following observation: if we consider a contraction process
at some moment, with set of super-vertices V ′, executed for k steps, it contracts up to 2k members
of V ′. Hence, if k is n

log2 n
, we can gather all the sketches of nodes that are being contracted in a

single machine.
Therefore, one can compute approximate degrees of all connected components (or super-vertices)

after each step of the contraction process, by splitting whole contraction process into Θ(log2 n) parts,

each of length Θ
(

n
log2 n

)
, and using the degree estimators. Let consider a single part. Even tough

a single machine can gather all the relevant estimators in the local memory, it does not give an
algorithm for computing the relevant estimators. The number of the vertex in the relevant super-
vertices can be even linear in n - for such super-vertices, we can use the fact that those estimators
are linear functions and compute them a two stage manner - firstly, we compute estimators for some
partition of such super-vertex into subsets of size n

log2 n
, then we add them up. The total number of

vertices in the active super-vertices can not be larger than n, therefore for a single the total number
of additional machines required for computing estimators for a single part is O(log2 n). Since, there
are Θ(log2 n) parts, for which we compute the estimators, the total number of machines that we need
for a single contraction process is O(log4 n), and O(log5 n) for all Θ(log n) contraction processes.

Having approximate degrees of all super-vertices that appear during the contraction process, we
can gather them in the memory of a single machine, which then can compute approximate number
of remaining edges after each contraction, hence can identify a cut-off point locally.

6.4 Computing the edges in contracted graphs in MPC

Given that we have a division into connected components (corresponding to contracted vertices)
we want to compute the set of edges between them. The naive approach would be to check for
each edge, whether the endpoints are in the same connected component or not. This unfortunately,
requires Θ(m) memory for a single contraction process, and Θ(m log n) for Θ(log n) contraction
processes. To bypass this issue, we use the approach based on fingerprints [Rab81].

The idea is roughly based on the fact that we can treat the labels of connected components
of each vertex in Θ(log n) contraction processes as Θ(log2 n) bit strings. Then, we can compute
a hash value from some polynomial range, for each Θ(log2 n) bit label. Since we have only O(n)
labels, if we use sufficiently large range of hashing function, with high probability there would be
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no collision. Since, the range is polynomial, the value of hash function can be encoded on O(1)
words (O(log n) bits). Then, for each edge, we compare fingerprints of the endpoints, if they are the
same, the edge does not connect two different super-vertices in any contraction. Hence, in order to
compute all edges that connect different super-vertices, it is enough to consider only the edges with
the endpoints with different fingerprints.

The number of those edges is at most O(n) per contraction process, hence O(n log n) in total.
For each edge, we need to know Θ(log n) identifiers of super-vertices, one per contraction process.
Thus in total the memory and communication used by the algorithm computing the edges between
the super-vertices is O(m) + O(n log2 n).

7 Minimum Cut in the PRAM model

In this section we provide a CREW PRAM algorithm for the Minimum Cut problem for simple graphs,
which is a proof of Theorem 1.4.

The CREW PRAM model is a model of parallel computing. The PRAM machine consists of a set of
p processors, and some unbounded shared memory. The computations are performed in synchronous
steps, and in each step each processor may read from O(1) memory cells, evaluate some O(1) step
computable function on read values, and write something to O(1) memory cells. More precisely,
we consider CREW PRAM model, which extends to Concurrent-Read-Exclusive-Write PRAM, which
means that we allow multiple processors to read from the same memory cell, but we forbid multiple
processors to write to a single memory cell in a single step of computation.

To define the complexity of an algorithm in the CREW PRAM model, one can use the Work-Depth
model [Ble96]. In this model, we perceive a computation as a directed acyclic graph, in which each
vertex corresponds to a single step of a processor, its in-edges correspond to the inputs of evaluated
function, and out-edges correspond to the results of the evaluated function. In other words, we put
an edge between two vertices, if the output of the function evaluated by one vertex is an input of
the function evaluated in the other vertex. The work of the algorithm is the number of vertices in
the graph, and the depth of the algorithm is the longest directed path in the graph of computation.

The state of the art algorithm for the weighted Minimum Cut problem has O(m log4 n) work and
O(log3 n) depth [GG18]. The application of Theorem 2.2 allows us to reduce the number of edges to
O(n). In this section we show an PRAM implementation of Theorem 2.2 that allows us to execute
Θ(log n) contraction processes in O(m log2 n) work and O(log2 n) depth. The next step is to apply
the technique from Section 2.4, which can be done in O(m+n log n) work with O(log n) depth, and
gives a O(n) edge multigraph preserving (2 − ε)-minimum cuts with high probability, as stated in
Theorem 2.1. To complete Minimum Cut computation, we still have to identify Minimum Cut in the
resulting multigraph, for which we can use the state of the art algorithm for general graphs [GG18],
which has O(log3 n) depth, but only Õ(n) work.

Lemma 7.1. Given a simple input graph G, with n vertices, m edges, and minimum degree δ it is
possible to compute a O(n) edge multigraph, that preserves all non singleton (2− ε)-minimum cuts
with high probability on a CREW PRAM machine, with O(m log2 n) work and depth O(log2 n). With
high probability one of computed contractions preserves a fixed non singleton minimum cut of G.

In the remaining part this section, we prove Lemma 7.1, and briefly discuss that composition of
Lemma 7.1 with the state of the art algorithm for general graphs [GG18] proves Theorem 1.4.

Reducing the number of vertices: The implementation of Theorem 2.4 boils down to computing
connected components of Θ(log n) random 2-out contraction of a graph. Firstly, we generate Θ(log n)
random 2-out subgraphs. Given that each vertex knows its degree, it can be done in O(n log n) time
and O(1) depth. Computing degrees for all vertices can be done in O(m) work and O(log n) depth,
which in total gives aO(m+ n log n) work andO(log n) depth protocol. Then we compute connected
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components for each of random 2-out subgraphs, which for all Θ(log n) instances requires O(n log n)
work and O(log n) depth [PR99].

Reducing the number of edges: The second step of the algorithm is to execute random contrac-
tion processes via computing MST on the graph with randomly assigned weights. Since there are
Θ(m log n) weights to be assigned, this step requires O(m log n) work and depth O(1). In order to
identify the cut-off point, we want to identify the smallest weight x such that in graph limited only
to the weights smaller than x the number of the edges between connected components is smaller
than some threshold cn. To identify such x we can use binary search – for each value of x we test,
we can compute a MSF in O(log n) steps, with O(m) work, and identify all edges that are between
connected components in additional O(log n) steps and O(m) work. Hence, for a given x, computing
the number of the edges between the connected components of a graph limited to the edges lighter
than x requires O(log n) steps and O(m) work. Since the random weights are selected from some
polynomial range, binary search for a single contraction process requires querying O(log n) possible
values of x. Since the number of queries is Θ(log n), total number of steps (depth) of this part of
the algorithm is O(log2 n), and the total work that is done is Θ(log2 n) · O(m).

Merging the results of contractions: At this point, we have Θ(log n) multigraphs and each
has only O(n) edges. By using the probability amplifying technique described in Section 2.4, we
can transform them into a single graph with O(n) edges that preserves a all non singleton (2 − ε)
minimum cuts. To do so, it is enough to compute for each edge what is the number of contraction
processes, which preserved that edge and keep only those that were preserved r ∈ Ω(log n) times,
and contract all other edges. More precisely, if Er is the set of edges we want to preserve, we contract
all connected components of the graph G′ = (V,E \ Er).

In order to compute the number of contraction processes that preserved an edge, we can simply
scan over all the results of contraction processes, which requires O(n log n) work, and has depth
O(log n), and split the set of edges into E \ Er and Er, which can be done via parallel prefix com-
putation in O(m) work, with depth O(log n). The last part is a connected component computation,
which can be done in O(m) work and O(log n) depth, and relabeling the edges of Er so that for each
edge we could know what are the identifiers of the endpoints after contractions, which also can be
done in O(m) work and O(log n). Therefore, merging the results of contractions from Theorem 2.2
into a graph from Theorem 2.1 requires O(m + n log n) work and O(log n) depth. This concludes
the proof of Lemma 7.1.

Computing Minimum Cut: At this point, we have a single multigraph with O(n) edges that
preserves a minimum cut with high probability. The state of the art CREW PRAM algorithm can
compute its minimum cut in O(n log4 n) work, with depth O(log3 n).

Therefore, the whole algorithm require O(m log2 n+n log4 n) work and has O(log2 n+ log3 n) =
O(log3 n) depth, which concludes the proof of Theorem 1.4.
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