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Abstract—Large scale decentralized communication systems
have motivated a new trend towards online routing where
routing decisions are performed based on a limited and localized
knowledge of the network. Geometrical greedy routing has been
among the simplest and most common online routing schemes.
While a geometrical online routing scheme is expected to deliver
each packet to the point in the network that is closest to
the destination, geometrical greedy routing, when appliedover
generalized substrate graphs, does not guarantee such delivery
as its forwarding decision might deliver packets to a localized
minimum instead. This letter investigates the necessary and
sufficient conditions of greedy supporting graphs that would
guarantee such delivery when used as a greedy routing substrate.

Index Terms—Delaunay Triangulation, Greedy Routing, Geo-
metric Routing, P2P Networks, Wireless Networks

I. I NTRODUCTION

D ISTRIBUTED routing has become a trend in a variety
of communication architectures ranging from ad-hoc and

wireless sensor networks to large-scale P2P networks such
as Massively Multiuser Virtual Environments (MMVE) and
online games. In many cases, complete knowledge about the
environment in which routing takes place is not available be-
forehand, and the path must be determined through a localized
routing decision process without having a global knowledge.
This family of memory-less routing schemes are generally
referred to as online routing algorithms [1].
Among online routing algorithms, greedy routing is one of the
simplest and most commonly used. In greedy routing, when a
node wants to forward a packet to one of its neighbors as the
next routing hop, it tries to choose the neighbor that has the
shortest distance (is the closest) to the destination. However,
the algorithm only considers the neighbors that are closer to
the destination compared to the current node and will retain
the packet in this node if it fails to find such a neighbor.
Distance may be defined in terms of different criteria. The
simplest and most general implementations select the nearest
neighbor to the destination in terms of Euclidean distance.
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While there are other metrics such as Most Forward within
Radius (MFR), Nearest Forward Progress (NFP), Geographic
Distance Routing (GEDIR), and others, there is a quite similar
fundamental operation among these schemes: choosing the
next hop from among the neighbors that leads to getting closer
to the destination. A comprehensive survey of greedy routing
algorithms and the variety of exploited metrics in the context
of Ad Hoc Networks is provided in [2] where they have also
been compared with other types of position-based routings.
Perhaps the main reason behind the popularity of greedy
routing in decentralized systems is that its decision algorithm
only requires information about the location of the current
node, its immediate neighbors, and the destination node. This
significantly reduces implementation complexity, especially in
large scale systems where complete knowledge of the network
is not easily accessible. However, the local routing decision
suffers from a serious shortcoming: the possibility of getting
stuck in a local optimum rather than a global one, hence failing
to deliver a packet to its intended destination.
To avoid such cases, the routing graph must be chosen
carefully. A graphG = (V, E) is considered to support
greedy routingiff greedy routing onG delivers each and
every packet to the member ofV that is closest to the
destination. Obviously, the packet must be delivered to the
exact destination if the destination itself exists as a member
in V . According to this definition, greedy routing can also be
used for multicasting to the closest neighborhood of a desired
point, which is the main goal in geocasting applications, as
well as a common operation in many Internet applications such
as server selection, node clustering, and peer-to-peer overlay
networks [3].
Delaunay Triangulation (DT) has been proven to provide a
promising substrate graph for greedy routing: Dobkin et al.
[4] showed that the shortest path in Delaunay Triangulation
is within a constant time of the shortest path in the complete
graph. Moreover, Bose et al. [1] and Lee et al. [3] proved
that Delaunay Triangulation supports greedy routing. However,
the reliability of greedy routing over other types of substrates
has also been a subject of research since it was thought that
other graphs could possibly support greedy routing as well.For
example, the work in [5] studies a number of possible graphs
that fail to guarantee greedy routing convergence over non-DT
architectures, and hence it uses a modified version of greedy
routing named GPSR (Greedy Perimeter Stateless Routing)
that has been enhanced by a “recovery phase” to get out of
local minima. Similarly, the work in [6] uses another modified
version of greedy routing (GOFAR+: Greedy Other Adaptive
Face Routing plus Adaptive Boundary Circle) to avoid this
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problem, though it does state that doing so will lead to a
far less efficient performance. While these and other similar
protocols manage to avoid delivery failure, their modification
of greedy routing results in increased complexity and reduced
efficiency that have been the main motivations behind using
greedy routing in the first place. Clearly, to know what graph
is needed to support greedy routing (without modifying greedy
routing and losing its simplicity and efficiency) would be of
great interest to practitioners in this field.
In this article, we discuss this problem in a general case and
we prove for the first time that in fact, containing Delaunay
Triangulation without degenerate edges as a subset of substrate
graph is a necessary and sufficient condition for supporting
greedy routing with guaranteed closest-to-destination delivery
of packets. In other words, greedy routing will not deliver
packets to an incorrect localized minimumiff a Delaunay Tri-
angulation substrate without degenerate edges is used. While
the sufficiency case has been shown in [1] and [3], the neces-
sity is a new finding that will have significant implications for
applications where the routing graph can be selected by the
application itself, such as P2P networks, Wireless networks,
Ad-hoc networks, MMVEs, etc. For these and other similar
applications, we show that it’s not just a matter of choice to
use or not use DT, but DT must be contained in all greedy
routing substrates as a matter of necessity. We start the proof
by first presenting some notations and definitions that will be
used in the course of this work.

II. DEFINITIONS

1) Voronoi Cell: Consider a set of pointsV , in the Eu-
clidean plane. For each pointvi ∈ V , the Voronoi Cell ofvi,
V C(vi), is defined as the set of all points in the plane that are
closer tovi than any other point inV . It should be noted that
according to this definition, Voronoi Cells of the members of
V partition the Euclidean plane.

2) Delaunay Triangulation: Presuming a set of pointsV ,
Delaunay Triangulation ofV , DT (V ), is a graphG = (V, E)
where e = (vi, vj) ∈ E, iff V C(vi) and V C(vj) have a
side(or at least a point) in common. IfV C(vi) and V C(vj)
only share a single point, the edgee = (vi, vj) is referred to
as a degenerate edge. It is a well-known fact that Delaunay
Triangulation is the dual graph of Voronoi diagram. An
example of a Voronoi Diagram and its corresponding Delaunay
Triangulation is represented in Fig. 1.

3) Vertex Region: Consider a graphG = (V, E) on the set
of points V , where for eachvi ∈ V , N(vi) stands for the
neighbor set ofvi. For eachvi ∈ V , we define the Vertex
Region ofvi in graphG, V RG(vi), as the set of all points in
the plane that are closer tovi than to any other point inN(vi).
Fig. 2 shows the Vertex Region for a node in a sample graph
along with the Voronoi diagram of the same set of nodes.

4) Non-Degenerate Delaunay Graph (NDDG): Having a
set of pointsV in the plane, we construct a GraphG = (V, E)
on V in a way thatE only contains the set of all non-
degenerate edges ofDT (V ). We call this graph NDDG of
the set of points.

Remark 1. For each vi ∈ V , we have N(vi) ⊂ V and thus,
V C(vi) ⊂ V RG(vi).
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Fig. 1. Voronoi Diagram and Delaunay Triangulation
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III. T HEOREM AND PROOF

Before going through the proof of the main theorem, We
will prove another theorem that will be later used in the main
proof. The following theorem has also been used in [7] by the
authors.

Theorem 1. Graph G = (V, E) on the nodes V in the
Euclidean plane supports greedy routing iff for every node
vi ∈ V , V RG(vi) = V C(vi).

Proof: For the sufficiency condition, suppose that the
graphG = (V, E) satisfies the conditionV RG(vi) = V C(vi)
for each nodevi ∈ V . We can then prove thatG supports
greedy routing by contradiction: assuming thatG does not
support greedy routing, there exists a pointvi ∈ V where a
packet might get stuck and cannot be forwarded any further
while vi is not the closest point inV to the packet destination.
Assuming thatvi is not the closest point inV to the packet
destination, the packet destination should be located outside
of the V C(vi). As V RG(vi) = V C(vi), the destination
point should be also located out ofV RG(vi). Therefore, there
should be a pointvj ∈ N(vi) that is closer to the packet
destination thanvi to which the packet will be forwarded. This
is in contradiction with the assumption of the packet getting
stuck invi.
For the necessity condition, it is assumed that G supports
greedy routing. We can then prove thatV RG(vi) = V C(vi)
for everyvi ∈ V . According to Remark 1, for eachvi ∈ V ,
V C(vi) ⊂ V RG(vi). Therefore, it suffices to show that
V RG(vi) ⊂ V C(vi), as well. This can be proven by contradic-
tion. Suppose that there exists a pointx ∈ V RG(vi) that does
not belong toV C(vi). Sincex /∈ V C(vi) and Voronoi Cells
partition the plane,x is in the Voronoi Cell of another node
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Fig. 3. Proof of Theorem2

vj . Therefore,vi is not the closest member ofV to x. On the
other handx ∈ V RG(vi), and hencevi has no closer neighbor
to x than itself. Thus, if a packet destined tox reachesvi or
starts invi, it cannot be delivered tovj . ThereforeG does not
support greedy routing and this is in contradiction with the
initial assumption.

Theorem 2. Graph G = (V, E) supports greedy routing iff
E contains all of the non-degenerate edges of DT (V ) as its
subset.

Proof: It is obvious that if E contains all of non-
degenerate edges ofDT (V ) as its subset, we will have
V RG(vi) = V C(vi) for every vi ∈ V and thus, using
Theorem 1, it is concluded thatG supports greedy routing.
We prove the necessity condition by contradiction. Suppose
that G supports Greedy routing and there exists a non-
degenerate edgee = (vi, vj) in DT (V ) that does not belong
to E. As e is a non-degenerate edge ofDT (V ), V C(vi)
andV C(vj) should have at least two different pointsp1 and
p2 in common. Thereforep1, p2 ∈ V C(vi) ∩ V C(vj) and
p1 6= p2. Assume thatp is the middle point of the line
connectingp1 to p2. Since each Voronoi Cell is a convex
set, p ∈ V C(vi) ∩ V C(vj), and thusp is a boundary
point of V C(vi). As p ∈ V C(vi), it can be concluded that
p ∈ V RG(vi) according to Remark 1. Thus,p is either an
interior or a boundary point ofV RG(vi). We show thatp is
an interior point ofV RG(vi), and thusV RG(vi) 6= V C(vi)
which, according to Theorem 1, is in contradiction with the
assumption thatG supports greedy routing.
If p is assumed to be a boundary point ofV RG(vi), vi has a
neighborvk such thatd(p, vi) = d(p, vk), whered exhibits the
Euclidean distance. Therefore,vk is on the circle centered at
p and passingvi (Fig. 3). Asvk 6= vj , the orthogonal bisector
of the line segment connectingvi to vk crosses the orthogonal
bisector of the line segment fromvi to vj (the line passingp1

andp2), as demonstrated in Fig. 3. Therefore, pointsp1 andp2

belong to different half-planes constructed by the orthogonal
bisector of the line segment fromvi to vk. Hence, one of
these points is strictly closer tovk thanvi. However, this is in
contradiction with the assumption thatp1, p2 ∈ V C(vi).

Theorem 2 completely specifies the characteristics of greedy

supporting geometric graphs. According to Theorem 2, any
graph G on the point setV supports greedy routingiff G
contains NDDG ofV as its sub-graph. Therefore, NDDG of
V is the sparsest greedy supporting graph onV . It should
be noted that, for all practical purposes in real-world network
routing, NDDG will be the same as Delaunay Triangulation.
The only exception occurs when the Delaunay Triangulation
graph contains a number of degenerate edges, which happens
if and only if there are more than 3 points ofV on the
same circle. In this condition, the unique definition of De-
launay Triangulation fails and some other possible Delaunay
Triangulations (without degenerate edges) might exist forthe
same set of points. However, for each set of pointsV , NDDG
of V is always the common part of all possible Delaunay
Triangulations forV .

IV. CONCLUSION

In this article, we have proven that the use of NDDG as
substrate in greedy routing based networks is a necessary and
sufficient condition in order to guarantee nearest-to-destination
delivery and to avoid getting stuck in a local minimum. The
arguments and results obtained here can be applied to any
arbitrary greedy routing scheme (such as MFR, NFP, etc.) as
our reasoning is only based on the fact that the algorithm
wants to find a neighbor as the next hop which is closer
to the destination. Closeness can be defined in terms of
any arbitrary criterion, but the algorithm’s criterion is not
considered in our proof and does not affect our conclusions.
Greedy routing is now a commonly used algorithm in a variety
of applications. However, in many cases, the substrate over
which the algorithm has been applied is not DT. In this work
we showed that any substrate that does not contain DT as its
sub-graph is prone to the risk of getting stuck in local minima.
Our findings also imply that when checking the reliability of
greedy routing on a given graph, it is sufficient to simply check
whether or not it contains the DT graph. This significantly
reduces time and effort when designing routing substrates and
node configurations.
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