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Abstract—Large scale decentralized communication systems While there are other metrics such as Most Forward within
have motivated a new trend towards online routing where Radius (MFR), Nearest Forward Progress (NFP), Geographic
routing decisions are performed based on a limited and loc&ed Distance Routing (GEDIR), and others, there is a quite simil

knowledge of the network. Geometrical greedy routing has ben fund tal fi th h - ch . th
among the simplest and most common online routing schemes. 'UNdamental opération among these schemes. choosing the

While a geometrical online routing scheme is expected to deer Next hop from among the neighbors that leads to getting close
each packet to the point in the network that is closest to to the destination. A comprehensive survey of greedy rgutin
the destination, geometrical greedy routing, when appliecbver  al|gorithms and the variety of exploited metrics in the cante
generalized substrate graphs, does not guarantee such dary A4 Hoc Networks is provided in [2] where they have also

as its forwarding decision might deliver packets to a localied b d with other t f ition-based fi
minimum instead. This letter investigates the necessary a&h een compared with other types of position-based routings.

sufficient conditions of greedy supporting graphs that woul Perhaps the main reason behind the popularity of greedy
guarantee such delivery when used as a greedy routing subste. routing in decentralized systems is that its decision algar
only requires information about the location of the current
Index Terms—Delaunay Triangulation, Greedy Routing, Geo- Node, its immediate neighbors, and the destination nodis. Th
metric Routing, P2P Networks, Wireless Networks significantly reduces implementation complexity, espécia
large scale systems where complete knowledge of the network
is not easily accessible. However, the local routing denisi
suffers from a serious shortcoming: the possibility of igett
ISTRIBUTED routing has become a trend in a varietgtuck in a local optimum rather than a global one, hencenfaili
of communication architectures ranging from ad-hoc artd deliver a packet to its intended destination.
wireless sensor networks to large-scale P2P networks sdth avoid such cases, the routing graph must be chosen
as Massively Multiuser Virtual Environments (MMVE) andcarefully. A graphG = (V, E) is considered to support
online games. In many cases, complete knowledge about treedy routingiff greedy routing onG delivers each and
environment in which routing takes place is not available bevery packet to the member df that is closest to the
forehand, and the path must be determined through a lodalizkestination. Obviously, the packet must be delivered to the
routing decision process without having a global knowledgexact destination if the destination itself exists as a mamb
This family of memory-less routing schemes are generally V. According to this definition, greedy routing can also be
referred to as online routing algorithms [1]. used for multicasting to the closest neighborhood of a ddsir
Among online routing algorithms, greedy routing is one @& thpoint, which is the main goal in geocasting applications, as
simplest and most commonly used. In greedy routing, whemeell as a common operation in many Internet application& suc
node wants to forward a packet to one of its neighbors as the server selection, node clustering, and peer-to-peelagve
next routing hop, it tries to choose the neighbor that has thetworks [3].
shortest distance (is the closest) to the destination. Merve Delaunay Triangulation (DT) has been proven to provide a
the algorithm only considers the neighbors that are clasergromising substrate graph for greedy routing: Dobkin et al.
the destination compared to the current node and will retdd] showed that the shortest path in Delaunay Triangulation
the packet in this node if it fails to find such a neighbois within a constant time of the shortest path in the complete
Distance may be defined in terms of different criteria. Thgraph. Moreover, Bose et al. [1] and Lee et al. [3] proved
simplest and most general implementations select the steatbat Delaunay Triangulation supports greedy routing. Haxe
neighbor to the destination in terms of Euclidean distancihe reliability of greedy routing over other types of substs
has also been a subject of research since it was thought that
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problem, though it does state that doing so will lead to a

far less efficient performance. While these and other simila y ~07C
protocols manage to avoid delivery failure, their modifizat ’
of greedy routing results in increased complexity and reduc
efficiency that have been the main motivations behind using
greedy routing in the first place. Clearly, to know what graph
is needed to support greedy routing (without modifying gsee
routing and losing its simplicity and efficiency) would be of
great interest to practitioners in this field.
In this article, we discuss this problem in a general case and
we prove for the first time that in fact, containing Delaunay
Triangulation without degenerate edges as a subset ofratdst
graph is a necessary and sufficient condition for supporting
greedy routing with guaranteed closest-to-destinatidivety
of packets. In other words, greedy routing will not deliver
packets to an incorrect localized minimufh a Delaunay Tri-
angulation substrate without degenerate edges is usede Whi
the sufficiency case has been shown in [1] and [3], the neces-
sity is a new finding that will have significant implicatiore f
applications where the routing graph can be selected by the
application itself, such as P2P networks, Wireless netsjork
Ad-hoc networks, MMVESs, etc. For these and other similar
applications, we show that it's not just a matter of choice to
use or not use DT, but DT must be contained in all greedy Fig. 2. Vertex Region Definition
routing substrates as a matter of necessity. We start thaf pro
by first presenting some notations and definitions that véll b
used in the course of this work.

Il. DEEINITIONS Before going through the proof of the main theorem, We
will prove another theorem that will be later used in the main

.1) Voronoi Call: Con5|de_r a set of point¥, n the Eu- proof. The following theorem has also been used in [7] by the
clidean plane. For each point € V, the Voronoi Cell ofuv;, authors

VC(v;), is defined as the set of all points in the plane that are
closer tov; than any other point ifv. It should be noted that Theorem 1. Graph G = (V,E) on the nodes V' in the
according to this definition, Voronoi Cells of the members dfuclidean plane supports greedy routing iff for every node
V partition the Euclidean plane. v; €V, VRa(v;) = VC(uv;).

2) Delaunay Triangulation: Presuming a set of poinfg,
Delaunay Triangulation oV, DT (V), is a graphG = (V, E)

Fig. 1. \Voronoi Diagram and Delaunay Triangulation

Vertex Region of the selected node
An arbitrarily chosen sample graph
= = = Vornoi Diagram

Ill. THEOREM AND PROOF

Proof: For the sufficiency condition, suppose that the

wheree = (vi,v;) € E, iff VC(v;) and VC(v;) have a graphG = (V, E) satisfies the conditiol R (v;) = VC(v;)

) s = ! J for each nodev; € V. We can then prove thaf supports

side(or at least a point) in common. WC'(v;) and VC(v;) . o ;

only share a single point, the edge- (v;,v;) is referred to greedy routing by c_ontradlct|0n._assum|n_g ti@tdoes not

as a degenerate edge. It is a well-known fact that Delaun?zllgf)port g_reedy routing, there exists a paintc 1 where a

Triangulation is the dual graph of Voronoi diagram. A (_:ket mlght get stuck and.ca.nnot be forwarded any further
while v; is not the closest point iy’ to the packet destination.

example of a Voronoi Diagram and its corresponding Delaun . . L
P g P 9 %ésumlng thatv; is not the closest point iV’ to the packet

Triangulation is represented in Fig. 1. L L
3) Vertex Region: Consider a graphil = (V, E) on the set destination, the packet destination should be Iocat_eddmts
of the VC(v;). As VRg(v;)) = VC(v;), the destination

of points V', where for eachv; € V , N(v;) stands for the .
neighbor set ofy;. For eachy; € V We( d)efine the Vertex POINt should be also located out iR« (v;). Therefore, there
: ’ ’ should be a pointy; € N(v;) that is closer to the packet

Region ofv; in graphG, V R (v;), as the set of all points in " . ; .
the plane that are closer to than to any other point itV (v; ). Qest|nat|on tham; to which the packet will be forwarded. This

Fig. 2 shows the Vertex Region for a node in a sample grag‘nin c_ontradiction with the assumption of the packet gettin
along with the Voronoi diagram of the same set of nodes. tuck inv;. . " o

4) Non-Degenerate Delaunay Graph (NDDG): Having a For the necessity condition, it is assumed that G supports
set of pointsV’ in the plane, we construct a Gragh= (V, ) 9reedy routing. We can then prove thaig(v;) = VC'(v;)
on V in a way thatE only contains the set of all non-for veryv; € V. According to Remark 1, for each < V,

degenerate edges d7(V). We call this graph NDDG of VC(vi) C VRg(v;). Therefore, it suffices to show that
the set of points. VR¢(v;) C VC(v;), as well. This can be proven by contradic-

tion. Suppose that there exists a point V R (v;) that does
Remark 1. For each v; € V, we have N(v;) C V and thus, not belong toVC(v;). Sincex ¢ VC(v;) and Voronoi Cells
VC(vi) C VRe(v;). partition the planey is in the Voronoi Cell of another node



IEEE COMMUNICATION LETTERS, VOL. , NO. , 3

= = = Vertex Region of v and supporting geometric graphs. According to Theorem 2, any
rinosenal hsecior o ne seqmerty, o' graph G on the point setl’ supports greedy routingf G
contains NDDG ofV as its sub-graph. Therefore, NDDG of
V is the sparsest greedy supporting graphionit should
be noted that, for all practical purposes in real-world roetw
routing, NDDG will be the same as Delaunay Triangulation.
The only exception occurs when the Delaunay Triangulation
graph contains a number of degenerate edges, which happens
if and only if there are more than 3 points & on the
same circle. In this condition, the unique definition of De-
launay Triangulation fails and some other possible Delguna
Triangulations (without degenerate edges) might existlier
same set of points. However, for each set of pointdNDDG
Fig. 3. Proof of Theorem2 of V is always the common part of all possible Delaunay
Triangulations forV.

Circle centered at p passing from v,

.

v;. Thereforey; is not the closest member &f to z. On the IV. CONCLUSION
other handr € V R (v;), and hencey; has no closer neighbor In this article, we have proven that the use of NDDG as
to = than itself. Thus, if a packet destined toreachesy; or substrate in greedy routing based networks is a necessdry an
starts inv;, it cannot be delivered to;. ThereforeGG does not sufficient condition in order to guarantee nearest-toidagon
support greedy routing and this is in contradiction with theelivery and to avoid getting stuck in a local minimum. The
initial assumption. B arguments and results obtained here can be applied to any
arbitrary greedy routing scheme (such as MFR, NFP, etc.) as
our reasoning is only based on the fact that the algorithm
wants to find a neighbor as the next hop which is closer
to the destination. Closeness can be defined in terms of
Proof: It is obvious that if E contains all of non- any arbitrary criterion, but the algorithm’s criterion iotn
degenerate edges aPT(V) as its subset, we will have considered in our proof and does not affect our conclusions.
VRa(v;) = VC(v;) for everyv; € V and thus, using Greedy routing is now a commonly used algorithm in a variety
Theorem 1, it is concluded th& supports greedy routing. ©Of applications. However, in many cases, the substrate over
We prove the necessity condition by contradiction. Suppogéich the algorithm has been applied is not DT. In this work
that G supports Greedy routing and there exists a noe showed that any substrate that does not contain DT as its
degenerate edge= (v;,v;) in DT(V) that does not belong sub-graph is prone to the risk of getting stuck in local miaim
to E. As e is a non-degenerate edge &fT(V), VC(v;) Our findings also imply that when checking the reliability of
and VC(v;) should have at least two different poinis and ~greedy routing on a given graph, it is sufficient to simplyce
po in common. Therefore,,ps € VC(v;) N VC(v;) and Wwhether or not it contains the DT graph. This significantly
p1 # pe. Assume thatp is the middle point of the line reduces time and effort when designing routing substrateds a
connectingp; to p.. Since each Voronoi Cell is a convexnode configurations.
set, p € VC(v;) N VC(v;), and thusp is a boundary

Theorem 2. Graph G = (V, E) supports greedy routing iff
E contains all of the non-degenerate edges of DT'(V) as its
subset.
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Theorem 2 completely specifies the characteristics of greed



