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Abstract

We design leader election protocols for multi-hop radio
networks that elect a leader in almost the same time
TBC that it takes for broadcasting one message (one ID).
For the setting without collision detection our algorithm
runs whp. in O(D log n

D + log3 n) ·min{log log n, log n
D}

rounds on any n-node network with diameter D. Since
TBC = Θ(D log n

D + log2 n) is a lower bound, our upper
bound is optimal up to a factor of at most log log n
and the extra log n factor on the additive term. Our
algorithm is furthermore the first O(n) time algorithm
for this setting.

Our algorithm improves over a 23 year old simula-
tion approach of Bar-Yehuda, Goldreich and Itai with
a O(TBC log n) running time: In 1987 they designed a
fast broadcast protocol and subsequently in 1989 they
showed how it can be used to simulate one round of a
single-hop network that has collision detection in TBC
time. The prime application of this simulation was
to simulate Willards single-hop leader election proto-
col, which elects a leader in O(log n) rounds whp. and
O(log log n) rounds in expectation. While it was subse-
quently shown that Willards bounds are tight, it was un-
clear whether the simulation approach is optimal. Our
results break this barrier and essentially remove the log-
arithmic slowdown over the broadcast time TBC . This
is achieved by going away from the simulation approach.

We also give an O(D + log n log log n) ·
min{log logn, log n

D} = O(D + log n) · O(log log n)2

leader election algorithm for the setting with collision
detection (even with single-bit messages). This is
optimal up to log log n factors and improves over a
deterministic algorithm that requires Θ(n) rounds
independently of D.

Our almost optimal leader election protocols are
especially important because countless communication
protocols in radio networks use leader election as a
crucial first step to solve various, seemingly unrelated,
communication primitives such as gathering, multiple
unicasts or multiple broadcasts. Even though leader
election seems easier than these tasks, its best-known
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O(TBC log n) running time had become a bottleneck,
preventing optimal algorithms. Breaking the simulation
barrier for leader election in this paper has subsequently
led to the development of near optimal protocols for
these communication primitives.

1 Introduction

In this paper we present the first linear time distributed
algorithm for electing a leader in a radio network
without collision detection, which improves over a 23
old algorithm of Bar-Yehuda, Goldreich and Itai.

Leader election, the task of nodes agreeing on the
election of a single node in a network, is one of the most
fundamental problems in distributed computing. It is
the ultimate way to break symmetries in an initially
unknown system. As such, it is a natural primitive
that is used as a first step in many more high level
tasks that require or benefit from having one designated
“organizer”. Due to its importance, leader election has
been studied in many different network settings.

The setting we are interested in is radio networks.
The standard model to study these networks is the radio
network model presented in [7]. Here, nodes operate
in synchronous rounds in which, each node can either
transmit a logarithmic size message to its neighbors
or remain silent listening. Only a listening node with
exactly one sending neighbor receives a message while
nodes with multiple transmitting neighbors only receive
a collision. Depending on the model, such a collision can
be detected at the receiver or not.

This interfering behavior of transmissions makes
even basic communication tasks challenging. Since the
introduction of model in 1985, several hundred research
papers have given more and more efficient solutions to
communication problems such as single-message broad-
cast, leader election, aggregation, multiple unicasts or
broadcasts. The two first and most influential papers
in this direction are [3] and [4] published in 1987 and
1989 by Bar-Yehuda, Goldreich and Itai (BGI). In the
first paper [3], BGI presented Decay protocol as an ef-
ficient single-message broadcast protocol for radio net-
works. Since then, Decay protocol has been one of the
main methods for coping with collisions of radio net-
works. In the second work [4], BGI use Decay protocol



to emulate single-hop networks with collision detection
in multi-hop networks without collision detection, with
a slowdown factor equal to the broadcast time TBC .
The prime application for this emulation was to trans-
fer results for leader election on single hop networks
with collision detection to the multi-hop networks with-
out collision detection. In particular, this allowed for
simulating a leader election algorithm of Willard [24] in
multi-hop networks without collision detection. This
emulation approach elects a leader in expected time
O(TBC log log n) rounds and in O(TBC log n) rounds
with high probability.

The obvious question asked by BGI [4] was whether
this time can be improved. Despite lots of works, this
question remained mainly unanswered except knowing
the optimal complexity of each of the pieces of the
emulation approach: Novel upper and lower bounds
showed that in a diameter D network TBC equals
Θ(D log n

D+log2 n) = O(n). Moreover, [23] showed that
Ω(log n) rounds are needed for a high probability leader
election in single hop networks with collision detection.
Thus, the remaining question now was about whether
the whole emulation approach is optimal.

We break this simulation barrier for leader election
by presenting an algorithm which parts from simulation
paradigm and achieves time complexity almost TBC .
More precisely, this algorithm runs with high proba-
bility in O((D log n

D + log3 n) × min{log log n, log n
D})

rounds — which is in O(n) rounds — on any n node
network with diameter D. This is almost optimal since
Ω(D log n

D + log2 n) is a lower bound. We also give
an algorithm for radio networks with collision detec-
tion. This algorithm runs in near optimal time O(D +
log n log log n) × min{log log n, log n

D} — which is also
in O(n) — almost matching the respective Ω(D+log n)
lower bound. We note that these two are the first algo-
rithms that solve the leader election problem in essen-
tially the time needed to broadcast one message (each
in the related settings).

Aside from the complexity of leader election, there
is another side to the story: Countless communication
protocols in radio networks traditionally use leader
election as a crucial first step to solve various, seemingly
unrelated, communication tasks like multiple unicasts
or broadcasts. Even though leader election seems
easier than these tasks, its O(TBC log n) best-known
bound had become a bottleneck and had kept time
complexities of these other problems unresolved as
well. Our results solve this issue and set the stage
for obtaining near optimal algorithms for many other
natural communication primitives that rely on leader
election. In particular, we resolve the complexity of a
number of these primitives in a parallel work [13].

2 Related Work

The problem of leader election has received vast amount
of attention under various communication models and
assumptions [22]. This problem becomes considerably
more challenging in the radio networks model (see e.g.
[2, 4, 6, 9, 15–17,20,21,23,24]).

Single-Hop Radio Networks: The study of leader
election in radio networks started with the special case
of single-hop networks, where the network is a com-
plete graph. The story goes back to 70’s and 80’s,
when [2, 6, 17] independently showed that in the model
with collision detection, the problem can be solved in
O(log n) rounds deterministically, and this was shown
to be optimal for deterministic algorithms by Ω(log n)
lower bound of [16]. On the randomized side of the prob-
lem in the model with collision detection, even though
the expected time was improved to O(log log n) [23,24],
the high probability time remained O(log n) in both.
These bounds were proven to be tight by Ω(log log n)
lower bound on the expected time of uniform proto-
cols [24], and Ω(log n) lower bound for the high prob-
ability time of uniform protocols [23]. The assumption
of uniformity in the latter result was later removed [15].

In the single-hop networks without collision detec-
tion, for deterministic algorithms [9] presented matching
upper and lower bounds of Θ(n log n). For randomized
bounds, [21] showed that Ω(log n) is a lower bound on
the expected time, and [18] showed that Θ(log2 n) is the
tight bound for the high probability time by presenting
O(log2 n) upper bound and Ω(log2 n) lower bound.

These bounds, altogether, in principle settle the
time complexity of the single-hop case.

Multi-Hop Radio Networks: In contrast to the
single-hop special case, the complexity of the general
case of multi-hop networks did not see much progress,
after the initial results.

The research about theoretical problems in multi-
hop radio networks essentially started with the pioneer-
ing papers of Bar-Yehuda, Goldreich and Itai (BGI)
[3, 4]. In the first paper, BGI devised the Decay pro-
tocol as a solution for single-message broadcast prob-
lem, resulting in almost optimal broadcast time of
O(D log n + log2 n). This protocol later became the
standard approach in coping with collisions of radio
networks (see e.g. [4, 5, 8, 12]). Provided by this al-
most optimal broadcast algorithm, and given that the
case of leader election in single-hop radio networks was
well-studied, a natural idea was to simulate the ‘single-
hop’ leader election algorithms over multi-hop radio net-
works. Along this idea, in the second paper, BGI used
Decay protocol to emulate a single-hop radio network
with collision detection on top a multi-hop radio net-



work without collision detection. As the prime appli-
cation, they used this emulation to simulate Willard’s
single-hop leader election algorithm [24] in multi-hop
radio networks without collision detection. This re-
sulted in time complexity ofO((D log n+log2 n) log n) =
O(n log2 n) for a with high probability result (and also
O((D log n+ log2 n) log log n) = O(n log n · log log n) for
expected time).

Given this efficient algorithm, the remaining ques-
tion was how to improve it to optimality. One
idea would be to use a better leader election algo-
rithm of single-hop networks, but given lower bounds
Ω(log log n) on the expected time [24] and Ω(log n) for
high probability results [23], there was no hope in that
direction.

The next idea was to improve upon the Decay
broadcast algorithm. By modifying the Decay pro-
tocol, Czumaj and Rytter [11] and Kowalski and
Pelc [19] reduced the time complexity of broadcast
from O(D log n + log2 n) to optimal time of TBC =
O(D log n

D + log2 n), known to be optimal in light of

Ω(D log n
D ) lower bound of [21] and Ω(log2 n) lower

bound of [1]. Albeit not being published explicitly,
by providing a substitute for the old Decay in BGI’s
framework, this new Decay changed the time complex-
ity of leader election (using simulation approach) to
O(TBC log n) = O(n log n) for a with high probability
algorithm (and O(TBC log log n) = O(n log log n) ex-
pected time). Given that now both elements of the
emulation — single-hop leader election algorithm and
broadcast algorithm — were optimal, the remaining in-
teresting question was “can one improve upon the leader
election time bound by going away from the simulation
approach?”. In this paper we answer this question in
affirmative.

For networks with collision detection, Kowalski
and Pelc [20] presented an O(n) deterministic algo-
rithm. This highlighted the difference between models
with and without collision detection as a lower bound
of Ω(n log n) was known for deterministic leader elec-
tion without collision detection even for single-hop net-
works [9]. We remark here that the time complexity of
this algorithm remains Θ(n) even when diameter D of
the network is small.

3 Preliminaries

3.1 Network Models We consider the standard ra-
dio multi-hop network model [3,4,7]. In this model the
network is represented by a connected undirected graph
G = (V,E) with n = |V | nodes and diameter D. Com-
munication in such a network takes place in synchronous
rounds; in each round, each node is either listening or
transmitting a Θ(log n)-bit packet. In each round, each

node v ∈ V can receive a packet only from its neighbors
and only if v itself is not transmitting in that round. If
two or more neighbors of v transmit in a round, then
these transmissions collide at v and v does not receive
any packet. In this case, we consider two models vari-
ants: (1) the model with no collision detection (CD)
where the node v can not distinguish this collision from
silence, and (2) the model with CD where v gets to know
that a collision happened.

Instead of studying the radio network model with
collision detection directly, we choose a strictly weaker
model, namely the beep model as introduced in [10].
A beep network works in synchronous rounds. In
each round, each node can either beep (transmit) or
remain silent. At the end of a round, each silent node
gets to know whether at least one of its neighbors
was beeping or not. We note that the beep model
can be seen as a radio network model with collision
detection and 1-bit packets but with the additional
weakening limitations that nodes can not distinguish
between one neighbor sending a 1 or 0 or between the
cases where exactly one or more than one neighbor is
beeping. This extremely basic communication model
is an interesting weakening of the standard model with
collision detection, from both theoretical and practical
viewpoints. Any algorithm designed for beeping model
can be directly used for the standard model with
collision detection. However, designing such algorithms
is typically more challenging. On the practical side,
it has been argued that the beeping model can be
implemented easily in most environment, e.g., using
extremely simple radios or carrier sensing [10].

All algorithms we study in these networks are
randomized and distributed. All stated running times
hold with high probability (in contrast to merely in
expectation). As is standard for distributed algorithms,
we assume that nodes have no knowledge about the
topology except for knowing n and D (up to constant
factors). We remark that the assumption of knowing D
can be removed easily without any asymptotic loss in
time bounds, using standard double-and-test parameter
estimation techniques. We also assume, without loss of
generality, that nodes have unique logarithmic size IDs.

3.2 The Leader Election Problem The problem
studied in this paper is the Leader Election problem.
The goal of this task is to elect a single node in the
network. More formally, we say an algorithm solves the
leader election problem in time T (n,D) if, when run on
every node in any network with n nodes and diameter
D, within T (n,D) rounds each node outputs exactly
one ID of a node in the network and all nodes output
the same ID, with high probability.



The lower bounds on the leader election problem
stated next easily follow from the lower bounds on the
single-message broadcast problem given in [1, 21] or
those of single-hop model [15,23]:

Lemma 3.1. Any algorithm requires at least
Ω(D log n

D + log2 n) = Ω(TBC) rounds to solve
the leader election problem in radio networks without
collision detection.

Lemma 3.2. Any algorithm requires at least Ω(D +
log n) rounds to solve the leader election problem in
radio networks with collision detection or beep networks.

We remark that one can alternatively define a
slightly weaker version of the leader election problem
that only requires exactly one node to output a 1 while
all other nodes output a 0. The same lower and upper
bounds hold for this problem as well.

3.3 Message Dissemination in Radio Networks:
The Decay-Protocols In this section we present a re-
cap on the Decay broadcast algorithm from [3] and [11].
This algorithm is one of the standard techniques for re-
solving collisions in radio networks, and as many other
papers in this area, our algorithms also build on it ex-
tensively. The Decay algorithm is used to spread infor-
mation present in some nodes to neighboring nodes or
all nodes in a radio network without collision detection.
The specific protocol we use in this paper is a tweaked
version of the protocol in [11] which itself slightly speeds
up the classical Decay-protocol of [3]. Our main mod-
ifications is the introduction of the delay parameter δ
which allows us to control the speed of the information
dissemination process. In the following, we present our
variant of the Decay, and its properties. These proper-
ties are straightforward to prove or follow from [11].

Definition 3.1. (Decay(δ) Algorithm) For any n
and D, we define the sequence I[30 logn] such that for
every j ∈ [10 log n] we have: I3j = log n

D , I3j+1 = j
mod log n

D and I3j+2 = j mod log n. Given this
sequence, we say a group of nodes, some of which
have messages to send, perform r rounds of Decay(δ)
during rounds t to t + 30 log n if these nodes do as
follows: For every j = 1 to 30 log n, every sender
(node with a message) transmits its message in round
t + j independently with probability 2−Ij and any non-
sender node, upon receiving its first message switches to
becoming a sender of that message after δ rounds.

Lemma 3.3. After T ≥ 30 log n rounds of Decay(T ),
each listening node with at least one sender neighbor,
receives at least one message from its neighbors, with
probability at least 1/2.

Lemma 3.4. After T ≥ 30 log2 n rounds of Decay(T ),
each listening node with at least one sender neighbor
receives at least one message from its neighbors, with
high probability.

Lemma 3.5. ( [11]) For δ = log n
D , if Decay(δ) is

run for T = 30(Dδ + log2 n) rounds, then any node
v with distance d to the closest node that is initially
a sender will with high probability receive a message
for the first time between round (d − 1)δ and round
min{Dδ, d log n}+ log2 n rounds.

Lemma 3.6. ( [11]) For δ ≥ log n, if Decay(δ) is run
for T = 30(Dδ + log2 n) rounds, then any node v with
distance d to the closest node that is initially a sender
will with high probability receive a message for the first
time between round dδ and round Θ(dδ + log2 n).

4 Our Results

We show the following two results:

Theorem 4.1. In radio network without collision de-
tection, there is a distributed randomized algorithm that
in any network with n nodes and diameter D solves the
leader election problem in time

TnoCD = O
(
D log

n

D
+ log3 n

)
·min

{
log log n, log

n

D

}
Theorem 4.2. In beeping networks (or radio networks
with collision detection), there is a distributed random-
ized algorithm that in any network with n nodes and
diameter D solves the leader election problem in time

Tbeep = O (D + log n log log n) ·min
{

log log n, log
n

D

}
5 Overview

In this section we present an overview of our leader elec-
tion algorithms. All our algorithms try to implement an
ideal leader election template which we describe next.
The methods for implementing this template differ de-
pending on whether one is in a setting without or with
collision detection. We explain the key ideas of these
implementations in Section 5.2 and Section 5.3, respec-
tively.

5.1 Leader Election Template The main outline
of our algorithms and the topmost level of their ideas
are as follows.

Main Outline and the Debates: Given the
number of nodes n, we first use sampling to reduce the
number of possible candidates for leadership. Each node
decides to be a candidate, independently, with proba-
bility 10 logn

n . A Chernoff bound then shows that with



high probability, this leads to at least one and at most
20 log n candidates. To elect a leader among these can-
didates, we then run in phases, called “debates”. In
each debate, we eliminate at least a constant fraction
of candidates, while keeping the guarantee that always
at least one remains. After O(log log n) debates, only
exactly one candidate remains. At the end, this can-
didates declares itself as the leader by broadcasting its
ID. This outline is presented in Algorithm 1.

Algorithm 1 Leader Election Algorithm @ node u

1: with probability 10 logn
n do candidateu ← true

otherwise candidateu ← false

2: for i = 1 to Θ(log log n) do
3: Debate

. some candidateu variables become false

4: if candidateu then
5: Broadcast IDu

6: output the received ID as the leader

Clusters, Overlay Graph and Communica-
tion Actions: To achieve the above goal for debates,
we need to provide some way of communication be-
tween the candidates. For this, in each debate, we grow
clusters around each candidate, e.g., by assigning each
non-candidate node to the candidate closest to it. Any
such clustering induces an overlay graph H on the can-
didates by declaring two candidates to be adjacent iff
their clusters have borders that are close. This graph H
also captures which candidates can communicate with
each other using specially designed cluster communica-
tion actions. In particular, we design three communi-
cation actions: an Uplink protocol that allows a candi-
date to send a message to the nodes in its cluster, an
Intercommunication protocol that allows adjacent clus-
ters to exchange information, and a Downlink protocol
that allows nodes in a cluster to send a message to their
candidate.

We show that both creating clusters and communi-
cating within each cluster can be done in broadcast time
TBC while intercommunication over borders, which is a
local problem, can be solved in (poly-)logarithmically
many rounds. With this one communication in H takes
O(TBC+poly log) rounds to implement which is already
(almost) our desired final running time. We thus want
an algorithm that makes sufficient progress in each de-
bate such that only a (near) constant number of de-
bates are needed while each debate requires only con-
stant rounds of communication in H. We achieve this
using the following Elimination algorithm.

Elimination Algorithm: The Elimination algo-
rithm is a simple, deterministic algorithm which makes
at least half of the candidates drop out while at least
one candidate remains. This algorithm is run by candi-
dates and as a LOCAL model algorithm on the overlay
graph H.

Exchange 1:
Each candidate sends its ID and determines its degree
by counting number of different IDs received.

Exchange 2:
Each candidate sends its ID and its degree.

Elimination:
Each candidate that is dominated by a neighboring
candidate with a larger degree or by a neighbor with
equal degree but larger ID gets marked for elimination
from candidacy.

Given the guarantee of the Elimination algorithm, we
can infer that a total of log(20 log n) debates suffice to
reduce the number of candidates from 20 log n to one
remaining leader. Since the formal statement and its
proof are both simple and instructive, we present them
here.

Lemma 5.1. The deterministic Elimination algorithm
uses just two rounds of full-message exchanges in H
(between candidates) and eliminates at least half of the
non-isolated nodes, while keeping at least one.

Proof. Clearly, the node with maximum
(degree(.), id(.)) pair remains. To see that half of
the non-isolated nodes are eliminated, we use a po-
tential argument. We give a charge of one to each
non-isolated unmarked node. Then we redistribute
these charges by each node splitting its charge evenly
between its neighbors. Since only non-isolated un-
marked nodes initially get charged, and as no two
unmarked nodes are neighbors, all charges gets redis-
tributed to marked nodes. Furthermore, each marked
node u gets charge of at most one, because each of its
unmarked neighbors gives it a charge of at most 1

d(u) ,

where d(u) is the degree of node u. The total charge
is therefore at most as large as the number of marked
nodes. Since the total charge was initially equal to the
number of unmarked nodes, and since the total charge
did not change in the redistribution step, we get that
the number of unmarked nodes is at most as large as
the number of marked nodes. Thus, the number of
marked nodes is at least half the total number of nodes,
which completes the proof.



Figure 1: The first figure shows a clustered graph with
solid candidate nodes. The resulting overlay graph H on
the candidate nodes is depicted in the second figure. The
big candidates are the ones that remain after the elimination
algorithm is run on H.

Debate Template: Each debate is an implemen-
tation of the elimination algorithm on top of the overlay
graph H. Given the communication primitives avail-
able atop the overlay graph, this implementation fol-
lows roughly from the outline presented in Algorithm 2.
In the following sections, we describe how this debate
template can be implemented in each model.

Algorithm 2 Template of a Debate

1: Cluster . Overlay Design

2: Uplink candidate ID . Exchange 1
3: Intercommunicate IDs
4: Downlink IDs

5: Candidate determine their degree in H by counting
the number of distinct received IDs

6: Uplink pairs of (degree, ID) from candidates .
Exchange 2

7: Intercommunicate the pairs
8: Downlink the pairs

9: Candidates remains iff their (degree, ID) pair is
greater than all received pairs . Elimination

5.2 Implementation of a Debate Without Col-
lision Detection Here we present the main ideas for

how to implement the aforementioned debate templates
in the radio network model without collision detection.
The goal is to run one debate in O(TBC+log3 n) rounds
and thus obtain the leader election algorithm claimed in
Theorem 4.1.

Clustering: There are two different ways to use the
Decay-Broadcast for building the clusters. One is to
simply run a global broadcast in time TBC with the
candidate IDs as messages. If every node simply keeps
and forwards the first ID it receives, in the end, every
node belongs to a cluster, and also the clusters are con-
nected. Unfortunately, these clusters do not have nice
shapes and do not allow for efficient intercommunication
between clusters. This problem can be avoided using
the second way which uses a slower variant of Decay:
we repeatedly use T = Θ(log2 n) rounds of Decay(T ) to
grow the clusters by one step, every time. Each time
all unclustered nodes with a clustered neighbor get in-
cluded in the cluster with high probability. This leads
to nicely shaped clusters in which each node joins the
closest candidate. But, the running time of this method
is unfortunately Θ(TBC log2 n) rounds, which we cannot
afford.

Our solution is to combine these two methods
to get the best of both worlds. For this we start
with a fast-growth phase in which we use the first
method to advance the clusters in iterations of Θ(log2 n)
rounds. After each iteration we ensure that clusters
do not interfere with each other, by cutting them back
(trimming them) if they do. After the fast-growth
phase which takes O(TBC) rounds, clusters are at most
Θ(log n) far away from each other. Now we use the
slower second method to grow the clusters carefully
spending Θ(log2 n) rounds for each of the remaining
Θ(log n) steps. This gives us a nice clustering for a
total of Θ(TBC + log3 n) rounds.

Overlay Communication: Due to the nice cluster-
ing, the overlay communication routines for intercom-
munication and uplink can be easily implemented in
Θ(log3 n) and Θ(TBC) rounds, respectively. Unfortu-
nately, implementing a downlink is more troublesome.
The subtle reason is that while there are at most 20 log n
distinct IDs of neighboring clusters that need to be col-
lected in each candidate, there are copies of each of these
IDs registered at up to O(n) different cluster nodes.
This prevents classical gathering protocols (e.g., [5]) to
work for this task.

To remedy this, we use a broadcast algorithm, with
time complexity O(TBC), within each cluster to inform
the candidate about just one of its neighbors. After
this, the candidate can use the uplink to give feedback
to all cluster nodes that it has received this particular



ID, again in broadcast time of O(TBC) rounds. This
guarantees that after this, only nodes with a new piece
of information will participate. Repeating this r times
results in at least r distinct IDs being learned by
the candidate in O(TBC r) rounds. While this is an
improvement over the naive gathering (which would
take Θ(n) rounds), it still takes a prohibitively large
Θ(TBC log n) rounds to learn about all neighboring
clusters. Next, we show how to work around this issue
by modifying the elimination algorithm.

The Modified Elimination Algorithm: Our modi-
fications to the elimination algorithm are based on the
following two ideas: First, we run the elimination al-
gorithm not directly on the overlay graph H but in-
stead on a sparse subgraph H ′ of H. Secondly, we mod-
ify the elimination algorithm such that a node needs
to be aware of at most 6 of its neighbors, instead of
all O(log n) of them which was required in the original
elimination algorithm.

To carve out the sparse sub-graph H ′, each cluster
selects one edge to a neighbor and we define H ′ to be the
sub-graph consisting of the union of these edges. Note
that while the average degree of a node is at most 2
in this graph, this does not hold true for the maximum
degree. Nonetheless, using the inward-communication
scheme explained above with r = 5, each candidate
can learn about all of its neighbors if it has at most
5 of them, and at least detect that it has five or
more neighbors otherwise. With this knowledge, we
run the same elimination algorithm as before except
for the modification that, now nodes with degree of at
least 5 remain unmarked, This is because they cannot
safely determine whether their degree is dominated by
a neighbor. Note that there is at most a 2

5 -fraction of
the nodes with degree of at least five since more would
lead to an average degree of more than 2. The Modified
Elimination Algorithm therefore still eliminates at least
a 1

2−
2
5 = 1

10 fraction of the candidates, while remaining
safe.

5.3 Implementation of a Debate via Beeps In
this section we describe the main ideas for implementing
a debate in the beep model (or radio network model with
collision detection). Our algorithm works along the lines
of the debate template presented in Section 5.1: it first
clusters the nodes and then uses overlay communication
protocols to run the elimination algorithm.

We first introduce our main tools, beep waves and
superimposed codes, and explain how to use them to
cluster the graph and implement the overlay communi-
cation protocols mentioned in Section 5.1. We then put
everything together and present a simple debate imple-
mentation that runs in O(D+log3 n) rounds. Lastly, we

show how to achieve the running time claimed in Theo-
rem 4.2 by modifying the simple debate implementation
to run in O(D + log n log log n) rounds.

Beep Waves: The main difference between radio mod-
els without collision detection and those with collision
detection (or beeping) is the ability to create what we
call beep waves. Beep waves start at one or more nodes
by sending a beep, and after this initiation, each node
that hears a beep forwards it by beeping in the following
round. This way, the beep propagates in the form of a
wave throughout the network, moving exactly one step
per round.

Beep waves have several applications. For one, they
can be used to determine the distance of a node u from
a (beep) source, by measuring the number of rounds
for the wave to reach u. Secondly, pipelining multiple
beep waves from a source can be used to transmit bit
strings, by coding 1 into a beep and 0 into absence of
a beep. Pipelined beep waves will be our main tool in
implementing the communication protocols used in our
leader election algorithms of the beep model.

Superimposed Codes: Another interesting feature of
using beep waves to transmit information is that, when
two different sources s1 and s2 simultaneously send dif-
ferent bit strings to one node v with equal distance from
s1 and s2, then v receives the superimposition or bit-
wise OR of the two strings. Typically, such bit string is
considered useless. Thus, protocols designed for radio
networks so far have mostly focused on using collision
detection and randomization to detect and avoid colli-
sions. In this paper, we take the exact opposite stance:
instead of avoiding collisions, we propose to embrace
them and leverage their superimposition nature. The
key element is superimposed codes. These codes con-
sist of codewords that allow any superimposition of a
bounded number of codewords to be decomposed and
decoded. Good superimposed codes can be easily shown
to exist by a simple probabilistic analysis of certain ran-
dom codes. Using these superimposed codes for commu-
nication in beep networks (or radio networks with col-
lision detection) is to our knowledge a novel1 approach
which we think will be useful in the future research as
well. Interestingly, the construction, existence and use
of superimposed codes itself turns out to be a very old
concept from the 40’s, e.g., where they were used as an
efficient way to use punch-card archival systems.

1A connection between superimposed codes and radio networks

has also been established in [8], where superimposed codes were
seen as selective families, to schedule successful transmissions by
avoiding collisions. As such, their use is completely different from

our approach of using intentional collisions for coded communica-
tion.



Figure 2: Pictorial example of two nodes sending a bit string
encoded in beep waves. The left node sends the bit pattern
101101 while the node on the right sends 101011. The second
figure shows the propagated waves at a later time. The node
in the middle will receive the superimposition of the waves
and thus receive the bit pattern 101111. If a superimposed
code is used and the aforementioned bit patterns are the
results, the middle node would be able to decode the received
bit pattern 101111 into two separate initial bit patterns
101101 and 101011

Clustering and Overlay Communication: To clus-
ter nodes around candidates, we assign each node to the
closest candidate if there is a unique such candidate, and
leave all other nodes unclustered. To this end, we first
use beep waves from each candidate to determine for
each node its distance to the closest candidate. Using
these distance numberings, we then send out the IDs of
the candidate nodes as pipelined beep waves. To pre-
vent nodes confusing superimposition of IDs with clean
IDs, we use a superimposed code that allows to dis-
tinguish whether a received bit string is a coded ID or
the superimposition of multiple coded IDs. This allows
nodes with more than one closest candidate to stay un-
clustered while nodes with a unique closest candidate
join the cluster of that candidate. This clustering also
induces the overlay graph H.

Next, we implement our uplink, intercommunica-
tion, and downlink communication protocols that allow
communication atop the overlay graph H. We imple-
ment these by using the distance numbering to syn-
chronize pipelined beep waves for communication. This
is relatively straightforward but leads to both downlink

and intercommunication not actually delivering all mes-
sages from all clustered nodes or neighboring clusters
respectively, but instead delivering the superimposition
of all these messages. This is where superimposition
codes show their full power. Instead of sending mes-
sages directly in the intercommunication phase, we use
messages coded with a superimposition code. When a
candidate then receives the messages from its adjacent
candidates, in superimposition after they got combined
in the intercommunication and downlink phase, it can
still fully reconstruct all original messages. This way su-
perimposition codes allow us to implement a full local
message exchanges in H even though the actual inter-
communication and downlink protocols merely deliver
superimposition.

Implementing the Elimination Algorithm Opti-
mally: Given the full message exchange overlay com-
munication, one can directly implement the debate tem-
plate of Section 5.1. The running time of such a debate
would be O(D+log3 n). Here the log3 n comes from the
length of superimposed codes that allow to decode mes-
sages from the superimposition of up to log n codewords
which we use to implement the full message exchange
over H. In the remainder of this section we show how we
can improve over this to achieve an O(D+log n log log n)
debate. This completes the proof for Theorem 4.2 and
provides a leader election algorithm that is optimal up
to a log2 log n factor.

The main observation that leads to the speedup is
as follows: The O(D + log3 n) debate implementation
does not actually use the full power of message exchange
that is given by the use of the log3 n long superimposed
codes. Instead, we eventually use this communication
only for two tasks: (1) determining the number of
different messages received; used for determining the
degree on the overlay graph, and (2) checking whether
there is a neighbor with a larger (degree, id) string; used
to decide whether a node marks itself in the elimination
algorithm. We show that both tasks can be achieved
with a smaller overhead.

For (1), i.e., determining the degree, we design
a new set of codes that are just strong enough to
enable us to estimate the degree of each candidate up
to a multiplicative factor of 2. These new codings
encode each ID of length log n into a codeword that
is only Θ(log n log log n) bits large. We then show that
eliminating candidates with the Elimination algorithm
based on these approximate degrees still works, that is,
still removes a constant factor of candidates per debate
while keeping at least one. This can be easily checked
by following the same potential argument as proof of
Lemma 5.1, noting that now, each remaining node gets



charge of at most 4. With this the number of remaining
candidates is at most 4 times larger than the number of
marked candidates. In other words, still at least 1

5 of
the candidates get removed.

For usage (2), i.e., detecting whether a neighboring
candidate has a message numerically larger or not, we
use a slightly different intercommunication algorithm.
In this new intercommunications, nodes go through the
bits of messages of their candidates one by one and
compare them. They mark themselves if they detect
a larger message in the neighborhood. A node that gets
marked does not continue the process anymore. It is
easy to see that a node gets marked in this procedure
if there is an adjacent cluster with a larger message.
Finally, to deliver this information to the candidates, we
simply use a Downlink with single-bit messages (marked
or not) and each candidate gets to know whether any of
nodes in its cluster is marked or not.

5.4 Obtaining Linear Time Leader Election Al-
gorithms In this section, we explain a simple optimiza-
tion which reduces the multiplicative log log n factor in
our bounds for networks with (near) linear diameter. In
particular this optimization makes all our running times
O(n).

While we do not know how to reduce the number
of debates below Θ(log log n), we show that less time
can be spent on initial debates. That is, if there are
many candidates, we can work with clusters that have
a smaller diameter. In particular, we note that in
the both leader election algorithms presented above,
in each debate, the time selected for growing clusters
is chosen large enough such that the radius of each
cluster can potentially grow up to D. This is done to
avoid isolated clusters which never get eliminated in the
Elimination Algorithm (see Lemma 5.1). Furthermore,
the time needed for a debate depends directly on this
radius of growth. In particular, in the model without
collision detection, growing clusters up to radius of d
takes O(d log n

d + log3 n) and in the beeping model, it
takes O(d+ log n).

The key observation is as follows: if the number
of remaining candidates is k, then at most half of
the candidates can be such that they have no other
candidate within their 2n/k distance. Because of this,
the idea is that in the ith debate, instead of building
clusters for radius up to D, we grow the clusters for

radius only up to min{D, 4n 1.05i

logn }. This still ensures
that at least half of the candidates are non-isolated,
which allows the Elimination Algorithm to remove at
least a constant fraction of all (non-isolated) nodes.
It is an easy calculation to see that this change in
radius of growth reduces the log log n factor in our time

bounds to a min{log log n, log n
D} factor, as claimed in

Theorem 4.1 and Theorem 4.2. We defer the details to
the full version.

6 Leader Election without Collision Detection

This section is devoted to providing the technical details
and proofs for Theorem 4.1. As described in Section 5,
this algorithm follows the template given in Section 5.1
and uses the ideas explained in Section 5.2 to implement
this template2. In particular this section gives the
clustering algorithm in Section 6.1, shows how to obtain
the sparsified overlay graph H ′ and perform overlay
communication protocols on top of it in Section 6.2 and
lastly explains in Section 6.3 how to implement a debate
in O(TBC+log3 n) time. Together with the optimization
described in Section 5.4 this proves Theorem 4.1.

6.1 Clustering In the clustering phase, we partition
the network into disjoint clusters, one around each
candidate, such that these clusters provide a platform
for easy communications between candidate nodes.

Formally, a clustering is a partial assignment which
for each node v, it either clusters v by assigning it to
(the cluster of) a candidate, or it leaves v unclustered.
Given a clustering, we say a clustered node v is a
boundary node if v has a neighbor u that is unclustered
or belongs to a different cluster. Otherwise, we say the
clustered node v is an internal node. However, as a
small exception, candidates themselves are considered
as internal always. We will at all times preserve the
invariant that each clustered node is connected to the
candidate it is assigned to via a path of internal nodes of
the same cluster. For a distance d, we say two clusters
C1 or C2 or their respective candidates are d-adjacent
if there are internal nodes v1 ∈ C1 and v2 ∈ C2 such
that v1 and v2 are within distance at most d of each
other. This notion of d-adjacency defines the candidate
graph Hd. We say a clustering has connectivity gap at
most d if graph Hd has no isolated nodes (or exactly
one isolated node if that’s the only node of graph), i.e.,
if each cluster is d-adjacent to at least one other cluster.

We remark that the time complexity of the inter-
communication task on a clustering is monotonically
increasing with (and almost directly proportionally to)
the connectivity gap of that clustering. Thus, we desire
our clustering routine to produce a clustering with small
connectivity gap. In particular, we achieve a clustering
with constant connectivity gap. Such a clustering is
then used for building the desired overlay graph H ′ and

2The reader is advised to read both Section 5.1 and Section 5.2
first.



for communication over H ′. We see that this constant
connectivity gap translates to a O(log3 n) intercommu-
nication time complexity.

Lemma 6.1. Given a set of candidates, there exists
a distributed algorithm in the model without collision
detection that with high probability achieves a clustering
around candidates with connectivity gap at most 10, in
O(D log n

D + log3 n) rounds.

To achieve a clustering with constant connectivity
gap, we start from a trivial clustering with large con-
nectivity gap and then reduce the gap by refining the
clustering using the following algorithm:

Lemma 6.2. Consider d′ ∈ [10, log
2 n

log n
D

] and d > d′.

Given a clustering with connectivity gap at most d, the
algorithm Cluster(d,d′) runs in O(d+d

′

d′ log2 n) rounds
and produces a clustering with connectivity gap at most
d′, with high probability.

Before going into the details of the Cluster al-
gorithm, let us assume that we have algorithm
Cluster(d,d′) as a black box and conclude the proof of
Lemma 6.1 by showing how to use it to achieve a clus-
tering with constant connectivity gap.

Proof. [Proof of Lemma 6.1] We start with the trivial
clustering in which clusters only include the candidates,
i.e., all candidates are clustered (and internal) while
all other nodes are unclustered. Clearly, this initial
clustering has connectivity gap at most D. We then

choose d′ = log2 n
log n

D
and run Cluster(d, d′) to achieve a

clustering with connectivity gap at most d′ = log2 n
log n

D
.

This process takes O(D log n
D + log2 n) = O(TBC)

rounds. To obtain a clustering with connectivity gap
at most d′′ = 10, we further improve upon this, using

Cluster(d′, 10) algorithm. This part takes O( log4 n
log n

D
)

rounds. Finally, note that the total complexity of the
whole procedure used above is O(D log n

D + log2 n) +

O( log4 n
log n

D
) which is equal to O(D log n

D + log3 n).

Cluster(d,d′) Algorithm: This algorithm con-

sists of 330 log2 n d+d′

d′ rounds, which are divided into

epochs of 330 log2 n rounds each. At the beginning and
end of each epoch, we will have a valid clustering in
which each clustered node knows the ID of the candidate
it is assigned to. Also, in these valid clusterings, each
node is either “internal”, “boundary” or “unclustered”.
During each epoch, instead of the status “boundary”,
we have a different status called “undecided”. At the

beginning of each epoch, we first change the status of ev-
ery “boundary” node to “undecided”. Then, only can-
didates and the unclustered and “undecided” nodes par-
ticipate in the transmissions of that epoch. Note that
candidates always remain internal, regardless of what
happens.

Each epoch consists of four steps. In a nutshell,
the first step is for growing the clusters whereas the
other three steps are for refining the shape of the newly
grown parts of the clusters. In the first step, we grow
the clusters creating more “undecided” nodes. Then, in
the second and third steps, we mark some “undecided”
nodes using a particular rule and we use these marks
in the fourth step to determine the new statuses. The
details of these steps are as follows.

Step 1: This step consists of 4 · (30 log2 n) rounds.

Let δ = 300 log2 n
d′ . In these rounds, we grow

the clusters using the Decay(δ) protocol. For
this, each candidate and each “undecided”
node starts with the message of the related
candidate. With these messages, we run 4 ·
(30 log2 n) rounds of the Decay(δ) protocol. In
these rounds, some unclustered nodes receive
the message of one or possibly more candidates.
Each node ignores all the received messages
but the first one. Then, each unclustered
node that received some message temporarily
joins the cluster of the candidate whose ID
is mentioned in that message and changes its
status to “undecided”.

Step 2: Here, we mark any “undecided” node that is
adjacent to either an unclustered node or a
node from a different cluster. We do this in
2 · (30 log2 n) rounds In these rounds, each un-
clustered node simply runs a Decay(30 log2 n)
protocol, sending message declaring that they
are unclustered. On the other hand, for clus-
tered nodes, these rounds are divided into
2 log n parts and in each part, a subset of clus-
tered nodes are active. More precisely, in each
part, nodes of each cluster unanimously decides
on either being active or listening, each with
probability 1

2 . Note that this unanimous clus-
ter decision can be achieved by each candidate
sharing 2 log n bits of randomness with nodes of
its cluster by attaching these randomness bits
to its ID (so the size of the messages remain
asymptotically the same). In each part, all ac-
tive nodes then perform T = 30 log n rounds of
Decay(30 log n), sending their cluster ID. All
clustered nodes that receive a message differ-
ent than their own cluster ID, and all unclus-



tered nodes that receives a cluster id become
marked.

Step 3: In this step we mark “undecided” nodes that
were (indirectly) recruited in Step 1 by node
which got marked in Step 2. To make this
more precise, we say a node v was directly
recruited by node u if in Step 1, the first
message that node v received (which is also
the message that resulted in the status of v
to become “undecided”) was received directly
from node u. Similarly, we say node v was
directly recruited by node u in Step 1 if the
first message that node v received came from
a node that was directly or indirectly recruited
from u. To achieve the marking of nodes that
got (indirectly) recruited by marked nodes we
repeat the exact same transmissions of Step 1
but now, each node transmits a bit indicating
whether it is marked instead of an ID. Any
node that receives a set bit from the node that
recruited it in Step 1 becomes marked.

Step 4: In this step we determine the final statuses.
For this, all non-marked “undecided” nodes be-
come “internal”. Then, we run T ′ = 30 log2 n
rounds of Decay(T ′) and all non-internal nodes
that receive a message become “boundary”.
Lastly, we set the status of any remaining “un-
decided” node to be unclustered.

Proof. [Proof of Lemma 6.2] Consider candidate node u
and its cluster Cu after running the algorithm. To prove
the lemma, we show that: (1) there is another cluster
Cu′ within distance d′ of Cu, and (2) each clustered node
v of Cu is connected to u via a path made of only internal
nodes of Cu.

Let δ = 300 log2 n
d′ . For the first property, note

that if node v was labeled “undecided” during the first
2 · (30 log2 n) rounds of Decay(δ) in Step 1, then v
becomes “internal” unless the cluster growth interferes
with the growth of another cluster. The reason for
this is as follows. Consider a node w that was labeled
“undecided” in these rounds. Then, Lemma 3.4 shows
that in the absence of other clusters, during the last
2·(30 log2 n) rounds of Decay(δ), any node that is within
distance 2 of w will receive a message, and thus become
clustered. After that, only nodes that are at distance
exactly one or two from w will get marked in Step 2,
while w does not get marked. Thus, w remains clustered
and becomes internal.

Now the above fact shows that, unless a cluster gets
close to another cluster, in every epoch, the growth of
the cluster dominates the growth of a regular Decay(δ)
broadcast that is run for 2 · (30 log2 n) rounds. Given

this, we get that running (dδ + log2 n) epochs of clus-
tering corresponds to at least 60(dδ + log2 n) rounds of
Decay(δ) with δ > log n

d , unless the cluster get close to
another cluster. From Lemma 3.5 and Lemma 3.6, we
then get that unless there is any candidate other than u,
with high probability all nodes belonging to the cluster
Cu.

Now let us consider the more interesting case where
there are at least two candidates remaining. From above
discussions, we conclude that during a complete run of
Cluster(d,d′) there is a round in which one “undecided”
gets marked for neighboring a node from another cluster
in Step 2. Suppose that i is the first epoch such that
there exists a node w ∈ Cu that is marked during step
2 of epoch i. Then, in that step, there exists a cluster
Cu′ 6= Cu and a node w′ ∈ Cu′ such that w and w′ are
neighbors. Since by design of the delay parameter δ,

in each epoch each cluster can grow at most 120 log2 n
δ

hops, in trimming part of epoch i (steps 2 to 4), each

cluster only backtracks by at most 120 log2 n
δ hops. But

then, at the end of trimming, the internal statuses are
permanent and thus, are not altered later. Hence, at
the end of epoch i, there exist two nodes v and v′

that are within distance 240 log2 n
δ of each other and are

permanently assigned to Cu and Cu′ as internal nodes,
respectively. This completes the proof of the property
(1).

For property (2), we first show that every internal
node has a path of internal nodes connecting it to the
related candidate. This is true initially and remains
true because the only way a node v becomes internal
is if it receives a message in Step 1 over a sequence
of transmissions starting from a previously boundary
node. Furthermore, for the node v to become internal,
none of the nodes that recruited v directly or indirectly
can be marked in Step 2. This is because otherwise v
would also get marked in Step 3. Once node v becomes
internal, all nodes connecting it to a node that was
internal before (all those that recruited v directly or
indirectly) are getting an internal status too, and this
preserves the invariant. Now, it is easy to see that
property (2) also holds for boundary nodes created in
Step 4 since these boundary nodes are recruited only by
internal nodes.

6.2 Constructing of the Sparsified Overlay
Graph H ′ and Overlay Communication In this
component, we use the clusters obtained in the clus-
tering component to design a directed overlay graph
between the candidates. We get an overlay with fol-
lowing properties: (1) each candidate has exactly one
incoming edge. If (w, v) is the edge going from w to
v, we say that w is the parent of v, and v is a child



of w, (2) each candidate can send a message to all its
children, in one round of communication atop the over-
lay (3) each candidate knows all of its children, if there
are at most 5 of them, and it knows at least 5 of them,
if there are more, and can receive from these children
in a constant number of rounds of communication atop
the overlay, (4) each round of communication atop this
overlay takes O(D log n

D + log3 n) rounds, and also (5)

this overlay is built in time O(D log n
D + log3 n).

In this overlay, we have three types of communica-
tion actions in or amongst the clusters. These commu-
nication actions are as follows. (a) Uplink: a candidate
delivers its message to all internal nodes of its cluster.
(b) Intercommunication: internal nodes exchange mes-
sages with other internal nodes of other clusters which
are at distance at most 10. (c) Downlink: internal nodes
send some messages towards the candidate; we guaran-
tee that candidate gets at least one of them. We explain
the implementation details of these communication ac-
tions later.

Implementation of Overlay atop communica-
tion actions: Above these abstractions of communica-
tion actions, the algorithm for designing the overlay to
get the aforementioned properties (1) to (5) is as follows.
First, candidates send their id to all internal nodes of
their cluster using the Uplink. Then, we use intercom-
munication so each internal node knows the id of clus-
ters that are within distance 10 of it. Then, internal
nodes use the down-link to send the id of these adja-
cent clusters to their respective candidates. For each
candidate u, the first adjacent candidate that u hears
about becomes parent of u. Then, using an up-link com-
munication, the candidates send the id of their parent
to the internal nodes of their clusters. After that, we
use another intercommunication where internal nodes
inform close-by internal nodes of who their parents are.
Hence, after this, internal nodes of each cluster, alto-
gether, know which clusters are their children. Now,
the goal is to get this information, about all up to 5 of
those children, to the candidate. For this, we simply
use 5 turns of the down-link and up-link where in each
turn, candidate asks “So far I know about children listed
as follows =[...]. Tell me something new”. This way, a
candidate gets to know all up to 5 of its children. Using
Uplinks and Intercommunications and then, with the
exact same transmissions as done in the above down-
links, we can communicate from each candidate to its
children, and also back from all up to 5 of its children
to the candidate itself.

Implementation of communication actions:
In the following, we explain how we implement the

communications actions Uplink, Intercommunication,
and Downlink and what are the time complexities of
these actions.

1. In uplink, candidates start with messages for trans-
mission. Every internal node that receives a mes-
sage runs a Decay(log n

D ) algorithm. However, the
boundary or unclustered nodes do not participate
in transmissions. It is easy to see that after broad-
cast time TBC , each internal node receives the mes-
sage of the respective candidate. Thus, the com-
plexity of uplink is simply TBC = O(D log n

D +

log2 n).

2. In downlink, we do exactly the opposite of uplink.
This time, some internal nodes start with messages
and we want to deliver at least one of these mes-
sages to the related candidate. Again, every inter-
nal node (other than candidates) that has a mes-
sage (or receives a message) runs a Decay(log n

D ) al-
gorithm, and the boundary or unclustered nodes do
not participate in transmissions. Again, by prop-
erties of Decay(log n

D ) algorithm, after TBC time,
the candidate receives the message of at least one
internal node of the related cluster. For the sake
of cleanness, the candidate can ignore all but the
first received message. Clearly, the complexity of
downlink is also TBC = O(D log n

D + log2 n).

3. The intercommunication consists of Θ(log3 n)
rounds which are divided into Θ(log2 n) epochs. In
each epoch, all internal nodes of each cluster ran-
domly decide to be active or to be listening unan-
imously, with probability 1

logn for being active3.
Then, in each epoch, internal nodes of the active
clusters and all the unclustered or boundary nodes
that receive a message perform 300 log n rounds of
Decay(log n) algorithm, based on their own local
coins. Let us say a cluster is globally isolated in an
epoch if this cluster is the only cluster that is active
in that epoch. Note that, in expectation, each clus-
ter Cu becomes globally isolated in Θ(log n) epochs.
Thus, using Chernoff bound, w.h.p., Cu becomes
globally isolated in at least Θ(log n)epochs. Then,
from properties of Decay protocol, we know that in
each such epoch, each (internal) node of any other
cluster that is within distance 10 of internal nodes
of Cu receive message of Cu with constant probabil-
ity. Thus, Θ(log n) epochs, each such node receives

3This requires log2 n bits of randomness shared in the cluster.
We can get this shared randomness in time O(D log n

D
+ log3 n)

by sending k = logn packets of logn random bits each via a very

simple single source k-message broadcast algorithm from [14] with
time complexity O(D log n

D
+ k log2 n).



this message with high probability. Then, using
union bounds, we get that this holds for any such
node, and also in another level, for every cluster
Cu. This proves the correctness of the intercommu-
nication algorithm.

6.3 Implementing the Modified Elimination Al-
gorithm As the last component of a debate (after clus-
tering and overlay design), we implement the Modified
Elimination Algorithm (MEA) on our overlay graph.
Each candidate knows whether its degree is less than
5 or not, and in the former case, the node also knows
the degree exactly. Thus, each node knows its degree
rounded down to 5. Using the overlay graph, each can-
didate sends this flattened degree and its id, first, to its
children, and then, to its parent. Given property (2) of
overlay, sending this message to children is straightfor-
ward. On the other hand, using property (3) of over-
lay, we know that each candidate receives the message
of all up to 5 of its children. After these message ex-
changes, each candidate uses the MEA algorithm to de-
cide whether it remains alive or becomes removed from
candidacy. If a candidate v has a degree higher than 5,
it remains alive. Otherwise, noting the aforementioned
properties (2) and (3), v receives all the messages it
needs. Thus, v can compare its (degree(.), id(.)) pair
with the pairs in the received messages and decide about
remaining alive or being removed, accordingly.

Proof. [Proof of Theorem 4.1] What remains to show is
that the above implementation of the Modified Elimi-
nation Algorithm on top of the overlay graph satisfies
the desired properties of a debate, as mentioned at the
start of the section. Note that if the number of remain-
ing candidates is greater than one, the overlay graph
might be disconnected. For the purpose of analysis, we
look at each connected component of the overlay graph
separately. If there is only one candidate remaining in
the network, we are done with the proof. Otherwise, we
know that each connected component has more than
one candidate (assuming more than one candidates are
remaining). Hence, Modified Elimination Algorithm re-
moves at least 1

10 fraction of the nodes of each connected
component which means that it removes at least 1

10 frac-
tion of all the candidates. Also, it is clear that always at
least one candidate remains alive. This is because one
candidate remains alive in each connected component of
the overlay graph. These two show that the two desired
properties of the debates are indeed satisfied.

7 Leader Election via Beeps

This section provides the technical details and proofs for
Theorem 4.1. As described in Section 5, this algorithm

follows the template given in Section 5.1 and uses
the ideas explained in Section 5.2 to implement this
template. The reader is advised to read Sections 5.1
and 5.2 before reading this section.

In this section, we present a leader election algo-
rithm for the beep model, which has time complexity
O(D + log n log logn) · log log n rounds. The outline of
this algorithms is the same as the one presented in Sec-
tion 5 as Algorithm 1. Starting with Θ(log n) candidates
the algorithm runs in Θ(log log n) debates. In each de-
bate, we reduce the number of remaining candidates by
a constant factor, while keeping the guarantee that at
least one candidate remains. Each debate consists of a
clustering phase and then an implementation of a de-
bate using the induced overlay graph and overlay com-
munication protocols. In this section we describe these
implementations. For this we first introduce superim-
posed codes in Section 7.1. Then in Section 7.2 we give
a simple implementation of a debate in O(D + log3 n)
rounds and then finally in Section 7.3 we show how to
improve this to O(D+log n log log n) rounds. This run-
ning time for a debate leads to the (near) optimal leader
election algorithm promised in Theorem 4.1.

7.1 Superimposed Codes In this part we define the
two types of superimposed codes used in our algorithms
and show their existence.

Definition 7.1. A k-superimposed code or SI(k)-code
of length l for a finite set N assigns each element in
N a binary codeword of length l such that (1) every
superposition of k or less codewords is unique and
(2) every superposition of more than k codewords is
different from any superposition of k or less codewords.

It is easy to see that good superimposed codes of
short length exist:

Lemma 7.1. For every N and any k there exists a
SI(k)-code for N of length l = 4(k + 1)2 logN .

Proof. We show that a random code C in which each
codeword position is set to one with probability p =
1/(k+1) has the desired properties with good probabil-
ity. To see this we take any k+1 codewords c0, c1, . . . , ck
and note that the probability that there is a position for
which c0 is one and all codewords c1, . . . , ck are zero is
exactly (1− p(1− p)k)l which is at most

(1− 1/e(k + 1))l < (1/e)(k+1) logN < N−(k+1).

Taking a union bound over all
(
N
k+1

)
< Nk+1 choices

of codewords we get that with probability at least one
we get the property that the superposition of any k
codewords differs from any different codeword c0 by



having a zero where c0 has a one. In particular this
implies that given two sets S and S′ with S′ ≥ |S|,
|S| ≤ k and S 6= S′ the superposition of all codewords
in S′ has a one on a position in which the superposition
of all codewords in S does not. This is true because
S′ contains at least one codeword c0 that is not in a
superset of S of size k and making S smaller and S′

larger does not change this fact. It is easy to see that
both property (1) and (2) now follow directly.

We also use the following approximate counting
superimposed code:

Definition 7.2. For any N and any k < N an approx-
imate k-counting superimposed code of length l consists
of a distribution D over binary codewords of length l
and a decoding function decode : {0, 1}l → [k] such that
for every j ∈ [k] and c1, . . . , cj independently sampled
from D we get that:

P

[
j ≤ decode

(
j⊕
i=1

ci

)
≤ 4j

]
≥ 1− 1/N.

As the next lemma shows their length is only
logarithmically dependent on k and N .

Lemma 7.2. For any N and any k < N there exists
an approximate k-counting superimposed code of length
l = Θ(logN log k).

Proof. Each codeword in the distribution D of the code
we are constructing consists of log k blocks of logN
bits where each bit in the ith block bi for i ∈ [log k]
is independently set to one with probability 2−i. The
decoding function d takes a binary word of length l
dissects it into its blocks and outputs 2i−1 where bi is the
first block in which less than a 0.9 · (1− (1−2−i)2

i−1

) ≈
0.9/
√
e fraction of the block bits are one. To show

that this works we note that in expectation exactly a
1− (1− 2−i)j fraction of block bi is ones and for a large
enough block length Θ(log n) a Chernoff bound shows
that the probability that this fraction deviates by 0.9
or more is at most 1 − 2/N3. A union bound over all
k < N values for j and all log k < N values for i then
shows that the probability of a too small estimation is
at most 2/N . The analog argument also shows that an
overestimation happens at most with probability 2/N
which completes the proof.

7.2 O(D+log3 n)-length debate The outline of this
debate algorithm is exactly that of the simple debate
algorithm sketched in Section 5.1. We first grow clusters
around candidates, then each candidate find its degree
in the overlay graph, then candidates exchange their

Algorithm 3 Debate-1 Algorithm, run @ node u

1: Cluster . Step 1

2: Uplink coded ids . Step 2
3: Intercommunicate
4: Downlink

5: if candidateu then
6: Su ← decoding of received message as set of ids
7: su ← |Su|

. Step 3
8: Uplink C(su, IDu)
9: Intercommunicate

10: Downlink

11: if candidate then . Step 4
12: T ← decoding of received messages as set of

ordered pairs of degree and id
13: if received a pair greater than that of u then
14: candidate← false

(degree, id) pairs, and at the end, each candidate
remain a candidate only if its pair is greater than all
the pairs that it received. Next, we zoom in on how we
implement each of these steps with beeps.

Clustering: For clustering nodes via beeps, we
assign each node to the cluster of the candidate which
is closest to it. In the case of a tie — where there are
more than one closest candidates — we leave the node
as unclustered.

To achieve this clustering goal, we use an Uplink.
Trying to adapt to the superimposition nature of the
beeping model, we re-define Uplink action as follows.
For each node u, we denote by dist(u) the distance of u
to the closets candidate. In Uplink, each candidate has a
message of length L for transmission, and we want each
node u to receive the superimposition of the messages of
the candidates at distance dist(u) from u. We later see
why this Uplink procedure is a natural fit to the beeping
model and how we can implement this Uplink easily.
Before going to these implementation related details, let
us finish the discussion about clustering. Suppose that
there exists a Black-box algorithm AUp for the above
Uplink description. Now we explain how to use AUp
to cluster nodes in the desired manner. For this, we
use a SI(1) code. That is, each candidate encodes its
id using this code, and candidates Uplink these coded
ids. On the receiving end, each node u receives the
superimposition of the coded ids of the candidates at
distance dist(u) from u. Noting the properties of SI(1)
codes, if there is only one such candidate, u can decode



Algorithm 4 Clustering, run @ node u

1: Numbering
2: C ← SI(1)-code
3: mu ← C(0, IDu)
4: Uplink mu, receive bit-sequence m′u

5: if m′ is a valid id then
6: Cluster-ID ← decoding of m′ into an ID
7: clustered← true
8: else
9: Cluster-ID ← ∅

10: clustered← false

11: boundary ← false
12: for t=0 to L− 1 do
13: if m′[t] = 1 then
14: beep
15: listen
16: else
17: listen
18: beep
19: if heard a beep while listening then
20: boundary ← true

the id of that candidate. On the other hand, if there are
two or more of those candidates, u can distinguish this
case and declare itself as unclustered. This concludes
the clustering task.

One remark about the shape of the clusters achieved
by this algorithm is as follows: each node w can be
unclustered only if it has two neighbors v1 and v2 that
belong to different clusters. Thus, each cluster grows
from every side till it either reaches the margins of the
network or it is within distance 2 hops from another
cluster. Let us call a node u boundary if u is clustered
but it is adjacent to a node u′ such that u′ is either
unclustered or it belongs to a cluster other than that of
u. We say two clusters C1 and C2 are adjacent if there
exist two nodes v1 ∈ C1 and v2 ∈ C2 such that v1 and v2
are within distance 2 of each other. It is clear that in
that case, v1 and v2 are boundary nodes. If the distance
between v1 and v2 is exactly 1, then clusters are directly
touching each other, whereas if distance is two, with an
unclustered node w in the middle, then w serves as a
bridge connecting the two clusters.

Communications on the Overlay Graph: For
implementing communications, we want to devise proto-
cols such that using these protocols, each candidate can
exchange messages with neighboring candidates in the
overlay graph. Trying to adapt to the superimposition
nature of beeping networks, we do this in two layers:

Algorithm 5 Numbering Algorithm, run @ node u

Output: distance dist(u) to the closest candidate

1: active← false
2: if candidate then
3: dist(u)← 0

4: for t = 1 to D do
5: if active or candidate then
6: beep
7: else
8: listen
9: if heard a beep then

10: active← true
11: dist(u)← t

we first implement communications between candidates
such that each candidate receives the superimposition
of the messages of the neighboring candidates, in the
overlay graph. Then, we use a SI(log n) code on top
of these superimposition channels to get to full message
exchange. Note that SI(log n) codes are robust enough
because the number of candidates is at most log n. On
the negative side, these codings come with a cost, the
encoding of the Θ(log n) bit messages is Θ(log3 n) bits,
which leads to the log3 n term in the time bound of
the debates. later we explain how to modify the debate
algorithms to get over this cost.

Thus, what remains is to implement communica-
tions between candidates such that each candidate re-
ceives the superimposition of the messages of the neigh-
boring candidates, in the overlay graph. For this, we
first number each node u with its distance from the
closest candidate dist(u). This numbering is essentially
the backbone of the clusters and serves as the spine of
our intra-cluster communications.

The algorithm for numbering is simple and as
explained in Algorithm 5. In each round, each node
is active or inactive; at the start, only candidates are
active; and each node simply record the time in which
it becomes active. In each round, active nodes beep
and each inactive node becomes active if hears a beep.
This way, the wave of the activation (the wave of beeps)
proceeds exactly one hop in every round. Thus, every
node u gets activated after exactly dist(u) rounds where
dist(u) is the distance of u to the closest candidate.

Having this numbering, we implement the commu-
nications between candidates via three communication
actions in or amongst the clusters: Uplink, Intercom-
munication, and Downlink. However, we change the
definitions of these three task to adapt them to the su-
perimposition nature of beeping model.



(a) In the default definition of Uplink, candidates start
with messages and the message of its candidate
to nodes in its cluster. In the adapted definition,
we deliver to each node u, the superimposition of
messages of candidates that are at distance dist(u)
from u. Thus, in particular, each clustered node re-
ceives the message of its related candidate. More-
over, unclustered nodes receive superimposition of
more than one messages. This later helps us to dis-
tinguish clustered versus unclustered nodes. After
the clustering, we essentially use the Uplink only
for delivering the message of each candidate to the
boundary nodes of the related cluster.

(b) By default, Intercommunication is the action where
boundary nodes of different clusters exchange mes-
sages with each other. Adapting to the superim-
position nature of beeping model, in intercommu-
nication, the goal is for each boundary node to re-
ceive the superimposition of the messages of adja-
cent boundary nodes.

(c) At the end, in the usual definition, Downlink
is where the message is brought down from the
boundary nodes to the candidates. Adapting to
the beep model, the new goal is for every candidate
to receive the superimposition of the messages that
boundaries of its cluster send.

Having these new definitions, now it is the time to
zoom into the implementation details of these task, and
see why these new definitions are easy to implement, in
the beeping model and thanks to the numbering that
we created.

Uplink: For Uplink, the algorithm is as presented in
Algorithm 6. The main technique in here is the usual
idea of pipelining the beeps. First, consider what
happens inside one cluster ignoring the effect from the
other clusters. A node at distance dist(u) does its
transmission about `th bit of the message at round
dist(u) + 3l. In particular, the candidate starts the
transmission about the first bit in round 0 and it finishes
its transmissions in round 3L. In each round t, a node
u is allowed to transmit a bit only if t − dist(u) ≡ 0
(mod 3). In that round, nodes that are one hop away
are listening to this bit. That is, node w is listening to
this bit (and recording it) if t − dist(u) ≡ 2 (mod 3).
This way, let us consider what happens to the first bit
of the message. In the first round, candidate transmits
or remains silent depending on what is the first bit of
message. Then, inductively we see that for each i ∈ [D],
in the ith round nodes that are at distance i from source
transmit or remain silent depending on the first bit of

the message. This way, the first bit reaches D-hops
away after D rounds. Now note that when first bit
has traveled only three hops from the candidate, the
candidate starts transmitting the second bit, and thus,
the wave of transmissions of (j+1)th bit follows the wave
of transmissions of jth bit with a three hop lag. Hence,
by D+ 3L rounds, all the bits have reached every node.

Now let us see what happens what is the effect
beep waves of different clusters on each other. Consider
two neighboring clusters C1 and C2 respectively related
to candidates u1 and u2. First suppose that C1 and
C2 are connected via a bridging unclustered node w,
where w is connected to v1 ∈ C1 and v2 ∈ C2. Then
dist(v1) = dist(v2) = dist(w)−1. Thus, using the above
beep waves, w always listens to the transmissions of v1
and v2 (and gets superimposition of them) while v1 and
v2 ignore transmissions of w. Hence, the unclustered
nodes receive the superimposition of the messages of
their respective closest candidates. More importantly,
the beep waves clash at the bridging node and don’t
go inside the other clusters. Hence, the progresses of
the beep waves inside clusters remain intact. A similar
thing happens when C1 and C2 are directly touching each
other. In that case, for related boundary nodes v1 and
v2, we have dist(v1) = dist(v2) and thus, v1 and v2 do
not listen to transmissions of each other.

Intercommunication: With the new definition, Inter-
communication task is now easy to implement. An
ideal algorithm would be like this: boundary nodes go
through the bits of the messages that they have, bit
by bit, and for each bit, they beep if the bit is a one,
and listen otherwise. Each node record a 1 if it beeps
itself or if hears a beep. This way, if two clusters are
touching, then on the related boundary nodes, the beep
of one would be immediately observable by the other.
However, if two clusters are connected via an unclus-
tered bridging node w, then the beeps of two clusters
don’t reach each other. To remedy this, we do a slight
modification to the above simple ideal algorithm: now
for each bit, we use two rounds instead of one round.
Each boundary beeps twice or listens twice depending
on the bit that it has. Also, unclustered nodes listen in
the first round and propagate whatever they received in
the first round (beep iff they received a beep). Then, for
each bit, each boundary records a one if it beeps itself or
it senses a beep in any of the related two rounds. This
protocol is presented in Algorithm 7. It is easy to see
that, this protocol achieves the desired superimposed-
type intercommunication goal.

Downlink: As presented in Algorithm 8 The implemen-
tation of Downlink is simply reversing the direction of
beep waves of the Uplink. Now, the transmissions start



Algorithm 6 Uplink Algorithm, run @ node u

Given: dist(u), and message bit sequence mu (for
any candidate u)
Output: bit sequence m′u at each node

1: active← false
2: for t = 0 to D + 3L− 3 do
3: if candidate then
4: active← (mu[bt/3c] == 1)

5: switch t− dist(u) (mod 3) do
6: case 0:
7: if active then
8: beep
9: else

10: listen
11: case 1:
12: listen
13: case 2:
14: listen
15: if heard a beep then
16: m′u[b(t− dist(u) + 1)/3c]← 1
17: active← true
18: else
19: m′u[b(t− dist(u) + 1)/3c]← 0
20: active← false

at the nodes furtherest away from the candidate, move
towards the candidate. Nodes go through the bits with a
lag of three hops between the waves related to two con-
sequent bits. Using the transmission schedules based
on the numbering, each node v only listens to transmis-
sions of nodes that are at distance dist(v) + 1 from the
candidate. In this case, v receives the superimposition
of messages of those nodes. Since superimposition of
superimpositions is simply a superimposition, what at
the end the candidate receives is the superimposition of
the messages sent out from the boundary nodes.

7.3 O(D + log n log log n)-length debates Now we
show how to modify the debate algorithm pre-
sented above to get its time complexity to O(D +
log n log log n), which leads to optimal O(D +
log n log log n) · log log n leader election (optimal up to
log log n factors).

As explained in the overview section, the main
change is based on the simple observation, which is,
at the end, in the debate algorithm, we use something
significantly weaker than full message communication.
We only use two things: (1) the number of different
messages received; used for determining the degree on
the overlay graph, and (2) whether a neighbor has a

Algorithm 7 Intercommunication, run @ node u

Given: clustering, and message bit sequence m′′u if
u is boundary
Output: superposition bit sequence µu if u is
candidate

1: for t=0 to L− 1 do
2: if clustered & boundary then
3: if mu[t] == 1 then
4: beep
5: beep
6: m′′′u [t]← 1
7: else
8: listen
9: listen

10: if heard a beep in above two rounds then
11: m′′′u [t]← 1
12: else
13: m′′′u [t]← 0

14: else
15: listen
16: if heard a beep then
17: beep
18: else
19: listen

message numerically larger or not; used for detecting
whether a neighboring candidate has a greater(degree,
id) pair or not. In the following, we explain how to
achieve these two goals without going through the high
cost of full message communications. Having the im-
plementation of these two, the change in the analysis of
the main elimination algorithm is as presented in Sec-
tion 5.3, where we proved that each new debate reduces
the number of remaining candidates by a constant fac-
tor, while keeping at least one.

For determining the degree, instead of SI(log n)
codes, we use a new set of codes that are just strong
enough to enable us to find a 2-estimate of the degree
of each candidate in the overlay graph. These new codes
encode each message of length log n bits into a codeword
of Θ(log n log log n) bits (see Lemma 7.2).

In second use, for detecting whether a neighboring
candidate has a numerically larger message, we need
a slight modification in the intercommunication algo-
rithm. Let us say that boundary node u should be
marked if u has a node w (from a different cluster)
within its two hops such that the message of w is nu-
merically larger than that of u. In the new intercommu-
nications, the goal is for each boundary node to detect
whether it should be marked. Once the marking proce-
dure is done, we simply use a Downlink with single-bit



Algorithm 8 Downlink, run @ node u

Given: clustering, and bit sequence µu if u is
boundary
Output: a bit sequence µ′u in each candidate

1: active← 0
2: for t = D + 3L− 3 downto 0 do
3: if clustered & boundary then
4: if t− dist(u) ∈ [0, 3(L− 1)] then
5: active← µu[bt− dist(u))/3c]
6: switch t− dist(u) (mod 3) do
7: case 0:
8: if active == 1 then
9: beep

10: else
11: listen
12: case 1:
13: listen
14: if heard a beep then
15: active← 1
16: else
17: active← 0
18: if candidate then
19: if t ∈ [1, 3(L− 1) + 1] then
20: µ′u[(t− dist(u)− 1)/3]← active

21: case 2:
22: listen

messages (marked or not) and each candidate gets to
know whether any of nodes in its cluster is marked. This
means that, each candidate knows if it has a neighbor-
ing candidate in the overlay graph with a numerically
larger message or not.

For marking the boundary nodes according to above
rule, the ideal algorithm is for boundary nodes to go
through the bits of their messages and compare them.
In each round, each unmarked boundary node beeps if
the related bit of its message is one, and listens other-
wise. Then, each unmarked boundary gets marked if it
was listening but heard a beep. A boundary node that
gets marked does not continue the intercommunication
procedure. Similar to intercommunication in previous
debate algorithm, to remedy the issue that neighboring
clusters might be not directly touching, we use an ex-
tra beeping round. For each bit we spend two rounds,
each unmarked boundary with bit 1 in respective place
of its message beeps twice, each other unmarked bound-
ary listens twice and each unclustered node listens first
and then repeats what it hears in the next round. An
unmarked boundary gets marked if it was not beeping
but heard a beep in any other rounds. The related pseu-

Algorithm 9 Max-Detection-Intercommunication, run @
node u

Given: clustering, and message mu if u is a
boundary
Output: boolean marked, for any boundary u

1: marked← false
2: for t=0 to L− 1 do
3: if clustered & boundary & ¬marked then
4: if bit(mu, t) = 1 then
5: beep
6: beep
7: recu[t]← 1
8: else
9: listen

10: listen
11: if heard a beep in above two rounds then
12: marked← true
13: else
14: listen
15: if heard a beep then
16: beep
17: else
18: listen

docode is presented in Algorithm 9.

8 Conclusion

In this paper we presented the first linear time dis-
tributed algorithm for electing a leader in a radio net-
work without collision detection. More importantly our
algorithm runs with high probability in

O
(
D log

n

D
+ log3 n

)
·min

{
log log n, log

n

D

}
rounds which is almost optimal given the TBC =
Ω(D log n

D ) and TBC = Ω(log2 n) lower bounds from [21]
and [1] for the broadcast problem. Presenting a leader
election algorithm that works in essentially TBC rounds
improves over the 23 year old simulation approach of
Bar-Yehuda, Goldreich and Itai.

We believe that it should be possible to reduce
the additive log3 n to the optimal log2 n. A more
interesting question is whether it is possible to re-
move the multiplicative factor of log log n. Possibly the
ideas that reduce the running time from O(n log log n)
to O(n) described in Section 5.4 can be useful here.
We also give an almost optimal O (D + log n log log n) ·
min

{
log log n, log n

D

}
leader election algorithm for ra-

dio networks with collision detection and the more re-
stricted beep networks. This improves over the deter-
ministic algorithm from [20] which takes Θ(n) rounds
independently of the network diameter D.



Leader election is a crucial first step in commu-
nication primitives such as multiple broadcasts, mul-
tiple unicasts or message aggregation. Thus, the
Θ(TBC log n) running time of leader election had be-
came a bottleneck for getting better algorithms for these
tasks. In this paper, we showed that leader election is
no more a barrier for getting algorithms for these tasks
that (almost) run in broadcast time TBC . This opened
the road for the results in [13], where the authors de-
velop near optimal algorithms for these communication
primitive.
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