Optimal Broadcast in Shared Spectrum Radio Networks

Mohsen Ghaffari!, Seth Gilbert?, Calvin Newport®, and Henry Tan?

L MIT ghaffari@mit.edu
2 National University of Singapore seth.gilbert@comp.nus.edu.sg
3 Georgetown University {cnewport, ztan}@cs.georgetown.edu

Abstract. This paper studies single hop broadcast in a single hop shared spec-
trum radio network. The problem requires a source to deliver a message to n re-
ceivers, where only a polynomial upper bound on n is known. The model assumes
that in each round, each device can participate on 1 out of C > 1 available com-
munication channels, up to ¢ < C of which might be disrupted, preventing com-
munication. This disruption captures the unpredictable message loss that plagues
real shared spectrum networks. The best existing solution to the problem, which
comes from the systems literature, requires O (% log n) rounds. Our algorithm,
by contrast, solves the problem in O(%;[%]logn) rounds, when C > logn,
and in O(& logn - log log n) rounds, when C is smaller. It accomplishes this
improvement by deploying a self-regulating relay strategy in which receivers that
already know useful information coordinate themselves to efficiently assist the
source’s broadcast. We conclude by proving these bounds tight for most cases.

1 Introduction

Consider a wireless device, which we call the source, with a message to send to a group
of nearby devices, which we call the receivers. If this network had a dedicated com-
munication channel, the problem would be easily solved: the receivers could simply
wait on this channel for the source to broadcast its message. Unfortunately, in prac-
tice, this assumption almost never holds. Most wireless networking now takes place
in shared spectrum networks where a group of communication frequencies are shared,
in an uncoordinated manner, by multiple different networks, protocols, and unrelated
sources of interference. The 2.4 GHz band, for example, is used by 802.11, Bluetooth,
Zigbee, many different types of sensor network motes, cordless phones, baby moni-
tors, and some types of car alarm sensors. Not surprisingly, interference between these
competing devices is common [8].

The challenge faced by our source is now more pronounced. It can no longer use a
fixed channel to communicate, because that channel might be disrupted by other users
of the same spectrum. It must instead start sifting through the channels, seeking its
receivers amidst this churning sea of electromagnetic noise. This problem, which we
call Single-hop Shared-spectrum Broadcast (SSB), comes from the systems literature,
where it is well-studied [9-12, 16-21]. In practice, SSB algorithms are typically used

* This research was supported by Singapore NUS FRC grant R-252-000-443-133.

to send a session key from a master device to its slaves. This key can then be used
to configure more traditional disruption-resilient coding techniques such as frequency-
hopping spread spectrum (FHSS) or direct sequence spread spectrum (DSSS). A well-
known example of an SSB solution is the pairing protocol used by Bluetooth. (See [17]
for more on the practical motivation driving this problem.)

Results. Following the lead of past theory work on shared spectrum, we formally de-
scribe this setting using the ¢-disrupted network model [2—-7, 13, 14], which assumes
devices have access to C > 1 communication channels, with up to ¢ < C disrupted
by outside sources of interference. In this model, in each round, each device chooses a
single channel on which to participate. The set of up to ¢ disrupted channels is chosen
arbitrarily and can change from round to round.

The best existing SSB algorithm [20], when analyzed in this model, solves the prob-
lem in O(% log n) rounds, with high probability (i.c., at least 1 — 1/N, where N is a

known polynomial upper bound on n). In Section 3, we describe pandemic broadcast, a
pair of algorithms which solve the problem in O (5% [£] log n) rounds, for C > logn,
and in O(& logn - log log n) rounds for smaller C. In the C > log n setting, our solu-
tion is a factor of ¢ faster than the existing solution when ¢ < n, and a factor of n faster
when ¢ > n. For the small C setting, this advantage reduces only slightly to ¢/ log log n.
Finally, in Section 4, we prove our solutions optimal (within log log n factors) for most

relevant cases.

Because the SSB problem is drawn directly from the systems literature, our so-
lutions can be applied directly back to these systems, making it a good example of
distributed algorithm theory helping to improve real world wireless networks.

Intuition. The core insight driving our algorithm is that it exploits the parallelism in-
herent in having multiple available communication channels. The best existing solu-
tion [20] allows devices to only receive information from the source. In contrast, our
solutions, which we call Pandemic Broadcast Algorithms, allow devices to relay infor-
mation on behalf of the source, eventually converging on a state where there is a single
relayer per channel, on a constant fraction of the channels. In this state, the remaining
uninformed devices quickly learn new information.

The main challenge in implementing this idea is the unknown number of receivers.
If too few devices relay, then not much advantage is gained. On the other hand, if too
many devices relay, they clog the channels with collisions. The pandemic broadcast
algorithms overcome these issues with a self-regulating process, inspired by infectious
disease propagation. In more detail, the algorithms rely on two-stage infection. The
first stage aggressively infects receivers, turning them into relayers. It guarantees at
least C relayers, but may end up producing many more before it dies out. The second
stage has these relayers reduce their numbers back down to around C, allowing them to
efficiently infect the remaining receivers. This reduction relies on a pair of distributed
estimation subroutines, interesting in their own right. The first routine, which requires
at least log n channels, gains efficiency by moving estimation from the time domain to
the channel domain. In more detail, it uses logn channels to estimate the number of
relayers in a single round instead of using log n rounds to estimate the relayers using a
single channel. The second routine, which works for small number of channels (and is

slightly slower), uses the source to emulate collision detection, allowing the relayers to
run an efficient estimation routine on a single (changing) channel.

Related Work. The SSB problem was introduced in [19], which described an algorithm
that delivers k£ > 1 messages in O (Cc—jtk log n) rounds.! In [18,20], erasure coding on
the packets, and more clever use of the channels when ¢ was small, improved the re-

sult to O(Ccf ;(logn + k:)) rounds. In this paper, we focus on the case where k = 1,

yielding O (% log n) as the most relevant comparable result. It was recently suggested
in [21] that relaying could be used to speed up SSB. However, the algorithms presented
in [21] make strong assumptions. The algorithm described here uses the general idea of
relaying from [21], but differs in essentially all other details. Concurrent to the series
of systems papers cited above, another series looked at solving SSB using uncoordi-
nated spread spectrum coding techniques [9-12, 16]. This approach is less immediately
applicable as it requires modifications to the radio.

On the theory side, the shared spectrum model we use to study the SSB problem,
sometimes called the ¢-disrupted model, has been previously used to study all-to-all
gossip [5-7], pairwise node discovery [13], leader election [2, 3], and multihop broad-
cast (with collision detection) [4]. In [14], it was shown how to simulate a reliable
channel in this shared spectrum setting, simplifying the development and analysis of
reliable algorithms (though often at the cost of added time complexity). We underscore
that the ¢-disrupted model does a good job of describing real shared spectrum networks
by noting that it is cited in some of the systems SSB papers [19,20].

The broadcast problem is well-studied in the the classical wireless model where de-
vices shares a single dedicated undisrupted channel. The seminal result of Bar-Yehuda
et al. [1], for example, solves broadcast in O((D + logn)logn) for a multihop net-
work of D hops, which is (near) optimal. The single hop broadcast problem, however,
is trivially solved in this undisrupted setting, as the distinguished source can broadcast
without disruption or contention. In our shared spectrum model, the broadcast algo-
rithm of [4] can be adapted to solve our problem in O(%t log nlog (n/t)) rounds,
assuming collision detectors and sufficiently large C. This solution, even though it uses
collision detectors (which our algorithms do not), is still a factor of ¢ slower than ours
under comparable conditions.

2 Model and Problem

We model a single hop synchronous wireless network consisting of C > 1 communi-
cation channels and n > 2 devices. We assume each device runs the same randomized
algorithm, and we refer to each individual device executing this algorithm as a pro-
cess. All processes start an execution together in round 1. In each round, each process
i chooses a single channel ¢ € {1,...,C} on which to participate. Concurrently, an
abstract interference adversary chooses up to t, 1 < ¢t < C, channels to disrupt.

! The existing SSB papers cited here are from the systems literature and therefore do not analyze
the time complexity of their algorithms asymptotically, in the way that is standard for the the-
ory literature. We calculated the time complexities shown here based on how their algorithms
would perform in our formal model with our parameters.

We model this adversary as an arbitrary randomized algorithm that receives no in-
puts during an execution. Therefore, its disruption strategy can be based on the al-
gorithm executed by the processes (if, for example, processes hard-code a frequency
hopping pattern in their definition, the adversary can disrupt that pattern). On the other
hand, it cannot base its disruption on the random bits used by processes during the exe-
cution or the content of messages sent. This captures the reality of disruption in shared
spectrum networks which tends to fall somewhere between random and malicious.?

A process ¢ participating on channel ¢ during round 7 receives a message m if and
only if: (1) ¢ is not disrupted in r; and (2) only one process broadcasts on ¢ during
r, and it broadcasts m (i.e., concurrent broadcasts on a channel leads to collision). To
make our upper bound as strong as possible, we assume processes cannot distinguish
collisions, disruption, and silence. We assume that processes know ¢ and a polynomial
upper bound on n, denoted N, but not n itself.

Formally, the SSB problem assumes a single source with a message to send to the
remaining processes, which we call receivers. We say an algorithm solves the SSB
problem in f(n,C,t) rounds if it guarantees that the source delivers the message to all
receivers in f(n,C, t) rounds, with high probability, i.e., probability at least 1 — 1/n.

3 Upper Bounds

In this section, we describe and analyze a pair of SSB algorithms, called pandemic
broadcast algorithm 1 (PBA1) and pandemic broadcast algorithm 2 (PBA2). We use
PBA1 when C > log N and PBA2 when C < log N, where NV is the aforementioned
polynomial upper bound on n. In most real shared spectrum networks, C will be typi-
cally larger than log N, as such PBA2 is presented mainly for completeness.? We begin,
in Section 3.1, by describing these algorithms for the case where ¢t < 0.05 x C, which
we call the low-disruption regime. Later, in Section 3.2, we show how to simulate these
protocols, with an overhead factor of %, for the case where ¢ > 0.05 x C, which we
call the high-disruption regime.

3.1 Low-Disruption Regime

We begin by studying the case where no more than a constant fraction of the channels
can be disrupted concurrently. That is, in this section we assume ¢ < 0.05 x C. It
follows from this assumption that C > 20t. Our algorithms only need the first 20¢
channels so we assume without loss of generality that C = 20¢. (Notice, there is nothing
special about the constant 0.05—or the other constants used in our upper bounds. We
fix specific values only to gain concreteness in the analyses that follow.)

2 For example, imagine your network is running a MAC protocol with a hard-coded frequency
hopping pattern. If an unrelated network nearby happens to run the same MAC protocol, it
will end up generating highly-correlated interference. This is more damaging than random
interference, but at the same time is not literally malicious.

? For example, Bluetooth divides the 2.4 GHz shared spectrum network into 79 channels. Un-
less N is an exceptionally large overestimate, we can assume that C > log N for such a
configuration.

Algorithm 1 One phase of Pandemic Broadcast Algorithm Prototype, run @ process u

> odd rounds
. select a channel uniformly at random, out of the first 20¢ channels.
if w ==source then
BROADCAST(m)
else
LISTEN
if received m then broadcaster, < true
> even rounds
. select a channel uniformly at random, out of the first 20¢ channels.
if broadcaster,, then
with probability 0.2 do BROADCAST(m), otherwise LISTEN
else
LISTEN
if received m then broadcaster, < true

RO YR ANk wN

—— —

To aid intuition, we begin by explaining a simplified SSB algorithm that we call
the pandemic broadcast prototype (PBP). This protocol assumes that C > n/2 (a strong
assumption). We present it for the sake of exposition, as this strong assumption removes
several difficulties faced by the more general setting. Once we explain this algorithm we
move on to describing and analyzing our main upper bound results, PBA1 and PBA2,
which we present as generalizations of the prototype. As mentioned, we will generalize
these algorithms to work for more disruption (i.e., larger t) in Section 3.2.

Pandemic Broadcast Prototype The PBP algorithm (detailed in Algorithm 1), works
as follows. In each round, each process is either a broadcaster or a receiver. Initially,
the source is the only broadcaster, but as processes receive the message from a broad-
caster, they too become broadcasters. The algorithm divides rounds into phases, each
consisting of two rounds. In all rounds, all processes choose their channels with uni-
form independent randomness, out of the first 20¢ channels. In the first round of a phase,
only the source broadcasts. In the second round of a phase, each broadcaster decides to
broadcast with independent probability 0.2. We prove the following:

Theorem 1. Ift < 0.05 x C and § < C, then the pandemic broadcast prototype
algorithm solves the SSB problem in O(% log n) rounds.

Proof. We consider the execution in three stages. For the first stage, we focus on the first
round of the phase, in which only the source broadcasts. As long as at least 4 processes
remain as receivers, the probability, p,., that at least 1 receiver chooses the same channel
as the source is bounded as: 1 — (1 — %)”/2 >1-— e~"/2€_ Given that % < C, we have
¢ < 2. It follows that the above probability is at least ;5. Now, the channel chosen
by source is disrupted with probability at most % = %. Therefore, in each odd round,
with probability at least g5, at least one receiver receives the message from the source.
Hence, using a Chernoff bound, we get that after O(% logn) = O(£logn) rounds,
number of the broadcasters is 2(logn).

For the second stage, we focus on the even rounds. For this, we prove that as long
as number of broadcasters is less than n/2, in every @(%) rounds, the number of the
broadcasters doubles with high probability. This, proves that after O(% log n) rounds,
the number of broadcasters is at least % To this end, consider an arbitrary even round

r and suppose that the set of broadcasters at this round is B,.. For this round, we call
a channel active if at least one broadcaster selects it. We first show that, with high

probability, the number of active channels is at least 5.

=

For each channel j, the probability that channel j is active is p’ ... = 1 — (1 —
1Brl . ;

LBl > 1 — e~ Since @ < 2 <2, we get that p) 0, > %. Hence, overall,

the expected number of active channels is at least %. Moreover, note that for any

two channels j; and j, the two events of respectively j; or jo being active are nega-
tively correlated. This is because, for instance, given that j; is not active, the number
of broadcaster distributed over other channels goes up which means that the probability
that j» is active increases. One can easily generalize this argument and see that for any
subset .S of channels, the probability of the event that all the channels in S are active
together is at most equal to the product of the probabilities of each of the channels in
S being active. Hence, because of this generalized form of negative-correlation, Cher-
noff bound holds in this case [15]. Therefore, since |B,.| = ©(logn), we can use the
Chernoff bound and infer that, with high probability, at least @ channels are active.

Next, let us call a channel promising if it is active and the number of broadcasters
which chose it is at most 5. Using a simple pigeon-hole principle, we get that at most
‘BTrl active channels have more than 4 broadcasters. Thus, at least “;;l channels are
promising, with high probability.

Now we say a channel is good if (a) exactly one broadcaster transmits on it, (b) it
is not disrupted, (c) it has at least one receiver process listening to it. For a promising
channel j that has b; € [1, 5] broadcasters on it, we have: First, the probability that (a)
holds, is at least (1 — £)* > 0.08. Second, the probability that (b) holds is at least

% > 0.95. Finally, the probability that (c) holds is at least 1 — (1 — %)”43” >
R > 11— e > . Thus, we conclude that every promising channel

is good with probability at least £2(Z). Moreover, we again have the generalized form
of negative correlation. For instance, for two promising channels j; and j2, the events
of them being good are negatively correlated. This is because, for example if j; is not
good, then we know that it lacks at least one of properties (a) to (c). But for j2, (a) holds
with probability at least 0.1, independent of what happens on j1, and also j; lacking (b)
or (c) just makes j» more likely to have (b) or (c), respectively.

. B,
Since there are at least |20| promising channels in round r, we get that, in round r,

the expected number of good channels is at least @(%). Similarly, since the num-
ber of broadcasters is non-decreasing, we see that in the @(%) = O(L) even rounds
starting with round r, the expected number of good channels is at least 2| B,.|. Using a
Chernoff bound again, which holds because of the aforementioned generalized version
of negative correlation, and since | B,| = £2(logn), we get that after ©(%) rounds, at
least | B;:| new broadcasters are recruited, with high probability. In other words, with
high probability, the number of broadcasters at least doubles in every 9(%) rounds.
This completes the proof of the second stage.

Thus far, we have settled the cases of stages 1 and 2 and we know that after O (% logn)
rounds, the number of broadcasters is at least % For the third stage, consider an arbi-
trary process v that remains a receiver by the end of second stage. We show that in
O(% log n) rounds after the second stage, v gets the message m with high probability.

For this, similar to above we see that in each even round of third stage, at least ;5
channels are promising. Now in each such round, v chooses a channel at random. Thus
the probability that this channel is (i) promising, (ii) has exactly one broadcaster, and
(iii) is not disrupted is at least # x 21— 1)t x % = O(g) = O(%). Thus, in
O(% logn) even rounds, v has received the message m with high probability. Hence,

by a union bound, by that time all the nodes have received it with high probability.

Generalizing the Prototype We begin by asking what happens when we run PBP for
C < n/2. The first stage from our analysis still works, and in O(logn) rounds, we
recruit {2(logn) receivers. In the second stage, however, the doubling process stops
when the number of broadcasters passes C, at which point they might start causing
collisions, slowing down future recruitment. This creates problems as now, in the third
stage of the analysis, the proof breaks down due to this contention.

To solve this problem, it would be sufficient to provide the broadcasters an estimate
B of | B|, as they could then reduce their broadcast probability to minimize collisions,
regardless of their numbers (i.e., reducing down to around C broadcasters is optimal, as
this allows a constant number per channel). An easy way to determine Bisto try logn
exponentially growing guesses, one of which would be close to the actual size of B.
This approach, however, has a slow-down factor of ©(log n), resulting in a @(log? n)
factor in the time complexity—which is too slow.

To avoid this overhead we need more efficient estimation routines. In the next
two sections, we present two algorithms that generalize PBP by implementing effi-
cient broadcaster estimation routines: PBAI and PBA2. The PBA1 algorithm assumes
C > logn and leverages this channel diversity to gain efficiency. The PBA2 algorithm,
by contrast, has fewer channels to work with. It leverages the presence of a distinguished
source (which breaks symmetry in an important way) to achieve an estimation that is
slower than PBA 1, but still faster than the log n overhead of our simple suggestion from
above.

Pandemic Broadcast Algorithm 1 As mentioned, the PBA1 algorithm, detailed in Al-
gorithm 2, can be understood as a generalization of PBP. In more detail, we now in-
crease the size of a phase to include the following 5 rounds: The first two rounds are the
same as in PBP. In the next two rounds, broadcasters find an estimate of | B| that is in
[l%, 4| B|], with at least a nonzero constant probability (described below). We are able
to accomplish this in only 2 rounds by moving guesses from log n consecutive rounds
to log n channels during the same round. In the final round, broadcasters sub-sample
themselves using this estimate and then, similar to the second round, broadcast in uni-
formly chosen channels. We show that O([£]logn) phases are enough for delivering
the message to every process, yielding the total complexity of O([£]logn) rounds.
The core novelty of PBAI1, therefore, is the 2-round estimation subroutine. This
routine consists of a test and a report segment. In the test segment, each broadcaster v
chooses one of the channels using an exponential probability distribution. Then broad-
caster v, having picked channel f, decides to transmit or listen with probability 0.5. In
this test segment, any broadcaster that listens to a channel f and receives a message on

that channel, estimates | B| to be 2/+1. In the report segment, all broadcasters choose

Algorithm 2 Pandemic Broadcast Algorithm 1, run @ broadcaster process u

1: for phase = 1to ©(logn) do

2: select a channel uniformly at random, out of the first 20¢ channels. > source’s broadcast round
3: if uw ==source then
4: BROADCAST(m)
5: else
6: LISTEN
7: if received m then broadcaster, < true
8: select a channel uniformly at random, out of the first 20¢ channels. > simple relaying round
9: if broadcaster,, then
10: with probability 0.2 do BROADCAST(m), otherwise LISTEN
11: else
12: LISTEN
13: if received m then broadcaster, < true
14: if broadcaster,, then
15: est + C; estimationFlag + false > test segment of estimation
16: select random channel f (of source) from an exponential probability distribution
17: with probability 0.5 do BROADCAST(m) , otherwise LISTEN
18: if received message m then
19: est < 2/ 11, estimationFlag < true
20: select channel 1 (of source). > report segment of estimation
21: if estimationFlag then
22: with probability 0.05 do BROADCAST(est), otherwise LISTEN
23: else
24 LISTEN
25: else > for receivers to keep them in synch with broadcasters
26: select a channel uniformly at random, out of the first 20¢ channels.
27: LISTEN
28: LISTEN
29: select a channel uniformly at random, out of the first 20¢ channels. > final relaying round
30: if broadcaster,, then
31: with probability min { -$;, 0.2} do BROADCAST(1n), otherwise LISTEN
32: else
33: LISTEN
34: if received m then broadcaster, <+ true

the same channel, and every broadcaster that made an estimate in the previous segment
broadcasts their estimate. Any broadcaster that receives such an estimate adopts it as
their est of | B|. If a broadcaster learns no estimate, it uses the default value of C.

Intuitively, if | B| = 2/*1, then we expect a constant number of processes to choose
f, leading to a constant probability of a single process broadcasting and a small number
receiving its messages. Because the channel selection probabilities grow exponentially,
we can show that the probability that the same happens on other frequencies, sums to a
constant. Therefore, with a constant probability, we have a single process reporting an
estimate, and the estimate is correct.

A wrinkle here is that the adversary might choose to consistently jam the channel
corresponding to the right estimate, or it might jam the reporting channel. To avoid this,
we recall that only broadcasters participate in this estimate. Therefore, all participants
have received a message from the source. We assume this message can contain suffi-
ciently many bits (or a seed to a pseudo-random number generator) so that in each round
of the estimation routine, the broadcasters can shift the channels (circular-shift) by a

random amount, unknown to the adversary. In the pseudo-code of Algorithm 2, in the
estimation rounds, broadcasters choose their channels using the random shift provided
by source in the initial message. * Therefore, the probability that these key channels are
disrupted is the same as that of a random channel being disrupted. Formally, we prove:

Theorem 2. Ift < 0.05 x C, and logn < C, then the pandemic broadcast algorithm 1
solves the SSB problem O([L] - log n) rounds.

Proof (Proof Outline). The analysis of the case where C > % is as done in Theorem 1,
by focusing only on the first two rounds of each phase, and noticing that in that case,
each phase has only 5 rounds. For this case, we proved time complexity of O(% -logn)
rounds in Theorem 1. On the other hand, for the case where C € [logn, 5], we show
that in O(logn) rounds, the message is delivered to every node. For this, we prove the
lemmas 1, 2, and 3. Please see the full paper for the proofs. We remark that, the main
change, where the effect of estimation part comes in, is studied in Lemma 3.

Lemma 1. Ift < 0.05 x C and C € [logn, 5], after O(logn) phases of PBAI, the
number of broadcasters is at least ©(logn).

Lemma 2. [ft < 0.05 x C and C € [logn,], after O(logn) phases of PBAI, the
number of broadcasters is at least C.

Lemma3. Ift < 0.05 x C and C € [logn, 5|, after O(logn) phases of PBAI, all
receivers receive the message m, with high probability.

Pandemic Broadcast Algorithm 2 If C < logn, we no longer can assume that we
have at least log n channels and this prevents us from running the 2-round estimation
routine of PBAL. In this case, we use Pandemic Broadcast Algorithm 2 (PBA2). This
algorithm is divided into three explicit parts. In the first part, we grow the number of
broadcasters to at least C, in @ (log n) rounds, using the PBP strategy. We then stop the
recruitment and move on to the second part, where we run a new estimation subroutine
that estimates the number of recruited broadcasters to within a factor of 2, with high
probability, in O(logn - loglogn) rounds (detailed below). In the final part, we use
this estimate to sub-sample the broadcasters, by having each broadcaster now broadcast
with probability min{-£,0.2}. This part runs for ©(log n) rounds, by the end of which
the remaining processes have all received the message with high probability. Formally,
this gives us the following:

Theorem 3. Ift < 0.05 x C and C < 2, then the pandemic broadcast algorithm 2
solves the SSB problem in O(logn - loglogn) rounds.

Returning to the algorithm details, notice that the first part of PBA2 is the same as
running ©(log n) phases of PBP, and thus its correctness follows from Lemmas 1 and
2. Similarly, the third part is similar to running PBP with the addition that in the second

* Because O(log n) rounds are sufficient to solve the problem, this would require O(log n log t)
total bits, which could fit under the standard assumption of messages holding a polylogarthmic
number of bits.

round of each phase, broadcasters decide to transmit with probability min{%, 0.2},
where est is the estimate of | B| to within a factor of 2. An argument similar to that given
in proof of Lemma 3 establishes that ©(log n) rounds are sufficient for all remaining
receivers to become broadcasters. Therefore, we are left to describe and analyze the

estimation part of the algorithm—which is where we turn our attention next.

Estimation Part of PBA2: We change the role of some broadcasters to mirrors us-
ing the following rule: the processes which received the message in the first ©(logn)
rounds of part 1 become mirrors while the other processes which received the message
remain broadcasters 3. The constants in the asymptotic notations are selected such that,
with high probability, at least one mirror exists and there are at least % broadcasters.
The core idea is to estimate the number of broadcasters using the help of mirrors.

Theorem 4. Ift < 0.05xCandC < % and there is at least one mirror, then Estimation
Algorithm (presented in Algorithm 4) produces a 2-approximation for the number of
broadcasters, with high probability and in O(logn - loglogn) rounds.

In the Estimation Algorithm, our basic tool is a simple probabilistic comparison
method called ApproxCompare, which compares the number of broadcasters with a
given threshold X and outputs a response in form ‘larger’ or ‘smaller’. We say that the
output is correct in case it is ‘larger’ if the number of broadcasters is greater than 1.4.X,
and in case it is ‘smaller’ if if the number of broadcasters is less than X/1.4. On the
other hand, if the number of broadcaster nodes is in [X/1.4, 1.4X], we do not expect
any guarantee from the output. Next, we explain this comparison method and show
that its output is correct with high probability. But before that, let us finish the story
of the estimation algorithm considering a black-box algorithm ApproxCompare. To get
a 2-estimation, it is enough to compare the number of broadcasters with thresholds 2°
for i € [log N], using ApproxCompare. Moreover, we can use a binary search over
these thresholds, to speed up this process. The pseudo-code presented in Algorithm 4
realizes this idea, with some special care about anomalies possible due to incomplete
guarantee of the aforementioned definition of correct output. The related correctness
and the time-complexity are studied in the proof of Theorem 4.

ApproxCompare Algorithm: As presented in Algorithm 3, ApproxCompare proce-
dure is comprised of 200logn phases. Throughout these phases, both mirrors and
broadcasters always work on channel 1 (of the source). Each broadcaster has a vari-
able counter initially set to zero. In each phase, there are two rounds, namely a fest
round and a report round. In the test round, the source transmits message m; also each
broadcaster transmits message m with probability px = 1 — 2~'/X and remains silent
otherwise. In this round, mirrors only listen. Then, in the report round, the source again
transmits message m. However this time, each mirror that did not receive a message
transmits and broadcasters all listen. Each broadcaster that does not receive a message
in the report round increments its counter. After all phases are finished, each broadcaster
outputs ‘larger’ if its counter is more than half of the number of phases, i.e., if it did not
receive anything back in the majority of report rounds. Otherwise, it outputs ‘smaller’.

> This change remains in effect for the third part as well.

Algorithm 3 ApproxCompare(X) — at process u

1: counter + 0
2: for i:=1 to 200 log n do > ©(log n) phases
3: if w == source then > Test Round
4. BROADCAST(m) on randomly shifted channel 1
5: else if broadcaster,, then
6: with probability px =1 — 2-1/X go
7: BROADCAST(m) on channel 1 (of source)
8: otherwise
9: LISTEN to channel 1 (of source)
10: else if mirror,, then
11: LISTEN
12: if w == source then > Report Round
13: BROADCAST(m) on a randomly shifted channel 1
14: else if mirror,, then
15: if received a message in test round then
16: BROADCAST(m) on channel 1 (of source)
17: else
18: LISTEN to channel 1 (of source)
19: else if broadcaster, then
20: LISTEN
21: if did not received a message then counter < counter + 1

22: if counter > 100 log n then

23: return ‘larger’
24: else
25: return ‘smaller’

Algorithm 4 Estimation Algorithm

. upperLog < log N
. lowerLog < 0
. while upperLog — lowerLog > 1do

midLog = LlowerLog-;uppeangJ

resy ApprozCompare(Zmidng_l)
resy < ApprozCompare(2miiLe9)
ress Appro;cCompare(Q"”dL"g+1)

switch (resy, ress, ress) do
case (*, ‘smaller’, ‘smaller’)
upperLog < midLog
case (‘larger’, ‘larger’, *)
lowerLog < midLog
case (‘smaller’, *, ‘larger’)
return 2m#4L°9
default case:
return 2?4109

Y e e e
FREBRE 0N NoUusE ws

—_
3

: return 2'°werLog

Lemmad4. Ift < 0.05 x CandC < % and there is at least one mirror, then each call
to ApproxCompare procedure gives a correct response with high probability.

Proof. 1f the number of broadcasters is greater than or equal to 1.4.X, then in the test
round of each phase, the probability that at least one broadcaster transmits is 1 — (1 —
px) Bl >1— (1 —px)*¥ =1—2"1%> 0.62. If in the test round of a given phase,
at least one broadcaster transmits, then the transmission of these broadcasters collides
with the transmission of the source and thus, mirrors receive no messages. Hence, in
the report round of that phase, mirrors all transmit and therefore, once again due to col-
lision with the source’s transmission, broadcasters receive no messages. In such a case,
broadcasters increment their counter. Hence, we get that if the number of broadcasters
is greater than or equal to 1.4.X, in each test, the counter of each broadcaster is incre-
mented with probability at least 0.62. Using Hoeffding’s inequality, we can infer that
after 200 log n phases, with high probability, the counter of each broadcaster is greater
than 100 log n and therefore, response of the approximate comparison is ‘larger’.

On the other hand, if the number of broadcasters is less than or equal to X/1.4,
then in the test round of each phase, the probability that no broadcaster transmits is
(1 —px)Bl > (1 — px)X/(2) = 2-1/14 5 (.60. If in the test round of a given phase,
no broadcaster transmits, then in that round, the mirrors receive the transmission of the
source with probability at least % > 0.95. In that case, in the report round, no mirrors
transmits and therefore, broadcasters receive the transmission of the source again with
probability at least % > 0.95. If all of these events happen, broadcasters do not incre-
ment their counter. Hence, we get that if the number of broadcasters is less than or equal
to X /1.4, in each test, the probability that counter of each broadcaster is incremented
isat most 1 — 0.6 x 0.95 x 0.95 < 0.45. Using Hoeffding’s inequality, we can infer
that after 200 log n phases, with high probability, the counter of each broadcaster is less
than 100 log n and therefore, response of the approximate comparison is ‘smaller’.

Proof (Proof of Theorem 4). First, for the time-complexity analysis, notice that there are
log n comparison thresholds and therefore, the binary search over these threshold values
as presented in Algorithm 4 requires just O(loglogn) comparisons. Since each com-
parison takes ©(log n) rounds, the total time complexity becomes ©(logn - log logn).

Now, we analyse the correctness. Consider an arbitrary turn of the while loop in
Algorithm 4. We make three calls to ApproxCompare to take into account the fact that
when the number of broadcasters is within a 1.4 factor of the comparison threshold,
we do not get any guarantee from Lemma 4. Since 1.42 < 2, at most only one of the
three thresholds 2mtdLog—1 ogmidLog gmidLog+l i within 1.4 factor of the number
of broadcasters. Thus, noting Lemma 4, we know that with high probability, the out-
put of at most one of the three calls to ApproxCompare in this turn is not true. The
case is clear if all the three responses are true. If only the response of the comparison
to 2midLog—1 js ot true, then we know that the number of broadcasters is within a
1.4 factor of 2m#4L°9=1 and thus, less than 274209 In this case, we get a response
of ‘smaller’ from the other two comparisons and therefore, following case presented in
line 9 of Algorithm 4, the binary search moves in the correct direction. Similarly, if only
the response of the comparison to 2™*%°9+1 i5 not true, then we know that the number
of broadcasters is within a 1.4 factor of 2#4L°9+1 and thus, greater than 2™*4L°9_ In

this case, we get response of ‘larger’ from the other two comparisons and therefore, fol-
lowing case presented in line 11 of Algorithm 4, the binary search moves in the correct
direction. In the last case, if the response to the comparison to omidLog s not true, then
the number of broadcasters is within a 1.4 factor of 24109 1 this case, Algorithm 4
returns 24109 ag the final estimation, which is clearly a 2-factor estimation. Finally,
we know from Lemma 4 that with high probability, no other case happens.

3.2 High-Disruption Regime

In Section 3.1, we presented the PBA1 and PBA?2 algorithms, which work when ¢ is not
too large compared to C. Here we generalize for any ¢ < C.

Our approach is to use 9(%) rounds to simulate one abstract round of PBA1 or
PBAZ2 (in particular, g—ff rounds will prove sufficient). To simulate abstract round r of
one of these low-disruption algorithms, we first let broadcasters choose their channel,
and whether or not they broadcast, according to logic of the respective algorithm. They
then use these same fixed choices for the © (%) simulation rounds that follow. In each
of these simulation rounds, these broadcasters permute their channels using the com-
mon random bits from the source message. Therefore, all broadcasters that choose the
same channel, will be on the same channel for all © (CC_ t) rounds, but this channel will
randomly change from round to round. The receivers can continue to choose random
channels on which to receive, throughout this period.

We now prove that this simulation strategy allows PBA1 and PBA2 to work in the

high-disruption setting at the cost of slow down factor %

Theorem 5. The pandemic broadcast algorithm 2, augmented with the simulation strat-
egy, solves the SSB problem in O(% logn - loglogn}) rounds, for C < logn and
t < C; the pandemic broadcast algorithm 1, augemented with the simulation strategy,
solves the SSB problem in O(é [L]1log n) rounds, forlogn < Cand1 <t <C.

Proof. Consider abstract round 7 of one of these SSB algorithms augmented with the
simulation strategy. We fix the broadcasters channel and broadcast choices at the be-
ginning of this abstract round, and stick with these choices for the simulation rounds
that follow. Assume that these fixed choices include a channel ¢ with either less than
or more than 1 broadcaster. In the low-disruption setting, no process would receive a
message on c. Notice that the same holds here for the @(%) channels mapped to ¢
throughout the simulation rounds.

Now assume that these fixed choices include a channel ¢ with exactly one broad-
caster. It follows that in our simulation of this abstract round, there will be at least one
simulation round where the channel mapped to c¢ is undisrupted, with constant proba-
bility. This follows because in each such round, c is disrupted with probability at most
é. Therefore we experience at least one undisrupted simulation round with probability
atleast 1 — (5)%@= =1 — (1 — &4)&5 > 1- L > 0.95.

We are, therefore, in effect simulating our low-disruption algorithms in a new type
of network model where the adversary disrupts each channel with some independent
disruption probability of no more than 0.05. Though PBA1 and PBA2 were originally

analyzed in a model with an arbitrary adversary that jams up to ¢ < 0.05 x C chan-
nels, it is easy to verify that the same arguments work in the more well-behaved model
simulated here, in which we fix the interference adversary to choose its ¢ < 0.05 x C
channels randomly. Therefore, the same correctness holds under the same conditions,
in exchange for the slow down factor of © (%) caused by the simulation rounds.

4 Lower Bounds

We now present our lower bounds. For the case where ¢ = O(n), we can prove our so-
lution optimal (within log log n factors). This bound focuses on showing that it takes a
while for the source to choose a non-disrupted channel (clearly, broadcast cannot com-
plete before the source lands on a non-disrupted channel for the first time). For larger
t, the task gets more difficult. In this case, the [%] term in our time complexity be-
comes relevant. Proving this term necessary requires that we bound the behavior of the
receivers—a difficult task because they can potentially coordinate in advance of receiv-
ing the source message, creating dependencies that thwart straightforward lower bound
arguments. Below, we present the lower bound for this difficult case under the assump-
tions that we are in the low disruption regime and using regular algorithms [2,3]: An
SSB algorithm is called regular if for each process u, there exists a probability distri-
bution 7, over the channels, i.e., m, : {1,2,...,C} — [0, 1], such that the following
holds: as long as u has not received the message, in each round r, process u does not
transmit and moreover, it selects the channel to which it listens to using the distribu-
tion 7,. Once u receives the message, its behavior is no longer restricted. Note that all
our algorithms satisfy this regularity assumption. It is unclear whether it is the upper
or lower bound that would improve in the absence of these properties. We leave that
question as interesting future work. Please see the full paper for the proof.

Theorem 6. Every solution to the SSB problem requires Q(% log n) rounds. In the
low disruption regime, every regular algorithm for the SSB problem also requires
(% [£]logn) rounds.

References

1. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop
radio networks: An exponential gap between determinism and randomization. Journal of
Computer and System Sciences 45(1), 104—126 (1992)

2. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader Election in Shared Spectrum Radio Net-
works. In: Proceedings of the International Symposium on Principles of Distributed Com-
puting (2012)

3. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F.,, Newport, C.: The wireless synchronization
problem. In: Proc. 28th Symp. on Principles of Distributed Computing (PODC). pp. 190-
199 (2009)

4. Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging Channel Diversity to Gain
Efficiency and Robustness for Wireless Broadcast. In: Proceedings of the International Sym-
posium on Distributed Computing (2011)

10.

11.

12.

13.

14.

17.

18.

19.

20.

21.

. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-Channel Radio Net-

work: An Oblivious Approach to Coping with Malicious Interference. In: Proceedings of the
International Symposium on Distributed Computing (2007)

. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure Communication Over Radio Chan-

nels. In: Proceedings of the International Symposium on Principles of Distributed Computing
(2008)

. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-Resilient Information

Exchange. In: the Proceedings of the Conference on Computer Communication (2009)

. Gummadi, R., Wetherall, D., Greenstein, B., Seshan, S.: Understanding and Mitigating the

Impact of RF Interference on 802.11 Networks. In: Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIGCOMM). pp. 385—
396 (2007)

. Jin, T., Noubir, G., Thapa, B.: Zero Pre-Shared Secret Key Establishment in the Presence

of Jammers. In: Proceedings International Symposium on Mobile Ad Hoc Networking and
Computing (2009)

Liu, A., Ning, P.,, Dai, H., Liu, Y.: USD-FH: Jamming-Resistant Wireless Communication
using Frequency Hopping with Uncoordinated Seed Disclosure. In: Proceedings of the IEEE
International Conference on Mobile Ad Hoc and Sensor Systems (2010)

Liu, A., Ning, P, Dai, H., Liu, Y., Wang, C.: Defending DSSS-Based Broadcast Communi-
cation Against Insider Jammers via Delayed Seed-Disclosure. In: Proceedings of the IEEE
Annual Computer Security Applications Conference (2010)

Liu, Y., Ning, P, Dai, H., Liu, A.: Randomized Differential DSSS: Jamming-Resistant Wire-
less Broadcast Communication. In: the Proceedings of the Conference on Computer Com-
munication (2010)

Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed Dating Despite Jammers. In:
Proceedings of the International Conference on Distributed Computing in Sensor Systems
(2009)

Newport, C.: Distributed Computation on Unreliable Radio Channels. Ph.D. thesis, MIT
(2009)

. Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the

chernoff-hoeffding bounds. SIAM J. Comput. 26(2), 350-368 (Apr 1997), http://dx.
doi.org/10.1137/50097539793250767

. Popper, C., Strasser, M., Capkun, S.: Jamming-Resistant Broadcast Communication without

Shared Keys. In: Proceedings of the USENIX Security Symposium (2009)

Popper, C., Strasser, M., Capkun, S.: Anti-Jamming Broadcast Communication using Unco-
ordinated Spread Spectrum Techniques. IEEE Journal on Selected Areas in Communications
28(5), 703-715 (2010)

Slater, D., Tague, P., Poovendran, R., Matt, B.: A Coding-Theoretic Approach for Efficient
Message Verification over Insecure Channels. In: Proceedings of the ACM Conference on
Wireless Network Security (2009)

Strasser, M., Capkun, S., Popper, C., Cagalj, M.: Jamming-Resistant Key Establishment us-
ing Uncoordinated Frequency Hopping. In: IEEE Symposium on Security and Privacy (2008)
Strasser, M., Popper, C., Capkun, S.: Efficient Uncoordinated FHSS Anti-Jamming Com-
munication. In: Proceedings International Symposium on Mobile Ad Hoc Networking and
Computing (2009)

Xiao, L., Dai, H., Ning, P.: Jamming-Resistant Collaborative Broadcast Using Uncoordinated
Frequency Hopping. IEEE Transactions on Forensics and Security 7(1), 297-309 (2012)

