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Abstract

The broadcast throughput in a network is defined as the
average number of messages that can be transmitted per
unit time from a given source to all other nodes when
time goes to infinity.

Classical broadcast algorithms treat messages as
atomic tokens and route them from the source to the re-
ceivers by making intermediate nodes store and forward
messages. The more recent network coding approach, in
contrast, prompts intermediate nodes to mix and code
together messages. It has been shown that certain wired
networks have an asymptotic network coding gap, that
is, they have asymptotically higher broadcast through-
put when using network coding compared to routing.
Whether such a gap exists for wireless networks has
been an open question of great interest. We approach
this question by studying the broadcast throughput of
the radio network model which has been a standard
mathematical model to study wireless communication.

We show that there is a family of radio networks
with a tight Θ(log log n) network coding gap, that is,
networks in which the asymptotic throughput achiev-
able via routing messages is a Θ(log log n) factor smaller
than that of the optimal network coding algorithm. We
also provide new tight upper and lower bounds showing
that the asymptotic worst-case broadcast throughput
over all networks with n nodes is Θ( 1

logn ) messages-per-
round for both routing and network coding.

1 Introduction

Broadcasting, that is, transmitting one or multiple mes-
sages from a source to some or all nodes in a network,
is one of the most important network communication
primitives. It is particularly interesting in multi-hop
wireless networks: While wireless communication is of
broadcast-type on a local level (transmissions reach all
close-by nodes), collision and interference make global
broadcasts over multiple hops challenging.

The radio network model [8] was designed to cap-
ture these characteristics and has become one of the

standard mathematical models to study wireless net-
work communication. In this model, communication
occurs in synchronous rounds in which each node in a
network, represented by a graph G, can decide to send a
packet or listen. Nodes that listen receive the packet of a
sending neighbor if there is exactly one sending neigh-
bor. On the other hand, if two or more neighbors of
a node v send simultaneously, then their transmissions
collide (i.e., interfere) at v and are useless for v.

In this paper we study what broadcast throughput
is possible in radio networks. That is, we want to know
how many messages per round can a source broadcast
to all nodes on average as time (and the number of
messages) goes to infinity. In addition to determining
the optimal broadcast throughput we also want to know
whether any coding is necessary to achieve it.

The reason for differentiating coding and non-
coding approaches is due to the following historical de-
velopments: The classical way of transmitting multi-
ple messages over a networks is routing, that is, mes-
sages are regarded as atomic tokens and routed from the
source to the receivers by making intermediate nodes
store and forward messages. It was long known that
routing can achieve the optimal throughput for point-
to-point communications. However it was not until 2000
that Ahlswede et al. [2] discovered that the broadcast
throughput of a network can be increased by having
intermediate nodes code messages together. This net-
work coding approach has since let to both fundamental
new insights and simple, distributed and throughput-
optimal broadcast algorithms for many settings. Wire-
less networks, in particular, have become a popular set-
ting to study the impact of network coding and both
positive and negative results have been reported.

The situation is similarly open for broadcast in the
radio network model. Classical broadcast algorithms
achieve a Θ(1/ log2 n) messages-per-round throughput
in any n-node network. Over the past few years,
broadcast algorithms with Θ(1/ log n) messages-per-
round throughput have emerged, all of which employ



network coding. See Section 1.1 for related work.
This prompts several questions: How much (if any)
advantage can network coding provide over routing
in radio networks? What is the optimal worst-case
broadcast throughput in radio networks? Is network
coding necessary to achieve this throughput?

We address these questions and show that there
is a family of radio networks with a tight Θ(log log n)
network coding gap, that is, networks in which the
asymptotic throughput achievable via routing messages
is a Θ(log log n) factor smaller than that of the optimal
network coding algorithm. Surprisingly, we also provide
new tight upper and lower bounds showing that the
asymptotic worst-case broadcast throughput over all
networks with n nodes is Θ(1/ log n) messages-per-
round for both routing and network coding.

1.1 Related Work We present a brief review of the
closely related work, divided into three parts: broadcast
problem in radio networks, network coding advantage,
and network coding in wireless networks.

Broadcast in Radio Networks: The study of broad-
cast in radio networks has a long line of history, dating
back to 1985 work of Chalamatac and Kutten [8]. As
a result of about 20 years of research, worst-case opti-
mal single-message broadcast time complexity is well-
understood: Θ(D log n

D + log2 n) for unknown-topology

[3, 5, 9, 20, 22] and Θ(D + log2 n) for known topol-
ogy [3, 11, 21], where D is the network diameter. Pe-
leg [30] provides a nice survey.

For multiple-message broadcast, a summary with
a focus on throughput is as follows1: Bar-Yehuda et
al. [6] used the Decay broadcast protocol of [5] to get
a k-message broadcast algorithm with dependency of
O(k log2 n) rounds on the number of messages k, i.e.,
throughput of Ω(1/ log2 n) messages-per-round. This
routing-based throughput remained the best known
for about two decades, recurring in many papers2,
until recently where network coding was shown to
achieve dependency O(k log n) [14, 19], i.e., throughput
of Ω(1/ log n) messages-per-round. A routing-based
Ω(1/ log n) throughput was claimed in [27] but its
correctness was disproved [31].

Network Coding Advantage: Since its introduc-
tion in [2], network coding has become a well-studied

1We remark that, quite a few papers study multi-message

broadcast without considering any packet size bounds. This is

completely irrelevant to the case in this paper and thus, we do
not mention them here.

2Some of these papers are about the also-widely-studied gos-

siping problem, a.k.a., all-to-all broadcast, which from the worst-
case throughput point of view, is equivalent to an n-message

broadcast problem.

subfield of information theory. Most related are stud-
ies that study the network coding gap (i.e., the ra-
tio of the optimal throughput using network coding
to that of routing) for different network models (see,
e.g., [1, 15, 24, 25]). This network coding gaps are of-
ten deeply connected to combinatorial or graph theo-
retical problems. In wired undirected networks, using
a classical edge-disjoint spanning trees result of Tutte
and Nash-Williams, Li et al. [25] show this gap to be
at most a constant of 2. On the other hand, for di-
rected wired networks, Agarwal and Charikar [1] show
the coding gap to exactly correspond to the integrality
gap of the (directed) Steiner-tree LP and use an inte-
grality gap result of Halperin et al. [17] to prove an
Ω((log n/ log logn)2) bound on the coding gap for di-
rected networks. Whether the gap for directed wired
networks is polylogarithmic or even polynomial in n is
a major open question. Recently, Censor-Hillel et al. [7]
show a tight gap of Θ(log n) for the model where in
each round, each node can send one packet to all of its
neighbors (no collisions).

Network Coding in Wireless Networks: Whether
network coding offers advantages in wireless networks
has become a question of both practical and theoretical
interest. A prominent example is the work of Katti et
al. [18] which implemented a network coding strategy for
practical wireless networks and reported significant con-
stant factor throughput improvements. Following [18]
many papers have studied different aspects of network
coding in wireless networks, such as, energy-efficiency,
robustness to packet losses, dynamic networks, etc. (e.g.
[10, 15,29]).

2 Setup

2.1 Model We consider the well-studied radio net-
work model, first introduced by Chlamtac and Kut-
ten [8]. The connections in this model are presented by
a graph G = (V,E) with |V | = n. The communication
occurs in synchronous rounds where in each round, each
node either transmits a packet with length B = Θ(log n)
bits or listens. Each node receives a packet if and only
if it is listening and exactly one of its neighbors is trans-
mitting a packet. In particular, if two or more neighbors
of a node v transmit simultaneously, their transmissions
interfere (collide) at v and v does not receive anything.

2.2 Problem Statement Broadcast Problem:
We study the k-message broadcast problem in which one
source node broadcasts k messages to all other nodes.
Formally an instance of the k-message broadcast prob-
lem consists of a graph G, a source node s and k mes-
sages consisting of B bits each. The messages are ini-



tially only known to the source s and the goal is to
deliver all messages to all nodes of G in as few rounds
as possible.

We emphasize that, we use the term message to
indicate the blocks of information related to the prob-
lem that originally reside in the source node, and we
use the term packet to indicate the blocks of informa-
tion that are transmitted by nodes throughout the al-
gorithm. The difference becomes more clear as we next
define routing-based algorithms and network coding al-
gorithms.

Routing-Based Algorithms: In a routing-based al-
gorithm, messages are viewed as (atomic) tokens and
nodes can only store and forward them. Each packet
contains therefore exactly one message. It is easiest
to think of routing algorithms in the following way:
In each round r, each node v has a buffer which con-
tains all the messages that v has received by the end of
round r−1. Initially, these buffers are empty except for
source’s buffer which contains all k messages. In each
round r, for each node v, if v transmits a packet p, then
packet p has to be equal to one of the messages that is
in the buffer of node v in that round. When a node w
receives a packet, the related message gets added to the
buffer of w.

Network Coding Algorithms: In contrast to routing
based algorithms, in network coding algorithms, packets
can be different from messages and each packet can
contain (partial) information about many messages, as
long as the total length of the packet is B bits. More
precisely, in each round r, each node v has a buffer which
contains all the packets that v has received by the end
of round r− 1. Again, initially, these buffers are empty
except for source node’s buffer which contains all the k
messages (as k packets). In each round r, for each node
v, if v transmits a packet p, then packet p can be any
function of all the packets that are in the buffer of v in
that round, subject to the condition that p contains at
most B bits. Note that routing-based algorithms are a
special case of network coding algorithms.

Broadcast Throughput: For a given graph G and a
source node s, the routing-based broadcast throughput
is defined3 as limk→∞

k
TRk (G,s)

, where TRk (G, s) is the

smallest number of rounds required for broadcasting k
messages from source s to all nodes in G, when using
routing-based algorithms. Similarly, the network coding
broadcast throughput is defined as limk→∞

k
TNCk (G,s)

,

where TRk (G, s) is the smallest number of rounds re-
quired for broadcasting k messages from source s to all

3It is easy to see that the limits in the definitions of throughput
exist. See Proposition A.1 in Appendix A.

nodes in G, when using network coding algorithms. The
network coding gap for a graph G and source node s is

defined as limk→∞
TRk (G,s)

TNCk (G,s)
.

We remark that when looking at throughput there
is no difference between distributed and centralized
algorithms since the time to learn the topology is
independent from the number of messages k to be
broadcast. Similarly the existence of randomization,
IDs and collision detection becomes irrelevant as well.

2.3 Broadcast on Bipartite Networks We next
define broadcast problem on bipartite networks and
argue that studying bipartite networks is enough for
understanding the worst-case broadcast throughput in
general graphs.

Bipartite Networks: In a bipartite network H =
(V,E), set of vertices V is composed of two disjoint
nonempty sets A and B, which are each an independent
set of H. We call the nodes in A and B respectively
senders and receivers. We often use numbers 1 to η
to identify senders and thus have A = {1, 2, . . . , η}.
Note that B corresponds to a set of subsets of A, one
subset for each receiver u, representing simply neighbors
of u. Without loss of generality, we can assume that
each subset appears only once as if two receivers have
the same sender neighbors, they always receive the
same packets and thus, studying just one is enough for
understanding the throughput problem.

Bipartite Broadcast Problem: We define the k-
message broadcast problem on bipartite networks as all
senders initially have all the k messages and the goal
is to deliver all messages to all receivers. Bipartite
Broadcast Throughput is defined similarly.

Next, we argue that studying worst-case bipartite
broadcast throughput is enough for understanding the
worst-case broadcast throughput in general graphs (up
to constant factors).

Theorem 2.1. For both routing and network coding,
the worst-case optimal throughput on n-node bipartite
networks is, up a constant factor, equal to the worst-
case optimal throughput on general graphs with n + 1
nodes.

The rough idea is as follows: each bipartite broad-
cast problem can be turned into an almost-equal general
broadcast problem by just adding one source s and con-
necting it to all senders A. The converse relation is by
decomposing each graph into bipartite networks where,
for each d, nodes at distances d and d + 1 from source
define one bipartite network. By pipelining over these



bipartite networks, a high-throughput bipartite broad-
cast algorithm gives a high throughput general broad-
cast algorithm. The proof for Theorem 2.1 is elementary
and in order to preserve the flow of the paper, we have
deferred it to Appendix A.

3 Overview and Our Results

In this section, we give an overview of the structure of
related known upper and lower bounds, which will be
helpful for understanding our approach. After that, we
state our results formally.

3.1 Background When trying to transmit informa-
tion in a bipartite network, there is a dichotomy between
reaching receivers with small and large degrees. In par-
ticular, when many senders transmit, one would expect
to reach receivers with small degrees while causing col-
lisions for receivers with large degrees. On the other
hand, fewer senders transmitting leads to fewer colli-
sions for receivers with large degrees but might miss
many small-degree receivers.

As we see next, this dichotomy is very apparent in
both upper and lower bounds. In particular, all known
algorithms divide senders into Θ(log n) degree-ranges,
where the degrees of receivers in a degree-range are
equal, up to a constant factor. Similarly, impossibility
results, such as [3], show this degree-range division to
be essentially necessary.

Upper Bound for Broadcasting One Message:
An easy solution for transmitting one message in a
bipartite network is the Decay protocol [5], which works
as follows:

1: for i = 1 to Θ(logn) do
2: for j = 1 to Θ(logn) do
3: with probability 1

2i
do Transmit msg m;

4: otherwise remain silent

It is easy to see that in each iteration of the inner
loop, each receiver that has degree in [2i−1, 2i] 4 receives
the message with constant probability. Repeating this
Θ(log n) times leads to each such receiver receiving the
message with high probability and thus, each complete
run of the inner-loop covers one receiver degree-range.
The outer loop then covers all receiver degrees from 1
to n.

Lower Bound for Broadcasting One Message:
The question is of course whether the Θ(log2 n) rounds
of the Decay protocol can be improved. In a technically

4Throughout the paper, we use notation [p, q] with integers
p < q as a shorthand for set {p, p + 1, . . . , q}.

challenging lower bound, Alon et al. [3] showed that de-
livering the message to all receivers of each fixed degree-
range requires Θ(log n) rounds in the worst case. Fur-
thermore, their proof shows that transmissions aimed
at different degree-ranges essentially do not help each
other. This completes the Θ(log2 n) round lower bound.

Upper Bounds for Broadcasting Multiple Mes-
sages: When trying to transmit k > 1 messages, there
are two easy ways to extend the Decay-Protocol.

Firstly, one can repeat the Decay-Protocol for each
of the k messages. For example, repeating the inner-
loop of the Decay for each of the k messages delivers
all messages to all receivers within degree-range in
Θ(k log n) rounds. Repeating this for each of the log n
degree-ranges leads to a Θ(k log2 n) round complexity
or, differently phrased, to a throughput of Θ(1/ log2 n)
messages-per-round.

Secondly, to speed this up, one could apply the
inner-loop for each message only once instead of
Θ(log n) times. This results in each receiver receiving
each message with constant probability and it is easy
to see that for k = Ω(log n) messages, each receiver
will receive a constant fraction of all messages, with
high probability. Unfortunately, each receiver might
receive a different set of messages. Indeed, for many
networks it is quite likely that no message is received
by all receivers. Forward-error-correcting codes [26] of-
fer an easy solution to this problem. For any k mes-
sages one can, for example, create 100k coded messages
of equal length such that the original messages are de-
codable from any subset of k coded messages. There-
fore, using coding in the inner loop one can broadcast k
messages using 100k rounds to all receivers of a degree-
range. Again, iterating this over all log n degree-ranges
leads to a total of Θ(k log n) rounds for a throughput
of Θ(1/ log n) messages-per-round in any bipartite net-
work (see Appendix B). That is, a throughput of Θ(1)
for each degree-range.

3.2 Our Results The first (small) contribution of
this paper is to give a simple and direct proof showing
that the above coding approach is optimal in a worst-
case network:

Theorem 3.1. There exists a radio network where
for any k, broadcasting k messages requires at least
Ω(k log n) rounds. That is, the throughput for any
broadcast algorithm is O(1/ log n) messages-per-round.

The proof is very intuitive: For each degree-range,
one can deliver at most Θ(1) messages-per-round and
transmissions to each of the Θ(log n) different degree-
ranges do not help each other (much).



With the throughput of network coding fully un-
derstood, the main question remaining is whether this
Θ(1) messages-per-round throughput per degree-range
can also be achieved with routing. Given the prior work,
the two most plausible answers to this question, which
both would be interesting, are as follows:

The first case is that, it is possible to assign uncoded
messages to senders such that a constant fraction of
messages is received by all receivers. This would lead
to a Θ(1/ log n) messages-per-round throughput for any
(bipartite) network using only routing. This would show
that routing is asymptotically as efficient as network
coding.

The second plausible case is that, it is not possi-
ble to transmit k messages to all receivers of a fixed
degree-range in less than the Θ(k log n) rounds if one
only forwards uncoded messages. If this is true for each
of the log n degree-ranges individually, then, following
the argument line of [3] and Theorem 3.1, one would
expect that again transmissions for separate degrees
can not help each other much. This would lead to an
O(1/ log2 n) messages-per-round bound on the through-
put of routing and would show that network coding is
strictly necessary for asymptotically optimal broadcast
algorithms in radio networks.

We show neither of these to be the case. For
networks with receivers of one degree-range, we show
that routing can achieve a throughput of at most
O(1/ log log n) messages-per-round. This stands in
contrast to the Θ(1) messages-per-round throughput
of network coding for such networks and proves an
Ω(log log n) network coding gap in such networks:

Theorem 3.2. There exist bipartite networks with n
nodes where all receivers have degrees in range [d/2, 2d],
for d > n0.01, and for which the broadcast throughput
of any routing algorithm is at most O(1/ log logn)
messages-per-round. For any such network, the network
coding throughput is Θ(1) messages-per-round.

It turns out that this Θ(log log n) gap is tight for
bipartite graphs with one degree-range:

Theorem 3.3. For any bipartite network with n
nodes such that all receivers have degrees in range
[d/2, 2d], there exists a routing scheme with throughput
Θ(1/ log log n).

Lastly, we show that, surprisingly, this Θ(log log n)
bound does not add up for different degree-ranges and
the gap disappears (asymptotically) for the worst-case
over all n-node graphs:

Theorem 3.4. For any bipartite network G with n
nodes there exists a routing scheme with throughput
Ω(1/ log n) messages-per-round.

4 Network Coding

In this section, we sketch the proof of Theorem 3.1
(stated in Section 3.2). Smaller details appear in
Appendix C.

As discussed in Section 3 our proof follows the spirit
of the Ω(log2 n) lower bound of [3] for broadcasting a
single message in a bipartite network. The intuition
of the proof is that it is essentially unavoidable to
aim at different degree ranges in different rounds. In
particular, in a random bipartite network with different
receiver degrees any round in which an α fraction of
senders is sending will effectively only be useful for
receivers of degree around 1

α . More precisely, the
probability (and thus the number) of receptions is
dropping exponentially as receiver degrees go away from
1
α :

Proof. [Proof Sketch for Theorem 3.1] We show that
there exists a bipartite network H with less than n
nodes such that in each round, regardless of which nodes
transmit, at most O( 1

logn ) fraction of receivers receive a
packet. Since at the end each receiver should receiver at
least Ω(kB) bits, that is, Ω(k) packets. The Ω(k log n)
lower bound then follows.

To prove the existence of H, we use the probabilistic
method [4] by looking at a family of random bipartite
graphs where we have η =

√
n senders and m =

η logn
2 receivers. Receivers are divided into logn

2 equal-
size classes. The receivers of the ith class are each
independently connected to exactly 2i randomly chosen
senders. For each fixed subsetA′ ⊆ A of senders, letXA′

be the random variable equal to the number of receivers
that receive a packet when senders A′ transmit. Using
simple probability calculations, we get that for any
A′ ⊆ A, E[XA′ ] ≤ 10η = O( m

logn ). Most importantly,
this is because, in the receiver class with degrees roughly

1
|A′| , the expected number of receptions is Θ(η) and

as we move to other classes of receivers—i.e., larger
or smaller degrees—the expected number of receptions
decreases exponentially. Due to the independence of
edges of different receivers, we can use a Chernoff bound
and infer that Pr[XA′ > 20η] ≤ e−3η. Then, we can
union bound over all A′ ⊆ A to get that Pr[@A′ ⊆
A s.t. XA′ > 20η] ≥ 1 − (2η · e−3η) ≥ 1 − e−2η. Thus,
there exists a bipartite graph H in this family such that
transmission of no set of senders in one round can deliver
packets to more than 20η = O( m

logn ) receivers. �

We remark that Theorem 3.1 can also be obtained
from the proof of the Ω(n log n) gossip lower bound



proof of Gasienec and Potapov [12], which itself is
achieved by a reduction to the Ω(log2 n) lower bound
of [3]. The proof presented here is more direct, simpler,
and shorter than the proof of [3]. Consequent to a
preliminary writeup [13] of Theorem 3.1, Newport [28]
uses it to present a simpler and stronger proof of
the optimal distributed single-message broadcast lower
bound of [23].

5 Routing

In this section, we study the worst-case optimal routing
throughput. In particular, in Section 5.1, we present
solitude transmission schedules (STS), which are simple
concepts that provide a more crisp and manageable way
for working with routing algorithms in the bipartite
networks. In Section 5.2, we use STSs to present a
network with network coding advantage of Θ(log log n).
Finally, in Section 5.3, we use STSs to present worst-
case throughput optimal routing algorithms.

5.1 Solitude Transmission Schedules On bipar-
tite networks, each routing-based algorithm is simply a
transmission schedule, which we formally define next.
Consider a bipartite network H = (V,E) with senders
A and receivers B. A (routing-based) transmission
schedule S for H is a sequence which for each round
r, determines mutually disjoint sets Tmr for messages
m ∈ {1, . . . , k}, where Tmr ⊆ A is the set of senders that
transmit message m in round r. The size of a transmis-
sion schedule S, denoted by |S|, is simply the number
of rounds that it has.

Even though transmission schedules are cleanly de-
fined concepts, the fact that one needs to consider all
the k messages in all rounds makes the task of study-
ing transmission schedules extremely cumbersome. To
go away from this issue, we define solitude transmission
schedules which allow us to zoom in on the transmis-
sions and the receptions of one message, while trans-
missions of other messages are regarded as “noise”. We
show in Lemma 5.1 and Lemma 5.2 that, while STSs
allow us to only work with one message (which is sig-
nificantly simpler), they capture the throughput well.

Definition 5.1. A Solitude Transmission
Schedule (STS) S is a sequence (i1, A1),
(i2, A2), . . ., (i|S|, A|S|) which for each round r,
determines a set of senders Ar ⊆ A and one
specific sender ir ∈ Ar; sender ir transmits the
message (of interest) and senders in Ar \ {ir}
transmit “noise”. A receiver node u of a bipartite
network H receives the message if and only if there

exist a round r such that the only neighbor of u
that is in set Ar is sender node ir. We say that
STS S covers H if using S in H, all receivers
receive the message. We define the weight of an

STS S to be W (S) =
∑|S|
r=1

1
|Ar| .

First, we show that high-throughput transmission
schedules lead to low-weight STSs:

Lemma 5.1. Let H be an arbitrary bipartite networks.
If there is a transmission schedule S for H that has
throughput at least x, then there exists an STS S ′ that
covers H and has W (S ′) ≤ 1

x .

Proof. For each round r of S, let Tr =
⋃
m∈{1,...,k} T

m
r .

In S, we charge each message m by Ψ(m) =∑|S|
r=1 |Tmr |/|Tr|. We have

∑
m∈{1,...,k}

Ψ(m) =
∑

m∈{1,...,k}

|S|∑
r=1

|Tmr |/|Tr|

=

|S|∑
r=1

( ∑
m∈{1,...,k}

|Tmr |/|Tr|
)

=

|S|∑
r=1

1 = |S|.

Since S has throughput at least x, we get that∑
m∈{1,...,k}Ψ(m) = |S| ≤ k

x and thus, there exists a

message m∗ such that Ψ(m∗) ≤ 1
x . We transform S into

an STS S ′ by focusing on m∗, using the following steps:
(i) remove all the rounds in which m∗ is not transmitted
by any sender, (ii) for any round r such that |Tm∗r | ≥ 1,
split round r into |Tm∗r | separate rounds where in each
of those |Tm∗r | rounds, a different node of Tm

∗

r trans-
mits message m∗ while every other node in Tr transmits
‘noise’. It is easy to see that since S delivers m∗ to every
receiver, S ′ covers H. Also, W (S ′) = Ψ(m∗) ≤ 1

x . �

Next, we show (almost) the converse: Using a
combinatorial packing argument, we prove that low-
weight STSs, with a small additional symmetry-type re-
quirement, can be actually turned into high-throughput
transmission schedules. Later in Section 5.3, we use
Lemma 5.2 to get high-throughput routing-based trans-
mission schedules.

Lemma 5.2. Let H be an arbitrary bipartite network
with η senders. Suppose there is an STS S on η senders
of weight w such that a random permutation of S covers
H with probability p. Then, there exists a routing
algorithm for H that achieves throughput of exactly p/w.



Proof. Let S = ((i1, A1), . . . , (i|S|, A|S|)) be the
promised STS. We design a transmission schedule Snew
that tries to transmit η! messages (one message mπ for
each permutation π of the set of senders {1, 2, . . . , η})
in η!w rounds, such that for η! p messages, each of these
messages is successfully delivered to all receivers. Thus,
even if the η! − η! p unsuccessful messages are ‘noise’
(or empty), still η! p messages are delivered success-
fully to all receivers, in η!w rounds. For large number
of messages k, repeating the schedule of these success-
ful messages dk/η! pe times leads asymptotically to the
promised routing throughput of p/w.

We first declare which senders transmit in which
rounds of Snew and then make the assignment of what
message is transmitted by each transmitting sender.

For each ` ∈ [1, η], let n` be the number of rounds r
of S such that |Ar| = `. For each ` ∈ {1, . . . , η}, for each
set A′ of ` senders, we assign n`(η− `)!(`− 1)! = n`

η!

`(η`)
rounds in Snew where in each of these rounds, exactly
nodes of A′ transmit. Hence, as claimed, the total
number of rounds of Snew is∑

`

(
η

`

)
n`

η!

`
(
η
`

) = η!
∑
`

n`
`

= η!
∑
r

1

|Ar|
= η!w.

We now determine which message is transmitted by
each transmitting sender in each round using a greedy
procedure. For each round t of Snew, let Tt be the set of
senders that transmit in round t. Also, for each round t
of Snew and each sender i ∈ Tt, let Mt(i) be the message
assigned to i for transmission in round t. Initially,
Mt(i) = null for all i ∈ Tt. We iterate one by one
through all permutations π of {1, 2, . . . , η} and through
all rounds r ∈ {1, . . . , |S|} of STS S, and each time, we
search for a round t in transmission schedule Snew such
that the set of transmitting senders Tt is exactly π(Ar)
and for which the sender π(ir) has not been assigned
a message for transmission yet, i.e., Mt(i) = null. We
then assign the sender π(ir) to transmit the message mπ

at round t of Snew.

1: for each permutation π of set {1, 2, . . . , η} do
2: for r ∈ {1, . . . , |S|} do
3: Find a round t of Snew such that:

Tt = π(Ar) and Mt(π(ir)) = null.
4: Mt(π(ir))← mπ.

It is clear that if the find procedure in Line 3
of the algorithm always succeeds, then for the
produced schedule Snew, the STS associated with
Snew and each message mπ is exactly π(S) =
((π(i1), π(A1)), . . . , (π(ir), π(Ar))). If π(S) is one of the
permutations of S that cover H, then the message mπ is

delivered to all receivers. Since there are η! p such cov-
ering permutations, this is also the number of messages
that gets delivered to all receivers.

To complete the proof, we show that the find
procedure in Line 3 of the algorithm always succeeds.
If the greedy assignment is searching for a round t such
that Tt = A′, where |A′| = `, and where specific sender
i ∈ A′ has M(i) = null, then the greedy assignment is
processing a permutation π′ and a round r′ of S such
that π′(ir′) = i, π′(Ar′) = A′, and |Ar′ | = `. For each of
the n` values of r′ for which |Ar′ | = `, there are exactly
1(` − 1)!(n − `)! permutations π′ such that π′(r′) = i
and π′(Ar′) = A′. Thus, over the course of the greedy
assignment, such a (A′, i)-find request is made exactly
n`(` − 1)!(n − `)! times. This corresponds exactly to
the n`(η − `)!(` − 1)! number of rounds the set A′ is
transmitting. Hence, Line 3 of the algorithm will always
succeed and, in fact, at the end, there will remain no
Mt(i) = null for any i ∈ Tt. �

5.2 An Ω(log log n) Network Coding Gap Here,
we use STSs to present a network with network cod-
ing advantage of Θ(log log n) (that is, to prove Theo-
rem 3.2):

We first present the key part of this theorem as The-
orem 5.1, which proves the existence of (almost) fixed-
receiver-degree bipartite networks with optimal routing
throughput of O(1/ log log n) messages-per-round. Af-
ter that, with a simple comparison to network coding
which achieves throughput of Θ(1) messages-per-round
in such networks, we prove Theorem 3.2.

Theorem 5.1. There exist a bipartite network H with
|A| = η senders and |B| = η6 receivers, where all
receiver nodes have degree in range [ 9η

20 ,
11η
20 ] and any

routing-based broadcast algorithm has throughput at
most O( 1

log log η ) messages-per-round on H.

Proof. Using Lemma 5.1, we get that to prove Theo-
rem 5.1, it suffices to show that there is a bipartite net-
work H with the described properties such that there is
no STS with weight at most 99 log log η

100 that covers H. In
order to do this, we consider a random distribution over
a family of bipartite graphs G where we have |A| = η
senders and |B| = η6 receivers. In each random graph
G ∈ G, each receiver is independently connected to each
sender with probability 1

2 .
Standard application of Chernoff and union bounds

shows that for each random graph G ∈ G, with proba-
bility 1 − 2−Ω(η), we have that in G, each receiver has
degree in range [ 9η

20 ,
11η
20 ]. To complete the proof, we

show the following: for each random graph G ∈ G, with
probability 1 − 2−Ω(η), there is no STS with weight at
most 99 log log η

100 that covers G.



Since for each STS S, we have W (S) ≥ |S|η , to prove
the claim we only need to focus on STSs with at most
η log log η � η2 rounds. Consider a fixed STS S such
that W (S) ≤ 0.99 log log η and the length of S is at
most η2. We show that the probability that this STS
covers G is at most e−η

5

. Then, we use a union bound
over all such STSs to conclude the proof of the claim.

We first reorder the rounds of S as
(i1, A1), (i2, A2), .., (it, At), with t < 0.99η log log η <
η2, where each pair (ij , Aj) corresponds to a round in
which the subset Aj of A is the set of transmitting
senders, and ij ∈ Aj is the only sender that transmits
the message. The order of these pairs is chosen
greedily; Aj is the one for which the cardinality of
Aj−{i1, i2, .., ij−1} is minimized among all rounds that
are still available.

Let p be the minimum index such that |Ap −
{i1, ., , ip−1}| ≥ 10 log η (if there is no such p take
p = t). Note that the minimality in the choice of p
implies that also |As − {i1, ., ip−1}| ≥ 10 log η for all
s > p. Moreover, let q be the minimum index so that
|Aq − {i1, ., , iq−1}| ≥ 10 log log η (if there is no such
q take q = t). Note that by definition q ≤ p. As
before, the minimality in the choice of q implies that
|As − {i1, ., , iq−1}| ≥ 10 log log η for all s > q (and of
course |As − {i1, ., , iq−1}| ≥ 10 log η for all s > p).

We have p ≤ log2 η. This is because of the following:
For all j < p, we have |Aj | ≤ j − 1 + 10 log η, as
|Aj − {11, .., ij−1}| ≤ 10 log η. Thus, if p > log2 η,
then W (S) would be at least

∑p
i=1 1/(i + 10 log η) >

(1 − o(1)) log log η, which would be a contradiction.
Similarly, we have q ≤ 0.5 log η. This is because, if
q > 0.5 log η, then W (S) would be at least

∑q
i=1 1/(i+

10 log log η) = (1− o(1)) log log η, which would again be
a contradiction.

For a fixed receiver node u ∈ B, the probability that
u is not connected to any of the vertices i1, i2, .., iq−1

and has at least 2 neighbors in As −{i1, ., , iq−1} for all
s ≥ q is at least

(
1

2
)q(1− p ·O(log log η/ log10 η)− η2 ·O(log η/η10))

≥ (1/
√
η)(1− log2 η ·O(log log η/ log10 η)

−η2 ·O(log η/η10)) ≥ 1/(2
√
η).

Note that if this happens, u never receives the message.
Thus we get that the probability that no such receiver
u exists is at most (1− 1/(2

√
η))η

6 � e−η
5

. Hence, the
probability that the fixed STS S covers random graph
G is at most e−η

5

.
Now, the total number of possibilities for STS S

of length at most η2 is less than (η2η)η
2

< 2η
4

. This
is because, for each round r of S, there are η options
for sender ir and at most 2η options for Ar. Hence,

using a union bound over all such STSs, we get that
the probability that there exists an STS with weight at
most 99 log log η

100 that covers G is at most 2η
4

e−η
5

< 2−η.
Therefore, we get that the described network H exists.
�

Using Theorem 5.1, we now go back to proving
Theorem 3.2.

Proof. [Proof of Theorem 3.2] Consider the graph H
proven to exist by Theorem 5.1 with η = n − 1 and
add a source connected to all senders. Theorem 5.1 im-
plies that routing has throughput at most O( 1

log logn ).
To complete the proof, we show that network coding
achieves a throughput of Θ(1) in this network. De-
livering messages to all senders takes just k rounds.
Then, divide the k messages into blocks of Θ(log n) mes-
sages. We do coding only inside each block, and deliver
each block completely from the senders to receivers in
Θ(log n) rounds, thus proving the corollary. In each
round (of Θ(log n) rounds), each sender transmits a new
coded packet of the block with probability 1/2 and re-
mains silent otherwise. It is easy to see that since re-
ceiver degrees are in range [ 9η

20 ,
11η
20 ], in each round, each

receiver receives a new coded packet of the block with
constant probability and thus, after Θ(log n) rounds,
w.h.p., this receiver receives Θ(log n) coded packets and
thus can decode the messages of this block. A union
bound over all receivers finishes the proof. �

5.3 Routing-based Broadcast Algorithms We
now use STSs and Lemma 5.2 to obtain throughput-
optimal routing algorithms.

Proof. [Proof of Theorem 3.4] Consider the STS S =
((1, [1, 1]), (2, [1, 2]), . . . , (η, [1, η])). That is, the STS
where in the ith round, the ith sender sends the message
and senders 1 to i − 1 send noise. Let H to be
an arbitrary bipartite network with η senders and
with receivers B ⊆ 2[η] (each receiver is presented
by the subset of senders to which it is connected).
We claim that for any permutation π of senders A =
{1, 2, . . . , η}, the STS π(S) covers H. The theorem then
directly follows from Lemma 5.2 and the observation
that W (S) ≤

∑η
r=1 1/r ≤ ln η + 1.

To prove the claim, consider a receiver rA′ ∈ B that
is connected to the senders A′ ⊆ {1, 2, . . . , η}. In round
t = minu∈A′ π

−1(u) of the STS π(S), node π(t) ∈ A′

sends and only nodes v for which π−1(v) < π−1(t) send
noise. By minimality of t, none of these nodes v are in
A′ and thus, receiver rA′ receives the message in round
t. �

Note that the STS in Theorem 3.4 is independent of
network G. So, the resulting routing scheme works



obliviously—i.e., without adapting to the topology—for
any bipartite network with η senders.

Generalizing Theorem 3.4, we get Theorem 3.3
(stated in Section 3.2) and Theorem 5.3 for bipartite
networks with a limited range of receiver degrees, as
considered in Section 5.2, which show the bound of
Theorem 3.2 to be the best possible for such graphs. To
prove Theorem 3.3, we here present and prove a stronger
version:

Theorem 5.2. For any bipartite network G with
η senders in which the receivers have degrees in
[δ,∆] there exists a routing scheme with throughput
Θ( 1

log ∆
δ +log log η

).

Proof. Let S1, . . . , Sf be f = 16 ln η sets be indepen-
dently and uniformly random chosen sets of senders
A = {1, 2, . . . , η}, each of size η

∆ . Now we consider
the STS S that is made of two parts, i.e., S = (s1, s2),
where

• the first part s1 = ((1, [1, 1] ∪ S1), . . . , (1, [1, 1] ∪
Sf ), (2, [1, 2] ∪ S1), . . . , (2, [1, 2] ∪ Sf ), . . . ,
( η

∆ ln η , [1,
η

∆ ln η ] ∪ S1), . . . , ( η
∆ ln η , [1,

η
∆ ln η ] ∪ Sf )),

and,

• the second part s2 = (( η
∆ ln η + 1, [1, η

∆ ln η +

1]), ( η
∆ ln η+2, [1, η

∆ ln η+2]), . . . , ( 2η ln η
δ , [1, 2η ln η

δ ])).

The weight of the first part of the schedule is

∆

η
· f · η

∆ log η
= O(1),

and the second part has weight

2η ln η
δ∑

i= η
∆ ln η

1/i ≤ ln
2∆ ln2 η

δ
+ 1 = O(log

∆ log η

δ
).

Hence, the total weight is W (S) = O(log ∆ log η
δ ).

Next we show that for a random permutation π,
π(S) covers the network G with probability at least 1/2.
We first remark that for each receiver rA′ ∈ G, which is
connected to a subset of senders A′, and any i ∈ [1, f ],
there is an independent chance of

(
η−∆
η
∆

)(
η
η
∆

) >

(
η −∆− η

∆

η − η
∆

) η
∆

=

(
1− ∆

η(1− 1
∆ )

) η
∆

> e−(1− 1
∆ )−1

≥ e−2 > 1/8

that π(Si) ∩ A′ = ∅. The probability that for every
receiver rA′ there is an frA′ ∈ [1, f ] with π(Sfr

A′
) ∩

A′ = ∅ is therefore at least 1 − η · (1 − 1/8)f > 3/4.
Furthermore for a random permutation π there is a
chance of at least

1−

( η−δ
2η ln η
δ

)( η
2η ln η
δ

) > 1− (
η − δ
η

)
2η ln η
δ

= 1− (1− δ

η
)2 ηδ ln η

≥ 1− 1/η2

that a specific receiver r ∈ G is connected to a sender
in π([1, 2η log η

δ ]) and therefore with probability at least
1− 1

η ≥ 3/4 this holds for all receivers.
Using a union bound we get that with probability

1/2 both properties hold and we show next that in this
case the STS π(S) covers G. To see this, consider
the receiver rA′ that is connected to the senders in
A′ and set t = minu∈A′ π

−1(u). If t > n
∆ log η , then

rA′ is covered by part s2, namely the round in which
(t, [1, t]) was scheduled: the node π(t) that is sending is
in A′ by definition of t. Furthermore, the nodes sending
noise are senders v for which π−1(v) < π−1(t) which by
minimality of t are not in A′. Similarly, if t ≤ n

∆ log η ,
then rA′ is covered by part s1, namely the round in
which (t, [1, t]∪Sfr

A′
) was scheduled: the node π(t) that

is sending is in A′ by definition. Furthermore, the nodes
sending noise are senders v for which π−1(v) < π−1(t)
which by minimality of t are not in A′ and nodes in
π(Sfr

A′
) which are also not in A′ by definition of frA′ .

This shows that a random permutation of S covers
G with probability at least 1/2 while having a weight
of Θ(log ∆ log η

δ ) which together with Lemma 5.2 result

in a routing scheme with throughput Θ(1/ log ∆ log η
δ ) =

Θ( 1
log( ∆

δ )+log log η
). �

Theorem 5.3. For any bipartite network G with η
senders in which the maximum receiver degree is ∆ there
exists a routing scheme with throughput Θ( 1

log ∆ ).

Proof. The approach is almost identical to the proof of
Theorem 3.3 except that we set f = ∆ + 1 and change
the construction of the Si sets and the switching point
between s1 and s2. In particular, we choose the sets
S1, S2, . . . , S∆+1 to be a partition of the senders into
f = ∆ + 1 sets each of size at least 1

3∆ . Since for
each receiver rA′ that is connected to senders A′ where
|A′| ≤ ∆, it is the case that for every permutation π
there exists an fr ∈ [1,∆ + 1] such that π(Sfr )∩A′ = ∅
just as in the proof of Theorem 3.3. Letting s2 progress
up to η furthermore guarantees that every permutation



of the new STS covers G. Lastly, choosing the switching
point between s1 and s2 to be η

∆2 leads to a weight of
3∆
η · f ·

η
∆2 = O(1) for the first part and

∑η
i= η

∆2
1/i ≤

ln ∆2 + 1 = O(log ∆) for the second part. �

Remark 5.1. Combining Theorems 3.3 and 5.3 leads
to a routing throughput of Θ(max{ 1

log ∆ ,
1

log ∆
δ +log log η

}).

6 Open Questions

The results of this paper raise a number of inter-
esting questions: Note that the routing algorithm
with throughput of Θ(1/ log n) messages-per-round pre-
sented in Section 5 works for large number of messages.
It is open whether such a throughput can be achieved for
smaller number of messages. In particular, we suspect
that if k is at most (poly-)logarithmic in n, then there
might be an Ω(k log2 n) round lower bound for routing
based k-message broadcast algorithms. This would in
essence imply a “network coding gap” of Θ(log n) for
this small number of messages. If true, it would be in-
teresting to know how far this “gap for small k” extends
and how it depends on the number of messages k. The
case of k = n corresponds to the well-studied gossip-
ing problem for which the optimal routing algorithm
remains open.
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A Missing Proofs of Section 2

Here we first explain why the limit in the definition of
Broadcast Throughput (see Section 2.2) is well-defined.

Proposition A.1. The limits limk→∞
k

TRk (G,s)
and

limk→∞
k

TNCk (G,s)
defined in Section 2.2 exist.

Proof. First note that as each node can receive at
most one message per round, lim supk→∞

k
TRk (G,s)

and lim supk→∞
k

TNCk (G,s)
are well-defined and are

at most 1. On the other hand, it is clear
that TRk (G, s) and TNCk (G, s) are subadditive func-

tions of k. That is, for example, TRk+k′(G, s) ≤
TRk′ (G, s) + TRk′ (G, s). Thus, using Fekete’s subad-
ditive Lemma, we get that limk→∞

k
TRk (G,s)

exists

and is equal to lim supk→∞
k

TRk (G,s)
. Similarly, we

also get that limk→∞
k

TNCk (G,s)
exists and is equal to

lim supk→∞
k

TNCk (G,s)
.

�

We now prove Theorem 2.1 (stated in Section 2.3).

Proof. [Proof of Theorem 2.1] To prove the theorem, we
show two things:

(a) If there is a bipartite network with n nodes
for which any algorithm has bipartite broadcast
throughput at most x messages-per-round, then
there is a network with n + 1 nodes for which any
algorithm has throughput at most x messages-per-
round.

(b) If for any bipartite network with n nodes we have a
broadcast algorithm with throughput of at least x
messages-per-round, then for any general network
with n + 1 nodes we have a broadcast algorithm
with broadcast throughput at least Θ(x) messages-
per-round.

For part (a), simply add a source node s—which ini-
tially contains all k messages—to the bipartite network
and connect it to all senders. If a broadcast algorithm
delivers k messages to all nodes in at most k

x rounds,
then repeating the same transmissions in the bipartite
network part gives a bipartite broadcast algorithm with
throughput at least x.

For part (b), note that for each general graph G, the
broadcast problem on G can be broken into broadcast
problems on a set of bipartite networks. In particular,
if we have a broadcast algorithm with throughput y for
all bipartite networks with at most n nodes, then we
can achieve a throughput of at least Θ(y) in general
graphs with n+1 nodes. Consider an arbitrary graph G
with source node s and the Breadth First Search (BFS)
layering ofG where the ith layer contains all the nodes at
distance i from the the source s. Each two consecutive
BFS-layers define a bipartite network. We divide the
messages into batches of k′ = k

D . Delivering each batch
from one layer to the next takes O(k′/y) rounds. By
spacing the progress of batches 3 layers apart, we can
pipeline different batches simultaneously and deliver all
batches to all nodes in O((D+ k

k′ ) ·
k′

y ) = O(ky ) rounds,

thus achieving a throughput of Θ(y). �



B Missing Proofs Section 3

Theorem B.1. For any network with at most n nodes,
there is a network coding broadcast algorithm with
throughput Θ( 1

logn ).

Proof. [Proof of Theorem B.1] Following the discussion
in Section 2.3, we know that to prove the theorem,
it is enough to present a broadcast algorithm with
throughput Θ( 1

logn ) for bipartite networks. Fix a
bipartite network G with senders S and receivers R.
Divide k messages into blocks of log n messages each.
We use network coding to broadcast each block from
senders to receivers in Θ(log2 n) rounds, thus achieving
the claimed throughput. In the following, we explain
the process for just once block.

Using the Random Linear Network Coding analysis
of [16], it is easy to see that for each receiver u ∈ R to be
able to decode all messages of the block, it is enough if
u receives Θ(log n) (different) randomly coded packets
of this block. To achieve this, the Θ(log2 n) rounds are
divided into Θ(log n) phases, where in each round of
the ith phase, each sender transmits a new randomly
coded packet with probability 2−i and remains silent
otherwise.

Consider a specific receiver u and suppose that u
is connected to d senders. Let i∗ = dlog de. Then, in
each round of the phase i∗, u receives a new packet with
probability at least d

2i∗
(1− 1

2i∗
)d−1 ≥ 1

16 = Θ(1). Hence,
in Θ(log n) rounds of phase i∗, u receives Θ(log n)
coded packets with high probability. A union bound
over all receivers shows that each receiver receives at
least Θ(log n) coded packets and thus, all receivers can
decode all the messages of the block. �

The important point about the algorithm of Theo-
rem B.1 is that it uses different transmission probabili-
ties to aim at different receiver degree ranges. That is,
in the ith phase, transmissions happen with probability
2−i and this aims at receivers with degree roughly 2i.
Thus, also if we are given the promise that in a bipar-
tite network all receiver degrees are in range [δ,∆], then
just using the phases in range [blog δc, dlog ∆e] gives a
broadcast algorithm with throughput Θ(1/log ∆

δ ).

C Missing Proof of Section 4

Proof. [Proof of Theorem 3.1] We show that there exists
a bipartite network H with less than n nodes such that in
each round, regardless of which nodes transmit, at most
O( 1

logn ) fraction of receivers receive a packet. Then
by adding a source node to this bipartite network, we
complete the proof.

To prove existence ofH, we consider a distribution
over a family of bipartite graphs G where we have

|A| = n′ =
√
n senders and |B| = m′ = n′ logn

2 receivers.

The receivers are divided into logn
2 classes, each of equal

size n′. For each i ∈ {1, 2, . . . , logn
2 }, the receivers of

class i have degree exactly 2i in each graph of family
G. To present the distribution, we explain how to draw
a random graph from this distribution. In a random
graph G ∈ G, the connections are chosen randomly
as follows: for each i ∈ {1, 2, . . . , logn

2 }, each receiver
in the ith receiver class is connected to 2i randomly
chosen senders. The choices of different receivers are
independent. Note that the size of each graph in this
family is n′(1 + logn

2 ) < n.
Consider a random graph G ∈ G. We claim that,

with probability at least 1− e−2n′ , G has the property
that in each round at most a O( 1

logn ) fraction of the
receiver nodes receive a packet, regardless of which set
nodes transmit.

To prove this claim, we first study the receptions in
G when a fixed subset A′ of senders transmit. More
precisely, let XA′ be the random variable equal to
number of receivers that receive a packet when senders
A′ transmit. We first calculate E[XA′ ].

Consider a receiver v with degree d. Receiver v
receives a packet if and only if exactly one of its sender
neighbors is in set A′. If d > n′ − |A′| + 1, then
clearly v does not receiver a packet. Suppose that
d ≤ n′ − |A′|+ 1. Then, the probability that G is such
that v receives a packet is exactly

Pd(|A′|) =

(|A′|
1

)(
n′−|A′|
d−1

)(
n′

d

)
=
|A′|d
n′

d−1∏
i=1

(1− |A
′| − 1

n′ − i
)

≤ |A
′|d
n′

(1− |A
′| − 1

n′ − 1
)d−1

≤ |A
′|d
n′

exp

(
−|A

′| − 1

n′ − 1
(d− 1)

)
≤ |A

′|d
n′

exp

(
−|A

′| − 1

n′
(d− 1)

)
=
|A′|d
n′

exp

(
−|A

′|
n′

d

)
exp

(
|A′|+ d− 1

n′

)
≤ e · |A

′|d
n′

exp

(
−|A

′|
n′

d

)
.

(C.1)

For each i ∈ {1, 2, . . . , n
′ logn

2 } receiver, let Xi
A′ be an

indicator random variable which is each equal to 1 iff
the ith receiver receives a packet. We have XA′ =∑n′ logn

2
i=1 Xi

A′ . Let d∗ = 2
blog( n′

|A′| )c ≤ n′

|A′| . Using



Equation (C.1), we have

E[XA′ ] =

n′ logn
2∑
i=1

Xi
A′ = n′

logn′∑
i=1

P2i(|A′|)

≤ en′ ·
logn′∑
i=1

|A′|2i

n′
exp

(
−|A

′|
n′

2i
)

= en′ ·
log d∗∑
i=1

|A′|2i

n′
exp

(
−|A

′|
n′

2i
)

+

logn′∑
i=log d∗+1

|A′|2i

n′
exp

(
−|A

′|
n′

2i
)

≤ en′ ·

 ∞∑
j=0

1

2j
+

∞∑
j=0

2j+1

e2j


< 10n′.

Note that the random variables Xi
A′ for different re-

ceivers i are independent as the neighbors of different
receivers are chosen independently. Thus, we can use a
chernoff bound and infer that Pr(XA′ > 20n′) < e−3n′ .
That is, when exactly nodes in set A′ are transmitting,
with probability at least 1 − e−3n′ , random graph G is
such that at most 20n′ receivers receive a packet.

The total number of choices for set A′ is 2n
′
. Thus,

by a union bound over all choices of set A′, we get that
with probability at least 1− e−3n′ · 2n′ > 1− e−2n′ , the
random graph G is such that no set A′ can deliver a
packet to more than 20n′ receivers. Hence, there exists
a bipartite graph H in this family such that no set A′

delivers a packet to more than 20n′ receivers. Since

there are n′ logn
2 receivers, we get that in H, there does

not exist a subset of senders which their transmission
delivers a packet to more than a 40

logn fraction of the
receivers.

Now consider network H proven to exist. We
construct radius-2 network H′ from H by simply adding
one source node s and connecting s to all senders. Put
k messages in the source node s. For each receiver node
u, in order for u to have all the k messages, u must
receive at least Ω(kB) bits, i.e., Ω(k) packets. Note that
this holds for any algorithm including network coding
algorithms. Since receiver nodes are only connected to
the sender nodes, by the choice of H, we get that in each
round at most O( 1

logn ) of receivers receive a packet (any

packet). Thus, it takes at least Ω(k log n) rounds till all
receivers have all the k messages. �
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