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ABSTRACT

We present a randomized distributed algorithm that in radio
networks with collision detection broadcasts a single message
in O(D 4+ log®n) rounds, with high probability’. This time
complexity is most interesting because of its optimal additive
dependence on the network diameter D. It improves over
the currently best known O(Dlog & + log®n) algorithms,
due to Czumaj and Rytter [FOCS 2003], and Kowalski and
Pelc [PODC 2003]. These algorithms where designed for
the model without collision detection and are optimal in
that model. However, as explicitly stated by Peleg in his
2007 survey on broadcast in radio networks, it had remained
an open question whether the bound can be improved with
collision detection.

We also study distributed algorithms for broadcasting k
messages from a single source to all nodes. This problem is a
natural and important generalization of the single-message
broadcast problem, but is in fact considerably more challeng-
ing and less understood. We show the following results: If
the network topology is known to all nodes, then a k-message
broadcast can be performed in O(D+k log n+log? n) rounds,
with high probability. If the topology is not known, but col-
lision detection is available, then a k-message broadcast can
be performed in O(D + klogn -+ log® n) rounds, with high
probability. The first bound is optimal and the second is
optimal modulo the additive O(log® n) term.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non-numerical Algorithms and Problems—Computa-
tions on Discrete Structures; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Network Problems
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1. INTRODUCTION

The classical information dissemination problem in radio
networks is the problem of broadcasting a single message to
all nodes of the network (single-message broadcast). This
problem and its generalizations have received extensive at-
tention.

A characteristic of radio networks is that multiple mes-
sages that arrive at a node simultaneously interfere (collide)
with one another and none of them is received successfully.
Regarding whether nodes can distinguish such a collision
from complete silence, the model is usually divided into two
categories of with and without collision detection. Through-
out studies of problems in radio networks, it has been ob-
served that many problems can be solved faster in the model
with collision detection [20]. Despite this trend, it had re-
mained unclear whether this is also the case for broadcast or
not [19]. We show that single-message broadcast can be in-
deed solved faster, in simply diameter plus poly-logarithmic
time, if collision detection is available®.

Broadcasting k messages from one node to all nodes is a
natural and important generalization of the single-message
broadcast problem. Usually, this generalization involves new
and significantly different challenges, mainly because the
dissemination of different messages can interfere with each
other. We show how to overcome these challenges and ob-
tain an (almost) optimal k-message broadcast algorithm.

1.1 Model and Problem Statements

We work in the radio network model with collision de-
tection [4]: a synchronous network G = (V,E) where in
each round, each node either transmits a packet with B bits
or listens. As a standard assumption, to ensure that each
packet can contain a constant number of ids, we assume
that B = Q(logn). Each node v receives a packet from its

*The research in this paper was supported by AFOSR
award No. FA9550-13-1-0042, NSF grant Nos. CCF-AF-
0937274, CNS-1035199, 0939370-CCF, CCF-1217506, and
NSF-PURDUE-STC award 0939370-CCF.

'Even though our work is theoretical, we remark that
most practical radio networks can detect collisions.



neighbors only if it listens in that round and exactly one of
its neighbors is transmitting. If two or more neighbors of
v transmit, then v only detects the collision, which is mod-
eled as v receiving a special symbol T indicating a collision.
We explain that some of our results hold even in the model
without collision detection, where if two or more neighbors
of v transmit, then v does not receive anything.

The single-message broadcast problem is defined as fol-
lows: A single source node has a single message of length at
most ©(B) bits and the goal is to deliver this message to all
nodes in the network. The k-message single-source broad-
cast problem is defined similarly, with the difference that
the source has k messages which need to be delivered to
all other nodes. We focus on randomized solutions to these
problems where we require that the message(s) are delivered
to all nodes with high probability. In the unknown topology
setting (which is our default setting), we assume? that nodes
know a polynomial upper bound on n and a constant factor
upper bound on diameter D. In the known topology setting,
similar to [7], we assume that nodes know the whole graph.

1.2 Our Results

Our main results are as follows:

Theorem 1.1. In radio networks with unknown topology
and with collision detection, there is a randomized distributed
algorithm that broadcasts a single message in O(D + log® n)
rounds, with high probability.

Theorem 1.2. In radio networks with known topology (even
without collision detection), there is a randomized distributed
algorithm that broadcasts k messages in O(D + klogn +
log? n) rounds, with high probability.

Theorem 1.3. In radio networks with unknown topology
and with collision detection, there is a randomized distributed
algorithm that broadcasts k messages in O(D + klogn +
log® n) rounds, with high probability.

About Theorem 1.1, we remark that prior to this work,
the best known solution for single-message broadcast was the
O(Dlogn/D + log®n) algorithms presented independently
by Czumaj and Rytter [6], and Kowalski and Pelc [15], for
the model without collision detection. In that model, these
bounds are optimal [1,17]. As Peleg points out in [19], prior
to this work, it was unclear whether these upper bounds
can be improved in the model with collision detection. The-
orem 1.1 answers this question by showing that a better
upper bound is indeed achievable. We remark that the
bound of Theorem 1.1 is within an additive poly-log of the
Q(D 4+ log? n) lower bound, that follows from the Q(log? n)
lower bound of [1] and the obvious lower bound of (D).

About Theorems 1.2 and 1.3, we remark that these two
results use random linear network coding (RLNC). More-
over, we note that even in the strong model of centralized
algorithms with full topology knowledge, with collision de-
tection, and with network coding, k-message broadcast has
a lower bound of Q(D + klogn +log® n) rounds. This lower
bound follows from the Q(klogn) throughput-based lower
bound of [10] for a k-message broadcast, the Q(log® n) lower

%It is easy to see that the latter assumption can be re-
moved without any change is our time-bounds, by finding a
2-approximation of D in time O(D), using the beep waves
tool of [9].

bound of [1] for a single message broadcast, and the trivial
Q(D) lower bound. Thus, the complexity of Theorem 1.2
is optimal and the complexity of Theorem 1.3 is optimal
modulo the additive O(log®n) term.

When looking at the issue from a practical angle, The-
orem 1.1 and Theorem 1.3 have an interesting message:
they show that one can replace the (expensive and not-
completely-reasonable) assumption of all nodes knowing the
full topology of the network, with (the considerably more
reasonable and usually-available) collision detection, and still
perform single or multiple broadcast tasks almost in the
same time.

To achieve the above three results, we present three new
technical elements, which each can be interesting on their
own:

(A) The first element is a distributed construction of a
Gathering-Spanning-Tree (GST) with round complex-
ity of O(Dlog*n). GSTs were first introduced by [7]
to obtain broadcast algorithms with an additive O(D)
diameter dependence in the known topology setting [7,
8,18]. The only known construction of GST prior to
this work was the centralized algorithm of Gasieniec
et al. [7], which has step-complexity of O(n?) opera-
tions and requires the full knowledge of the graph. We
use our new GST construction to prove Theorem 1.1.
For this we first decompose the graph appropriately,
then we construct a GST for every part in parallel and
lastly we use this setup to broadcast the (single) mes-
sage efficiently.

(B) The second element is a novel transmission schedule
atop GST for solving multiple message broadcast prob-
lems. We contend this schedule to be the right gener-
alization of [7] for multiple messages. Such a general-
ization was also attempted in [18] but its correctness
was disproved [21].

(C) The third element is backwards analysis, an new way
to analyze the progress of messages during a multi-
message radio network broadcast. Backward analysis
shows that a message spreads quickly even when other
messages that are spread at the same time cause col-
lisions. A priori it is not clear that information dis-
semination remains efficient in the presence of these
collisions, which only arise in the mutli-message set-
ting. Insights from the backwards analysis were crucial
in the design of our multi-message transmission sched-
ule and also enable us to apply the projection analysis
of Haeupler [11] for analyzing random linear network
coding to proof Theorem 1.2 and Theorem 1.3.

1.3 Redated Work

Designing distributed broadcast algorithms for radio net-
works has received extensive attention, starting with the pi-
oneering work of Bar-Yehuda, Goldreich and Itai (BGI) [2].
Here, we present a brief review of the results that directly
relate to this paper.

Single-Message Broadcast: Peleg [19] provides a com-
prehensive survey of the known results about single-message
broadcast. BGI [2] present the Decay protocol which broad-
casts a single message in O(Dlogn + log®n) rounds. The
best known distributed algorithms for single-message broad-
cast in for the setting where the topology is unknown are the
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O(Dlog % + log? n) algorithms presented independently by
Czumaj and Rytter [6], and Kowalski and Pelc [15]. These
algorithms can be viewed as clever optimizations of the De-
cay protocol [2]. Moreover, similar to the Decay protocol,
these two algorithms are presented for the model without
collision detection and are optimal in that model [1,17].
Prior to this work, no better algorithm was known for the
model with collision detection. If the topology of the net-
work is known, then the algorithm of Gasieniec, Peleg and
Xin [7] achieves the optimal O(D +log? n) time complexity.
Kowlaski and Pelc [16] gave an explicit deterministic broad-
cast protocol which achieves the same time complexity.

Multi-Message Broadcast: The complexity of multi-mes-
sage broadcast (with bounded packet size) is less under-
stood. In the model without collision detection, the follow-
ing results are known. The earliest work on multi-message
broadcast problem is by BarYehuda et al. [3], which broad-
casts k messages in O((n + (k + D)logn)log A) rounds,
where A is the maximum node degree. Chlebus et al. [5]
present a deterministic algorithm that broadcasts k mes-
sages in O(klog®n + nlog* n) rounds. The best known al-
gorithm for multi-message broadcast is by Khabbazian and
Kowalski that broadcast & messages using network coding
in O(klog A + (D + logn)log nlog A) rounds [14]. Again,
prior to this work, no better algorithm was known for the
model with collision detection. Ghaffari et al. [10] showed a
lower bound of Q(klogn) rounds.

2. SINGLE-MESSAGE BROADCAST

We first recall the definition of a Gathering-Spanning-Tree
(GST) [7], in Section 2.1. Then, in Section 2.2, we present
a distributed algorithm with time complexity O(D log®*n)
for constructing a GST, in radio networks with unknown
topology (even without collision detection). In Section 2.3,
we then show that this algorithm can be used to broadcast
a single message in O(D + log®n) rounds, in radio network
with unknown topology but with collision detection.

2.1 Gathering Spanning Trees (GST)

Ranked BF'S: Consider a BFS tree 7 in graph G, rooted
at source node s. Also, suppose that in this tree, we have
assigned to each node v a level number ¢(v), which is equal

to the distance of v from s. We rank the nodes of 7 using the
following inductive ranking rule: Each leaf of 7 gets rank 1.
Then, consider node v and suppose that all children of v in
T are already ranked. Let r be the maximum rank of these
children. If v has exactly one child with rank r, then node v
gets rank r. If v has two or more children with rank r, then
v gets rank 7 + 1. As shown in [7], one can easily see that
in each ranked BF'S, the largest rank is at most [log, n].

Gathering Spanning Tree (GST) [7]: A ranked BFS-
tree T is called a GST of graph G if and only if the following
collision-freeness property is satisfied:

In graph G, any node of rank r on level [ of T is adjacent
to at most one node of rank r at level [ —1 of 7. In other
words, if there are two nodes w1 and we with rank r on
level [ of T, and their parents in T are respectively v;
and v2 # vy (on level | — 1 of T), and v1 and vz have
rank r as well, then there is no edge between v; and w2
or between v and wuq.

Fast Stretches in a GST: In a GST 7T, for each path in
T from a node v to a node u that is a descendant of v in T,
we call this path a fast stretch if all the nodes on the path
have the same rank. Note that a fast stretch might be just
a single node.

Distributed GST: In a distributed construction of a GST,
each node v must learn the following four items®: (1) its
level £(u), (2) its own rank r(u), (3) the id of its parent v,
and (4) the rank of its parent 7(v).

Figure 1 presents an example of a GST. The black edges
present the graph G and the thicker green edges present a
rank labeled BF'S tree 7 of G. On the left side, we see a rank-
labeled BFS tree, but this tree is not a GST because of the
violation of the collision-freeness property indicated by the
red dashed arrow. On the right side, we see another rank-
labeled BF'S of the same graph G, which is a GST. In this
GST, the green edges that are coated with wide blue lines
indicate the fast stretches. Each node that is not incident

3From (2) and (4), any node u can easily infers whether
it is the first node in a fast stretch and whether its parent
is in that stretch as well.



on any of these blue-coated edges forms a trivial fast-stretch
made of just a single node.

Broadcast Atop GST: In [7] Gasieniec et al. presented
an algorithm to broadcast a single message in O(D +log?n)
rounds, atop a GST. A high-level explanation is as follows:
with a careful timing, the message can be sent through the
fast stretches without any collision. That is, we can (al-
most simultaneously) send the message through different
stretches such that in each fast stretch, the message gets
broadcast from the start of the stretch to the end of the
stretch in a time asymptotically equivalent to the length of
the stretch. On the other hand, since the largest rank in the
tree 7 is at most [log, n] and because on each path from
the source to any node v, the ranks are non-increasing, we
get that the path from the source to each node v is made of
at most [log, n] distinct fast stretches. By using the decay
protocol® [2] on each of the (at most) [log,n] connections
between the fast stretches, we get a broadcast algorithm
with time complexity O(D + log?n). We refer the reader
to [7] for the details of this broadcast algorithm. We remark
that we will use [7] simply as a black-box that broadcasts a
single-message in time O(D + log® n) on top of the GSTs we
construct.

2.2 Distributed GST Construction

In this subsection, we present the following result:

Theorem 2.1. In the radio networks (even without colli-
ston detection), there ezists a distributed GST construction
algorithm with time complexity O(D log* n) rounds.

We show a GST construction with round-complexity of
O(Dlog® n) in Sections 2.2.1 to 2.2.3. We later improve this
to O(Dlog® n) rounds, in Section 2.2.4.

2.2.1 Black-Box Tools

Before starting the construction, we first present two black-
box tools which we use in our construction.

Decay Protocol [2]: Rounds are divided into phases of
logn rounds, and in the i*" round of each phase, each node
v transmits with probability 27¢ (if it has a message for
transmission).

Lemma 2.2. (Bar-Yehuda et al. [2]) For each node v,
if at least one neighbor of v has a message for transmission,
then in each phase of decay, node v receives at least one mes-
sage with probability at least %. Moreover, in ©(logn) such
phases, v receives at least one message, with high probability.

Recruiting Protocol: This tool can be abstracted by the
guarantees that it provides, which we present in Lemma 2.3.

Lemma 2.3. Consider a bipartite graph H where nodes on
one side are called red and nodes on the other side are called
blue. The recruiting protocol achieves the following three
properties, w.h.p., in ©(log®n) rounds: (a) for each blue
node u, we assign an adjacent red node of v to u. In this
case, we say u s recruited by v (then called parent of u),
(b) each red node v knows whether it recruited zero, one,
or at least two blue nodes, (c) each recruited blue node u

4Decay is a standard technique for coping with collisions
in radio networks. We present a short recap on it in Sec-
tion 2.2.1.

knows whether its parent v recruited zero, one, or at least
two blue nodes.

Next, we present the recruiting protocol. We defer the
proof of Lemma 2.3 to the full version.

Recruiting Protocol: The protocol consists of
O(log® n) recruiting iterations, each having 2 + ©(logn)
rounds as follows:

e In the first round of the j** recruiting iteration,
each red node transmits its id with probability
o lemem |

e Then, we run a phase of Decay protocol, consisting
of O(logn) rounds, from the side of blue node. In
this phase, each not-recruited blue node u that re-
ceived a message of a red node v tries to transmit
u.id and v.id (together in one packet).

e After that, the red nodes repeat the exact transmis-
sions of the first round of this iteration, with new
contents as follows: (1) if in the previous Decay
phase, a red node v received its own id from ex-
actly one blue node u, then v broadcasts v.id, (2) if
the red node v received its own id from two or more
blue nodes, then v broadcasts a special message 3.
(3) Otherwise, v transmits an empty message.

e Next, if a blue node u received its own id or the
special message 3 in the last round, then we say u is
recruited by red node v, where v is the red node such
that u received v.id in the first round. Note that
each red node v knows whether it recruited zero,
one or at least two blue nodes.

2.2.2 GST Construction Outline

We first construct a BFS-tree of G and assign to each node
v a level £(v) that is equal to the distance of v from the
source. This can be done in O(D log? n) rounds, as follows:
Rounds are divided into D epochs each consisting of © (log n)
phases of decay (thus, each epoch has ©(log?n) rounds).
In each epoch, a node v participates in the decays iff it is
the source or it has received a message by the end of the
last epoch. During these rounds, each node relays the first
message it received. The epoch in which a node v receives a
message for the first time determines the BFS level £(v) of
node v.

Now that we have a BFS-tree, we build the GST on top of
this BFS layering, level by level, and from the largest level
towards the source. For this, the problem boils down to the
following scenario: Consider level [ of layering and assume
that the GST is already built for levels j > I. Consider the
bipartite graph H induced on the nodes of level [ — 1 and
level [, ignoring the (possible) edges inside each level. The
core of the problem is to design an algorithm to construct
the part of GST between levels [ — 1 and [, i.e., the part that
is H.

Let us call the nodes on level [ — 1 red nodes, and the
nodes on level | blue nodes. To construct the part of GST
that is in H, we assign a red parent v to each blue node u,
from amongst the red neighbors of w in H. In this case, v is
known as u’s parent and u is a child of v. This assignment,



along with the rankings of blue nodes, leads to a ranking
for the red nodes. More precisely, let v be a red node and
let i be the maximum rank of blue node children of v in the
assignment. Node v gets rank i if it has only one child with
rank 4, and v gets rank ¢ + 1 if it has more than one child
with rank q.

To have a GST, these assignments should be collision-
free. That is, if there exist blue nodes u; and u2 and their
respective parents v and ve, all four with rank ¢, then H
must have no edge between vi and w2, or between ve and
u1. We refer to the problem of finding such an assignment
as the Bipartite Assignment Problem.

More precisely, in the Bipartite Assignment Problem, we
should achieve the following 6 properties: (1) For each blue
node u, we should assign a red neighbor v as its parent, (2)
we should rank the red nodes as follows: for each red node v,
suppose i is the maximum rank of the children of v. Then,
v should get rank i if v has exactly one blue child of rank 4,
and v should receive rank of i + 1 if v has two or more blue
children of rank 7, (3) the assignment should be collision-
free, (4) each red node must know its rank and (5) each blue
node u should know the id of its parent and (6) each blue
node u should know the rank of its parent.

The Bipartite Assignment Problem is the core of the GST
construction and once we have a solution for it, repeating
the solution level by level from the largest level to source
constructs a GST. In the next subsection, we explain how
to solve this problem in O(log® n) rounds.

2.2.3 The Bipartite Assignment Algortihm

Consider bipartite graph H as explained. We solve the
bipartite assignment problem (defined above) in H in a rank
by rank basis, starting with the largest possible rank [log n]
(of blue nodes), and going down in ranks until reaching rank
1. We spend ©(log* n) rounds on each rank. Let us consider
the case of a bipartite assignment for blue nodes of rank i
in graph H, assuming that ranks greater than ¢ are already
solved.

We first identify the red neighbors of the blue nodes with
rank i. This is done by using ©(log n) phases of Decay where
blue nodes of rank ¢ transmit. This identifies the desired red
nodes as every such red node receives at least one message
with high probability and no other red node receives any
message. From now on, throughout the procedure for rank
i, only these red nodes are active. Now the algorithm is
divided into ©(logn) epochs. Each epoch consists of three
stages as follows:

Stage I: Call a blue node u of rank i a loner if u has ex-
actly one active red neighbor. We first detect the loner
blue nodes. For this, in one round, each active red node
transmits a message. Only loner blue nodes receive a
message and each other blue node receives a collision.
We then use ©(logn) phases of Decay, where each blue
loner tries transmitting. This with high probability in-
forms all red nodes that are connected to at least one
loner blue node. We call these red nodes loner-parents.

Stage II: This stage is divided into three parts, and each
red node is active in only one of the parts. Loner-
parents, which we identified in the stage I, are active
only in part 1. Each other active red node randomly
and uniformly decides to be either brisk or lazy, which

respectively mean it is active in part 2 or in part 3.
These parts are as follows:

Part 1. Loner-parents use a recruiting protocol. Dur-
ing this recruiting protocol, each blue neighbor
of each red loner-parent get recruited with high
probability. These assignments are permanent.
All the blue nodes that are recruited become in-
active for the rest of the assignment problem.

Part 2. Brisk red nodes run a Recruiting protocol.
Then, each blue node that is not the only re-
cruited child of its parent considers its parent
as its permanent GST parent and becomes in-
active permanently (for the GST construction).
The other recruited blue nodes become inactive
only for the remainder of this epoch, but these
assignments are temporary and the related nodes
restart in the next epoch, ignoring their tempo-
rary assignments.

Part 3. We repeat the procedure of part 2, but this
time with lazy red nodes and with the active blue
nodes that did not get recruited in parts 1 or 2.

Stage III: Let us say that a red node is marked if it was a
loner-parent or if it recruited zero or strictly more than
one blue nodes in parts 2 or 3. Each marked red node
becomes inactive after this epoch. Thus, the only red
nodes that remain active after this epoch are those that
do not have any loner neighbor and recruited exactly
one child in part 2 or 3 of the stage II. Each marked
red node knows whether it recruited zero, one, or at
least two children (in stage II). We use this knowledge
to rank these marked red nodes giving them rank of 7 if
they recruited exactly one blue child and rank of 141 if
they recruited more than one blue child. Blue children
of marked red nodes also know that their parents of
marked and they can also compute the rank of their
parents (refer to property (c) of Lemma 2.3).

Before inactivating the marked red nodes, we do one
simple thing: marked red nodes run ©(logn) phases of
Decay sending their id and rank. Each blue node of
any rank strictly lower than ¢ that receives a red node
id considers the first red node that it heard from as its
permanent GST parent, records the id and rank of that
red parent, and then, becomes inactive for the rest of
the assignment problem.

After running the bipartite assignment algorithm for all the
ranks, if a red node v has no child, then v is a leaf and in
the GST, v gets rank 1.

Figure 2 shows an example of assignments during an epoch
(the first epoch). The green arrows in the leftmost part
indicate the loner blue nodes at the start of the epoch. The
loner parent red nodes are indicated by a number 1 next
to them, meaning they are active in part 1. Brisk and lazy
red nodes are respectively indicated by numbers 2 and 3,
next to them. The smaller nodes present the (temporarily
or permanently) deactivated nodes. The green dashed lines
show the permanent assignments and the (thicker) orange
dashed lines show the temporary assignments. After the end
of epoch, nodes with temporary assignment are re-activated.
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Figure 2: Parts 1, 2, and 3 of the stage II of the first epoch of the assignment algorithm, and the graph

remaining after the first epoch

The graph remaining after the first epoch is presented on the
right side of the Figure 2, by solid blue lines.

Analysis: In Lemma 2.4, we prove that in each of the
O(logn) epochs except the first one, we reduce the size of
the assignment problem for rank ¢ by at least a constant
factor, with at least a positive constant probability. Here,
by size of the assignment problem, we mean the number of
the active red nodes with a blue neighbor of rank 7. A stan-
dard Chernoff bound then shows that in ©(logn) epochs,
each blue node of rank ¢ has a parent. It is clear that the
parents are ranked according to the ranking rules of GST
and nodes know their own rank, the id of their parents, and
the rank of their parents. We show in Lemma 2.5 that with
high probability, the assignment is collision-free.

Lemma 2.4. In each epoch j' < 2, with a probability at
least 1/7, the number of remaining active red nodes for the
next epoch goes down with a factor at least 8/7.

Proof. Consider epoch j° > 2 and let n be the number of
active red nodes at the start of this epoch. We show that
the expected number of red nodes that remain active at the
end of this epoch is at most 3—471. This is enough for the proof
because with this, and by Markov’s inequality, we get that
with probability at least 1/7, the number of active remaining
red nodes at the end of this epoch is at most 7—871.

Each red node remains active after epoch j’ only if it gets
a temporary assignment, i.e., if it is not a loner-parent and
it recruits exactly one child during parts 2 and 3 of Stage
II. Thus, the expected number of red nodes that remain
active is at most equal to the expected of number of brisk
red nodes (those that act in part 2) plus the number of blue
nodes that are active in part 3. The expected number of
brisk red nodes is at most 7. To complete the proof, we
show that the expected number of blue nodes that remain

active for part 3 (after the assignments of part 2) is at most
n

! After each epoch, the only red nodes that remain active
are those that have a temporary assignment, i.e., those that
each have recruited exactly one child and that child is not
a loner. Moreover, the only active remaining blue nodes are
those blue nodes temporarily matched to the remaining red

nodes. Thus, after each epoch, the number of remaining
active red nodes and the number of remaining active blue
nodes are equal. From this, we can conclude that since j' >
2, at the start of epoch j’, the number of active blue nodes
is at most 7.

Using Lemma 2.3, we infer that in part 1 of stage II, each
blue neighbor of a loner-parent is w.h.p. recruited by a red
loner-parent. Thus, in particular, each loner is recruited
with high probability. Hence, at the start of part 2 of stage
II, each remaining active blue node has at least 2 red node
neighbors. Since each non-loner-parent red node is active
in part 2 of stage II with probability 1/2, and because in
part 2 of stage II each active blue node that has an active
red node neighbor gets recruited with high probability (by
Lemma 2.3), each blue node remains active after part 2 of
stage II with probability at most 1/4. We know that because
of the previous paragraph, the number of active remaining
blue nodes at the start of part 2 of stage II is at most 7.
Hence, the expected number of blue nodes remaining active
after part 2 is at most 7. This completes the proof of the
lemma. O

Lemma 2.5. With high probability, the bipartite assignment
algorithm creates a collision-free assignment.

Proof. We show that if there exist blue nodes w1 and ws
(u1 # u2) and their respective red parents vi and va (v1 #
v2), all four with rank 7, then with high probability, H must
not have any edge between u2 and vi, or between u; and vs.
For the sake of contradiction, and without loss of generality,
suppose that there is an edge between uz and v1. Since v2
and w2 have rank 4, blue node uz must have been a loner
when vz recruited it. Thus, vs recruited us after v; became
inactive. Hence, in the epoch that v; recruited ui, us was
active. Therefore, using Lemma 2.3 we get that in the part
1 of the epoch in which vy recruited w1, ue must have been
w.h.p. recruited by either v or some other loner-parent.
Since v2 # w1 recruited u2, we get that v2 must have been
that other loner parent. This means that at that time, vs
had a loner child (# w2) and thus, v2 has recruited more
than one child of rank 7. This means that v> must have had
rank i + 1 which contradicts with the assumption that v
has rank . |



2.2.4 Pipelining the GST Construction

Note that in the above algorithm, and in assignment prob-
lem between levels [ — 1 and [, once we are done with the
assignment problem of ranks ¢ and ¢ — 1, nodes of level | — 1
that receive rank ¢ are already determined, i.e., no other
node in level [ — 1 will receive rank 7. Thus, we can solve the
two problems of rank ¢ —2 assignment between levels [—1 and
! and rank 7 assignments between levels [ —2 and [ — 1, essen-
tially simultaneously, by interleaving them in even and odd
rounds. Using the same idea, it is easy to see that one can
pipe-line the assignment problems of different ranks between
different levels. Then, the assignment problem between lev-
els [—1 and [ starts after ©((D—1) log* n) rounds. Thus, the
assignment problem of largest possible rank between levels
0 and 1 starts after @(Dlog® n) rounds. The largest rank is
at most [logn]. Since each rank takes ©(log® n) rounds, the
whole GST construction problem finishes after ©(D log* n)
rounds.

2.3 Unknown Topology Single-M essage Broad-
cast in O(D +1og® n) Rounds

Theorem 1.1. (restated) In radio networks with unknown
topology and with collision detection, there is a random-
ized distributed algorithm that broadcasts a single message
in O(D + 1og®n) rounds, with high probability.

Proof. We first use a wave of collisions to get a BF'S layering
in time D. That is, the source transmits in all rounds [1, D],
and each node v transmits in all rounds [r, D] where r is
such that v receives a message or a collision in round r — 1.
For each node v, the round r — 1 in which v receives the
first message or collision determines distance of v from the
source.

Having this BFS layering, we decompose the graph into
O(log* n) rings, each consisting of D’ = D/log* n consecu-
tive layers of the BF'S layering.

Then, we compute a gathering spanning tree for each of
the rings in O(D’ log* n) = O(D) rounds. Note that compu-
tation of a GST for each ring only depends on D’ which is
the number of BFS layers that the ring contains, and that
given the BFS-layering, the computation of the GSTs of all
rings is performed in parallel.

Having these GST's, broadcasting the message inside each
ring takes O(D’ + log®n) rounds, using [7]. Finally, we
use O(log?n) rounds of decay protocol [2] to propagate the
message from the outer boundary of one ring to the inner
boundary of the next ring. Since there are O(log” n) rings,
the whole broadcast takes (O(D' 4 log®n) + O(log®n)) -
O(log* n) = O(D + log® n) rounds. a

3. MUTLI-MESSAGE BROADCAST

While broadcasting one message in the known topology
setting is well understood, having a tight bound ©(D +
log?n) [7], achieving the optimal broadcast time for mul-
tiple messages is non-trivial even for networks with known
topology. We show the following:

Theorem 1.2. (restated) In radio network with known topol-
ogy (even without collision detection), there is a randomized
distributed algorithm that broadcasts k messages in O(D +
klogn + log®n) rounds, with high probability.

We remark that this bound is optimal, given the Q(klogn)
lower bound of [10] for k-message broadcast, the Q(log® n)
lower bound of [1] for single message broadcast, and the
trivial Q(D) lower bound.

Furthermore, it is easy to combine the known topology
algorithm of Theorem 1.2 with the ideas of the proof of The-
orem 1.1 and the standard technique of grouping messages
and pipe-lining the groups, to prove Theorem 1.3. We defer
the details to the full version.

3.1 Challengesin Broadcasting Multiple M es-
Sages

Given the known transmission schedules for broadcasting
a single message in optimal O(D + log®n) time on top of
a GST, it is intriguing to try to use the same transmis-
sion schedule to solve the multi-message broadcast problem.
However, since we cannot disjoin the spreading process of
different messages this approach faces two challenges:

Firstly, when a node v has already learned multiple mes-
sages and is triggered by the schedule to transmit, v needs
to decide which message to forward. Choosing one message
over the others can slow down the progress of those other
messages.

Fortunately, random linear network coding (RLNC) [13]
provides a general technique for making such decisions: In-
stead of deciding on one specific message whenever a node is
triggered to send it, node v transmits a random linear com-
bination of all packets it has received. It has been shown
that this is the universal optimal strategy, that is, this suc-
ceeds with high probability as soon as it was possible (in
hindsight) to send k messages to each of the receivers [12].
We think that network coding might be in fact necessary
for obtaining the optimal throughput performance that we
achieve. Our multi message broadcast utilizes RLNC and
uses recent advances in analyzing RLNC performance [11]
for the proofs. Even though RLNC and its analysis need
to be carefully tailored to broadcast in radio networks, this
gives us a good plan to remedy the first issue.

The second issue is subtle but turns out to be more prob-
lematic: When proving progress of messages all known single-
message schedules and their analysis (e.g., those of [7]) rely
crucially on nodes that do not have the (single) message to
remain silent and cause no collisions. In a multi-message
setting it becomes a necessity that we make progress for a
message while allowing other nodes that do not have this
message to transmit to make progress on other messages.

Trying to understand this problem prompted us to define
the property multi-message viable (MMYV): We say a trans-
mission schedule broadcasts one message in a MMV way if
it broadcasts one message while nodes that do not have the
message but are scheduled to transmit are allowed to send
noise. Intuitively, this captures the viewpoint where we fo-
cus on one message and the transmissions of other messages
are regarded as noise, possibly harming the progress of the
message in consideration. We later see that a property very
close to MMV is exactly what is enough to prove that a
schedule works well with RLNC.

Unfortunately proving that a schedule is MMV is not
straightforward and it is a priori not clear whether the al-
ready existing schedules are MMV. The easiest example to
see this is the simple Decay algorithm of [2]: in Decay, if
a node is scheduled to transmit but it does not have the
message, then this node remain silent. Decay broadcasts



a single message in O(Dlogn + log®n) rounds [2]. This
follows almost directly from a simple progress lemma which
shows that in O(log n) rounds of Decay a node gets informed
(receives the single message) with constant probability if
at least one of its neighbors is informed. However, if the
nodes that do not have the message are allowed to send
noise when the schedule prompts them to transmit, then
the key progress lemma of [2] does not hold anymore. Sur-
prisingly, even though this lemma breaks, it is still true that
one message is spread quickly in this case (when uninformed
nodes are noising), meaning that Decay broadcasts in time
O(Dlogn + log? n) rounds in a MMV way:

Lemma 3.1. Consider the transmission schedule of De-
cay: for each round r, for each node v at distance l, from
source, if r = l, + 1 mod 3, then v is prompted to trans-
mit with probability 2~ ((r—te=1)/3 mod [lognl) = Ajcq  suppose
that each node that is prompted to transmit but does not
have the message sends “noise”. Then, all nodes receive the
message by round O(D logn + log® n), with high probability.

To prove this lemma, we need to go away from the analy-
sis approach in [2] that chooses a shortest path from source s
to node v and shows that the broadcast message makes fast
progresses along this path when moving forwards in time.
Instead we use what we call backwards analysis: in a nut-
shell, we move backwards in time and find a sequence of
collision-free transmissions from s to v, where hops of this
sequence are unraveled backwards (from v to s). Meanwhile
unraveling this sequence, each of these transmission can be
the broadcast message or just “noise”, depending on whether
the sender has received the broadcast message or not. Once
we reach s, it means the transmissions in the sequence in-
deed where the broadcast message. We defer the details of
the proof to the proof of Lemma 3.1 in the full version.

Unfortunately, in contrast to the simple Decay schedule,
the schedule of [7] appears to be not MMV. In Section 3.2, we
present a new transmission schedule for GSTs that is MMV.
In the proof of Theorem 1.2, we again use our backwards
analysis to show that this new schedule is in fact MMV,
while also proving that our multi-message algorithm which
combines RLNC with this schedule broadcasts k messages
in optimal time O(D + klogn + log? n).

3.2 A Multi-Message Transmission Schedule
Atop GST

In this section, we present our transmission schedule for
GSTs. Later we use this schedule along with random linear
network coding to achieve our optimal multi-message algo-
rithm.

Suppose we have a GST T for graph G. For each node u,
let ., be the distance of u from source s in graph G (that is,
the BFS level of u). Also, let 7, be the rank of v in GST T.
We first construct a virtual directed graph G’, from graph
G, as follows: we add a directed edge from every node u
with rank r that is the first node of a fast stretch to every
descendant of v in T that has rank r (thus, to all nodes
in that fast stretch). We call this a fast edge. We use the
notation d, to denote the length of the shortest (directed)
path from s to u in G’, and we call this wvirtual-distance.
Given graph G, GST T, and the respective virtual graph G’
(and the related virtual-distances), our schedule is defined
as follows:

Multi-Message Viable GST Schedule: In round ¢,
each node u at BFS-level [ of G with rank r in GST T" and
virtual-distance d in the virtual graph G’ does as follows:
(a) if t = 2(I14+3r) (mod 6[log, n]), then u transmits; (b)
if t =142d (mod 6)), then u transmits with probability
2—((t—1—2d)/6 mod [logo n]);

otherwise, u listens.

Note that the case (a) only happens in even rounds and
case (b) happens only in odd rounds. As in [7], we call the
transmissions triggered by case (a) fast transmissions and
the transmissions triggered by case (b) slow transmissions.

We remark that this schedule uses fast transmissions ex-
actly as in [7, 18] to pipeline the messages along the fast
stretches of GST. We see in Lemma 3.3 that these fast trans-
missions are collision-free. The crucial difference with the
schedule in [7,18] lies in defining the slow transmissions with
respect to the virtual-distance in graph G’ (instead of levels
in G). This change results in slow transmissions not trying
to push messages away from the source themselves, but in-
stead trying to push messages towards entry points of the
fast stretches (even if this leads to the message going back
towards the source). While this modification seems minor,
it is crucial for allowing the backwards analysis technique to
show that the new schedule is efficient and MMV.

Lemma 3.2. In virtual graph G’, for each node u, we have
dw < 2[log, n].

Lemma 3.3. There are no collisions between any two fast
transmissions.

Proposition 3.4. If node u with level | is the beginning
of a fast stretch in GST T and u sends a message at time
t in a fast transmission round, then any node v with level
" > 1 on the same fast stretch receives this message by time
t'=t+20' —-1).

Lemma 3.5. For any node u with virtual-distance d., if
there is at least one node v connected to u in G with virtual-
distance d, = du — 1, then during each interval of 6[logy n]
rounds, with probability at least %, node u Teceives a message
from one node with virtual-distance d,, — 1.

3.3 Optimal Multi-Message Broadcast Algo-
rithm

We achieve our optimal multi-message broadcast algo-
rithm by combining random linear network coding (RLNC)
with the Multi-Message GST Schedule that we presented
in Section 3.2. We first recall on the exact working of
RLNC [12,13] and then present our multi-message broad-
cast algorithm.

In RLNC, the k messages are regarded as bit-vectors m71,

.., mx € F, over Fy, the finite field of order two. Each
network coded packet p consists of a linear combination of
messages, that is, the vector Zle a;m; € Fy. We remark
that the standard implementation of RLNC requires that the
coefficient vector & = (a1, ..., ax) € F5 is transmitted with
each message. Doing this would increase the packet size to
k bits which could be too large. We note that in the known
topology setting there is no need for actually including the
coefficient vectors in the packets because using the topology
knowledge, all nodes can compute the coefficients offline in
a consistent manner. In the unknown topology scenario,
using generations, that is, dividing messages into groups of
size logn and then doing network coding only inside each



group keeps the coefficient overhead to O(logn) bits. We
defer the details for this to the full version.

Because of linearity, a node that has a number of these
packets can create a packet of this form for any coefficient
combination that is spanned by the coefficient vectors of
the packets that it has received by that time. Also, if a
node has a set of k packets with linearly independent co-
efficient vectors, then this node can reconstruct all the k
messages using Gaussian elimination. In RLNC, every node
u stores all its received packets to maintain the subspace
that is spanned by them. Whenever u decides to generate
a new coded packet, it chooses a random coefficient vector
from this subspace by taking a random linear combination
of the packets stored. Once the subspace spanned by the
coefficient vectors in packets received by wu is the full space
F%, then u decodes and reconstructs all the messages.

Multi-Message Broadcast Algorithm: Whenever in
MMV schedule of Section 3.2, a node u is prompted to
transmit, u transmits a packet determined as follows: (a)
if this is a slow transmission, or if this is a fast trans-
mission and u is the first node on a fast stretch, then u
transmits a new coded packet, that is, a packet that is
created using network coding by combining the messages
u has received earlier, (b) if this is a fast transmission but
node u is an intermediate node in a fast stretch, then u
simply relays the packet it received in the previous fast
transmission round (if any).

3.4 Analysis of the Multi-M essage Broadcast
Algorithm

In the analysis of our Multi-Message Broadcast Algorithm
we combine our new backwards analysis with a carefully de-
signed potential function and the projection analysis from
[11] to show that using the schedule from Section 3.2 to-
gether with random linear network coding achieves an opti-
mal multi-message broadcast.

The following definitions are taken from [11]:

Definition 3.6 ( [11, Definition 4.1]). A node v is infected
by a coefficient vector fi € F% if v has received a packet with
a coefficient vector € € F that is not orthogonal to u, that

is, {[1,&) # 0.

Proposition 3.7 ( [11, Lemma 4.2]). If a node v is infected
by a coefficient vector [i and after that, a node u receives a
packet from node v, then u gets infected by fi with probability
at least 1/2. Furthermore, if a node v is infected by all
the 2% coefficient vectors in F%, then v can decode all the k
messages.

We now present our analysis for the multi-message broad-
cast algorithm presented in Section 3.3.

Proof of Theorem 1.2. For a large enough constant A\ let T' =
A(D + k[log, n] + 2[log, n]?) . We claim that for any node
v and any fixed non-zero vector g € F%, the probability
that node v is not infected by f in T rounds is at most
2~ (k+2logn)  {Jging this claim, we conclude via a union
bound over all the 2% coefficient vectors in F5 that by round
T, with high probability, v is infected by all the coefficient
vectors in F5. That is, by round T, v can decode all the k
messages. Using another union bound over all the choices of

node v then shows that by round 7', with high probability,
all nodes have received all the messages.

Fix a node v and a non-zero vector i € F5. To prove
the claim, we use backwards analysis to view the process of
infection spreading of vector fi. In this method, we go back
in time, from round T to round 1, and we find a sequence
of collision-free transmissions from source node s to node v
such that all the transmissions in this chain are successful
with respect to vector [i. Since we are moving back in time,
we find this sequence starting from v and going backwards
till reaching s. More precisely, for each ¢, we say node u is
transmission-connected to v by backwards time ¢” if there
is a sequence of transmissions u = w1, ws,...w; = v where
for each ¢ € [1,£ — 1], w; transmits in a round r; € [T —
t,T], we have r; < r;y1, and in round r;, wi41 receives
a message from w;. Let S; be the set of all nodes that are
transmission-connected to v by backwards time ¢. Moreover,
we then define the potential of v with respect to vector [i
at backwards time ¢ to be ®z(t) = minyes, dullog, n] + lu.
Note that ®z(0) < 2[log, n]* + D. To prove the claim, we
show that with probability at least 1 — 2~ (k+2logn) e have
®;(T) = 0. For this, moving backwards in time, we show
that in every 8[log, n] interval of consecutive rounds, this
potential decreases with probability at least 1—16 by at least
[log, n] — 1. For a backwards time ¢, let node u be the node
in S; that minimizes the potential of v. The proof is now
divided into two cases as follows:

Case (A): Suppose u has at least one G-neighbor that has
a lower virtual-distance. In this case, Lemma 3.5 guarantees
that with probability at least % during the rounds in [T —
t — 6[logyn],T — t], there is a collision-free transmission
from a node v’ with ds = dy, — 1 to u, and is successful
with respect to ji, with probability 1/2. Since v’ and u are
neighbors their levels I, and [, differ at most by one, thus
a successful transmission decreases the potential by at least
(du[logy ]+ lu) = (du [logy ] +lur) = (du — dur) [logy | —
(lu = lyr) > [logyn] — 1. Thus, if u has a neighbor with a
virtual-distance lower than d,, then with probability at least
= the potential decreases by at least [log, n] — 1 within any

8[log, n] rounds when moving backwards in time.

Case (B): Suppose u does not have a G-neighbor with
a lower virtual-distance. Note that this can only happen
if u = s or if there is one directed edge in G’ representing
a fast stretch, originating from a node u’ one level below
u in G’ and going into u. First observe that the starting
node of any fast stretch initiates a “transmission wave” ev-
ery 6[log, n| rounds by creating a new coded packet and
sending it as a fast transmission. This packet gets then
pipe-lined through the fast stretch with one progress every
fast transmission round (that is, once in every two rounds)
until it reaches the end of the stretch. Thus, for any node on
a fast stretch, there is a new wave arriving every 6[log, n]
rounds. Moreover, each of these waves is successful with re-
spect to i with probability at least 1/2. Thus, at a time
t' € [T —t—6[logyn], T —t], a fast transmission wave ar-
rives in u, and with probability 1/2 leads to an extended
sequence of collision-free transmissions that are successful
with respect to fi. In particular, if the wave originated from
v’ during the rounds [T — ¢’ — 2[log, n],T — t'], then there
is a sequence of transmission from u’ to v in round interval
[T —t—8[log, n], T —t], and otherwise the wave propagated
for [log, n] steps and there is a node u” between v’ and u on



the fast stretch with a sequence of transmission to v starting
at time T'— ¢t — 8[log, n]. Thus, in both cases, the potential
drops by at least [log, n] — 1. In the first case the potential
drop comes from the fact that d,, = dy, — 1 and v < [,
while in the second case we have d,» < d,s +1 = d, and
Ly < ly — [logyn].

The above argument shows that when moving backwards
in time, in every 8[log, n| consecutive rounds, with prob-
ability at least 1—16, the potential of v decreases by at least
[logon] — 1 > [logyn]/2, until reaching zero. When the
potential reaches zero, it means that there is a sequence
of successful and collision-free transmission from s to wv.
Hence, the expected time for such a sequence to appear is
thus a constant times the initial potential of v, ®z(0) <
2[log,n]? + D. A Chernoff bound furthermore shows that
the probability of not finding such a sequence is exponen-
tially concentrated around this mean. In particular, after
T = XD + k[logy n] 4 2[log, n]) rounds, we expect at least
X (2D/[logsn] + 4[log, n] + k) sets of 8[log, n] consecu-
tive rounds in which the potential of v drops at least by
[log, n]/2, for a constant )\'. Furthermore, the probabil-
ity that there are less than (2D/[log,n] + 4[log, n| such
rounds is exponentially small in the expectation, that is,
at most 2~ (?M°#271+k) " This completes the proof of Theo-
rem 1.2 O
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