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ABSTRACT
We present new upper bounds for fundamental problems
in multichannel wireless networks. These bounds address
the benefits of dynamic spectrum access, i.e., to what ex-
tent multiple communication channels can be used to im-
prove performance. In more detail, we study a multichannel
generalization of the standard graph-based wireless model
without collision detection, and assume the network topol-
ogy satisfies polynomially bounded independence.

Our core technical result is an algorithm that constructs

a maximal independent set (MIS) in O
(

log2 n
F

)
+ Õ(logn)

rounds, in networks of size n with F channels, where the
Õ-notation hides polynomial factors in log logn.

Moreover, we use this MIS algorithm as a subroutine to
build a constant-degree connected dominating set in the
same asymptotic time. Leveraging this structure, we are
able to solve global broadcast and leader election within

O
(
D + log2 n

F

)
+ Õ(logn) rounds, where D is the diame-

ter of the graph, and k-message multi-message broadcast in

O
(
D+k+ log2 n

F

)
+Õ(logn) rounds for unrestricted message

size (with a slow down of only a log factor on the k term
under the assumption of restricted message size).

In all five cases above, we prove: (a) our results hold with
high probability (i.e., at least 1 − 1/n); (b) our results are
within poly(log logn)-factors of the relevant lower bounds
for multichannel networks; and (c) our results beat the rel-
evant lower bounds for single channel networks. These new
(near) optimal algorithms significantly expand the number
of problems now known to be solvable faster in multichannel
versus single channel wireless networks.
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1. INTRODUCTION
Modern wireless devices rarely operate on a fixed com-

munication channel. It is more common for them to use a
wide swath of spectrum that has been subdivided into mul-
tiple independent channels (e.g., [1,6]). This reality inspires
a compelling question: When and how can we leverage the
availability of multiple channels to improve the performance
of wireless algorithms?

One might hope that using F channels you can always
achieve a F-times speed-up. For distributed algorithms,
however, this goal is complicated by two factors: (a) each
device can only use a single channel at a time; and (b)
the size and density of the network is often unknown a
priori. (In fact, some well-known problems, such as mul-
tihop wake-up, provably derive no benefit from multiple
channels [11].) In this paper, we overcome these challenges
to significantly increase the corpus of algorithms known to
solve problems faster in multichannel versus single channel
wireless networks. In more detail, we prove new random-
ized upper bounds for the following fundamental problems
in graphs satisfying polynomial bounded independence (de-
fined below): (i) establishing a Maximal Independent Set
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NSF Award No. 0939370-CCF; NSF Award No. CCF-AF-
0937274; AFOSR Contract No. FA9550-08-1-0159; and NSF
Award No. CCF-0726514.



(MIS); (ii) establishing a constant-degree Connected Domi-
nating Set (CDS); (iii) broadcasting one message—or a set
of messages—to every device in a network; and (iv) electing
a leader in a network. For each of these problems, we give
solutions that are within poly-log logn factors of optimal
in the multichannel setting, and that are faster than their
corresponding lower bounds in single channel networks.

We argue that these results provide a powerful argument
for wireless algorithm designers to more aggressively em-
brace the availability of multiple channels to gain perfor-
mance.

Results. We assume a multichannel generalization of the
standard graph-based wireless model [4, 8]. In each round,
each node can choose a single channel to participate on from
among F ≥ 1 available channels. We further assume that
the graph representing our network topology satisfies poly-
nomial bounded independence (the independence number of
a radius r neighborhood is bounded by f(r) for some poly-
nomial f) [22, 26]. This assumption generalizes a variety of
attempts to model the topology of wireless networks, includ-
ing the widely used unit-disk graphs, quasi-unit-disk graphs,
or, more generally, unit-ball graphs where the underlying
metric has bounded doubling dimension [26].

The primary technical result of the paper is an algorithm

that constructs an MIS in O
(

log2 n
F

)
+ Õ(logn) rounds—

where Õ hides polynomial factors in log logn—with high
probability1. This algorithm consists of two main pieces: a
“decay filter” that reduces the number of nodes competing
in each “area” to O(poly(logn)), and a “herald filter” that
leverages multiple channels to efficiently further reduce the
nodes down to a constant number per area.

Much of the complexity resides in the Herald Filter, where
we reduce the number of contenders to join the MIS from
poly(logn) to O(1). Part of the complexity comes from
asynchrony: new arrivals and neighboring regions can force
existing nodes to “restart,” preventing progress toward the
MIS. Part of the complexity comes from the fact that ran-
domized symmetry breaking works well over large popula-
tions, but less predictably as the number of participants gets
small.

To put this result in context, in the single channel model,
building an MIS requires Θ(log2 n) time [11,18,20,24]. Based
on the lower bound techniques developed in [10, 11, 13, 20],
we show in [9] that in bounded independence graphs (and
even in unit-disk graphs) any MIS algorithm requires at

least Ω
(

log2 n
F + log n

)
rounds in a network with F chan-

nels. Our algorithm matches this multichannel lower bound
up to poly(log logn) factors and beats the single channel
lower bound. The lower bound also implies that even if
the number of channels is arbitrarily large, solving the MIS
problem still requires at least Ω(logn) rounds, and our up-
per bound achieves almost the same time with just Θ(logn)
many channels.

Having developed an MIS algorithm, we use it as a subrou-
tine to build a constant-degree CDS, with high probability,

also in O
(

log2 n
F

)
+ Õ(logn) rounds. The key challenge here

is to efficiently—i.e., in o(log2 n) time—identify short paths
between nearby MIS nodes, even while the MIS subroutine
is ongoing. We then leverage the overlay provided by our

1We use the phrase high probability to indicate a probability
at least 1− 1

nc , for some arbitrary constant c ≥ 1.

CDS algorithm to solve global broadcast and leader elec-

tion (with synchronous starts) in O
(
D + log2 n

F

)
+ Õ(logn)

rounds, and k-message multi-message broadcast in O
(
D +

k + log2 n
F

)
+ Õ(logn) rounds for unrestricted message size

(with a slow down of only a log factor on the k term under
the assumption of restricted message size). These bounds

(nearly) match the relevant Ω
(
D + log2 n

F

)
bound for multi-

channel networks [16], and beat the relevant Ω(D + log2 n)
lower bound for single channel networks [3].

Related Work. There has been much research on algo-
rithms for graph-based single channel wireless network mod-
els, beginning with Chlamtac and Kutten [8] in the central-
ized setting and Bar-Yehuda et al. [4] in the distributed set-
ting. The problem of finding an MIS in a distributed fashion
has been studied extensively for a standard message passing
model (e.g., without collisions). On general network topolo-
gies, an MIS can be built in O

(
min

{
logn, log ∆

√
logn

} )
,

where ∆ is the largest degree of the network graph [2, 5,
23]. For bounded independence graphs, this is improved
to O(log∗ n) [27]. For single-channel radio networks sat-
isfying the unit disk graph property, it has been shown
that O(log2 n) rounds is sufficient [24]. Using a reduction
from the single-hop wake-up problem, this bound was shown
tight [11,18,20,24].

To our knowledge, the use of a connected dominating set
(CDS) as a wireless network backbone was first described
in [17]. It is well-known (and already described in [17] for
the case of unit disk graphs) that a CDS can be constructed
by first computing a small dominating set (in the case of
bounded independence graphs, an MIS provides such a small
dominating set), and then connecting the nodes of the dom-
inating set through 2 and 3 hop paths. In a bounded in-
dependence graph, connecting all MIS nodes at distance at
most 3 by a short path leads to a CDS where the graph in-
duced by the CDS has bounded degree. The MIS algorithm
of [24] combined with the CDS algorithm of [7] (which as-
sumes an MIS as a precondition) provides a constant-degree
CDS in O(log2 n) rounds in the radio network model with
synchronous starts (i.e., where all nodes start during the
same round).2

The study of algorithms for multichannel wireless net-
works is more recent. Initially, much of the focus in mul-
tichannel networks was providing increased fault-tolerance:
even if some of the channels were faulty, the computation
would proceed. This basic model of unreliable multichannel
wireless communication, often called t-disrupted, was intro-
duced in [14], and has since been well-studied; e.g., [12–15,
19,25,28,29].

We previously tackled the problem of leader election in
single-hop networks (i.e., the diameter is 1) [10], where we

solved the problem in O
(

log2 n
F + logn

)
rounds. These tech-

niques did not directly translate to multihop networks. We
also have studied the problem of broadcast in multihop net-
works [16]. In this case, we assumed that nodes had access
to collision detection, showing how to leverage this infor-
mation to solve broadcast in O

((
D+ logn

)(
logF + logn

F

))
.

For F = logn, this yields results similar to this paper, i.e.,
O(D)+Õ(logn). The results are hard to compare, however,

2The MIS result of [24] does not require the synchronous
start property, but the CDS piece from [7] does.



as [16] assumes collision detection (which we do not), but
we assume bounded independence (which [16] does not).

Finally, we have studied the problem of wake-up and ap-
proximating a minimum dominating set (MDS) in a multi-
hop network with a topology that satisfies a clique decompo-
sition assumption [11]. For the MDS problem, we achieved
a constant-factor approximation of an MDS, in expectation,

requiring O
(

log2 n
F

)
+ Õ(logn) rounds. We found the tech-

nique could not easily be extended to achieve the strict inde-
pendence of an MIS (with high probability) or tolerate the
more general bounded independence assumption (instead of
a clique decomposition assumption).

2. PRELIMINARIES
Radio Network Model. We consider a multichannel vari-
ant of the standard graph-based radio network model [4].
The network is modeled as an n-node graph G = (V,E).
Each node knows n or a polynomial upper bound on n.
There are F communication channels. Time is divided into
synchronized slots, i.e., rounds. For the purpose of analy-
sis, we imagine a global round numbering, but nodes do not
have access to this global time. In each round, each node
can choose one of the F channels to operate on; it can either
transmit or listen on the channel. A node u that listens on
a channel C receives a message from a neighbor v if and
only if node v is transmitting on C and no other neighbor
of u is transmitting on C. If two or more neighbors of u
transmit on C, or if no neighbor of u transmits on C, then
u receives silence. That is, we assume there is no collision
detection available. A node that transmits does not receive
anything. Notably, a node that operates on channel C in a
given round learns nothing about events on channels other
than C in that round.

Notation. For a subset of nodes S ⊆ G, we use Nd
G(S)

to denote the set {u | ∃v ∈ S, distG(u, v) ≤ d}, where
distG(u, v) is the shortest distance between u and v in graph
G. When |S| = 1, e.g., S = {v}, we use Nd

G(v) to mean
Nd
G({v}). We use NG(v) to denote the neighbors of v, i.e.,

NG(v) = N1
G(v)\{v}. When clear from the context, we omit

the subscript G. In later sections, we describe algorithms in
which nodes can be in various states, e.g.: A, H′, H, L′, L,
M, E. Where appropriate, we slightly abuse notation and
use the state names to denote the set of nodes in a given
state, e.g, A to denote the set {v ∈ V : v is in state A}. We
sometimes study Nd(u) ∩ A and write Nd

A(u). When refer-
ring to a local variable X of a node u, we write X(u). If
the round number is not clear from the context, we denote
X(u) in round r as X(u, r).

Bounded Independence. We assume that the network
graph G is a bounded independence graph as introduced
and described in [22, 26]. Formally, any independent set
S ⊆ Nd

G(v) for any node v has size at most α(d), where
α(d) is a polynomial function in d and (in particular) inde-
pendent of n. Hence, any subgraph induced by a subset of
a neighborhood Nd

G(v) for d = O(1) has only constant size
independent sets.

Probability Notation. Consider an event A, a constant
c, and a variable k. If P(A) ≥ 1 − e−ck, then we say
that A happens with very high probability with regard to
k (w.v.h.p.(k)). If P(A) ≥ 1− k−c, then we say A happens
with high probability with regard to k (w.h.p.(k)), and if
A happens w.h.p.(n), then we simply say A happens with

high probability (w.h.p.). Finally, w.c.p. abbreviates ‘with
constant probability’.

Number of Channels. We assume ω(1) channels are
available; otherwise there are existing algorithms that solve
the problem in the same asymptotic time frame. If ω(logn)
channels are available, we restrict the usage to Θ(logn), as
there is no benefit from using more—in [9] we show that

computing an MIS requires Ω
(

log2 n
F + logn

)
rounds. Solely

for ease of exposition, we assume a minimum number of
Ω(log logn) channels for all descriptions and proofs in this
paper; this is not a requirement for the algorithm to work.
We explain in [9] how to adapt our algorithms to work in a
setting with o(log log n) channels.

3. PROBLEM STATEMENT
We study randomized algorithms algorithms for the fol-

lowing problems, with high probability:

Maximal Independent Set. We say that an algorithm
solves MIS in time T , if the following three properties hold:
(P1) Each node v that wakes up in round r declares itself
as either dominating or dominated by round r′ ∈ [r, r + T ]
and this decision is permanent. (P2) For each round r and
node v, if v is dominated in round r, then v has at least one
dominating neighbor in that round. (P3) For each round r
and node v, if v is dominating in round r, then v does not
have any neighboring dominating node in that round.

Connected Dominating Set. We say that an algorithm
solves (constant-degree) CDS in time T , if the following four
properties hold: (P1) Each node v that wakes up in round r
declares itself as either dominating or dominated by round
r′ ∈ [r, r+T ] and this decision is permanent. (P2) For each
round r and node v, if v is dominated in round r, then v has
at least one dominating neighbor in round r. (P3) For each
round r and node v, if v is dominating in round r, then v has
at most O(1) dominating neighbors in that round. (P4) For
each round r and each connected component C in the graph
induced by nodes awake in round r − T , the dominating
nodes in C form a connected subgraph within C.

Other Problems. We also consider global broadcast,
where a node starts with a message, and multi-message
broadcast, where k nodes start with a message; in both
cases the algorithm succeeds when every node in the network
has received the message(s). Finally, we consider leader elec-
tion, which terminates when exactly one node has declared
itself the leader (and no future nodes declare themselves the
leader).

4. OVERVIEW OF MIS ALGORITHM
In this section, we provide an overview of the MIS algo-

rithm.

Algorithm Outline. Our algorithm consists of two main
building blocks: the decay filter and the herald filter. The
decay filter is used to reduce the maximum degree of the
communication graph to a poly-logarithmic value. The her-
ald filter assumes that the maximum degree is bounded to
a poly-logarithmic value and establishes an MIS in this set-
ting.

The flow of the algorithm is as follows. Each node, on
activation, starts in the decay filter. As time passes, some
of the nodes move from the decay filter to the herald filter.
Nodes exit the herald filter when either they have joined the



MIS and have status dominating, or when they have an MIS
neighbor and are thus dominated. In order to analyze the
time complexity of our algorithm, we bound the time each
node spends in each of the filters.

We note that nodes do not move backward in this flow.
The dominating and dominated statuses are permanent; a
node that is in the herald filter does not go back to the
decay filter. However, a node u that is in the decay filter
might skip the herald filter and directly become dominated
if u receives a message from a dominating neighbor node v.
Also, a node that has made progress in one of the filters can
be forced to restart at the beginning of its current filter.

A node halts as soon as it discovers that it is dominated.
On the other hand, a dominating node v cannot halt: it
continues transmitting its status to its neighbors every so
often, ensuring that each neighbor w that awakes at a later
time becomes dominated.

Block Guarantees. We now present the guarantees of
each block. We later discuss how the blocks are implemented
and prove the specified guarantees. The first property holds
for all components of the algorithm, and acts in parallel
with the other block guarantees. It plays an important role
in combining the blocks.

(G1) For each node u, if u is awake in round r and it has a
dominating neighbor v in that round, then w.h.p. node
u becomes dominated by round r′ = r +O(logn).

Implementation is straightforward: each node u that does
not have its final status listens to one of a constant number
of channels, w.c.p., every O(1) rounds. Each node that is
dominating periodically transmits on those channels, w.c.p.,
every O(1) rounds. If u receives a message from a dominat-
ing neighbor, then u becomes dominated. Since each node
can have at most α(1) MIS neighbors, applying Chernoff
bound gives us guarantee (G1). We show later that both
filters satisfy this guarantee.

The guarantees that we get from the decay filter are as fol-
lows:

(G2) W.h.p., for each node v and each round r, at most
O(logn) nodes in N1

G(v) exit the decay filter in round
r to enter the herald filter. Each node v that enters
the herald filter has spent Ω(logn) rounds in the decay
filter, long enough to become dominated if v already
had a dominating neighbor after waking up.

(G3) W.h.p., for each node v that is in the decay filter in

round r, by round r′ = r+O
(

log2 n
F +logn

)
, either v is

dominated, in which case it has a dominating neighbor,
or at least one node in N1

G(v) exits the decay filter and
enters the herald filter between rounds r and r′.

The guarantees that we get from herald filter are as follows:

(G4) W.h.p., for each node v that is in the herald filter in

round r, by round r′ = r + Õ(logn), v is dominating
or dominated. In the latter case, v has a dominating
neighbor.

(G5) W.h.p., in any round r, the set of dominating nodes
is an independent set.

Note that (G2) and (G4) together provide that, w.h.p., the
maximum degree in the graph induced by undecided nodes
in the herald filter is bounded by some ∆H = O(polylog n).

We will describe the algorithm and prove guarantees (G1)–
(G5) in the following two sections. Before doing so, we state
our main theorem (for a detailed proof we refer to [9]).

Theorem 4.1. W.h.p., an algorithm satisfying (G1)–(G5)

solves the MIS problem in time O
(

log2 n
F

)
+ Õ(logn).

Proof sketch. Property (G5) implies that the set of
dominating nodes is independent. It remains only to show
that within O(log2(n)/F) + Õ(logn) time, every node is
either dominating or dominated. We claim that for each
node v that is awake in round r, there is a round r′ =
r+O(log2(n)/F) + Õ(logn) such that, by the end of round
r′, either v is dominating or dominated, or at least one ‘new’
node w ∈ N2

G(v) that was not dominating in round r has
become dominating. Since the MIS can contain at most
O(1) dominating nodes in N2

G(v), the result follows from
this claim. The claim follows from the fact that, by (G3),

within O(log2(n)/F) + Õ(logn) rounds, either v is domi-
nated or it has a neighbor u that has entered the herald
filter; by (G4), within Õ(logn) rounds, either u itself or a
neighbor of u is dominating.

5. DECAY FILTER
The decay filter is a slightly modified version of the active

state of the active wake-up algorithm in [11]. In essence, the
decay filter is a backoff style protocol in which nodes broad-
cast with exponentially increasing probabilities; whenever a
node receives a message from another node, it is knocked out
and restarts the filter. To reduce contention, the broadcasts
are distributed uniformly over the F channels.

Algorithm description. For pseudo-code and detailed
proofs we refer to [9]. The decay filter uses Θ(F) channels,
divided into two sets: (i) the decay channels D1, . . . ,DF,
where F = Θ(F); and (ii) the report channels R1, . . . ,R3α(1).

A node v in the decay filter proceeds as follows. First, v
spends Θ(logn) rounds listening to one of the report chan-
nels, chosen at random in each round. If it hears from an
MIS node, it halts and becomes dominated.

Otherwise, node v proceeds through logn phases. In these
phases, the nodes use a subset of F = Θ(F) out of the total
F channels, the “decay channels.” Each phase consists of
Θ
(

logn
F

)
= Θ

(
logn
F

)
rounds, except for the last phase, which

consists of Θ(logn) rounds.
In each round of each phase, each node listens to one of

the report channels with probability 1/2. If node u is not
listening to a report channel and it is in phase j, then u
chooses uniformly at random one of the F = Θ(F) chan-

nels D1, . . . ,DF. Then, with probability 2j

4n
, u transmits on

this selected channel and otherwise u listens to this selected
channel. Thus, transmission probabilities are exponentially
increasing over the phases, going from 1

2n
to 1

4
.

If a node u transmits in a round, then u immediately exits
the decay filter. Moreover, if a node u receives a message on
some channel Dm, then u gets knocked out and it restarts
the decay filter. If u passes through all the phases without
ever transmitting, then u moves to the herald filter.

Analysis. The main difference between the decay filter
here and the version in [11] is that the graph model of
the present paper is more general. Based on the follow-
ing weighted version of Turán’s theorem it is possible to
generalize the analysis from bounded-degree clique partition
assumption to general bounded independence graphs.



Lemma 5.1. Let G = (V,E) be a graph with independence
number α(G) and assume that every node u ∈ V has a pos-
itive edge weight wu > 0. Define W :=

∑
v∈V wv and for

each u ∈ V , Wu :=
∑
v∈N+

G
(u)

wv. Further, let Vheavy ⊆ V

be the set of nodes v for which Wv ≥ W
2α(G)

. Then,∑
v∈V

wv
Wv
≤ α(G),

∑
v∈V

wv ·Wv ≥
W 2

α(G)

and
∑

v∈Vheavy

wv >
W

2α(G)
.

Lemma 5.2. W.h.p., for all rounds r ≥ 1 and for all
nodes u ∈ V , we have Pu(r) = O(F) = O(logn).

Proof sketch. For a round r, let pu(r) be the trans-
mission probability of node u in round r. Moreover, let
Pu(r) :=

∑
v∈N1(u) pv(r). For the sake of contradiction,

suppose that Pu(r) exceeds threshold 3cF for the first time
in round r. It is easy to see that in all rounds r′ ≥ r − T ,
Pu(r′) ∈ [cF, 3cF], where T = Θ(logn/F) is the length of
one phase. This is because, in each phase the transmission
probability of each node can at most double, and the newly
awakened nodes can contribute at most cF. In each such
round r′, w.v.h.p.(F), for Θ(F) channels, each of these chan-
nels are chosen by a set of nodes from N1(u) that contribute
a probability mass that is on the order of Θ(c). Similarly,
we see that on at least half of these channels, there is no
parge probability mass within distance 2. Thus, for each
such channel, w.c.p., a single node v ∈ N1(u) transmits and
no node in N2(u) interferes. Lemma 5.1 says that the trans-
mitting node itself has a constant chance to be part of a set
S ⊆ N1(u) of nodes, which together contribute a constant
fraction to the probability mass on that channel, in which
case a constant fraction of the probability mass in N1(u)
on that channel is knocked out. This happens w.c.p. on
each of the aforementioned channels, and w.v.h.p.(F) there
are Θ(F) of them. Thus, assuming that the constants in
T = Θ(logn/F) are sufficiently large, we get that, w.h.p.,
the probability mass is reduced by at least 1/3 over the
course of T rounds, contradicting our initial assumption.

It is then easy to show that property (G2) holds:

Lemma 5.3. (G2): With high probability, for each node
v and each round r, at most O(logn) nodes in N1

G(v) come
out of the decay filter in round r to enter the herald filter.
Each node that enters herald filter has spent Ω(logn) rounds
in decay filter.

Property (G3) follows from the structure of the protocol:

Lemma 5.4. (G3): W.h.p., for each node u that is in de-

cay filter in round r, by round r′ = r+O
(

log2 n
F

)
+ Õ(logn),

either u is dominated, in which case it has a dominating
neighbor, or at least one node in N1(u) gets out of decay
filter and enters herald filter.

6. HERALD FILTER ALGORITHM
In this section, we present the herald filter. Detailed

pseudo-code can be found in [9]. Recall that, to simplify ex-
planations and ease understanding, we assume Ω(log logn)
channels to be available.

The herald filter assumes that in the subgraph induced
on the nodes in the filter the degree of each node is always
bounded by ∆H = O(polylog n). Given this assumption, the
objective of the filter is to find an MIS.

6.1 Algorithm Outline
During the algorithm, each node is in one of 7 states: the

active state A, the handshake states H′ and L′, the red-blue
game states H and L, the MIS state M or the exclusion
state E. State A (active) indicates the initial state; state M
indicates that the node is in the MIS (permanently); and
E (eliminated) indicates nodes that know of a neighboring
MIS node. States L′ (leader candidate) and L (leader) are
temporary states through which a node v passes to get to
state M, while states H′ (herald candidate) and H (herald)
are accompanying temporary states through which a node u
passes to help a neighboring node v to pass through states
L′ and L to get to state M.

In general, a node v can go to state M (i.e., join the MIS)
in two ways: (1) either v does not receive any message for
a long time and it joins the MIS assuming it is alone, or
(2) v joins the MIS with the help of one of its neighbors u.
In the latter case, in order to get to state M, node v goes
through states L′ and L, while u goes through states H′ and
H simultaneously. During these states, u helps node v to
make sure that no other neighbor of v is trying to join MIS.

Until the state of a node v in herald filter is determined
(i.e., until it moves to M or E), it maintains a counter
lonely(v) that measures for how long v has not heard from
any neighbors; in addition, it maintains a parameter γ(v),
called the activity level, which is always in

[
1

4∆H
, 1

2

]
and gov-

erns the behavior of v in state A. By definition, we assume
that for nodes v in states M and E and for nodes v that are
not presently in the herald filter, we have γ(v) = 0.

We divide the filter into 4 parts, depending on whether:

(i) the node is in the active state A (Section 6.2),
(ii) the handshake states H′ and L′ (Section 6.3),
(iii) the red-blue game states H and L (Section 6.4), or
(iv) the MIS state M (Section 6.5).

6.2 Active State
Consider a node w that is in state A in round r. In the

active state, we use O(log log n) channels, divided into three
sets:
(i) the active channels {A1, . . . ,AnA}, (ii) the lonely chan-
nels {S1, . . . ,SnS}, and (iii) the report channels (see Sec-
tion 5), where nA, nS=O(log ∆H) = O(log logn). In round
r, node w does one of the following three things, with prob-
ability γ(w) for (a), probability 0.9−γ(w) for (b), and prob-
ability 0.1 for (c):

(a) Node w picks an active channel using an exponen-
tial distribution, choosing channel Aj with probability
2−j . Then, with a fixed constant probability π` (cho-
sen in the analysis), w listens to that channel, and with
probability 1− π`, w transmits its id on that channel.

(b) Node w listens to one of the 3α(1) report channels
chosen uniformly at random.

(c) Node w runs a protocol that we call the loneliness
support block, and explain later in this subsection.

In (a), if w transmits on a channel Ai in state A, then w goes
to state L′, attempting to become a leader. On the other
hand, if w listens and receives a message from a node v, then



w goes to state H′ (while v moves to state L′). Node w will
try to help v to become a leader and join the MIS. In (b), if
w hears an id with status M on a report channel, then w is
dominated by an MIS node and enters state E (eliminated).

Loneliness Support Block. Each node w maintains a
counter lonely, to keep track of how long it has been in the
herald filter without receiving any messages. Whenever w
receives a message from a neighbor (anywhere in the her-
ald filter), it resets the lonely counter. If lonely exceeds a
threshold τlonely = Θ(logn log logn), then node w ‘assumes’
that it is isolated (i.e., that it does not have any neighbor in
the herald filter). In this case, w joins the MIS and moves to
state M. Node w may in fact not be isolated, since a neigh-
bor can show up later. However, we show in Theorem 7.10
that this is in fact safe.

Every time w executes the loneliness support block, it
picks a channel Sj uniformly at random from the lonely
channels. Then w transmits on channel Sj with probabil-
ity 2−j ; otherwise, it listens to channel Sj . If w receives a
message, it resets its lonely counter to zero.

Activity Level Adjustment. Now we explain the ad-
justment of γ(w). When w enters the herald filter, γ(w) is

1
4∆H

. The value of γ(w) is gradually increased by a small

constant factor every round, until it reaches the maximal
possible value of 1/2 after O(log log n) rounds. The intu-
itive idea behind this activity level is as follows. Because
of nodes waking up asynchronously and the fact that nodes
exit the decay filter and enter the herald filter in an asyn-
chronous manner, we need to deal with an undesirable fact:
the transmission of the new nodes that enter the herald fil-
ter might affect the MIS election process which is going on
among the nodes that entered the herald filter a while before
that. With the gradual change in the activity level γ(w), we
can control this undesired effect and keep it below a tolerable
level.

Thus, on first entering the herald filter, a node listens
most of the time, but eventually, after some O(log log n)
steps, it spends a constant fraction of its time using the
active channels to try to become a leader or a herald.

6.3 The Handshake
Consider a node h that just moved from state A to state

H′ when it received a message from a node `, that has also
just entered state L′. Then, h and ` perform a 6-round
handshake on a designated handshake channel H. If this
handshake succeeds, then node h moves to state H and `
moves to state L. Otherwise, both return to state A.

The handshake proceeds as follows: In rounds 1 and 2, h
transmits the id of ` on H, and ` listens. If ` receives both
of these messages successfully, then in rounds 3 and 4, `
transmits its id on H, and h listens. In addition, ` transmits
a meeting channel, i.e., a randomly chosen report channel,
which is used in the red-blue game (see Section 6.4). Finally,
assuming that these messages are received successfully by h,
then in rounds 5 and 6, h again transmits the id of ` on H
and ` listens. If in any of these rounds, either of these nodes
does not receive the message that it was supposed to receive,
then it considers the handshake failed and returns to state
A.

Each of the 3 transmissions in the handshake is repeated
twice in order to synchronize properly with the red-blue
game and the nodes in the MIS. Nodes in these later states
broadcast in every other round. By requiring two consecu-

tive successful rounds of the handshake, we can be sure that
there is no concurrent red-blue game or neighboring MIS
node.

Note that it is possible for ` to consider the handshake
failed due to not receiving a message in round 5 or 6, while
h assumes that the handshake was performed successfully.
This situation is detected in the first 6 rounds of the red-blue
game.

It is easy to see that one of the necessary conditions for a
handshake between some v ∈ L′ and u ∈ H′ to be successful
is that hmust be the only herald candidate trying to perform
a handshake with ` at that time. Hence, the nodes that enter
states H and L can be viewed as leader-herald pairs.

6.4 The Red-Blue Game
Ideally, we would like the leaders to form an independent

set (and to also be independent of nodes in M). This would
allow us to send the leaders directly to the MIS. However,
this is not always the case as multiple leaders can be adja-
cent. The goal of the red-blue game is to detect such bad
leaders (i.e., adjacent leaders) and knock them out, back to
state A, along with their heralds.

For this purpose, we use a simple algorithm which we call
the red-blue game. The red-blue game uses a designated
channel G, along with the handshake channel H and the
report channels.

A single red-blue game is a 6-round protocol that is ex-
ecuted by a leader-herald pair (`, h). During each game, it
is possible that the pair is knocked out, meaning that both
nodes go back to state A. If the pair finishes Θ(logn) red-
blue games without getting knocked out, then ` assumes
that it does not have an adjacent leader and joins the MIS.

The 6 rounds of a red-blue game are as follows: In rounds
1, 3 and 5 of the game, both ` and h transmit on the hand-
shake channel H. These transmissions block channel H so
that adjacent nodes cannot perform a successful handshake
and thus, no new adjacent leader-herald pair can be created
until either ` joins the MIS or the pair is knocked out.

The main rounds of the game are rounds 2 and 4. In both
rounds, h broadcasts `’s id on channel G. ` picks a random
color in the set {red, blue} at the beginning of the 6-round
protocol. In round 2, if ` chose red, then it transmits its id
on channel G, and if it chose blue, it listens to G. In round
4, the behavior is reversed: ` listens if it chose red and it
transmits if it chose blue.

Each time ` is listening to channel G, by default, it should
receive the message of h. If ` does not receive that message,
it means that another node is also transmitting on channel
G—either a leader, another herald or an MIS node. If this
happens, ` gets knocked out.

In round 6, ` transmits on the meeting channel, while h
listens on it. The content of the sent message is whether the
red-blue game succeeded (i.e., whether ` detected any colli-
sions) and the meeting channel for the next red-blue game
chosen uniformly at random among the report channels (for
the first red-blue game, the meeting channel is fixed during
the handshake). If h does not receive a message from ` in-
dicating that the game succeeded, then h gets knocked out.
(Notice that h may not receive such a message due to a col-
lision, in which case ` gets knocked out in the next red-blue
game when it fails to receive a message from h.) Note that
the nodes that are knocked out go back to state A only after
they have finished the 6 rounds of their red-blue game.



The objective of the even rounds is that if two leaders
are adjacent and act synchronously (round-wise), then with
probability 1/2, both leaders get knocked out. This is be-
cause if both leaders choose different colors red and blue,
then they fail to receive the message from their respective
heralds in rounds 2 and 4. Thus, if a leader-herald pair
passes the red-blue game O(logn) times, then,w.h.p., there
is no synchronized neighboring leader.

In the analysis, we show that because of the handshake
rules, there are only very few configurations for two leader-
herald pairs to be adjacent. Basically either the two leaders
or the two heralds neighbor each other and operate syn-
chronously, or if the leader of one and the herald of another
pair are neighboring, then their starts of the red-blue games
are shifted by exactly 2 rounds. When combined with the
properties of the red-blue game, this ensures that only one
leader moves on to the MIS.

6.5 The MIS State
Nodes in the MIS state need to continue to broadcast

to prevent neighboring nodes from joining the MIS. This is
accomplished by broadcasting with constant probability on
H, G and the report channels. More specifically, each node
v that is in state M (i.e., that has joined MIS) performs one
of the following two steps: (i) If v did not broadcast its id
on channel H in the previous round, then it does so in the
current round. (ii) If v did broadcast on channel H in the
previous round, then with probability:

a. 1/2 it broadcasts its id and status on channel H,
b. 1/4 it broadcasts its id and status on channel G,
c. 1/4 it broadcasts its id and status on channel Rk, with
k chosen uniformly at random in {1, . . . , 3α(1)}.

Case (a) blocks any ongoing handshakes. Case (b) knocks
back neighboring leaders to state A, preventing the red-blue
game from succeeding. Case (c) knocks back neighboring
heralds to state A, and also eliminates neighboring nodes in
state A, causing them to move to E. These ongoing broad-
casts ensure that we satisfy guarantee (G1) introduced in
Section 4.

Note that channel H is blocked at least once every two
rounds. Thus, after v has been in state M for 6 rounds, no
new neighbors of v can switch to state L. On the other hand,
note that in every period of two rounds, with constant prob-
ability, v transmits once on channel G. The transmissions on
channel G knock back adjacent leaders that might have been
created when (or immediately after) v switched to state M
due to the lonely counter. Finally, the transmissions on the
report channels let the neighboring nodes of v know that
they are dominated by v, causing them to halt. Note that
those transmissions can also knock back neighboring heralds
to state A.

7. HERALD ANALYSIS
Here, we present and overview of the analysis of the herald

filter. For detailed proofs we refer to [9].

7.1 The Analysis of the Active State
We first present some facts about the transitions of nodes

from state A to states L′ and H′. We show that for the k-
neighborhood of some node u, the probability that no node
in Nk(u) is being elected as a herald candidate (switching
from state A to H′) is constant, and, by adjusting π`, arbi-
trarily close to 1. We then give some conditions under which

the creation of a single herald candidate happens with con-
stant probability.

Definition 7.1. (Activity Sum) For a node u we define
Γ(u) :=

∑
v∈N1(u) γ(v). We call this the activity sum or

activity mass of node u.

Lemma 7.2. Fix a constant positive integer k. For any
round t and node u, with probability 1−O(π`α(k)), no node
v ∈ Nk(u) switches from state A to state H′ in round t.

Proof sketch. For the proof we solely focus on non-
isolated nodes in the graph GA induced by nodes in state A.
For a node v to become a herald candidate it has to receive
a message from one of its neighbors w (event Bv,w). Careful
analysis of those events gives us that the probability that
v receives a message from any neighbor on channel Am is

at most π`2
−2m+2γ(v)Γ(v)e−2−m−1Γ(v). This probability is

maximized on channel Aλ for λ :≈ log Γ(v) (or λ := 1 if

Γ(v) < 1) where the probability is O
(
π`

γ(v)
Γ(v)

)
. The prob-

ability falls rapidly as we move away from channel Aλ. A
union bound over all v ∈ Nk(u), combined with Lemma 5.1,
gives the desired result.

Definition 7.3. (Fatness) We call a node u (or respec-
tively its neighborhood N(u)) η-fat for some value η > 0, if
it holds that Γ(u) ≥ η ·maxv∈N(u){Γ(v)}.

Lemma 7.4. Let t be a round in which for a node u in
state A in the herald filter it holds that there is no her-
ald, leader, or herald candidate in N2(u). Furthermore, all
neighbors of MIS nodes in N2(u) are in state E, Γ(u) ≥ 1,
and either

(a) Γ(u) < 3α(1), u is 1
3α(1)

-fat, and γ(u) = 1
2

, or

(b) u is 1
2

-fat and Γ(u) ≥ 3α(1).

Then by round t′ ∈ [t, t + 7], with probability Ω(π`) either
a node in N2(u) joins the MIS or a pair (l, h) ∈ L × H is
created in N1(u) such that (N({l, h})\{l, h})∩(H′∪H∪L)=∅.

Proof sketch. The proof is much more delicate, but
partially follows the lines of the proof of Lemma 7.2. First
we make sure that w.c.p. either in round t or t+ 1 in N1(u)
nodes contributing a constant fraction to Γ(u) are in state A,
including u itself. Then we first lower bound the probability
that some nodes v, w ∈ N1

A(u) in that round meet alone on
some channel and no other nodes nearby receive a message
there. For case (a) we analyze the probability that this event
happens for channel A1 and manage to lower bound it by
Ω(1). For case (b) we use Lemma 5.1 to ensure the exis-
tence of neighbors v of u with high activity levels in u’s and
v’s joint neighborhoods. Here we choose channel Aλ with
λ :≈ log Γ(u) and show that for the previously mentioned
neighbors the probability of meeting someone from N1(u) is

in Ω
( γ(v)

Γ(u)

)
. Lemma 5.1 also gives us a lower bound of how

much activity levels such neighbors provide and in total we
can prove that exactly one of u’s neighbors v meets another
node w on Aλ is in Ω(1). Lemma 7.2 gives us a 1 − O(π`)
probability that no herald candidate is created at all. Lower
bounding the probability that no herald candidate is created
on a different channel than Aλ and combining this with the
previous results gives the creation of a single herald can-
didate in round t resp. t + 1. Lemma 7.2 applied to the
remaining rounds in [t, t+ 7] finishes the proof.



7.2 The Analysis of the Handshake
In the following lemma, we study the circumstances under

which two adjacent leader-herald pairs can coexist.

Lemma 7.5. In round r consider two leader-herald pairs
(l1, h1) and (l2, h2) and suppose that the pairs started their
most recent handshakes in rounds r1 and r2, r1 ≤ r2, respec-
tively. Say that edge e is crossing if one of its endpoints is
in {l1, h1} and its other endpoint is in {l2, h2}. Then, either
no crossing edge exists or exactly one of the following condi-
tions is satisfied: (1) r1 = r2 and crossing edges are {l1, l2}
and/or {h1, h2}, (2) r2 = r1 + 2 and the only crossing edge
is {l1, h2}.

7.3 The Analysis of the Red-Blue Game
We next study the exact guarantees of when and how pairs

get knocked out in the red-blue games.

Definition 7.6. (Maturity) We say that candidate v is
mature in round t, if v is in round 5 or 6 of its respective
handshake.

Definition 7.7. (Good Pair, Bad Pair) Consider a
leader-herald pair (l, h) in round t. We say pair (l, h) is
a good pair if in round t none of the neighbors of l (other
than h) is in state L, H or is a mature candidate. Otherwise
we say that (l, h) is a bad pair.

Lemma 7.8. If a pair (l, h) is good in round t and they
started their first red-blue game in round r, then, w.h.p.,
either

• the related leader l joins the MIS by the end of round
r + τred−blue = r +O(logN), or
• a node v ∈ N(l) ∪ N(h) joins the MIS before round
r + τred−blue = r + O(logN) by increasing its lonely
counter above τlonely.

Lemma 7.9. Consider a node v and suppose that in an
arbitrary round t, there is a leader or herald of a bad pair in
N3(v). Then, with constant probability, in round t+ 12, no
node in N3(v) is in state H′ and all leaders and heralds are
part of a good pair.

Proof sketch. First we look at the leaders (or leaders-
to-be) that are not neighboring other leaders. The pairs
related to these leaders either become good or the leaders
neighbor heralds of other pairs. Those leaders form an in-
dependent set, thus, their amount is limited. W.c.p., all
of them choose the wrong color in their respective red-blue
game which causes them to be kicked out by those heralds.
Second we look at leaders that have other leaders nearby,
which by Lemma 7.5 have to by completely synchronized. If
we just look at the graph induced by these leaders (synced
to one specific round), then we can find two disjoint inde-
pendent sets S and T , and by adding at most O(1) further
nodes to T we get that each such leader either is in S or T
and neighbors at least one node of the other, or it has each a
neighbor in each of those sets. If all nodes in S choose blue
and all nodes in T choose red, which happens w.c.p., then
all nodes get kicked out in their red-blue game.

7.4 The Analysis of the MIS State
Here we present the main safety guarantee of our MIS

algorithm.

Lemma 7.10. W.h.p., the nodes in state M always form
an independent set. Moreover, if a node v enters state M in
round t and a node w ∈ N(v) is awake in round t, then in
round t′ = t+O(logn), w.h.p., w is in state E.

7.5 Putting the Pieces Together
In this section, we wrap everything up to show that guar-

antees (G1), (G4) and (G5) hold. Together with the guar-
antees (G2) and (G3) handled in Section 5 we finalize the
proof of Theorem 4.1.

Lemma 7.10 immediately proves (G1) for all nodes cur-
rently in the herald filter. All nodes in the decay filter,
both at the beginning as well as during the main body part,
listen to the report channels w.c.p. in every round. Thus,
either they learn of a neighboring MIS node within O(logn)
rounds, or they move forward to the herald filter in that time
bound. In the latter case, after that transition, Lemma 7.10
takes care of those nodes.

Lemma 7.10 also immediately gives us (G5). The only
thing that remains to be shown is the progress guaranteed
by (G4). To do so, we use the following lemma.

Lemma 7.11. Consider two neighboring nodes u and v
such that both are in the herald filter at time t and assume
that no node in N(u) ∪N(v) has joined the MIS by time t.
Then, w.h.p., some node u′ in the O(log logN)-neighborhood
of u joins the MIS between times t and t+O(logN).

We now sketch how to obtain guarantee (G4). A node
u in the herald filter in round r does not leave the herald
filter before becoming dominating or dominated. If u has no
neighboring nodes in the herald filter for O(logn log logn)
consecutive rounds, u joins the MIS. Also, u can only have
α(2) periods in which it is alone and where MIS nodes in
N2(u) have already eliminated their neighbors. Each such
period starts when some neighbor in the herald filter gets
eliminated by a new MIS node in distance 2 from u. When-
ever u has a neighbor in the herald filter Theorem 7.11 im-
plies that within O(logn) rounds, w.h.p., a new MIS node is
created in the O(log logn)-neighborhood of u. Clearly this
can only happen O(α(log log n)) = O(poly log logn) times
and thus after O(log(n)α(log logn)) rounds, either u or one
of its neighbors is dominating and thus guarantee (G4) is
satisfied.

8. OTHER PROBLEMS
In this section, we use our MIS algorithm solution as a

building block in solving other problems efficiently in the
multichannel environment. Our main technical result is a
new algorithm that uses the MIS solution as a subroutine to
build a constant-degree connected dominating set (CDS) in

O
(

log2 n
F

)
+Õ(logn) rounds. We then use this structure as an

overlay to derive solutions to broadcast and leader election

that run inO
(
D+ log2 n

F

)
+Õ(logn) rounds, and to k-message

multi-broadcast that runs in O
(
D + k + log2 n

F

)
+ Õ(logn)

and O
(
D+k logn+ log2 n

F

)
+Õ(logn) rounds for unrestricted

and restricted message sizes, respectively.

Connected Dominating Set. First, we show how to

construct a constant-degree CDS in O
(

log2 n
F

)
+ Õ(logn)

rounds. At a high-level: our solution builds an MIS then
connects every pair of MIS nodes that are within 3 hops us-
ing a constant-length path. The result is a constant-degree



CDS (see [7]). We provide a brief description of the algo-
rithm here. See [9] for further details.

Special care must be taken to deal with two factors re-
lated to the transition of nodes from the MIS stage to the
CDS stage: (1) MIS nodes must keep revisiting the MIS al-
gorithm to prevent newly activated nodes from joining the
MIS; (2) since nodes might end the MIS stage at differ-
ent rounds, they might also start the CDS stage at different
rounds, causing synchronization issues (the CDS stage cycles
through fixed-length phases). In [9], we detail our strategy
for addressing these issues. For concision, in the summary
below, assume that nodes start the CDS stage in the same
round and MIS nodes do not revisit the MIS algorithms.

The CDS stage consists of repeatedly iterating four phases
made of six total rounds. During the first phase, an MIS
node broadcasts on a designated CDS channel with con-
stant probability. This announcement notifies nearby neigh-
bors of its existence, informs them that a new iteration is
beginning, and sends out a random sequence of bits, the
coin sequence, that is used to synchronize neighbors in the
remaining rounds of the iteration. It also includes a list of
nearby MIS nodes (that it knows about so far) and (short)
paths to these nodes. Any node that learns that it is on such
a path adds itself to the CDS. Also during this phase, any
non-MIS node that is already in the CDS broadcasts a mes-
sage with constant probability in the announcement phase
on the CDS channel, propagating its information about the
currently selected paths. (Once an MIS node selects a path,
this allows the information to propagate down the path.)

Rounds 2 and 3 are the search phase. To reduce con-
tention, a non-MIS node u broadcasts in this phase only if
there is a single MIS neighbor w that has a 1 in its coin
sequence for this round. Otherwise it will only receive. In
round 2, which handles sparse regions, a node broadcasts
the id of MIS node w on the CDS channel: in each iteration,
it cycles through the log logn probabilities

{
1
2
, 1

4
, . . . , 1

logn

}
.

In round 3, which handles dense regions, a node chooses a
channel c ∈ [logn] with probability 2−c (i.e., as in the herald
protocol from the MIS algorithm), and then broadcasts MIS
node w with constant probability. In both search rounds,
a non-broadcaster listens—on the CDS channel (round 2),
or a channel chosen uniformly from [logn] (round 3). If a
node learns about a new MIS node, it adds it to the set of
discovered MIS nodes.

The remaining rounds 4–6 are the report phase. If a non-
MIS node u has discovered a new MIS node (and a path
to this node), and if u has a single MIS neighbor w with a
1 in its coin sequence for this round, then u will report to
w. In round 3, it broadcasts its new knowledge on the CDS
channel with constant probability. In round 5, it chooses
channel c ∈ [logn] with probability 2−c and then broadcasts
its new information with constant probability. If u decides
to listen and it receives a message it then acts as a herald
for this message, rebroadcasting it on the CDS channel with
constant probability in the next round.

The basic argument is as follows: imagine two MIS nodes
u and z are connected by a two-hop path. in this case they
have a neighbor in common, and will learn about each other
in a subsequent report phase. Assume, on the other hand,
they are connected by a three-hop path. Let V be the neigh-
bors of u and let W be the neighbors of z. If some node
w ∈ W has only a few neighbors in V (i.e., < logn), then
w receives a message from V during the sparse search phase

rounds within O(log log n) rounds, with constant probabil-
ity. The same holds symmetrically if some node v ∈ V has
only a few neighbors in W . Otherwise, if every node w ∈W
has at least logn neighbors in V , and every node v ∈ V has
at least logn neighbors in W , then, with constant probabil-
ity, during the dense search phase rounds where W nodes are
broadcasting but not V nodes, there will be a single broad-
caster from W on some channel with at least one listener
from V . This information will be relayed to u in subsequent
report phases. This leads to the following conclusion:

Theorem 8.1. We can construct a constant-degree CDS

in O
(

log2 n
F

)
+ Õ(logn) rounds, w.h.p.

The problems below use a CDS as an overlay network. To
best match the typical assumptions for these problems, we
will assume synchronous starts—i.e., the CDS algorithm
starts and ends at the same rounds for all nodes. Our algo-
rithms all work without this assumption as well, requiring
in this case only that the theorem statements be rewritten
to guarantee their running time holds after the first round
in which a complete CDS is constructed.

Broadcast. First, build a constant-degree CDS using
the above algorithm. Then, the source delivers the mes-
sage to its CDS neighbors. On receiving the message, a
CDS node re-broadcasts it with constant probability in each
round. Because the CDS nodes have constant degree, a
standard Chernoff analysis shows the message will reach ev-
ery CDS node in O(D + logn) rounds (and therefore every
node within O(logn) more rounds), w.h.p. Combined with
the running time of the CDS algorithm, the total running

time is O
(
D+ log2 n

F

)
+ Õ(logn) rounds, nearly reaching the

Ω
(
D+ log2 n

F

)
centralized lower bound for the multi-channel

setting [16]. Formally:

Theorem 8.2. We can solve the problem of global broad-

cast in O
(
D + log2 n

F

)
+ Õ(logn) rounds, w.h.p.

Multi-Message Broadcast. The multi-message broad-
cast problem assumes k messages must be propagated to the
entire network. As before, first build a constant-degree CDS.
We then use the same logic as the report phase of the CDS
algorithm to propagate the k messages from their sources
to nearby CDS nodes. This routine uses logn channels and
can deliver all k messages to nearby nodes in O(k + logn)
rounds, w.h.p. Once the messages are in the CDS, how
we propagate depends on our assumption on message size.
For unrestricted message size, we can run the above sim-
ple broadcast algorithm, simply combining all messages a
node has received into a single message, in each round. This
requires O(D + logn) rounds to propagate all k once we
have our CDS. If we assume restricted message size (i.e.

”
O(poly(logn)) bits), we can use the algorithm and analysis
of [21]. As established in [21], this will require O(D+k logn)
rounds (formally, Fprog in the relevant theorem is O(1) while
Fack is O(logn)). From this we conclude:

Theorem 8.3. It is possible to solve k-multi-broadcast in

time O
(
D+k+ log2 n

F

)
+Õ(logn) with unrestricted messages

sizes, and in O
(
D+ k logn+ log2 n

F

)
+ Õ(logn) rounds with

restricted message sizes, w.h.p.

Leader Election. To elect a leader, run the broadcast
algorithm with all nodes initiating broadcast with a message



containing their own ID, and having each node update its
broadcast message in each round to include the largest ID
it has received so far. Using a standard Chernoff analysis,
we can show that the largest ID will propagate to all nodes
within O(D + logn) rounds. Formally:

Theorem 8.4. W.h.p., leader election can be solved in

O
(
D + log2 n

F

)
+ Õ(logn) rounds.
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