
Learning Efficient Image Processing Pipelines

by

Michaël Gharbi

S.M., École Polytechnique (2013)
S.M., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 31, 2018

Certified by. .
Frédo Durand

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

3

Learning Efficient Image Processing Pipelines

by

Michaël Gharbi

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

The high resolution of modern cameras puts significant performance pressure on
image processing pipelines. Tuning the parameters of these pipelines for speed is
subject to stringent image quality constraints and requires significant efforts from
skilled programmers. Because quality is driven by perceptual factors with which most
quantitative image metrics correlate poorly, developing new pipelines involves long
iteration cycles, alternating between software implementation and visual evaluation
by human experts. These concerns are compounded on modern computing platforms,
which are increasingly mobile and heterogeneous. In this dissertation, we apply
machine learning towards the design of high-performance, high-fidelity algorithms
whose parameters can be optimized automatically on large-scale datasets via gradient-
based methods. We present applications to low-level image restoration and high-
performance image filtering on mobile devices.

Thesis Supervisor: Frédo Durand
Title: Professor of Electrical Engineering and Computer Science

4

5

Acknowledgments

First and foremost, I am grateful to my adviser, Frédo Durand for his optimism and

unwavering trust. I learned a lot from Frédo’s eclecticism, perseverance, and holistic

thinking. I thank my thesis committee — Bill Freeman, Antonio Torralba, Wojciech

Matusik, and Sylvain Paris — who never ceased to inspire me. In particular, thanks

Sylvain for bringing me on board before I even had any research credentials; your

mentorship has been invaluable. Thanks to my earlier teachers and mentors — Florent

Gusdorf, Oliver Bournez, Edith Méthou, Dominique Obert, Marie-Paule Brisville and

Thierry Devaux — who helped me find my way along this academic journey.

During my time at MIT, I have been incredibly lucky to work with brilliant

researchers. Andrew Adams, Miika Aittala, Jonathan T. Barron, Gaurav Chaurasia,

Jiawen Chen, Sam W. Hasinoff, Jaako Lehtinen, Tzu-Mao Li, Tomasz Malisiewicz,

Lukas Murmann, Jonathan Ragan-Kelley, YiChang Shih: thank you, the work in this

thesis would not have been possible without you. Andrew and Jonathan, thanks for

your precious advice and also for making my first Siggraph memorable. Thanks to

Marc Levoy and the rest of the GCam team for an unforgettable summer.

Along the way, the Graphics and Vision groups at MIT have been a persistent source

of support, fun and intellectual stimulation; thanks to all of you. In particular, Jenny

Chan, Adriana Schulz, Valentina Shin and Vlad Bychkovsky, thanks for welcoming

me in the group. Luke Anderson and Prafull Sharma, it has been fun working with

you, keep the lunch tradition alive! Adrian Dalca, your talent as a photographer,

researcher and mentor has been a guiding star. Guha Balakrishnan, do not change

the post-conference trip recipe. Zoya Bylinskii, I apologize for always antagonizing

you during our frequent debates; I will miss them. You are the academic every young

student should aspire to be. Andrea Tacchetti, I will never forget the countless hours

we spent hacking together. Looking back, I could not have been assigned a better

office at CSAIL. Thanks Tiam Jaroensri for keeping me on the run, and for sharing

some Scottish delicacies. Abe Davis, your camaraderie, natural eloquence and talent

6

with sound-making devices has provided me with enjoyable distractions. Aleksandar

Zlateski and Nishchal Bhandari, your cheers and talent at card games kept me on my

toes at the occasional Thursday tournament. Thanks to our admins Bryt, Geraldine

and Kshama for making sure all the lab’s students were fed regularly, slept a few

hours a day, and left the lab once in a while to catch some sunlight. Thanks to

The Infrastructure Group: you have always delivered the friendliest help and advice,

despite my uninterrupted pestering.

Beyond MIT, the many talented friends I met made life in Cambridge a bliss. I

shall forever cherish these memories. Ali, our den on the Charles has truly been a

home away from home. Marie Christine, thanks for philosophizing with me during

our regular hot chocolate appointments. Thanks Thibaut for coming up with useful

ways to procrastinate on weekends [Perol et al., 2018]. Thomas, your energy and

generosity kept me moving (though I still do not understand how on Earth you can

sleep so little). Thanks to the indefatigable Cambridge travel crew — Carole, Chloé,

Eric, Lisa, Lucie, Rémi and Alex. Thanks to Julia, Brittany, Giulia and Paolo, Dan

and Sophia, Shu and Gloria for messing around with me. Albert, Camille, Guillaume,

Ombline, Ségolène, Simon, Stéphane, I have been lucky to have you close despite the

physical (and sometime temporal) distance.

All my gratitude goes to my mother, Estelle and sister, Sarah, as well as the rest

of my family for their patience and unconditional love. My last words are for Roberta:

your warmth, smarts and optimism made the PhD a lovely jaunt.

Contents

1 Introduction 27

1.1 Overview . 28

1.2 Online content . 31

2 Background 33

2.1 Optimizing image processing algorithms 33

2.2 Automatic photographic editing . 35

2.3 Neural networks for image processing 35

3 Transform Recipes for Cloud Image Processing 37

3.1 Related work . 39

3.2 Reducing data transfers . 42

3.2.1 Transform Recipes . 42

3.2.2 Reconstructing the filtered image 47

3.2.3 Data compression . 49

3.3 Evaluation . 51

3.3.1 Benchmark dataset . 53

3.3.2 Expressiveness and robustness 55

3.3.3 Practical prototype system . 58

4 Bilateral Learning for Real-Time Image Enhancement 65

4.1 A fast architecture for photographic enhancement 68

8 Contents

4.1.1 Low-resolution prediction of bilateral coefficients 70

4.1.2 Image features as a bilateral grid 74

4.1.3 Upsampling with a trainable slicing layer 75

4.1.4 Assembling the full-resolution output 76

4.1.5 Training procedure . 79

4.2 Results . 80

4.2.1 Reproducing image operators 80

4.2.2 Learning from human annotations 85

4.2.3 Performance . 87

4.3 Discussion and limitations . 89

5 Joint Demosaicking and Denoising 93

5.1 Related work . 95

5.2 Learning to jointly demosaick and denoise 97

5.2.1 Network architecture . 99

5.2.2 Joint denoising with multiple noise levels 101

5.2.3 Training details . 101

5.3 Curating a dataset of challenging images 102

5.3.1 Obtaining a ground-truth and the corresponding mosaic . . . 103

5.3.2 Challenging patches are rare 103

5.3.3 Mining difficult image patches 106

5.4 Results . 109

5.4.1 Demosaicking noise-free images 110

5.4.2 Training set and training time 110

5.4.3 Joint denoising and demosaicking results 112

5.4.4 Processing linear data . 112

5.4.5 Alternative mosaick patterns 115

5.4.6 Variations on the network configuration 115

5.4.7 Running time . 115

Contents 9

5.5 Limitations . 116

6 Conclusion 121

6.1 Future directions . 122

10 Contents

List of Figures

3-1 Cloud computing is often thought as an ideal solution to enable complex

algorithms on mobile devices; by exploiting remote resources, one

expects to reduce running time and energy consumption. However,

this is ignoring the cost of transferring data over the network. When

accounted for, this overhead often takes away the benefits of the cloud,

especially for data-heavy photo applications. We introduce a new photo

processing pipeline that reduces the amount of transmitted data. The

core of our approach is the transform recipe, a representation of the

image transformation applied to a photo that is compact and can be

accurately estimated from an aggressively compressed input photo.

These properties make cloud computing more efficient in situations

where transferring standard jpeg-compressed images would be too costly

in terms of energy and/or time. In the example above where we used our

most aggressive setting, our approach reduces the amount of transferred

data by about 80× compared to using images compressed with standard

jpeg settings while producing an output visually similar to the ground-

truth result computed directly from the original uncompressed photo. 38

12 List of Figures

3-2 A major advantage of our transform recipes is that we can evaluate

them using severely degraded input photos (a,d). Processing such

a strongly compressed image generates a result with numerous jpeg

artifacts (b,e). We can nevertheless use such pairs of degraded input–

output photos to build a recipe that, when applied on the original

artifact-free photo (c) produces a high quality output (f) that closely

approximates the reference output (g) directly computed from the

original photo. The close-ups (c–g) show the region with highest error

in our method (f). 43

3-3 To reconstruct the output image we decompose the input as a shallow

Laplacian pyramid. The lowpass residual is linearly re-scaled using

the ratio coefficients 𝑅𝑐(𝑝). For the chrominance, we don’t use the

complete multiscale decomposition: each block in the high-pass of the

chrominance undergoes and affine transformation parameterized by Ac

and bc. The luminance channel is reconstructed using a combination

of an affine transformation (A𝑌 , b𝑌), a piecewise linear transformation

({𝑞𝑖}), and a linear scaling of the Laplacian pyramid level ({𝑚ℓ}). . . 44

3-4 Recipe coefficients computed for the photo in Figure 3-2. We remapped

the values to the [0; 1] range for display purposes. (a) lowpass residual

𝑅𝑐. (b,c) affine coefficients of the chrominance A𝑐 and b𝑐. (d) affine

coefficients of the luminance A𝑌 and b𝑌 . (e) multiscale coefficients

{𝑚ℓ}. (f) non linear coefficients {𝑞𝑖}. 50

List of Figures 13

3-5 Adding a small amount of noise to the upsampled degraded image

makes the fitting process well-posed and enables our reconstruction

(b) to closely approximate the ground-truth output (a). Because of

the downsampling and JPEG compression, the degraded input (not

shown) exhibits large flat areas (in particular in the higher Laplacian

pyramid levels). Without the added noise, the fitting procedure might

use the corresponding recipe coefficients as affine offsets. This generates

artifacts (c) when reconstructing from the high quality input (which

does have high frequency content). 52

3-6 In this close-up from a Detail Manipulation example, processing directly

the downsampled input before fitting the recipe fails to capture the

high frequencies of the transformation. Errors are particularly visible

in the eyes and hair. 52

3-7 We overlap the blocks of our recipes (b) and linearly interpolate the

reconstructed pixel values between overlapping blocks so as to avoid

visible blocking artifacts (c). 53

3-8 The additional features to model the transformation of the luminance are

critical to capture subtle local effects of the ground truth output (a). (b)

Using only the affine terms, most of the effect on high frequencies is lost

on the wall, and the wooden shutter. (c) Adding the Laplacian pyramid

coefficients, the high frequency detail is more faithfully captured on the

wall. (d) With both the non-linear and multiscale terms, our model

better captures local contrast variations. This is particularly visible on

the texture of the wooden shutter. 59

3-9 We analyze the quality of our reconstruction for different settings of

our recipe and various degrees of input compression. Not surprisingly

the reconstruction quality decreases as input and output compression

increase. We report the average PSNR on the whole dataset. 60

14 List of Figures

3-10 Plot of the power consumption over time of three computation schemes:

purely local, JPEG transfer, and our approach. For this measurement,

we used a Samsung Galaxy S3 connected to a 3G network; the test

application is Local Laplacian Filters and the input is a 4-megapixels

image. Our approach uses less energy and is faster than the other two. 61

3-11 Our method handles a large variety of photographic enhancements. We

filter a highly degraded copy (not shown) of the reference input (a).

From the resulting degraded output, we compute the recipe parameters.

We then reconstruct an output image (c) that closely approximates the

reference output (b) computed from the original high-quality input. (d)

and (e) are a close-up on the region of highest error in our reconstruction.

(f) is a rescaled difference map that emphasizes the location of our errors.

As shown on the 𝐿0 smoothing example, our method cannot handle

well filters that significantly alter the structure of the input. 62

3-12 Additional examples. We filter a highly degraded copy (not shown)

of the reference input (a). From the resulting degraded output, we

compute the recipe parameters. We then reconstruct an output image

(c) that closely approximates the reference output (b) computed from

the original high-quality input. (d) and (e) are a close-up on the region

of highest error in our reconstruction. (f) is a rescaled difference map

that emphasizes the location of our errors. 63

4-1 Our novel neural network architecture can reproduce sophisticated

image enhancements with inference running in real time at full HD

resolution on mobile devices. It can not only be used to dramatically

accelerate reference implementations, but can also learn subjective

effects from human retouching. 66

List of Figures 15

4-2 Our new network architecture seeks to perform as much computation as

possible at a low resolution, while still capturing high-frequency effects

at full image resolution. It consists of two distinct streams operating

at different resolutions. The low-resolution stream (top) processes a

downsampled version Ĩ of the input I through several convolutional

layers so as to estimate a bilateral grid of affine coefficients 𝐴. This

low-resolution stream is further split in two paths to learn both local

features 𝐿𝑖 and global features 𝐺𝑖, which are fused (𝐹) before making

the final prediction. The global and local paths share a common set

of low-level features 𝑆𝑖. In turn, the high-resolution stream (bottom)

performs a minimal yet critical amount of work: it learns a grayscale

guidance map 𝑔 used by our new slicing node to upsample the grid of

affine coefficients back to full-resolution 𝐴. These per-pixel local affine

transformations are then applied to the full-resolution input, which

yields the final output O. 68

4-3 Our low-level convolutional layers are fully learned and can extract

semantic information. Replacing these layers with the standard bilateral

grid splatting operation causes the network to lose much of its expressive

power. In this example of our Face brightening operator (a-b), the

network with hardcoded splatting (d) cannot detect the face properly

because the grid’s resolution is too low. Instead, it slightly brightens

all skintones, as is visible on the hands. Our progressive downsampling

with strided convolutions learns the semantic features required to solve

this task properly (c), brightening only the face while darkening the

background like in the reference. 71

16 List of Figures

4-4 The global features path in our architecture allows our model to reason

about the full image, e.g., for subjective tasks such as reproducing

subjective human adjustments that may be informed by intensity distri-

bution or scene type (a). Without the global path, the model can make

local decisions that are spatially inconsistent (b). Here, the network

fails to recognize that the blue area in the top-left corner also belongs

to the sky and should therefore receive the same correction as the area

just below it. 73

4-5 Our new slicing node is central to the expressiveness of our architecture

and its handling of high-resolution effects. Replacing this node with a

standard bank of learnable deconvolution filters reduces expressiveness

(b) because no full-resolution data is used to predict the output pixels.

Thanks to its learned full-resolution guidance map, our slicing layer

approximates the desired enhancement with much higher fidelity (c),

thereby preserving the edges of the input (a) and capturing the high-

frequency transformations visible in the ground-truth output (d). . . 77

4-6 The color transform matrix (left) and per-channel tone curves (right)

used to produce the guidance map 𝑔, as learned by one instance of our

model. 78

4-7 Our slicing node uses a learned guidance map. Using luminance as guide

causes artifacts with the HDR+ pipeline reproduction, in particular

with posterization artifacts in the highlights on the forehead and cheeks

(b). In contrast, our learned guide (c) correctly reproduces the ground

truth (d). 81

4-8 Coefficient maps for the affine color transform. The vertical axis cor-

responds to the learned guidance channel, while the horizontal axis

unrolls the 3x4 sets of coefficients. Each thumbnail, one example of

which is highlighted, shows a 16x16 low-resolution map. 81

List of Figures 17

4-9 Our method (d) can learn to replicate the correct effect (b) for operations

that are not scale invariant, such as the Local Laplacian filter shown

here (a–b). Methods like Bilateral Guided Upsampling that only apply

the operation at low-resolution (insets (a–b)) produce a different-looking

output (c). The difference is most noticeable in the areas pointed by

the arrows. 84

4-10 We compare the speed and quality of our algorithm against two modern

network architectures: U-Net (adapted from Isola et al. [2016]) and

dilated convolutions Yu and Koltun [2015]. The runtimes were aver-

aged over 20 iterations, processing a 4 megapixel image on a desktop

CPU. The PSNR numbers refer to the Local Laplacian task. Given an

insufficient depth, U-Net and dilated convolutions fail to capture the

large scale effects of the Local Laplacian filter, leading to low PSNRs.

Competitive architectures run over 100 times slower than ours, and

use orders of magnitude more memory. Our model’s performance is

displayed for a range of parameters. The version we used to produce

all the results is highlighted in red. See Figure 4-11 for details on the

speed/quality trade-off of our model. 86

4-11 We show PSNRs for the Local Laplacian task and the computation time

required to predict the bilateral coefficients with several settings of our

model’s parameters. Each curve represent a grid depth 𝑑. For each

curve the grid’s spatial resolution varies in {8, 16, 32}. The reference

model we used to produced all the results is highlighted with a square

marker. Unsurprisingly, models with larger grid depth perform better

(green). Doubling the number of intermediate features also provides a

0.5 dB improvement (red curve). Runtimes were measured on an Intel

Core i7-5930K. 87

18 List of Figures

4-12 At the expense of extra computation at full-resolution, our model can

be extended with richer affine regression features. Here, by using a

3-level Gaussian pyramid as features 𝜑, we can better capture the

high-frequency details in the the Local Laplacian (strong) task. 90

4-13 Our algorithm fails when the image operator strongly violates our

modeling assumptions. (a) Haze reduces local contrast, which limits

the usefulness of our guidance map. It also destroys image details that

cannot be recovered with our affine model (e.g., on the whiteboard). (b)

Matting has successfully been modeled by locally affine models on 3× 3

neighborhoods Levin et al. [2008]. However, this affine relationship

breaks down at larger scales (like a grid cell in our model) where the

matte no longer follows tonal or color variations and is mostly binary.

This limits the usefulness of our bilateral grid. (c) For colorization, the

learned guidance map is at best a nonlinear remapping of the grayscale

input. Our model can thus only learn a local color per discrete intensity

level, at a spatial resolution dictated by the grid’s resolution. Our

output is plagued with coarse variations of colors that are muted due

to our 𝐿2 loss (see the road line, and the tree/sky boundary). 91

4-14 Our method can learn accurate and fast approximations of a wide

variety of image operators, by training on input/output pairs processed

by that operator. These operators can be complicated “black box” image

processing pipelines where only a binary is available, such as HDR+ or

Photoshop filters/actions. Some operators, such as face-brightening,

requires semantic understanding. Our model is even capable of learning

from highly subjective human-annotated input/output pairs, using the

MIT-Adobe FiveK dataset. 92

List of Figures 19

5-1 We propose a data-driven approach for jointly solving denoising and

demosaicking. By carefully designing a dataset made of rare but chal-

lenging image features, we train a neural network that outperforms

both the state-of-the-art and commercial solutions on demosaicking

alone (group of images on the left, insets show error maps), and on

joint denoising–demosaicking (on the right, insets show close-ups). The

benefit of our method is most noticeable on difficult image structures

that lead to moiré or zippering of the edges. 94

5-2 Our proposed architecture. The first layer of the network packs 2 × 2

blocks in the Bayer image into a 4D vector to restore translation

invariance and speed up the processing. We augment each vector

with the noise parameter 𝜎 to form 5D vectors. Then, a series of

convolutional layers filter the image to interpolate the missing color

values. We finally unpack the 12 color samples back to the original pixel

grid and concatenate a masked copy of the input mosaick. We perform

a last group of convolutions at full resolution this time to produce the

final features. We linearly combine them to produce the demosaicked

output. 98

5-3 Most of the patches in a generic training dataset (here Imagenet and

Mirflickr) are easy cases for modern demosaicking algorithms (in this

figure, we measure the PSNR of AHD Hirakawa and Parks [2005]).

For a network to perform well in challenging situations, it needs to be

trained on challenging patches, i.e., on data that lies on the tail of the

patch distribution. This plot shows that our dataset contains more such

patches. Further, not shown in this figure is the fact that demosaicking

failures on our patches lead to more visually unpleasant artifacts: we

explicitly selected the patches for this reason. 104

20 List of Figures

5-4 A network trained on a standard image dataset (second row) creates

noticeable artifacts in its output such as the zippering on the thin

yellow line, confusion around curves in the first and last example, and

moiré in the third example. When training the same network on our

new dataset of difficult cases, these artifacts are mostly gone (third

row). The last row shows the difference map between the two network

outputs, and the first row is the ground-truth image. (best viewed in

digital form) . 105

5-5 HDR-VDP run on the demosaicked output of LDI-NAT Zhang et al.

[2011]. First, row full image. Second row, HDR-VDP correctly de-

tects the zipper pattern due to luminance variations. It signals some

anomalies in the output image but with a low probability of detection.

It works only on luminance, therefore misses the chrominance moiré

artifacts. 107

5-6 Frequency Gain due to moire . 109

5-7 PSNR comparison joint denoising and demosaicking at different levels

of Gaussian noise with standard deviation 𝜎. The metric is averaged

across all four datasets from Table 5.1: mcm, kodak, vdp, moiré. . . . 113

5-8 Our algorithm trained on sRGB data generalizes to real (linear) RAW

images. It successfully removes color moiré on the fabric at various noise

levels whereas dcraw does not (first and second rows). In comparison,

Klatzer et al. [2016] does not generalize well to widely different noise

levels: it denoises too aggressively the ISO100 image (first row), and

produces artifacts on the ISO6400 image (second row). This is partic-

ularly visible on the smooth wall. Our output is free of checkerboard

patterns and staircase artifacts (third row). DCRaw exhibits these

artifacts on the red lettering and Klatzer et al. has checkboard on the

blue line on the right. 113

List of Figures 21

5-9 Comparison of our approach with Adobe Camera Raw, FlexISP Heide

et al. [2014] on noise-free images. Exhaustive results can be found in

supplementary material. 118

5-10 Joint denoising and demosaicking results. Our approach outperforms

previous best techniques on noisy data in challenging images on different

levels of Gaussian noise with standard deviation 𝜎. Exhaustive results

can be found in supplementary material. 119

22 List of Figures

List of Tables

3.1 Upsampling the degraded input and adding a small amount of noise

is critical to the quality of our reconstruction. We report the average

PSNR on the whole dataset for a 4 × 4 downsampling of the input and

JPEG compression with quality 𝑄 = 50. The recipes use a block size

𝑤 = 64 and both the multiscale and non-linear features are enabled. 51

3.2 Reconstruction results per enhancement. %𝑢𝑝 refers to the compression

of the input as a fraction of the uncompressed bitmap data, %𝑑𝑜𝑤𝑛 to that

of the recipe (or output in case of jpeg and jdiff). For an uncompressed

input, our method matches the quality of a jpeg compressed image.

The benefits of become more apparent as the input image is further

compressed. In the “standard” setting, the input is downsampled by a

factor 2 in each dimension and JPEG compressed with a quality 𝑄 = 30,

the block size for the recipe is 𝑤 = 32. The jpeg and jdiff methods are

given the same input, and use 𝑄 = 80 for the output compression. The

𝐿0 enhancement is a failure case for our method. 56

24 List of Tables

3.3 Reconstruction results per enhancement. %𝑢𝑝 refers to the compression

of the input as a fraction of the uncompressed bitmap data, %𝑑𝑜𝑤𝑛 to

that of the recipe (or output in case of jpeg and jdiff). The “medium”

setting is a 4× downsampling with 𝑄 = 50 and 𝑤 = 64. The “low”

quality setting is a 8× downsampling of the input with 𝑄 = 80 and

𝑤 = 128. The jpeg and jdiff methods are given the same input, and

use 𝑄 = 80 for the output compression. 57

3.4 De-activating either the luminance curve or the multiscale features,

decreases the reconstruction quality by around 2 dB. We report the

average PSNR on the whole dataset for a non-degraded input. The

recipes use a block size 𝑤 = 64. 58

3.5 We compare the end-to-end latency and energy cost of using our recipes

for cloud processing compared to local processing of the enhancement

and the jpeg baseline. Our method always saves energy and time

compared to the baseline jpeg method. The measurements are from a

Samsung Galaxy S5, processing a 8-megapixels image, and are averaged

over 20 runs (we also report one standard deviation). 64

4.1 Details of the network architecture. c, fc, f and l refer to convolutional,

fully-connected, fusion and pointwise linear layers respectively. 74

4.2 We compare accuracy to Bilateral Guided Upsampling (BGU) and

Transform Recipes (TR). Note that BGU and TR are “oracle” techniques,

as they run the code used to evaluate each image operator at a reduced

or full resolution, and so can be thought of as providing an upper-

bound on performance. Despite its disadvantage, our model sometimes

performs better than these oracle baselines due its expressive power

and ability to model non-scale-invariant operators. 83

List of Tables 25

4.3 Mean 𝐿2 error in La*b* space for retouches from the 5 photographers

in the MIT5k dataset (A,B,C,D,E); lower is better. Our algorithm

is capable of learning a photographer’s retouching style better than

previous work, yet runs orders of magnitudes faster. The comparisons

in the first two groups are evaluated on the dataset from photographer

C favored by previous techniques; see main text for details. In the

third group we report our results on the remaining 4 photographers

for completeness. Metrics taken from previous work Yan et al. [2016];

Hwang et al. [2012] are denoted by †. 85

5.1 PSNR comparison of our approach to state of the art techniques on the

demosaicking-only scenario. First and second column show evaluation

on standard datasets. Third and fourth column show comparisons on

our datasets containing images prone to luminance artifacts and color

moiré respectively. No denoising is applied for any of the competing

methods. (*) For Klatzer et al., we used the published model which

was trained on linear data and ran it on linearized images. The training

code was not available at the time of publication. 111

5.2 Evaluation on linear data for both noise-free and noisy data. We report

PSNR in both linear and sRGB space. We feed a single estimate of

the average noise level to our network a test time. We also fine tuned

our network to linearized sRGB. Among all competing techniques,

only KhashabiKhashabi et al. [2014] and Klatzer Klatzer et al. [2016]

techniques were specifically designed for linear data. Results on noisy

images are excluded from the table for methods that do not attempt to

denoise. 114

26 List of Tables

5.3 Runtime of different demosaicking algorithms in their publicly available

implementations. Our approach is faster than previous high quality

techniques like FlexISP Heide et al. [2014]. Timings with an asterisk

(*) are reported from the respective original paper. 116

Chapter 1

Introduction

The high resolution of modern cameras puts significant performance pressure on

image processing pipelines. Tuning the numerous parameters of these pipelines for

speed is subject to stringent image quality constraints and requires significant efforts

from skilled programmers. Because quality is determined by perceptual factors with

which most quantitative image metrics correlate poorly, developing new pipelines

involves long iteration cycles, alternating between software implementation and visual

evaluation by human experts. These concerns are compounded on modern computing

platforms, which are increasingly mobile and heterogeneous.

This dissertation demonstrates that differentiable algorithms, together with care-

fully curated training datasets and improved image quality metrics, promise renewed

and scalable progress for image processing.

We employ supervised learning towards the design of high-performance, high-

fidelity algorithms whose parameters can be trained and optimized automatically on

large-scale datasets via gradient-based methods. This approach has many advantages.

Removing the burden of parameter-tuning shortens development cycles: the design

efforts can instead be spent on maximizing an algorithm’s runtime performances.

Meanwhile, image quality is monitored and optimized on a carefully assembled dataset

of input and output image pairs. Human supervision is therefore factored out and

28 Chapter 1. Introduction

happens beforehand rather than alongside development. It is implicitly captured in

the training dataset which constitutes a fixed quality target for the algorithm. Further,

machine learning opens up new opportunities for personalized algorithms that can

adapt to a user’s taste and, for instance, learn from their personal retouching style.

Finally, differentiable imaging pipelines can be optimized automatically. Thus, they

can afford many more parameters than traditional algorithms, well beyond what a

human programmer could reasonably adjust manually. We will see that this can lead

to significant image quality improvements, but also creates new challenges in designing

efficient programs.

1.1 Overview

This dissertation presents efficient image processing pipelines. Its contributions range

from low-level image restoration problems, to higher-level tasks such as photographic

enhancement.

In chapter 3, we describe a cloud infrastructure and a local approximation technique

that lay the foundations of our subsequent differentiable pipeline. This technique

speeds up photographic enhancement on mobile devices, and reduces power usage

by an order of magnitude. Later, we improved over this method with a novel neural

network architecture, inspired by the bilateral grid [Chen et al., 2007]. Our model

processes high-resolution images on a smartphone in milliseconds, provides a real-

time viewfinder at 1080p resolution, and matches the quality of the best off-line

approximation techniques (chapter 4). In chapter 5, we discuss an algorithm for joint

image demosaicking and denoising that significantly outperforms the optimization-

based state-of-the-art and runs over an order of magnitude faster. We also describe

a methodology to acquire a dataset of challenging images, which was key to achieve

these improvements.

Chapter 2 reviews recent work in image processing and provides background and

1.1. Overview 29

context to the rest of this dissertation. The remainder of this section gives a more

detailed overview of the content of each chapter.

Transform Recipes (chapter 3) Cloud image processing is often proposed as a

solution to the limited computing power and battery life of mobile devices: it allows

complex algorithms to run on powerful servers with virtually unlimited energy supply.

Unfortunately, this overlooks the time and energy cost of uploading the input and

downloading the output images. When transfer overhead is accounted for, processing

images on a remote server becomes less attractive and many applications do not

benefit from cloud offloading. The pipeline presented in chapter chapter 3 aims to

change this in the case of image enhancements that preserve the overall content of

an image. Our key insight is that, in this case, the server can compute and transmit

a description of the transformation from input to output, which we call a transform

recipe. At equivalent quality, our recipes are much more compact than JPEG images:

this reduces the client’s download. Furthermore, recipes can be computed from highly

compressed inputs which significantly reduces the data uploaded to the server. The

client reconstructs a high-fidelity approximation of the output by applying the recipe

to its local high-quality input. We demonstrate our results on 168 images and 10

image processing applications, showing that our recipes form a compact representation

for a diverse set of image filters. With an equivalent transmission budget, they provide

higher-quality results than JPEG-compressed input/output images, with a gain of the

order of 10 dB in many cases. We demonstrate on a mobile phone prototype that a

transform recipe-based pipeline runs 2-4× faster and uses 2-7× less energy than both

a local or a naive cloud computation.

Real-time photographic enhancement on mobile (chapter 4) Performance

is a critical challenge in mobile image processing. Given a reference imaging pipeline,

or even human-adjusted pairs of images, we seek to reproduce the enhancements and

enable real-time evaluation. For this, we introduce a new neural network architecture

30 Chapter 1. Introduction

inspired by bilateral grid processing and local affine color transforms. Using pairs

of input/output images, we train a convolutional neural network to predict the

coefficients of a locally-affine model in bilateral space. Our architecture learns to

make local, global, and content-dependent decisions to approximate the desired image

transformation. At runtime, the neural network consumes a low-resolution version of

the input image, produces a set of affine transformations in bilateral space, upsamples

those transformations in an edge-preserving fashion using a new slicing node, and

then applies those upsampled transformations to the full-resolution image. Our

algorithm processes high-resolution images on a smartphone in milliseconds, provides

a real-time viewfinder at 1080p resolution, and matches the quality of state-of-the-

art approximation techniques on a large class of image operators. Unlike previous

work, our model is trained off-line from data and therefore does not require access

to the original operator at runtime. This allows our model to learn complex, scene-

dependent transformations for which no reference implementation is available, such as

the photographic edits of a human retoucher.

Low-level image processing: joint demosaicking and denoising (chapter 5)

Demosaicking and denoising are the key first stages of the digital imaging pipeline, but

they are also a severely ill-posed problem that infers three color values per pixel from

a single noisy measurement. Earlier methods rely on hand-crafted filters or priors and

still exhibit disturbing visual artifacts in hard cases such as moiré or thin edges. We

introduce a new data-driven approach for these challenges: we train a neural network

on a large corpus of images instead of using hand-tuned filters. While deep learning

has shown great success, its naive application using existing training datasets does

not give satisfactory results for our problem because these datasets lack hard cases.

To create a better training set, we present metrics to identify difficult patches and

techniques for mining community photographs for such patches. Our experiments

show that this network and training procedure outperform state-of-the-art both on

1.2. Online content 31

noisy and noise-free data. Furthermore, our algorithm is an order of magnitude faster

than the previous best performing techniques.

1.2 Online content

This dissertation is largely based on work that has appeared in ACM Transactions

on Graphics (Proceedings of SIGGRAPH Asia 2015, Proceedings of SIGGRAPH

Asia 2016, and Proceedings of SIGGRAPH 2017) [Gharbi et al., 2015, 2016, 2017].

Video overviews of these publications, together with the software implementations

and datasets related to them can be found online at http://www.mgharbi.com.

http://www.mgharbi.com

32 Chapter 1. Introduction

Chapter 2

Background

In this chapter, we provide a general overview of related works in image processing.

Literature relevant to specific contributions of this dissertation is further discussed in

the corresponding chapters.

2.1 Optimizing image processing algorithms

Image enhancement algorithms have been the focus of a great deal of research, but

most sophisticated algorithms remain too expensive to be evaluated quickly on mobile

devices, where the vast majority of digital images are captured and processed.

Previous works have identified specific critical operations and developed novel

algorithms to accelerate them. For instance, Farbman et al. [2011a] introduced

convolution pyramids to accelerate linear translation-invariant filters. Similarly, many

approaches have been proposed to accelerate bilateral filtering, due to the ubiquity of

edge-aware image processing [Tomasi and Manduchi, 1998; Paris and Durand, 2006;

Chen et al., 2007; Adams et al., 2010].

Systems contributions have also sought to facilitate the implementation of high-

performance executables e.g. [Ragan-Kelley et al., 2012a; Hegarty et al., 2014; Mulla-

pudi et al., 2016]. They typically require programmer expertise, and their runtime

34 Chapter 2. Background

cost still grows with the complexity of the pipeline.

One way to accelerate an operator is to simply apply it at low resolution and

upsample the result. A naïve upsampling will generally lead to an unacceptably

blurry output, but this issue can often be ameliorated by using a more sophisticated

upsampling technique that respects the edges of the original image. Joint bilateral

upsampling [Kopf et al., 2007] does this by using a bilateral filter on a high-resolution

guidance map to produce a piecewise-smooth edge-aware upsampling. Bilateral space

optimization [Barron et al., 2015; Barron and Poole, 2016] builds upon this idea by

solving a compact optimization problem inside a bilateral grid, producing upsampled

results which are maximally smooth.

In chapter 3 we focus on learning the transformation from input to output instead

of the output itself. Our model can approximate a large class of complex, spatially-

varying operators with a collection of simple local models—which we call transform

recipe—that is tailored to a given input/output pair. The task of computing the

operator and fitting the recipe is offloaded to the cloud while the mobile device need

only apply the recipe, thereby saving time and energy. In a similar fashion, Chen et al.

[2016] approximate an image operator with a grid of local affine models in bilateral

space, the parameters of which are fit to an input/output pair in a manner resembling

the guided filter [He et al., 2013]. By performing this model-fitting on a low-resolution

image pair, this technique enables real-time on-device computation. In chapter 4,

we build upon this bilateral space representation, but rather than fitting a model to

approximate a single instance of an operator from a pair of images, we construct a

rich CNN-like model that is trained to apply the operator to any unseen input. This

bypasses the need for the original operator at runtime and opens up the opportunity to

learn non-algorithmic transformations (i.e., hand-adjusted input/output image pairs).

This also allows us to optimize the affine coefficients to model the operator running at

full resolution, which is important for filters that vary with scale.

2.2. Automatic photographic editing 35

2.2 Automatic photographic editing

Several prior work seeked to train models to automatically correct photographs from

input/output image pairs provided by a human retoucher. This task was introduced

by Bychkovsky et al. [2011b], who estimate global brightness/contrast adjustments

that characterize the personal style of 5 trained photographers. They train a regression

model with handcrafted features that capture both low-level information and semantic

content (e.g., faces) on a dataset of 5000 raw images. Hwang et al. [2012] approach the

problem with a coarse-to-fine search for the best-matching scenes that takes more than

a minute for a 500 × 333 image. Kaufman et al. [2012a] learn local color and contrast

manipulations from hard-coded features (faces, blue skies, clouds, underexposed areas),

running over 2 minutes for a VGA image. More recently, Yan et al. [2016] use a

compact pixel-wise neural network and handcrafted features. Their network takes

1.5 s to process a 1 megapixel image (on top of the time needed for object detection,

dense image segmentation, and scene recognition used in their features). The model

we present in chapter 4 can learn similar global tonal adjustments and generalizes to

more complex effects, including color corrections and local edits, in addition to being

much faster.

2.3 Neural networks for image processing

Convolutional neural networks have revolutionized classification problems in computer

vision Krizhevsky et al. [2012]; Szegedy et al. [2015]; Simonyan and Zisserman [2014].

Recently, they have achieved significant progress on low-level vision and image process-

ing tasks such as pixel-wise object segmentation Long et al. [2015a]; Badrinarayanan

et al. [2015]; Noh et al. [2015], monocular depth and normals estimation Eigen et al.

[2014]; Wang et al. [2015], view interpolation Flynn et al. [2016], deconvolution Xu

et al. [2014], filter approximation Xu et al. [2015], image colorization Cheng et al.

[2015]; Zhang et al. [2016]; Larsson et al. [2016]; Iizuka et al. [2016a], style-transfer

36 Chapter 2. Background

Gatys et al. [2016], optical flow Dosovitskiy et al. [2015a]; Ilg et al. [2016], image

inpainting Eigen et al. [2013]; Pathak et al. [2016], super-resolution [Dong et al., 2014],

image matting [Shen et al., 2016], image synthesis Dosovitskiy et al. [2015b] and

general image-to-image “translation” tasks [Isola et al., 2016]. The model we propose

in chapter 5 follows a similar approach. It is tailored to the complex, yet crucial

problem of joint demosaicking and denoising raw image samples to produce clean color

images. As we shall see, this efficient architecture does not suffice to improve over

the state-of-the-art, optimization-based techniques. Our new data acquisition scheme

turns out to be essential.

Recent work has even explored training deep networks within a bilateral grid

[Jampani et al., 2016] though this work does not directly address image transformations

in that space, and instead focuses on classification and semantic segmentation. Some

architectures have been trained to approximate a general class of imaging operators.

Xu et al. [2015] develop a three-layer network in the gradient domain to accelerate

edge-aware smoothing filters. Liu et al. [2016] propose an architecture to learn recursive

filters for denoising, image-smoothing, inpainting and color interpolation. They jointly

train a collection of recursive networks and a convolutional network to predict image-

dependent propagation weights. While some of this work can process low-resolution

images on a desktop GPU at interactive rates, they remain too slow for practical use.

The algorithm of chapter 4 processes high-resolution images on mobile, in real time.

Chapter 3

Transform Recipes for Cloud Image

Processing

Mobile devices such as cell phones and cameras are exciting platforms for computational

photography, but their limited computing power, memory and battery life can make

it challenging to implement advanced algorithms. Cloud computing is often hailed

as a solution allowing connected devices to benefit from the speed and infinite power

supply of remote servers. Cloud processing is also imperative for algorithms that

require large databases, e.g. [Laffont et al., 2014; Shih et al., 2013a] and can streamline

applications development, especially in the face of the mobile platform fragmentation.

Unfortunately, the cost of transmitting the input and output images can dwarf that

of local computation, making cloud solutions surprisingly expensive both in time

and energy [Barr and Asanović, 2006; Huang et al., 2012]. For instance, a 6 seconds

computation on a 16-megapixels image captured by a Samsung Galaxy S5 would

consume 20J. Processing the same image on the cloud would take 14 seconds and draw

54J1. In short, efficient cloud photo enhancement requires a reduction of the data

transferred that is beyond what lossy image compression can achieve while keeping

1Transferring the jpeg images with their default compression settings (4MB each way), over a
4G network with bandwidth 4Mbits/𝑠, according to our estimate of the average power draw and
modeling like in [Kumar et al., 2013]

38 Chapter 3. Transform Recipes for Cloud Image Processing

image quality high.

In this work, we focus on photographic enhancements that preserve the overall

content of an image (in the sense of style vs. content) and do not spatially warp it. This

includes content-aware photo enhancement [Kaufman et al., 2012b], dehazing [Kim

et al., 2013], edge-preserving enhancements [Paris et al., 2011a; Farbman et al., 2008],

colorization [Levin et al., 2004], style transfer [Shih et al., 2014; Aubry et al., 2014a],

time-of-day hallucination [Shih et al., 2013a] but excludes dramatic changes such as

inpainting. For this class of enhancements, the input and output images are usually

highly correlated. We exploit this observation to construct a representation of the

downsample,
compress

&
histograms

fit

recipe

recipe

upload 17 kBjpeg input (40 dB)
2,347 kB

compressed input

our
reconstruction

 (31 dB)

reference
jpeg output (29 dB)

2,579 kB
proxy input

proxy output
(17 dB)

download 41 kB

apply
enhancement

apply recipe
to high quality input

CLOUD
upsample

&
 match histogram

MOBILE DEVICE

compressed input

 match histogram

Figure 3-1: Cloud computing is often thought as an ideal solution to enable complex
algorithms on mobile devices; by exploiting remote resources, one expects to reduce
running time and energy consumption. However, this is ignoring the cost of transferring
data over the network. When accounted for, this overhead often takes away the benefits
of the cloud, especially for data-heavy photo applications. We introduce a new photo
processing pipeline that reduces the amount of transmitted data. The core of our
approach is the transform recipe, a representation of the image transformation applied
to a photo that is compact and can be accurately estimated from an aggressively
compressed input photo. These properties make cloud computing more efficient in
situations where transferring standard jpeg-compressed images would be too costly
in terms of energy and/or time. In the example above where we used our most
aggressive setting, our approach reduces the amount of transferred data by about 80×
compared to using images compressed with standard jpeg settings while producing an
output visually similar to the ground-truth result computed directly from the original
uncompressed photo.

3.1. Related work 39

transformation from input to output that we call a transform recipe. By design, recipes

are much more compact than images. And because they capture the transformation

applied to an image, they are forgiving to a lower input quality. These are the key

properties that allow us to cut down the data transfers. With our method, the mobile

client uploads a downsampled and highly degraded image instead of the original input,

thus reducing the upload cost. The server upsamples this image back to its original

resolution and computes the enhancement. From this low quality input-output pair,

the server fits the recipe and sends it back to the client instead of the output, incurring

a reduced download cost. In turns, the client combines the recipe with the original

high quality input to reconstruct the output (Fig. 3-1). While our recipes are lossy,

they provide a high-fidelity approximations of the full enhancement yet are one to

two orders of magnitude more compact.

Transform recipes use a combination of local affine transformations of the YUV

channels of a shallow Laplacian pyramid as well as local tone curves for the highest

pyramid level. This makes them flexible and expressive, so as to adapt to a variety of

enhancements, with a moderate computational footprint on the mobile device. We

evaluate the quality of our reconstruction on several standard photo editing tasks

including detail enhancement, general tonal and color adjustment, and recolorization.

We demonstrate that in practice, our approach translates into shorter processing times

and lower energy consumption with a proof-of-concept implementation running on a

smartphone instrumented to measure its power usage.

3.1 Related work

Image compression Image compression has been a long standing problem in image

processing [Rabbani and Jones, 1991]. The data used to represent digital images is

reduced by exploiting their structure and redundancy. Lossless image compression

methods and formats rely on general purpose compression techniques such as run-

40 Chapter 3. Transform Recipes for Cloud Image Processing

length encoding (BMP format), adaptive dictionary algorithm [Ziv and Lempel, 1977;

Welch, 1984], entropy coding [Huffman, 1952; Witten et al., 1987] or a combination

thereof [Deutsch, 1996]. These methods lower the data size of natural images to

around 50% to 70% that of an uncompressed bitmap, which in practice is not sufficient

for cloud image processing tasks. Alternatively, lossy image compression methods

offer more aggressive compression ratios at the expense of some visible degradation.

They minimize the loss of information relevant to the human visual system based on

heuristics (e.g. using chroma sub-sampling). The most widespread lossy compression

methods build on transform coding techniques: the image is transformed to a different

basis, and the transform coefficients are quantized. Popular transforms include

the Discrete Cosine Transform (JPEG [Wallace, 1992]) and the Wavelet Transform

(JPEG2000 [Skodras et al., 2001]). Images compressed using these methods can reach

10% to 20% of their original size with little visible degradation but often, this is

still not sufficient for cloud photo applications. More recently, methods that exploit

the intra-frame predictive components of video codecs have emerged (WebP, BPG).

While they do improve the compression/quality trade-off, the improvements at very

low bit-rates are marginal, and these methods remain uncommon. Unlike traditional

image compression techniques, we seek to compress the description of a transformation

from the input of an image enhancement to the output. We build upon, and use

traditional image compression techniques as building blocks in our strategy: any lossy

compression technique can be used to compress the input image before sending it to

the cloud. JPEG is a natural candidate since it is ubiquitous and often implemented

in hardware on mobile devices. We also use lossless image compression to further

compress our recipes.

In the context of video games, Lee et al. [2014] describe a data compression scheme

to minimize network transfers. While the overall objective is related to ours, the

targeted application and the associated constraints are different, and the proposed

method does not apply in our context. Levoy [1995] proposes a collaborative strategy

3.1. Related work 41

for high-quality image rendering on the cloud. The server generates a high and a

low-quality renderings. It sends the compressed difference image to a client who

combines it with its own local low-quality rendering to produce the final output. We

similarly re-distribute the workload between client and server but our goal is to reduce

data transfer.

Recipes as a regression on image data Using the input image to predict the

output is inspired from shape recipes [Freeman and Torralba, 2002; Torralba and

Freeman, 2003]. In the context of stereo shape estimation, shape recipes are regression

coefficients that predict band-passed shape information from an observed image of

this shape. They form a low-dimensional representation of the high-dimensional shape

data. Shape recipes describe the shape in relation to the image, and constitute a set

of rules to reconstruct the shape from the image. These recipes are simple as they let

the image bear much of the complexity of the representation. Similarly, our transform

recipes capture the transformation between the input and output images, factoring

out their structural complexity. Since our goal is to reduce data transfers, our model

needs to remain simple whereas shape recipes do not have this constraint and use

many more parameters. Our recipes also differ from shape recipes in that we have

a notion of spatially varying transformation: we fit different models for each block

in a grid subdivision of the image. In contrast, shape recipes are applied globally to

an image sub-band. Finally, our recipes are computed from low quality images and

applied back to the high quality input whereas shape recipes have to be computed

from and applied to high quality data.

Other methods also share similar ideas to our recipes although in a different

context. For instance, Bychkovsky et al. [2011c] and Berthouzoz et al. [2011] use a

generic representation of photographic edits that they use in conjunction with machine

learning to assist users with adjusting their pictures whereas we focus on speed and

compactness in the context of cloud applications. Farbman et al. [2011b] introduce

42 Chapter 3. Transform Recipes for Cloud Image Processing

convolution pyramids as a means to accelerate linear translation-invariant image filters.

Mantiuk and Mantiuk and Seidel [2008] use a generic representation of tone mapping

operators to speed them up and analyze them. In comparison, we are interested

in a wider range of possibly spatially varying edits such as stylization and detail

enhancement, and we specifically study their latency and energy consumption when

computed in the cloud.

Energy saving LiKamWa et al. [2013] describe an approach to reduce the energy

consumption when taking a picture with a mobile device. Our work is complementary

and seeks to reduce the energy consumption and latency when editing photographs.

3.2 Reducing data transfers

We reduce the upload cost by downsampling and aggressively compressing the input

image 𝐼. This yield a degraded image 𝐼. Upon reception by the server, 𝐼 is upsampled

back to the original resolution. Let us denote this new low quality image by 𝐼. The

server processes 𝐼 to generate a low fidelity output �̃�. The server then assembles a

recipe 𝑓𝐼,�̃� such that 𝑓𝐼,�̃�(𝐼) ≈ 𝑂, where 𝑂 is the ground-truth output that would

result from the direct processing of 𝐼. Recipes are designed to be compact and therefore

incur a low download cost (Fig. 3-1).

To reconstruct the final output, the client downloads the recipe and combines it

with the original high-quality input 𝐼 (Fig. 3-3). Our objective with recipes is to

represent a variety of standard photo enhancements. In particular, we seek to capture

effects that may be spatially varying, multi-scale, and nonlinear.

3.2.1 Transform Recipes

We define recipes over 𝑤×𝑤 blocks where 𝑤 controls the trade-off between compactness

and accuracy. Small blocks yield a fine-grained description of the transformation but

3.2. Reducing data transfers 43

(c) original full
quality input

(d) degraded input
close-up on (a)

(e) output of the filter
 close-up on (b)

(g) reference output
computed on the
full-quality input

(f) our reconstruction
%down = 0.4%

PSNR = 32.6 dB

(a) degraded input sent to the server
4 × 4 bicubic downsampling
JPEG compression Q = 20

(b) output of the filter
applied to the degraded input

PSNR = 18.8 dB

Figure 3-2: A major advantage of our transform recipes is that we can evaluate them
using severely degraded input photos (a,d). Processing such a strongly compressed
image generates a result with numerous jpeg artifacts (b,e). We can nevertheless use
such pairs of degraded input–output photos to build a recipe that, when applied on
the original artifact-free photo (c) produces a high quality output (f) that closely
approximates the reference output (g) directly computed from the original photo. The
close-ups (c–g) show the region with highest error in our method (f).

44 Chapter 3. Transform Recipes for Cloud Image Processing

low-frequency residual

ORIGINAL
INPUT

RECONSTRUCTED
OUTPUT

RECIPE RECEIVED
FROM THE SERVER

linear scaling
3 coefs / block

affine transform
8 coefs / block

affine transform
4 coefs / block

piecewise-linear
remapping

5 coefs / block

high-frequency intensity stack

high-frequency
chrominance

per-level linear
scaling

log2(w) coefs / block

multiscale
decomposition

linear upsampling

stack
collapse

Figure 3-3: To reconstruct the output image we decompose the input as a shallow
Laplacian pyramid. The lowpass residual is linearly re-scaled using the ratio coefficients
Rc(p). For the chrominance, we don’t use the complete multiscale decomposition:
each block in the high-pass of the chrominance undergoes and affine transformation
parameterized by Ac and bc. The luminance channel is reconstructed using a combi-
nation of an affine transformation (AY , bY), a piecewise linear transformation ({qi}),
and a linear scaling of the Laplacian pyramid level ({m�}).

require more storage space whereas large blocks form a coarser and more concise

description. We use overlapping blocks to allow for smooth transitions between blocks

and prevent blocking artifacts (Fig 3-7), that is, we lay out the w × w blocks on a
w
2
× w

2
grid so that each pair of adjacent blocks share half their area. We work in the

same Y CbCr color space as JPEG to separate the luminance Y from the chrominance

(Cb, Cr) while still manipulating values that span [0; 255] [Hamilton, 1992].

To capture multi-scale effects, we decompose the images using Laplacian pyra-

mids [Burt and Adelson, 1983]. That is, we split I and O into n + 1 levels {L�[I]}

and {L�[O]} where the resolution of each level is half that of the preceding one. The

first n levels represent the details at increasingly coarser scales and the last level is

a low-frequency residual. We set n = log2(w) so that each block is represented by a

single pixel in the residual. We compute a recipe in three steps: we first represent the

3.2. Reducing data transfers 45

transformation of the residual, then that of the other pyramid levels, and finally we

quantize and encode the result of the first two steps in an off-the-shelf compressed

format.

Low-pass residual

We found that even small errors in the residual propagate to large areas in the final

reconstruction and can produce conspicuous artifacts in smooth regions like skies.

Since the residual is only a small fraction of the data, we can afford to represent it

with greater precision.

We represent the low-frequency part of the transformation by the ratio of the

residuals, i.e., for each pixel 𝑝 and each channel 𝑐 ∈ {𝑌,𝐶b, 𝐶r}:

𝑅𝑐(𝑝) =
𝐿𝑛[𝑂𝑐](𝑝) + 1

𝐿𝑛[𝐼𝑐](𝑝) + 1
(3.1)

where 1 is added to prevent divisions by zero and to ensure that 𝑅𝑐 is constant when

𝐿𝑛[𝑂𝑐] = 𝐿𝑛[𝐼𝑐], that is, for edits like sharpening that only modify the high frequencies.

This compresses better in the final stage.

Modeling the high Frequencies

Representing the high-frequency part of the transformation requires much more data.

Using per-pixel ratios would not be competitive with standard image compression. To

model the high-frequency effect of the transformation, we combine all the levels of the

pyramids except the residual into a single layer:

𝐻[𝐼] =
𝑛−1∑︁
ℓ=0

up(𝐿ℓ[𝐼]) (3.2)

where up(·) is an operator that upsamples the levels back to the size of the original

image 𝐼. In practice, we use the property of Laplacian pyramids that all the levels

46 Chapter 3. Transform Recipes for Cloud Image Processing

including the residual add up to the original image to compute 𝐻[𝐼] = 𝐼 − up(𝐿𝑛[𝐼]),

which is more efficient. We use the same scheme to compute 𝐻[𝑂].

Next, we process 𝐻[𝐼] and 𝐻[𝑂] block by block independently. Our strategy

is to fit a parametric function to the pixels within each block to represent their

transformation. In our early experiments, we found that while the chrominance

transformation were simple enough to be well approximated by an affine function, no

single simple parametric function was able to capture alone the diversity of luminance

transformations generated by common photographic edits. Instead, our strategy is to

rely on a combination of several functions that depend on many parameters and use a

sparse regression to keep only a few of them in the final representation.

Chrominance channels

Let 𝑂𝐶𝐶 denote the two chrominance channels of 𝑂. 𝑂𝐶𝐶(𝑝) is the the 2D vector

containing the chrominance values of 𝑂 at pixel 𝑝. Within each 𝑤 × 𝑤 block ℬ, we

model the high frequencies of the chrominance 𝐻[𝑂𝐶𝐶](𝑝) as an affine function of

𝐻[𝐼](𝑝). We use a standard least-squares regression and minimize:

∑︁
𝑝∈ℬ

‖𝐻[𝑂𝐶𝐶](𝑝) −Ac(ℬ)𝐻[𝐼](𝑝) − bc(ℬ)‖2 (3.3)

where Ac and bc are the 2 × 3 matrix and the 2D vector defining the affine model.

Luminance channel

We represent the high frequencies of the luminance 𝐻[𝑂𝑌] with a more sophisticated

function comprising several components. The first component is an affine function

akin to that used for the chrominance channel: A𝑌 (ℬ)𝐻[𝐼](𝑝) + 𝑏𝑌 (ℬ) with A𝑌

and 𝑏𝑌 the 1 × 3 matrix and the scalar constant defining the affine function. Intu-

itively, this affine component captures the local changes of brightness and contrast.

Next, we capture scale-dependent effects with a linear function of the pyramid levels:

3.2. Reducing data transfers 47

∑︀𝑛−1
ℓ=0 𝑚ℓ(ℬ) up(𝐿

ℓ
[𝐼𝑌]) where {𝑚ℓ(ℬ)} are the coefficients of the linear combination

within the block ℬ and up(·) is used to ensure that all levels are upsampled back

to the original resolution. Last, we add a term to account for the nonlinear effects.

We use a piecewise linear function made of 𝑝 segments over the luminance range of

the block. To define this function, we introduce 𝑝 − 1 regularly spaced luminance

values 𝑦𝑖 = minℬ 𝐻[𝐼𝑌] + 𝑖
𝑝
(maxℬ 𝐻[𝐼𝑌] − minℬ 𝐻[𝐼𝑌]), 𝑖 ∈ {1, . . . , 𝑝 − 1} and the

segment functions 𝑠𝑖(·) = max(· − 𝑦𝑖, 0) where we omit the dependency on ℬ of 𝑦𝑖 and

𝑠𝑖 for clarity’s sake. Intuitively, 𝑠𝑖 generates a unit change of slope at the 𝑖th node 𝑦𝑖.

Equipped with these functions, we define our nonlinear term as
∑︀𝑝−1

𝑖=1 𝑞𝑖(ℬ)𝑠𝑖(𝐻[𝐼𝑌])

where the {𝑞𝑖(ℬ)} coefficients control the change of slope between two consecutive

linear segments.

To fit the complete model, we use LASSO regression [Tibshirani, 1994], i.e., we

minimize a standard least-squares term:

∑︁
𝑝∈ℬ

⃦⃦⃦
𝐻[𝑂𝑌](𝑝) −A𝑌 (ℬ)𝐻[𝐼](𝑝) − 𝑏𝑌 (ℬ)

−
𝑛−1∑︁
ℓ=0

𝑚ℓ(ℬ) up(𝐿
ℓ
[𝐼𝑌])(𝑝) −

𝑝−1∑︁
𝑖=1

𝑞𝑖(ℬ)𝑠𝑖(𝐻[𝐼𝑌](𝑝))
⃦⃦⃦2

(3.4)

to which we add the 𝐿1 norm of the free parameters A𝑌 (ℬ), 𝑏𝑌 (ℬ), {𝑚ℓ(ℬ)}, and

{𝑞𝑖(ℬ)}.

Solving the optimization problems (Eq. 3.3 and Eq. 3.4) for each overlapping block,

and computing the lowpass ratio (Eq. 3.1), we now have all the coefficients of the

recipe (Fig. 3-4). In the next section, we describe how we reconstruct the output

image from the full quality input image and these recipe coefficients.

3.2.2 Reconstructing the filtered image

We reconstruct the output 𝑂 using the recipe described in the previous section and the

input 𝐼. We proceed in two steps; we first deal with the multiscale part of the recipe

48 Chapter 3. Transform Recipes for Cloud Image Processing

and then with its high-frequency component. This process is illustrated in Figure 3-3.

From Equation 3.1, for each pixel 𝑝 and each channel 𝑐 ∈ {𝑌,𝐶b, 𝐶r}, we get the

expression for the lowpass residual:

𝐿𝑛[𝑂𝑐](𝑝) = 𝑅𝑐(𝑝)
(︀
𝐿𝑛[𝐼𝑐](𝑝) + 1

)︀
− 1 (3.5)

Then, we reconstruct the intensity levels ℓ ∈ [0;𝑛− 1] of the multiscale component

of Equation 3.4:

𝐿ℓ[�̂�𝑌] = 𝑚ℓ𝐿ℓ[𝐼𝑌] (3.6)

Together with the luminance channel of Equation 3.5, this gives a complete

Laplacian pyramid {𝐿ℓ[�̂�𝑌]}. We collapse this pyramid to get an intermediate output

luminance channel �̂�𝑌 . At this point, the reconstruction is missing some high-frequency

luminance components from Equation 3.4 and the chrominance channels 𝐶r and 𝐶b.

To reconstruct the remaining high-frequency information 𝐻[𝑂], we first compute

𝐻ℬ[𝑂] within each block then linearly blend the results of overlapping blocks. For the

chrominance, we apply the affine remapping that we estimated in Equation 3.3:

𝐻ℬ[𝑂𝐶𝐶](𝑝) = Ac(ℬ)𝐻[𝐼](𝑝) + bc(ℬ) (3.7)

And for the intensity channel, we apply the affine remapping and the nonlinear

functions that we computed in Equation 3.4:

𝐻ℬ[𝑂𝑌](𝑝) = A𝑌 (ℬ)𝐻[𝐼](𝑝) + 𝑏𝑌 (ℬ) +

𝑝−1∑︁
𝑖=1

𝑞𝑖(ℬ)𝑠𝑖(𝐻[𝐼𝑌](𝑝)) (3.8)

We linearly interpolate 𝐻ℬ[𝑂𝐶𝐶] and 𝐻ℬ[𝑂𝑌] between overlapping blocks to get

𝐻[𝑂𝐶𝐶] and 𝐻[𝑂𝑌]

Finally, we put all the pieces together. We linearly upsample the chrominance

residual (Eq. 3.5) and add the multiscale component (Eq. 3.6), and the linearly

3.2. Reducing data transfers 49

interpolated high-frequency chrominance (Eq. 3.7) and luminance (Eq. 3.8):

𝑂 = up(𝐿𝑛[𝑂𝐶𝐶]) + �̂�𝑌 + 𝐻[𝑂𝐶𝐶] + 𝐻[𝑂𝑌] (3.9)

where we implicitly lift the quantities in the right hand side into 𝑌 𝐶b𝐶r vectors

depending on the channels they contain.

3.2.3 Data compression

Once computed by the server, we assemble the recipe coefficients described in Sec-

tion 3.3.1 as a multi channel image (Fig.3-4). Each channel of the recipe is indepen-

dently uniformly quantized to 8 bits. In practice the quantization error is small and

does not affect the quality of the reconstruction. (less than 0.1 𝑑𝐵)

We compress the coefficient maps using an off the shelf standard lossless image

compression method. In our implementation, we save the lowpass residual as a 16-bits

float TIFF file, and the highpass coefficients as tiles in a 8-bits grayscale PNG file.

This compression takes benefit both from the spatial redundancy of the recipe and

the sparsity induced by the LASSO regression and further reduces the data by about

a factor of 2.

Upstream Compression

So far, we have only described how to cut down the data downloaded by the client

using transform recipes. Because recipes capture the transformation applied to an

image they are resilient to degradation of the input (Fig. 3-2). We leverage this

property and reduce the data uploaded to the server by sub-sampling and compressing

the input image using a lossy compression algorithm with aggressive settings (we use

JPEG). Upon receiving the data, the server upsamples the degraded image back to

its original resolution and adds a small amount of Gaussian noise to it (𝜎 = 0.5%

of the range, see Section 3.2.3). The server then processes the upsampled image to

50 Chapter 3. Transform Recipes for Cloud Image Processing

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3-4: Recipe coefficients computed for the photo in Figure 3-2. We remapped
the values to the [0; 1] range for display purposes. (a) lowpass residual Rc. (b,c) affine
coefficients of the chrominance Ac and bc. (d) affine coefficients of the luminance AY

and bY . (e) multiscale coefficients {m�}. (f) non linear coefficients {qi}.

produce a low quality output. The fitting procedure of Section 3.2.1 is applied to this

low quality input/output pair. The client in turn reconstructs the output image by

combining his high quality input with the recipe.

Input Pre-processing

Adding noise serves two purposes. Since the downsampling and JPEG compression

both drastically reduce the high frequency content of the input image, adding noise

allows us to re-introduce some high frequencies from which we can estimate the

transformation. Furthermore, the low quality of the input can make the fitting

procedures ill-posed which creates severe artifacts at reconstruction time (Fig. 3-5).

The added noise acts as a regularizer.

Alternatively we could apply the desired image enhancement directly to the low

3.3. Evaluation 51

resolution input, which would also lower the computational cost. This would require

adapting the parameters of the enhancement accordingly but in certain cases, it is

unclear how the low-resolution processing relates to the high-resolution processing.

Besides, with this approach, we cannot estimate the high-frequency part of the

transformation. As shown in Figure 3-6, this approach fails for enhancements that

have a non trivial high-frequency component. We summarize the importance of

upsampling the input and adding noise in Table 3.1.

with noise without noise

with upsampling 34.9 dB 33.5 dB
without upsampling 28.7 dB 27.6 dB

Table 3.1: Upsampling the degraded input and adding a small amount of noise is
critical to the quality of our reconstruction. We report the average PSNR on the
whole dataset for a 4 × 4 downsampling of the input and JPEG compression with
quality 𝑄 = 50. The recipes use a block size 𝑤 = 64 and both the multiscale and
non-linear features are enabled.

3.3 Evaluation

We evaluate the quality of our reconstruction on several image processing applications

(§ 3.3.1). We conduct stress tests by degrading the quality of the input to several

degrees and analyze the effect of our design choices (§ 3.3.2). Latency and physical

energy consumption are measured using a proof-of-concept implementation on an

Android smartphone (§ 3.3.3).

We express the compression performance as a fraction of the original, uncompressed

24-bits bitmap. Though an uncompressed bitmap would never be used in the context of

cloud image processing, this provides us with a fixed reference for all our comparisons.

A typical out-of-the-phone JPEG has a data ratio in the 10% to 15% realm. A

PNG image has a typical data ratio of 50% to 75% for natural color images. Besides

visual comparison, we report both PSNR and SSIM to quantify the quality of our

52 Chapter 3. Transform Recipes for Cloud Image Processing

(a) reference (b) our method
PSNR = 34.7 𝑑𝐵

(c) no noise added to the
upsampled input before

processing, PSNR = 28.1 𝑑𝐵

Figure 3-5: Adding a small amount of noise to the upsampled degraded image makes
the fitting process well-posed and enables our reconstruction (b) to closely approximate
the ground-truth output (a). Because of the downsampling and JPEG compression,
the degraded input (not shown) exhibits large flat areas (in particular in the higher
Laplacian pyramid levels). Without the added noise, the fitting procedure might use
the corresponding recipe coefficients as affine offsets. This generates artifacts (c) when
reconstructing from the high quality input (which does have high frequency content).

(a) reference (b) our method
PSNR = 34.7 𝑑𝐵

(c) no input upsampling
before processing,
PSNR = 24.2 𝑑𝐵

Figure 3-6: In this close-up from a Detail Manipulation example, processing directly
the downsampled input before fitting the recipe fails to capture the high frequencies
of the transformation. Errors are particularly visible in the eyes and hair.

3.3. Evaluation 53

(a) reference (b) our method
PSNR = 42.1 dB

(c) no block overlap,
PSNR = 34.7 dB

Figure 3-7: We overlap the blocks of our recipes (b) and linearly interpolate the
reconstructed pixel values between overlapping blocks so as to avoid visible blocking
artifacts (c).

reconstruction.

3.3.1 Benchmark dataset

We selected a range of applications representative of typical photo editing scenarios.

Some of these applications might not necessarily require cloud processing, but they

demonstrate the expressiveness of our model. We gathered 168 high quality test

images from Flickr and the MIT-Adobe fiveK dataset [Bychkovsky et al., 2011c] to

use as input to the image processing algorithms. The image resolution range between

2-megapixels and 8-megapixels. MIT-Adobe fiveK dataset provides raw images that

give us baseline for reconstruction quality.

From these high quality inputs, we generated degraded inputs for several quality

levels using a combination of bicubic downsampling (2 to 8 times smaller images in

each dimension) and aggressive JPEG compression (with quality parameters ranging

from 30 to 80, using Adobe Photoshop’s quantization tables). Our JPEG compression

uses the quantization tables from Adobe Photoshop. This new set of images illustrate

what a typical client would send for processing in the cloud using our technique.

We ran each algorithm on this large set of inputs for different quality settings of

54 Chapter 3. Transform Recipes for Cloud Image Processing

the degraded input and measured end-to-end approximation fidelity.

Photo editing and Photoshop actions We manually applied various image

editing tools to the input images and recorded them as Photoshop Actions. The edits

include tonal adjustments, color correction, non-trivial masking, spatially varying

blurs, unsharp masking, high pass boost, vignetting, white balance adjustments, and

detail enhancement. The set of operations include both global and local edits, and

were created as a stress test for our model. These actions are an example of filters

that would simply not be available on a mobile device.

Dehazing This algorithm [Kim et al., 2013] estimates an atmospheric light vector

from the input image, computes a transmission map and removes the corresponding

haze. The transmission map, and therefore the transformation applied to the input

image exhibits sharp transitions but they follow the input’s content.

Edge preserving detail enhancement We test both the Local Laplacian Fil-

ter [Paris et al., 2011a] and another edge-preserving decomposition [Farbman et al.,

2008]. These methods are challenging for our approach, which does not have any

notion of edge preservation.

Style Transfer [Aubry et al., 2014a] alters the distribution of gradients in an image

to match a target distribution using the Local Laplacian filter. The algorithm outputs

an image whose style matches that of the examples image.

Portrait Style Transfer [Shih et al., 2014] spatially matches the input image to a

target example whose style is to be imitated using dense correspondence. Because of

the correspondence step and the database query, this algorithm is a good candidate for

cloud processing. The multi-scale, spatially varying transfer is of interest to test our

recipe. The algorithm also adds post-processing not well tied to our model (adding

highlights in the eyes). We disabled this post-processing during our evaluation.

3.3. Evaluation 55

Time of Day Hallucination [Shih et al., 2013a] is an example of algorithm that

requires a large database and costly computer vision matching.

Colorization [Levin et al., 2004] requires solving a large sparse linear system which

becomes costly on mobile platforms for large images. We input scribbles on images

from the MIT5K dataset.

Matting Is beyond the scope of our work since the output image does not resembles

a photography. It is nonetheless useful in the photo editing context and is a good

stress test for expressiveness. We use the implementation of KNN-matting available

on the authors’ webpage [Chen et al., 2012], and use as inputs the publicly available

data from [Rhemann et al., 2009].

𝐿0 smoothing [Xu et al., 2011] is a paradigm of methods where the stylized output

is significantly different from the input. We include it as a failure case.

3.3.2 Expressiveness and robustness

We processed our entire dataset at various levels of compression and found that in

all cases except the most extreme settings our approach produces outputs visually

similar to the ground truth, i.e., the direct processing of the uncompressed input photo.

Figure 3-11 Figure 3-12 and shows a few example reconstruction for the “standard”

quality setting. We compare our technique to two baseline alternatives set to match

our data rate:

∙ jpeg: the client sends a JPEG, the server processes it and transmit the output

back as a JPEG image.

∙ jdiff: the client sends a JPEG input image. The server sends back the difference

between this input and the output it computes from it. The difference is also

56 Chapter 3. Transform Recipes for Cloud Image Processing
%

𝑑
𝑜
𝑤
𝑛

P
SN

R
(dB

)
SSIM

quality
enhancem

ent
#

%
𝑢
𝑝

ours
jpeg

jdiff
ours

jpeg
jdiff

ours
jpeg

jdiff

non-degraded
input

LocalLaplacian
20

71.7
1.7

9.1
7.3

38.1
35.6

36.6
0.97

0.94
0.94

𝑤
=

32
D

ehazing
20

51.4
1.4

9.8
7.6

42.6
39.0

41.8
0.98

0.95
0.97

D
etailM

anipulation
20

71.7
1.6

5.6
4.2

39.0
37.1

41.7
0.98

0.94
0.98

𝐿
0

12
62.5

2.0
3.7

7.8
36.7

42.6
35.4

0.95
0.98

0.84
M

atting
12

41.7
1.0

3.1
7.2

37.1
48.3

42.7
0.97

1.00
0.96

P
hotoshop

10
68.3

1.4
11.9

9.4
44.3

42.4
44.8

0.99
0.98

0.98
R

ecoloring
10

33.4
0.8

3.2
1.1

49.3
42.5

47.7
1.00

0.96
0.98

P
ortrait

Transfer
20

31.5
1.1

3.9
2.5

42.9
41.6

41.3
0.99

0.98
0.97

T
im

e
ofD

ay
24

47.5
1.8

14.0
12.4

42.7
39.9

40.8
0.98

0.98
0.97

Style
Transfer

20
76.8

1.1
15.3

12.4
37.3

43.4
42.0

0.97
0.99

0.98

all
168

55.6
1.4

7.9
7.2

41.0
41.2

41.5
0.98

0.97
0.96

standard
LocalLaplacian

20
0.8

1.8
2.4

2.1
37.0

26.0
26.7

0.97
0.67

0.70
2×

dow
nsam

pling
D

ehazing
20

0.9
1.4

2.1
1.7

36.1
28.0

28.9
0.97

0.75
0.79

𝑄
=

30
D

etailM
anipulation

20
0.8

1.7
1.9

1.7
36.8

27.9
28.8

0.98
0.81

0.85
𝑤

=
32

𝐿
0

12
1.8

2.1
1.8

2.9
35.8

34.7
33.0

0.94
0.95

0.89
M

atting
12

0.8
0.9

1.0
2.5

35.2
32.0

32.1
0.96

0.97
0.92

P
hotoshop

10
0.8

1.5
2.1

1.9
42.6

29.6
30.4

0.99
0.80

0.82
R

ecoloring
10

0.7
1.4

1.0
0.4

47.3
38.2

39.4
0.99

0.92
0.94

P
ortrait

Transfer
20

0.8
1.1

1.3
1.1

41.1
32.9

33.8
0.99

0.89
0.90

T
im

e
ofD

ay
24

1.5
1.8

2.9
2.9

38.6
26.7

27.3
0.97

0.75
0.78

Style
Transfer

20
1.0

1.1
2.8

2.3
34.9

25.6
26.0

0.96
0.67

0.70

all
168

1.0
1.5

1.9
2.0

38.5
30.2

30.6
0.97

0.82
0.83

T
able

3.2:
R

econstruction
results

per
enhancem

ent.
%

𝑢
𝑝

refers
to

the
com

pression
of

the
input

as
a

fraction
of

the
uncom

pressed
bitm

ap
data,

%
𝑑
𝑜
𝑤
𝑛

to
that

ofthe
recipe

(or
output

in
case

ofjpeg
and

jdiff
).

For
an

uncom
pressed

input,
our

m
ethod

m
atches

the
quality

ofa
jpeg

com
pressed

im
age.

T
he

benefits
ofbecom

e
m

ore
apparent

as
the

input
im

age
is

further
com

pressed.
In

the
“standard”

setting,
the

input
is

dow
nsam

pled
by

a
factor

2
in

each
dim

ension
and

JP
E

G
com

pressed
w

ith
a

quality
𝑄

=
30,the

block
size

for
the

recipe
is
𝑤

=
32.

T
he

jpeg
and

jdiff
m

ethods
are

given
the

sam
e

input,and
use

𝑄
=

80
for

the
output

com
pression.

T
he

𝐿
0

enhancem
ent

is
a

failure
case

for
our

m
ethod.

3.3. Evaluation 57
%

𝑑
𝑜
𝑤
𝑛

P
SN

R
(d

B
)

SS
IM

qu
al

ity
en

ha
nc

em
en

t
#

%
𝑢
𝑝

ou
rs

jp
eg

jd
iff

ou
rs

jp
eg

jd
iff

ou
rs

jp
eg

jd
iff

m
ed

iu
m

Lo
ca

lL
ap

la
ci

an
20

0.
3

0.
5

0.
7

0.
6

34
.6

23
.3

23
.6

0.
96

0.
55

0.
56

4×
do

w
ns

am
pl

in
g

D
eh

az
in

g
20

0.
3

0.
4

0.
6

0.
5

34
.3

26
.1

26
.7

0.
95

0.
68

0.
70

𝑄
=

50
D

et
ai

lM
an

ip
ul

at
io

n
20

0.
3

0.
5

0.
6

0.
5

33
.9

24
.3

24
.7

0.
97

0.
70

0.
72

𝑤
=

64
𝐿
0

12
0.

7
0.

6
0.

6
0.

9
32

.5
29

.9
29

.6
0.

90
0.

90
0.

88
M

at
ti

ng
12

0.
3

0.
4

0.
3

0.
9

32
.9

28
.9

29
.0

0.
94

0.
95

0.
91

P
ho

to
sh

op
10

0.
3

0.
4

0.
6

0.
6

40
.0

26
.9

27
.3

0.
98

0.
74

0.
75

R
ec

ol
or

in
g

10
0.

3
0.

4
0.

4
0.

1
44

.6
35

.6
36

.3
0.

99
0.

89
0.

91
P
or

tr
ai

t
Tr

an
sf

er
20

0.
4

0.
4

0.
4

0.
4

36
.7

30
.1

30
.6

0.
97

0.
83

0.
83

T
im

e
of

D
ay

24
0.

6
0.

6
0.

9
0.

9
35

.8
24

.8
25

.1
0.

95
0.

66
0.

68
St

yl
e

Tr
an

sf
er

20
0.

4
0.

3
0.

8
0.

7
32

.8
23

.0
23

.2
0.

94
0.

56
0.

57

al
l

16
8

0.
4

0.
5

0.
6

0.
6

35
.8

27
.3

27
.6

0.
96

0.
75

0.
75

lo
w

Lo
ca

lL
ap

la
ci

an
20

0.
1

0.
2

0.
2

0.
2

32
.0

21
.3

21
.4

0.
95

0.
45

0.
46

8×
do

w
ns

am
pl

in
g

D
eh

az
in

g
20

0.
1

0.
1

0.
2

0.
2

31
.5

24
.3

24
.7

0.
93

0.
63

0.
64

𝑄
=

80
D

et
ai

lM
an

ip
ul

at
io

n
20

0.
1

0.
1

0.
2

0.
2

31
.0

21
.8

22
.1

0.
95

0.
63

0.
64

𝑤
=

12
8

𝐿
0

12
0.

3
0.

2
0.

2
0.

3
30

.1
26

.5
26

.7
0.

87
0.

85
0.

85
M

at
ti

ng
12

0.
1

0.
2

0.
1

0.
3

30
.2

25
.9

26
.0

0.
92

0.
94

0.
90

P
ho

to
sh

op
10

0.
1

0.
1

0.
2

0.
2

36
.2

25
.0

25
.3

0.
97

0.
71

0.
72

R
ec

ol
or

in
g

10
0.

1
0.

1
0.

1
0.

0
40

.9
32

.6
32

.9
0.

99
0.

87
0.

87
P
or

tr
ai

t
Tr

an
sf

er
20

0.
2

0.
1

0.
2

0.
1

31
.8

27
.6

27
.8

0.
94

0.
78

0.
78

T
im

e
of

D
ay

24
0.

3
0.

2
0.

3
0.

3
33

.5
23

.3
23

.4
0.

93
0.

61
0.

61
St

yl
e

Tr
an

sf
er

20
0.

2
0.

1
0.

2
0.

2
30

.3
20

.8
20

.9
0.

92
0.

46
0.

47

al
l

16
8

0.
2

0.
1

0.
2

0.
2

32
.7

24
.9

25
.1

0.
94

0.
69

0.
69

T
ab

le
3.

3:
R

ec
on

st
ru

ct
io

n
re

su
lt

s
pe

r
en

ha
nc

em
en

t.
%

𝑢
𝑝

re
fe

rs
to

th
e

co
m

pr
es

si
on

of
th

e
in

pu
t

as
a

fr
ac

ti
on

of
th

e
un

co
m

pr
es

se
d

bi
tm

ap
da

ta
,%

𝑑
𝑜
𝑤
𝑛

to
th

at
of

th
e

re
ci

pe
(o

r
ou

tp
ut

in
ca

se
of

jp
eg

an
d

jd
iff

).
T

he
“m

ed
iu

m
”

se
tt

in
g

is
a

4×
do

w
ns

am
pl

in
g

w
it

h
𝑄

=
50

an
d
𝑤

=
64

.
T

he
“lo

w
”

qu
al

it
y

se
tt

in
g

is
a

8×
do

w
ns

am
pl

in
g

of
th

e
in

pu
t

w
it

h
𝑄

=
80

an
d
𝑤

=
12

8.
T

he
jp

eg
an

d
jd

iff
m

et
ho

ds
ar

e
gi

ve
n

th
e

sa
m

e
in

pu
t,

an
d

us
e
𝑄

=
80

fo
r

th
e

ou
tp

ut
co

m
pr

es
si

on
.

58 Chapter 3. Transform Recipes for Cloud Image Processing

JPEG compressed. The client adds the difference back to its local input.

As shown in Table 3.2 and Table 3.3, for all applications, our approach performs

equally or better than these alternatives, often by a large margin. Figure 3-9 illustrates

the robustness of our recipes for various compression ratios of the input and output.

We recommend two level of compression: “standard” that corresponds to about 1.5%

of the data and generates images often indistinguishable from the ground truth, and

“medium quality” that corresponds to about 0.5% of the data and only introduce

minor deviations. In practice, one would choose the level of accuracy/compression

depending on the application.

The extra features for the luminance channel are critical to the expressiveness

of our model. Both the non-linear luminance curve and the multiscale features help

capture subtle and local effects (Fig. 3-8). We quantify the improvement these features

provide in Table 3.4.

with luminance curve without

with multiscale 40.2 dB 38.3 dB
without 38.5 dB 36.6 dB

Table 3.4: De-activating either the luminance curve or the multiscale features, decreases
the reconstruction quality by around 2 dB. We report the average PSNR on the whole
dataset for a non-degraded input. The recipes use a block size 𝑤 = 64.

3.3.3 Practical prototype system

We implemented a client-server poof-of-concept system to validate runtime and

energy consumption. We use a Samsung Galaxy S5 as the client device. Three

image processing scenarios are tested: on-device processing, naive cloud processing

— where we transfer the input and output compressed as JPEG with the default

settings from the cellphone, and our recipe-based processing. We consider network

connections through WIFI and cellular LTE network. Our server runs an Intel

Xeon E5645 CPU, using 12 cores.For on-device processing we use a Halide-optimized

3.3. Evaluation 59

(a) reference output (b) affine terms only, PSNR = 32.1 dB

(c) affine and multiscale terms for the
luminance, PSNR = 33.6 dB

(d) affine, multiscale and non-linear
terms for the luminance, PSNR =
36.4 dB

Figure 3-8: The additional features to model the transformation of the luminance are
critical to capture subtle local effects of the ground truth output (a). (b) Using only the
affine terms, most of the effect on high frequencies is lost on the wall, and the wooden
shutter. (c) Adding the Laplacian pyramid coefficients, the high frequency detail is
more faithfully captured on the wall. (d) With both the non-linear and multiscale
terms, our model better captures local contrast variations. This is particularly visible
on the texture of the wooden shutter.

60 Chapter 3. Transform Recipes for Cloud Image Processing

0.0 0.5 1.0 1.5
Total data ratio 1

2 (%up + %down)

25

30

35

40
PSNR (in dB, higher is better)

ours, %up = 0 .1

ours, %up = 0 .5

ours, %up = 1 .0

jpeg

jdiff

Figure 3-9: We analyze the quality of our reconstruction for different settings of our
recipe and various degrees of input compression. Not surprisingly the reconstruction
quality decreases as input and output compression increase. We report the average
PSNR on the whole dataset.

3.3. Evaluation 61

implementation [Ragan-Kelley et al., 2013b, 2012b] of the test filters, through the

Java Native Interface on Android. We evaluate local Laplacian filter [Paris et al.,

2011a] with fifty pyramids for detail enhancement, on an 8-megapixels input.

To ensure accurate power measurement, we replace the cellphone battery with a

power generator, and record the current and voltage drained from the generator. The

power usage plot in Fig. 3-10 shows the energy consumption at each step for the three

scenarios on the Local Laplacian filter. By reducing the amount of data transferred

both upstream and downstream, our method greatly reduces transmission costs and

cuts down both end-to-end computation time and power usage (Fig. 3.5).

power consumption (W) lower is better

time (s)0
0

1

2

3

4

5

6

2 4 6 8 10 12 14 16

upload

upload

idle

idle

reconstruction
download

download

our approach 14.3J 5.8s
jpeg 33.1J 17.1s
local 22.1J 6.6s

Figure 3-10: Plot of the power consumption over time of three computation schemes:
purely local, JPEG transfer, and our approach. For this measurement, we used a
Samsung Galaxy S3 connected to a 3G network; the test application is Local Laplacian
Filters and the input is a 4-megapixels image. Our approach uses less energy and is
faster than the other two.

62 Chapter 3. Transform Recipes for Cloud Image Processing

(a) input (b) reference
output

(d) reference (e) highest
error patch

(f) rescaled
difference

(c) our
reconstruction

Dehazing

Detail Manipulation

L0

Local Laplacian

Matting

PSNR = 34.3 dB

PSNR = 42.5 dB

PSNR = 25.6 dB

PSNR = 32.4 dB

PSNR = 37.7 dB

%up = 0.5

%up = 0.1

%up = 1.0

%up = 0.4

%up = 0.3

%down = 1.8

%down = 1.5

%down = 2.4

%down = 1.9

%down = 0.7

Figure 3-11: Our method handles a large variety of photographic enhancements. We
filter a highly degraded copy (not shown) of the reference input (a). From the resulting
degraded output, we compute the recipe parameters. We then reconstruct an output
image (c) that closely approximates the reference output (b) computed from the
original high-quality input. (d) and (e) are a close-up on the region of highest error in
our reconstruction. (f) is a rescaled difference map that emphasizes the location of
our errors. As shown on the L0 smoothing example, our method cannot handle well
filters that significantly alter the structure of the input.

3.3. Evaluation 63

Portrait Transfer

Recoloring

Style Transfer

Time of Day

Photoshop

PSNR = 38.5 dB

PSNR = 48.7 dB

PSNR = 34.6 dB

PSNR = 37.2 dB

PSNR = 46.1 dB

%up = 0.4

%up = 0.2

%up = 0.3

%up = 0.4

%up = 0.7

%down = 1.1

%down = 1.5

%down = 1.1

%down = 1.6

%down = 1.5

(a) input (b) reference
output

(d) reference (e) highest
error patch

(f) rescaled
difference

(c) our
reconstruction

Figure 3-12: Additional examples. We filter a highly degraded copy (not shown) of
the reference input (a). From the resulting degraded output, we compute the recipe
parameters. We then reconstruct an output image (c) that closely approximates the
reference output (b) computed from the original high-quality input. (d) and (e) are a
close-up on the region of highest error in our reconstruction. (f) is a rescaled difference
map that emphasizes the location of our errors.

64 Chapter 3. Transform Recipes for Cloud Image Processing

LTE WIFI
enhancement local jpeg recipe jpeg recipe

Local Laplacian 23.2 ± 1.5 J 30.6 ± 2.4 J 10.6 ± 1.2 J 14.6 ± 0.6 J 7.9 ± 1.2 J
7.0 ± 0.5 s 14.7 ± 1.9 s 4.9 ± 0.2 s 9.2 ± 0.3 s 3.9 ± 0.1 s

Style Transfer 135.6 ± 2.4 J 44.1 ± 0.7 J 20.7 ± 1.5 J 30.5 ± 0.7 J 23.2 ± 1.3 J
30.6 ± 0.9 s 23.6 ± 2.2 s 12.4 ± 0.7 s 17.3 ± 1.5 s 11.4 ± 0.3 s

Table 3.5: We compare the end-to-end latency and energy cost of using our recipes
for cloud processing compared to local processing of the enhancement and the jpeg
baseline. Our method always saves energy and time compared to the baseline jpeg
method. The measurements are from a Samsung Galaxy S5, processing a 8-megapixels
image, and are averaged over 20 runs (we also report one standard deviation).

Chapter 4

Bilateral Learning for Real-Time

Image Enhancement

In chapter 3, we presented a client-server infrastructure to off-load costly computations

to the cloud. The image operator was approximated with simple, locally-affine models

that are compact and easy to transmit over the network. These models were then

combined with the input image on the mobile client to produce the final output, in an

efficient manner. In this chapter, we take a step further and lift the requirements for

a powerful remote server altogether.

We present a machine learning approach where the effect of a reference filter,

pipeline, or even subjective manual photo adjustment is learned by a deep network

that can be evaluated quickly and with cost independent of the reference’s complexity.

As in chapter 3, we focus on photographic enhancements that do not spatially warp

the image or add new edges, e.g. [Aubry et al., 2014b; Hasinoff et al., 2016].

We share the motivation of prior work that seeks to accelerate “black box” image

processing operations, for example by processing a low-resolution image and then using

the low-resolution output to approximate a high-resolution equivalent [Gharbi et al.,

2015; Chen et al., 2016]. For some operations, these approaches can achieve large

speedups but they suffer from significant limitations: the underlying image processing

66 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

12 megapixel 16-bit linear input
(tone-mapped for visualization)

tone-mapped with HDR+
400 – 600 ms

processed with our algorithm
61 ms, PSNR = 28.4 dB

Figure 4-1: Our novel neural network architecture can reproduce sophisticated image
enhancements with inference running in real time at full HD resolution on mobile
devices. It can not only be used to dramatically accelerate reference implementations,
but can also learn subjective effects from human retouching.

operation must be somewhat scale-invariant (Figure 4-9), and must be fast to evaluate

at low resolution. In addition, these techniques rely on the availability of an explicit

reference implementation, and therefore cannot be used to learn an implicitly-defined

operation from a database of human annotated input/output pairs.

Many deep learning architectures have been used for image-to-image transfor-

mations, e.g. [Long et al., 2015b; Xu et al., 2015; Liu et al., 2016; Yan et al., 2016;

Isola et al., 2016]. However, most prior work incur a heavy computational cost that

scales linearly with the size of the input image, usually because of the large number

of stacked convolutions and non-linearities that must be evaluated at full resolution.

This general form allows for flexible models to be learned, but this expressivity comes

at a price: such architectures are orders of magnitude too slow for real-time viewfinder

applications, requiring seconds to process a 1 megapixel image on the best desk-

top GPUs—more than 1000× slower than our proposed model (2ms on GPU). Our

speedup is enabled by specifically targeting photographic transformations, which are

often well-approximated with linear operations in bilateral space [Chen et al., 2016],

and accordingly learning our model in this space.

We present a new network architecture that is capable of learning a rich variety of

photographic image enhancements and can be rapidly evaluated on high-resolution

67

inputs. We achieve this through three key strategies:

1) We perform most predictions in a low-resolution bilateral grid [Chen et al.,

2007], where each pixel’s 𝑥, 𝑦 coordinates are augmented with a third dimension which

is a function of the pixel’s color. To do this, we introduce a new node for deep learning

that performs a data-dependent lookup. This enables the so-called slicing operation,

which reconstructs an output image at full image resolution from the 3D bilateral grid

by considering each pixel’s input color in addition to its 𝑥, 𝑦 location. 2) We follow

previous work which has observed that it is often simpler to predict the transformation

(chapter 3) from input to output rather than predicting the output directly e.g., [Shih

et al., 2013b; Gharbi et al., 2015; Chen et al., 2016]. This is why our architecture is

designed to learn, as an intermediate representation, a local affine color transformation

that will be applied to the input through a new multiplicative node. 3) While most of

our learning and inference is performed at low resolution, the loss function used during

training is evaluated at full resolution, which causes the low-resolution transformations

we learn to be directly optimized for their impact on high-resolution images.

Taken together, these three strategies (slicing, affine color transform, and full-

resolution loss) allow us to perform the bulk of our processing at a low resolution

(thereby saving substantial compute cost) yet reproduce the high-frequency behavior

of the reference operator.

We demonstrate the expressiveness of our model on a benchmark of 7 applications

including: approximating published image filters [Aubry et al., 2014b; Hasinoff et al.,

2016], reverse-engineering black-box Photoshop actions, and learning the retouching

style of photographers [Bychkovsky et al., 2011b] from a set of manually corrected

photographs. Our technique produces output whose quality is comparable to or better

than previous work, while being more widely applicable by not requiring some reference

implementation of the image operation being approximated, being end-to-end learnable

from input/output image pairs, and running in real-time on mobile hardware. The

forward pass of our network takes 14 ms to process a full screen resolution 1920× 1080

68 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

FULL-RES PROCESSING

LOW-RES COEFFICIENT PREDICTION

§3.4.1 guidance map

slicing
layer

apply
coefficients

full-res input

pixel-wise
network

§3.1.2 local features

§3.3 sliced coefficients

 §3.2 bilateral grid
of coefficients

§3.1.4 fusion

§3.4.2 full-res output

low-res input §3.1.1 low-level features §3.1.3 global features

Figure 4-2: Our new network architecture seeks to perform as much computation as
possible at a low resolution, while still capturing high-frequency effects at full image
resolution. It consists of two distinct streams operating at different resolutions. The
low-resolution stream (top) processes a downsampled version Ĩ of the input I through
several convolutional layers so as to estimate a bilateral grid of affine coefficients A.
This low-resolution stream is further split in two paths to learn both local features
Li and global features Gi, which are fused (F) before making the final prediction.
The global and local paths share a common set of low-level features Si. In turn, the
high-resolution stream (bottom) performs a minimal yet critical amount of work: it
learns a grayscale guidance map g used by our new slicing node to upsample the grid of
affine coefficients back to full-resolution Ā. These per-pixel local affine transformations
are then applied to the full-resolution input, which yields the final output O.

image on a Google Pixel phone, thereby enabling real-time viewfinder effects at 50Hz.

4.1 A fast architecture for photographic enhancement

We propose a new convolutional network architecture that can be trained to perform

fast image enhancement (Figure 4-2). Our model is designed to be expressive, preserve

edges, and require limited computation at full resolution. It is fully end-to-end

trainable and runs in real-time at 1080p on a modern smartphone.

We perform most of the inference on a low-resolution copy Ĩ of the input I in the

4.1. A fast architecture for photographic enhancement 69

low-res stream (Fig. 4-2, top), which ultimately predicts local affine transforms in

a representation similar to the bilateral grid [Chen et al., 2016]. In our experience,

image enhancements often depend not only on local image features but also on global

image characteristics such as histograms, average intensity, or even scene category.

Therefore, our low-res stream is further split into a local path and a global path.

Our architecture then fuses these two paths to yield the final coefficients representing

the affine transforms.

The high-res stream (Fig. 4-2, bottom) works at full resolution and performs

minimal computation but has the critical role of capturing high-frequency effects and

preserving edges when needed. For this purpose, we introduce a slicing node inspired

by bilateral grid processing [Paris and Durand, 2006; Chen et al., 2007]. This node

performs data-dependent lookups in the low-resolution grid of affine coefficients based

on a learned guidance map. Given high-resolution affine coefficients obtained by slicing

into the grid with the full-resolution guidance map, we apply local color transforms

to each pixel to produce the final output O. At training time, we minimize our loss

function at full resolution. This means that the low-res stream, which only processes

heavily downsampled data, still learns intermediate features and affine coefficients

that can reproduce high-frequency effects.

As a first approximation, one can think of our work as alleviating the need for the

reference filter at runtime in Chen et al. [2016]’s Bilateral Guided Upsampling. In a

sense, we seek to predict the affine color transform coefficients in the bilateral grid

given a low-resolution version of the image. However, there are several key elements

that go beyond this. First, the downsampling into the bilateral grid is learned. Second,

the guidance image is also learned and not restricted to luminance. Finally, we

apply the loss function not on the affine coefficients, but on the final image at full

resolution, which allows us to capture high-frequency effects and handle operators

that are not scale-invariant (Figure 4-9). We illustrate the role of each component of

our architecture with an ablation study in Figures 4-3, 4-4, 4-5 and 4-7.

70 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

4.1.1 Low-resolution prediction of bilateral coefficients

The input Ĩ to the low-res stream has a fixed resolution 256× 256. It is first processed

by a stack of strided convolutional layers (𝑆𝑖)𝑖=1,...,𝑛𝑆
to extract low-level features

and reduce the spatial resolution. Then, in a design inspired by Iizuka et al. [2016b],

the last low-level features are processed by two asymmetric paths: the first path

(𝐿𝑖)𝑖=1,...,𝑛𝐿
is fully convolutional [Long et al., 2015b] and specializes in learning local

features that propagate image data while retaining spatial information. The second

path (𝐺𝑖)𝑖=1,...,𝑛𝐺
follows the design of standard classification networks [Krizhevsky

et al., 2012] and learns uses both convolutional and fully-connected layers to learn

a fixed-size vector of global features (e.g. high-level scene category, indoor/outdoor,

etc.) with a receptive field covering the entire low-resolution image Ĩ. The outputs

of the two paths, 𝐺𝑛𝐺 and 𝐿𝑛𝐿 , are then fused into a common set of features 𝐹 . A

pointwise linear layer outputs a final array 𝐴 from the fused streams. We interpret

this array as a bilateral grid of affine coefficients (Section 4.1.2). Since we produce a

3D bilateral grid from a 2D image in a content-dependent fashion, we can view the

low-res stream as implementing a form of learned splatting.

Low-level features

We first process the low-resolution image 𝑆0 := Ĩ with a stack of standard strided

convolutional layers with stride 𝑠 = 2 (Figure 4-2):

𝑆𝑖
𝑐[𝑥, 𝑦] = 𝜎

⎛⎝𝑏𝑖𝑐 +
∑︁

𝑥′,𝑦′,𝑐′

𝑤𝑖
𝑐𝑐′[𝑥

′, 𝑦′]𝑆𝑖−1
𝑐′ [𝑠𝑥 + 𝑥′, 𝑠𝑦 + 𝑦′]

⎞⎠ (4.1)

Where 𝑖 = 1, . . . , 𝑛𝑆 indexes the layers, 𝑐 and 𝑐′ index the layers’ channels, 𝑤𝑖 is an

array of weights for the convolutions, 𝑏𝑖 is a vector of biases, and the summation is

over −1 ≤ 𝑥′, 𝑦′ ≤ 1 (i.e., the convolution kernels have 3 × 3 spatial extent). We use

the ReLU activation function 𝜎(·) = max(·, 0) and use zero-padding as the boundary

condition in all convolutions.

4.1. A fast architecture for photographic enhancement 71

These low-level layers progressively reduce the spatial dimensions by a total factor

of 2nS . Thus nS has two effects: 1) it drives the spatial downsampling between

the low-resolution input Ĩ and the final grid of affine coefficients—the higher nS, the

coarser the final grid, and 2) nS controls the complexity of the prediction: deeper layers

have an exponentially larger spatial support and more complex non-linearities (by

composition); thus, they can extract more complex patterns in the input. Figure 4-3

shows a comparison with a network in which the low-level layers have been removed,

and replaced by a hard-coded splatting operation [Chen et al., 2007]. Without these

layers, the network loses much of its expressive power. Our architecture, uses nS = 4

low-level layers. Table 4.1 summarizes the dimensions of each layer.

Local features path

The last low-level features layer SnS is then processed by a stack of nL = 2 convolutional

layers Li in the local path (Figure 4-2, yellow). These layers take the same form as

(a) input (b) reference (c) ours (d) fixed splat

Figure 4-3: Our low-level convolutional layers are fully learned and can extract
semantic information. Replacing these layers with the standard bilateral grid splatting
operation causes the network to lose much of its expressive power. In this example of
our Face brightening operator (a-b), the network with hardcoded splatting (d) cannot
detect the face properly because the grid’s resolution is too low. Instead, it slightly
brightens all skintones, as is visible on the hands. Our progressive downsampling with
strided convolutions learns the semantic features required to solve this task properly
(c), brightening only the face while darkening the background like in the reference.

72 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

Equation (4.1), identifying 𝐿0 := 𝑆𝑛𝑆 , but this time with stride 𝑠 = 1. We keep both

the spatial resolution and number of features constant in the local path. Because

the resolution is held constant, the spatial support of the filters only grows linearly

with 𝑛𝐿. A deep enough stack of convolution layers, roughly measured by 𝑛𝑆 + 𝑛𝐿,

is critical to capturing useful semantic features [Krizhevsky et al., 2012]. If a higher

spatial resolution is desired for the final grid of coefficients, one can reduce 𝑛𝑆 and

increase 𝑛𝐿 to compensate accordingly, so as not to reduce the expressiveness of the

network. Without the local path, the predicted coefficients would lose any notion of

spatial location.

Global features path

Like the local path, the global features path branches out from 𝑆𝑛𝑆 , that is 𝐺0 := 𝑆𝑛𝑆 .

It comprises two strided convolutional layers (Equation (4.1), with 𝑠 = 2) followed by

three fully-connected layers, for a total of 𝑛𝐺 = 5 global layers (Figure 4-2, blue).

One consequence of using fully-connected layers is that the resolution of the input

Ĩ needs to be fixed, since it dictates the dimensions of 𝐺2 and the number of network

parameters that act on it. As we will see in Section 4.1.3, thanks to our slicing

operator, we can still process images of any resolution, despite the size of the low-res

stream being fixed.

The global path produces a 64-dimensional vector that summarizes global informa-

tion about the input and acts as a prior to regularize the local decisions made by the

local path. Without global features to encode this high-level description of the input,

the network can make erroneous local decisions that lead to artifacts as exemplified

by the large-scale variations in the sky in Figure 4-4.

4.1. A fast architecture for photographic enhancement 73

(a) ours, with global features (b) without global features

Figure 4-4: The global features path in our architecture allows our model to reason
about the full image, e.g., for subjective tasks such as reproducing subjective human
adjustments that may be informed by intensity distribution or scene type (a). Without
the global path, the model can make local decisions that are spatially inconsistent
(b). Here, the network fails to recognize that the blue area in the top-left corner also
belongs to the sky and should therefore receive the same correction as the area just
below it.

Fusion and linear prediction

We fuse the contributions of the local and global paths with a pointwise affine mixing

followed by a ReLU activation:

Fc[x, y] = σ

(
bc +

∑
c′

w′
cc′G

nG

c′ +
∑
c′

wcc′L
nL

c′ [x, y]

)
(4.2)

This yields a 16× 16× 64 array of features from which, we make our final 1× 1

linear prediction to produce a 16× 16 map with 96 channels:

Ac[x, y] = bc +
∑
c′

Fc′ [x, y]wcc′ (4.3)

74 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

Table 4.1: Details of the network architecture. c, fc, f and l refer to convolutional,
fully-connected, fusion and pointwise linear layers respectively.

𝑆1 𝑆2 𝑆3 𝑆4 𝐿1 𝐿2 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐹 𝐴
type c c c c c c c c fc fc fc f l
size 128 64 32 16 16 16 8 4 – – – 16 16
channels 8 16 32 64 64 64 64 64 256 128 64 64 96

4.1.2 Image features as a bilateral grid

So far we have described our model as a neural network. We now shift our perspective

to that of a bilateral grid. To facilitate this, in a slight abuse of notation, we will

occasionally treat the final feature map 𝐴 as a multi-channel bilateral grid whose third

dimension has been unrolled:

𝐴𝑑𝑐+𝑧[𝑥, 𝑦] ↔ 𝐴𝑐[𝑥, 𝑦, 𝑧] (4.4)

where 𝑑 = 8 is the depth of the grid. Under this interpretation, 𝐴 can be viewed as

a 16 × 16 × 8 bilateral grid, where each grid cell contains 12 numbers, one for each

coefficient of a 3 × 4 affine color transformation matrix. This reshaping operation

lets us interpret the strided convolutions in Equation (4.1) as acting in the bilateral

domain, where they correspond to a convolution in the (𝑥, 𝑦) dimensions and express

full connectivity in the 𝑧 and 𝑐 dimensions. This operation is therefore more expressive

than simply applying 3D convolutions in the grid, which would only induce local

connectivity on 𝑧 [Jampani et al., 2016]. It is also more expressive than standard

bilateral grid splatting which discretizes I into several intensity bins then box filters

the result [Chen et al., 2007]; an operation that is easily expressed with a 2-layer

network. In a sense, by maintaining a 2D convolution formulation throughout and

only interpreting the last layer as a bilateral grid, we let the network decide when the

2D to 3D transition is optimal.

4.1. A fast architecture for photographic enhancement 75

4.1.3 Upsampling with a trainable slicing layer

So far we have described how we learn to predict a bilateral grid of coefficients 𝐴

from a low-resolution image Ĩ using the low-res stream of our network. We now need

to transfer this information back to the high-resolution space of the original input

I to produce our final output image. To this end, we introduce a layer based on

the bilateral grid slicing operation [Chen et al., 2007]. This layer takes as input a

single-channel guidance map 𝑔 and a feature map 𝐴 (viewed as a bilateral grid) with

a much lower spatial resolution than 𝑔. It performs a data-dependent lookup in the

final feature map 𝐴. The layer is sub-differentiable with respect to both 𝐴 and 𝑔.

This allows us to backpropagate through it at train time.

The result of the slicing operator is a new feature map 𝐴 with the same spatial

resolution as 𝑔, obtained by tri-linearly interpolating the coefficients of 𝐴 at locations

defined by 𝑔:

𝐴𝑐[𝑥, 𝑦] =
∑︁
𝑖,𝑗,𝑘

𝜏(𝑠𝑥𝑥− 𝑖)𝜏(𝑠𝑦𝑦 − 𝑗)𝜏(𝑑 · 𝑔[𝑥, 𝑦] − 𝑘)𝐴𝑐[𝑖, 𝑗, 𝑘] (4.5)

Using a linear interpolation kernel 𝜏(·) = max(1 − | · |, 0), and where 𝑠𝑥 and 𝑠𝑦 are

the width and height ratios of the grid’s dimensions w.r.t. the full-resolution image’s

dimensions. Essentially, each pixel is assigned the vector of coefficients whose depth

in the grid is given by the gray scale value 𝑔[𝑥, 𝑦], i.e., loosely speaking 𝐴𝑐[𝑖, 𝑗, 𝑔[𝑥, 𝑦]].

Flownet2 [Ilg et al., 2016] and Spatial Transformer Networks [Jaderberg et al., 2015]

have used similar interpolation operators for in-network spatial warping. We fix the

spatial resolution of the grid to 16 × 16, and its depth to 𝑑 = 8.

The slicing operation is parameter-free and can be implemented efficiently in an

OpenGL shader [Chen et al., 2007]. It acts as a bottleneck layer that constrains the

representation of the neural network to a low-dimensional space. This both simplifies

the learning problem and speeds up the processing time [Barron et al., 2015; Barron and

Poole, 2016]. Crucially, performing inference within a bilateral grid forces our model’s

76 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

predictions to follow the edges in 𝑔, thereby regularizing our predictions towards

edge-aware solutions (unlike standard networks based on transpose-convolutions or

“deconvolution layers”, Figure 4-5). This design decision tends to benefit photographic

manipulation tasks such as ours and enables our significant speedup over more general

models due to the low dimensionality of 𝐴 (Figure 4-10).

This data-dependent lookup is critical to the expressive power of our model. As

we will see in Section 4.1.4, it allows us to predict a complex operation on the

full-resolution image using a collection of much simpler local models.

4.1.4 Assembling the full-resolution output

So far, we have described how to obtain and upsample the bilateral grid of affine

coefficients. The rest of the processing is done at full resolution. It should therefore

be simple and easily-parallelizable to minimize computational cost. From the full-

resolution input I, we extract a set of 𝑛𝜑 full-resolution features 𝜑 that fulfill two roles:

1) they are combined to predict the guidance map 𝑔 used in the slicing node, and

2) they are used as regression variables for the local affine models.

The most cost-efficient approach is to use the channels of the input image as features,

that is 𝜑 = I (with 𝑛𝜑 = 3) and the local affine models are color transformations. All

our results use this fast formulation.

Guidance map auxiliary network

We define 𝑔 as a simple pointwise nonlinear transformation of the full-resolution

features:

𝑔[𝑥, 𝑦] = 𝑏 +
2∑︁

𝑐=0

𝜌𝑐
(︀
𝑀⊤

𝑐 · 𝜑𝑐[𝑥, 𝑦] + 𝑏′𝑐
)︀

(4.6)

Where 𝑀⊤
𝑐 are the rows of a 3 × 3 color transformation matrix, 𝑏 and 𝑏′𝑐 are scalar

biases, and 𝜌𝑐 are piecewise linear transfer functions parametrized as a sum of 16

4.1. A fast architecture for photographic enhancement 77

(a) input (b) fully-convolutional output, no slicing

(c) our output (d) ground truth

Figure 4-5: Our new slicing node is central to the expressiveness of our architecture
and its handling of high-resolution effects. Replacing this node with a standard bank
of learnable deconvolution filters reduces expressiveness (b) because no full-resolution
data is used to predict the output pixels. Thanks to its learned full-resolution guidance
map, our slicing layer approximates the desired enhancement with much higher fidelity
(c), thereby preserving the edges of the input (a) and capturing the high-frequency
transformations visible in the ground-truth output (d).

scaled ReLU functions with thresholds tc,i and slopes ac,i:

ρc(x) =
15∑
i=0

ac,i max(x− tc,i, 0) (4.7)

78 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

The parameters M , a, t, b, b′ are learned jointly with the other network parameters.

M is initialized to the identity and a, t, b, and b’ are initialized such each ρc is

an identity mapping over [0, 1], which is necessary to avoid learning a degenerate g.

Figure 4-7 shows the impact of using this learned guide and Figure 4-6 shows an

example of the color transformation matrix and tone curve that are learned for the

corresponding task.

Assembling the final output

Although image operators may be complex when viewed at the scale of an entire

image, recent work has observed that even complicated image processing pipelines can

often be accurately modeled as a collection of simple local transformations [He and

Sun, 2015; Gharbi et al., 2015; Chen et al., 2016]. We therefore model each channel

of our final output Oc as an affine combination of the full-resolution features, with

Figure 4-6: The color transform matrix (left) and per-channel tone curves (right) used
to produce the guidance map g, as learned by one instance of our model.

4.1. A fast architecture for photographic enhancement 79

coefficients defined by the channels of the sliced feature map 𝐴:

O𝑐[𝑥, 𝑦] = 𝐴𝑛𝜑+(𝑛𝜑+1)𝑐 +

𝑛𝜑−1∑︁
𝑐′=0

𝐴𝑐′+(𝑛𝜑+1)𝑐[𝑥, 𝑦]𝜑𝑐′ [𝑥, 𝑦] (4.8)

Interpolated affine transformations similar to this have been used successfully for

matting [Levin et al., 2008], intrinsic image decomposition [Bousseau et al., 2009] and

time of day transfer [Shih et al., 2013b]. For such models, the size of the patch in

which the affine model is fit drives the trade-off between efficiency and quality. At

the extreme, it is always possible to achieve a perfect reconstruction of any operator

by fitting an independent model at every pixel (i.e., the patch size is 1 × 1). For

small patches (e.g., 3 × 3), an affine model can faithfully reproduce many image

operators. As the patch grows larger, the affine relationship no longer holds for all

but trivial operators, though others have shown that this limitation can be mitigated

using piecewise linear functions [Yuan and Sun, 2011] or non-linear and edge-aware

components [Gharbi et al., 2015]. See Figure 4-8 for a visualization of the 3D bilateral

grid of affine coefficients 𝐴 corresponding to the input/output pair in Figure 4-2. One

of the 12 channels of the 2D coefficients after slicing can also be seen in Figure 4-2.

4.1.5 Training procedure

We train our network on a dataset 𝒟 = {(I𝑖,O𝑖)}𝑖 of full-resolution input/output pairs

for a given operator. We optimize the weights and biases by minimizing the 𝐿2 loss

on this training set:

ℒ =
1

|𝒟|
∑︁
𝑖

‖I𝑖 − O𝑖‖2 (4.9)

We additionally regularize the weights with an 𝐿2 weight decay of 10−8. The

weights for the convolutional and fully-connected layers are initialized according to

[He et al., 2015] and the biases are initialized to 0. We use batch normalization [Ioffe

and Szegedy, 2015] between each pair of intermediate feature maps, and we optimize

80 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

the network parameters with the ADAM solver [Kingma and Ba, 2015]. We train

with a batch size of 4 to 16 (depending on the resolution) and a learning rate of 10−4.

The remaining parameters in ADAM are kept to the values recommended by the

authors. Our model is implemented in Tensorflow [Abadi et al., 2015] and Halide

[Ragan-Kelley et al., 2012a]. For all experiments, models are trained on an NVIDIA

Titan X (Maxwell) for 30 epochs, which typically takes 2–3 days.

4.2 Results

We evaluate our model’s ability to reproduce both algorithmic image operators (Sec-

tion 4.2.1) and human-annotated retouches (Section 4.2.2). Our model is faster than

both standard neural networks and state-of-the-art filter approximation techniques

and runs in real-time on mobile device (Section 4.2.3).

A selection of our results on different tasks can be seen in Figure 4-14. Our output is

generally accurate and, even when it differs from the ground-truth, it remains plausible.

Despite the heavy spatial and bilateral downsampling inherent to our approach, image

artifacts are rare and unobjectionable. This is because of the edge-aware nature of the

bilateral grid and our model’s capacity to learn smooth output transformations. Our

outputs are usually slightly softer (e.g. on the HDR+ example of Figure 4-14) because

the highest-frequency transformations like sharpening and the correction of chroma

aberrations can introduce new edges not present in the input, which our model does

not handle

4.2.1 Reproducing image operators

We evaluate the accuracy of our model on several tasks composed of programmatically-

defined image operators:

. HDR+ [Hasinoff et al., 2016] – a complex hand-engineered photographic pipeline

that includes color correction, auto-exposure, dehazing, and tone-mapping.

4.2. Results 81

(a) linear input image (b) network without learned guide

(c) ours, with learned guide (d) ground truth

Figure 4-7: Our slicing node uses a learned guidance map. Using luminance as guide
causes artifacts with the HDR+ pipeline reproduction, in particular with posterization
artifacts in the highlights on the forehead and cheeks (b). In contrast, our learned
guide (c) correctly reproduces the ground truth (d).

Figure 4-8: Coefficient maps for the affine color transform. The vertical axis corre-
sponds to the learned guidance channel, while the horizontal axis unrolls the 3x4 sets
of coefficients. Each thumbnail, one example of which is highlighted, shows a 16x16
low-resolution map.

82 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

. the Local Laplacian filter [Paris et al., 2011b] – an edge-preserving, multi-scale (yet

non-scale-invariant) operator used for detail enhancement (we use two different

strengths for the effect),

. the Style Transfer task of [Aubry et al., 2014b] (which happens to be based on the

Local Laplacian),

. a Face brightening task using a dataset of labeled faces [Jain and Learned-Miller,

2010],

. several different black-box Adobe Photoshop (PS) filters and user-created “actions”1.

PSNRs for these tasks using our model and baseline approaches can be found in

Table 4.2.

We use two variants of the style transfer task. In the first variant (Style Transfer),

we learn to transform any new input towards a unique fixed style. In the second,

more challenging variant (𝑛-Styles Transfer) we adapt our network to take two input

images (concatenated along their channel axis) and predict the results of transferring

the style of one image to the other (again using the algorithm of Aubry et al. [2014b]).

In this variant the network does not learn to predict a single consistent output; but

rather, it learns to extract the desired transformation from the target image and apply

that transformation to the input image.

Datasets

Besides HDR+ and the face brightening dataset, all the effects were applied to the

unprocessed set of the MIT “FiveK” dataset [Bychkovsky et al., 2011b]. We reserve

500 images for validation and testing, and train on the remaining 4500. We augment

the data with random crops, flips and rotations. We generated the dataset for 𝑛-Styles

Transfer by mapping each image in the MIT “FiveK” dataset to 100 distinct images

(the style targets).
1http://designbump.com/photoshop-actions-for-instagram-effects/

http://designbump.com/photoshop-actions-for-instagram-effects/

4.2. Results 83

Baseline

The previous work closest in spirit to our goals are Bilateral Guided Upsampling

(BGU) [Chen et al., 2016] and Transform Recipes (TR, chapter 3) [Gharbi et al.,

2015] to which we compare our outputs. However, whereas our technique learns a

photographic operator offline from a dataset of images, BGU and TR use no prior

training and instead fit specially-tailored models to an input/output pair in an online

fashion. BGU and TR therefore require direct access to the image operator, as they

require the ability to run that image operator on images (either downsampled on-

device or full-resolution on a server, respectively). This makes our comparisons against

these baselines somewhat biased against our technique, as these baselines make more

limiting assumptions about what is available, and also cannot learn to approximate a

general instance of an image operator from data. Regardless, we report metrics for

these techniques as a kind of “oracle” baseline.

As we have seen in chapter 3, Transform Recipes assumes that a mobile device

Table 4.2: We compare accuracy to Bilateral Guided Upsampling (BGU) and Transform
Recipes (TR). Note that BGU and TR are “oracle” techniques, as they run the code
used to evaluate each image operator at a reduced or full resolution, and so can be
thought of as providing an upper-bound on performance. Despite its disadvantage,
our model sometimes performs better than these oracle baselines due its expressive
power and ability to model non-scale-invariant operators.

Task (PSNR, dB) Ours BGU TR
HDR+ 28.8 26.9 29.0
Local Laplacian 33.5 32.2 38.6
Local Laplacian (strong) 30.3 20.6 31.8
Face brightening 33.7 30.9 33.9
Style Transfer 23.9 21.9 31.7
𝑛-Styles Transfer 27.6 21.9 33.7
PS eboye 45.0 33.5 41.5
PS early bird 25.9 22.2 32.8
PS instagram 40.3 37.1 40.7
PS infrared 38.4 34.5 38.7
PS false colors 38.1 34.3 38.6
PS lomo-fi 26.2 24.1 34.4

84 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

(a) input

(c) BGU 17.7 dB (d) ours 32.1 dB

(b) reference output

Figure 4-9: Our method (d) can learn to replicate the correct effect (b) for operations
that are not scale invariant, such as the Local Laplacian filter shown here (a–b).
Methods like Bilateral Guided Upsampling that only apply the operation at low-
resolution (insets (a–b)) produce a different-looking output (c). The difference is most
noticeable in the areas pointed by the arrows.

would send a highly compressed (and therefore degraded) image to a server for

processing, and would receive an inexpensive “recipe” for approximating an image

transformation from that server. For this evaluation, we ignore TR’s client-server

setup and run the model at the recommended settings described in subsection 3.3.2

on uncompressed, full-resolution images. This ensures the quality of TR is optimal,

making the baseline as competitive as possible. In the intended use case of the method,

the image quality typically decreases by 3–5 dB.

BGU assumes that the image operator be run on a low-resolution version of the

input before fitting the model to the low-res input/output pair. We could not run

the HDR+ filter at low resolution, so we used full-resolution input/output pairs and

4.2. Results 85

Table 4.3: Mean 𝐿2 error in La*b* space for retouches from the 5 photographers
in the MIT5k dataset (A,B,C,D,E); lower is better. Our algorithm is capable of
learning a photographer’s retouching style better than previous work, yet runs orders
of magnitudes faster. The comparisons in the first two groups are evaluated on
the dataset from photographer C favored by previous techniques; see main text for
details. In the third group we report our results on the remaining 4 photographers for
completeness. Metrics taken from previous work Yan et al. [2016]; Hwang et al. [2012]
are denoted by †.

photographer method La*b* L-only

C
random250

ours 7.8 5.5
Yan [2016] 9.9† 5.7†

Bychkovsky [2011b] – 5.8†

Hwang [2012] 15.01† –

C
highvar50

ours 7.1 5.2
Yan [2016] 9.9† 8.4†

Bychkovsky [2011b] – –
Hwang [2012] 12.03† –

A ours 11.7 9.8
B ours 7.4 5.0
D ours 10.0 7.7
E ours 8.8 6.2

created the low-resolution inputs to BGU by downsampling. We do however follow

the correct procedure for the Local Laplacian and Style Transfer tasks for which we

have an implementation and directly apply the filter at low resolution. For these non

scale-invariant tasks, the advantage of our technique becomes clearer (Figure 4-9).

4.2.2 Learning from human annotations

We also evaluate accuracy with regards to human annotations using the MIT-Adobe

“FiveK” dataset [Bychkovsky et al., 2011b], and our performance compared to previous

work is presented in Table 4.3. This task measures our model’s ability to learn a

highly subjective image operator which requires a significant amount of learning and

semantic reasoning. We report mean 𝐿2 error in La*b* space (lower is better) for

retouches by the 5 photographers (A,B,C,D,E) in the MIT “FiveK” dataset, though

86 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

U-net, depth 9

U-net, depth 6

reference filter (CPU)
U-net, depth 3

dilated, depth 6
dilated, depth 3

16
32 64

U-net, depth 11
ours

end-to-end running time (ms, log scale)

Figure 4-10: We compare the speed and quality of our algorithm against two modern
network architectures: U-Net (adapted from Isola et al. [2016]) and dilated convolutions
Yu and Koltun [2015]. The runtimes were averaged over 20 iterations, processing a 4
megapixel image on a desktop CPU. The PSNR numbers refer to the Local Laplacian
task. Given an insufficient depth, U-Net and dilated convolutions fail to capture the
large scale effects of the Local Laplacian filter, leading to low PSNRs. Competitive
architectures run over 100 times slower than ours, and use orders of magnitude more
memory. Our model’s performance is displayed for a range of parameters. The version
we used to produce all the results is highlighted in red. See Figure 4-11 for details on
the speed/quality trade-off of our model.

previous work only presents results on photographer C [Yan et al., 2016; Hwang et al.,

2012]. We use the “Random 250” and “High Variance 50” dataset splits presented in

[Hwang et al., 2012], which have 250 randomly-chosen and 50 user-weighted images in

the test set, respectively.

This is a much more difficult task, and inconsistencies in the retouches of photog-

raphers has been pointed out previously [Yan et al., 2016]. For example we found that

retoucher B in this dataset was more self-consistent, and was easier for our network

to learn. Nonetheless, our model, trained separately on each artist’s corrections,

consistently predicts reasonable adjustments and outperforms previous work.

4.2. Results 87

net forward pass (ms)

, twice as many features

ours

8x8

16x16

32x32

Figure 4-11: We show PSNRs for the Local Laplacian task and the computation
time required to predict the bilateral coefficients with several settings of our model’s
parameters. Each curve represent a grid depth 𝑑. For each curve the grid’s spatial
resolution varies in {8, 16, 32}. The reference model we used to produced all the results
is highlighted with a square marker. Unsurprisingly, models with larger grid depth
perform better (green). Doubling the number of intermediate features also provides a
0.5 dB improvement (red curve). Runtimes were measured on an Intel Core i7-5930K.

4.2.3 Performance

We implemented our technique on a Google Pixel phone running Android 7.1.1. Our

implementation processes viewfinder-resolution 1920 × 1080 images in realtime, at

40–50 Hz. We extract 8-bit preview frames in YUV420 format using the Camera2 API.

These images are downsampled to 256 × 256, converted to floating point RGB, then

fed into our network. After the network produces its output (a bilateral grid of affine

coefficients), we transfer them to the GPU as a set of three 3D RGBA textures, where

they are sliced and applied to the full-resolution input to render the final processed

preview. Overall throughput is under 20 ms, with 14 ms spent on inference (CPU),

overlapped with 1 ms to upload coefficients and 18 ms to render on the GPU. As a

88 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

point of comparison, running an optimized implementation [Ragan-Kelley et al., 2012a]

of the Local Laplacian filter [Paris et al., 2011b] on the same device takes over 200 ms.

Running the same filter at the reduced 256 × 256 resolution and applying Bilateral

Guided Upsampling [Chen et al., 2016] with the same grid dimensions takes 17 ms

(compared to our 14 ms) but loses some of the filter’s intended effect (Figure 4-9).

Our processing time scales linearly with input size, taking 61 ms to process a 12-

megapixel image. While it usually has higher fidelity, Transform Recipes [Gharbi et al.,

2015] requires 2.95 seconds per image, nearly two orders of magnitude below real-time

viewfinder performance. Most notably, neither Transform Recipes nor Bilateral Guided

Upsampling can apply effects learned from human retouches, or “black box” operators

such as Photoshop filters or HDR+.

Other recent neural-network based architectures that could be used for such

learning are also far from real-time. In Figure 4-10, we compare our technique against

a U-Net architecture [Ronneberger et al., 2015] adapted from Isola et al. [2016], and

a linear network based on dilated convolutions [Yu and Koltun, 2015]. We explore

several settings for the depth (number of layers, 3 to 11) and the width (number

of filters, 16 to 64) in these architectures, covering a variety of speed and quality

levels. For U-Net, “depth” refers to the number of downsampling steps and “width”

refers to the channels in the first convolutional layers (these are doubled at each

downsampling step, see Isola et al. [Isola et al., 2016] for details). In the dilated

convolution network, “depth” is the number of dilated convolution layers, and “width”,

the number of channels in each layer. Our hybrid CPU/OpenGL technique is over 2

orders of magnitude faster than both architectures on a desktop CPU. On GPU (not

shown), the performance gap is identical for the forward pass of the network, but data

transfer becomes the bottleneck for our method. End-to-end, our runtime is still over

an order of magnitude faster. Moreover, both U-Net and dilated convolution require

significantly more memory, which makes them ill-suited for mobile processing. For

this benchmark we used an Intel Core i7-5930K at 3.5GHz with 4 cores and a Titan

4.3. Discussion and limitations 89

X (Maxwell) GPU.

We explored the speed/quality trade-offs of our architecture for the Local Laplacian

task varying several parameters: changing the depth of the grid 𝑑 from 4 to 16, the

grid’s spatial dimensions from 8 × 8 to 32 × 32 and doubling the number of channels

(compared to the numbers reported in Table 4.1). The summary can be found in

Figure 4-11.

4.3 Discussion and limitations

All our results use the simplest full-resolution features 𝜑 = I; i.e., both the guide 𝑔 and

the affine regression targets are the color channels of the input image (Section 4.1.4). If

one relaxes the real-time rendering constraint, one can extend our model by extracting

features from the high-resolution image. In Figure 4-12, we show an example where

𝜑 is a 3-level Gaussian pyramid. The bilateral grid then contains 3 × 12 = 36 affine

parameters (12 for each scale). Accordingly we triple the number of intermediate

features in the network compared to the numbers in Table 4.1. This roughly slows

down the network by a factor 3-4, but provides a 2 dB boost in quality on the Local

Laplacian (strong) task.

We also explored using our architecture to learn tasks beyond image enhance-

ment, like matting, colorization, dehazing, and monocular depth prediction. These

experiments had limited success, as the strong modeling assumptions required for

fast photographic correction make our model poorly suited to different tasks whose

output cannot be easily expressed as local pointwise transformations of the input

image (Figure 4-13).

90 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

input reference

ours (real-time)
PSNR = 29.5 dB

multiscale extension
PSNR = 31.8 dB

input

multiscale extension ours (real-time)

Figure 4-12: At the expense of extra computation at full-resolution, our model can
be extended with richer affine regression features. Here, by using a 3-level Gaussian
pyramid as features φ, we can better capture the high-frequency details in the the
Local Laplacian (strong) task.

4.3. Discussion and limitations 91

(a
) d

eh
az

in
g

(a
) d

eh
az

in
g

(b
) m

att
in

g
(b

) m
att

in
g

(c
) c

ol
or

iz
at

io
n

input reference our output

Figure 4-13: Our algorithm fails when the image operator strongly violates our
modeling assumptions. (a) Haze reduces local contrast, which limits the usefulness of
our guidance map. It also destroys image details that cannot be recovered with our
affine model (e.g., on the whiteboard). (b) Matting has successfully been modeled
by locally affine models on 3 × 3 neighborhoods Levin et al. [2008]. However, this
affine relationship breaks down at larger scales (like a grid cell in our model) where
the matte no longer follows tonal or color variations and is mostly binary. This limits
the usefulness of our bilateral grid. (c) For colorization, the learned guidance map is
at best a nonlinear remapping of the grayscale input. Our model can thus only learn
a local color per discrete intensity level, at a spatial resolution dictated by the grid’s
resolution. Our output is plagued with coarse variations of colors that are muted due
to our L2 loss (see the road line, and the tree/sky boundary).

92 Chapter 4. Bilateral Learning for Real-Time Image Enhancement

Local Laplacian 37.8 dB

Human retouch 33 dB

Face brightening 38.9 dB

HDR+ 32.7 dB

Style Transfer 25 dB

Photoshop 28.2 dB

input reference reference
(cropped)our output differenceour output

(cropped)
reference

Figure 4-14: Our method can learn accurate and fast approximations of a wide variety
of image operators, by training on input/output pairs processed by that operator.
These operators can be complicated “black box” image processing pipelines where only
a binary is available, such as HDR+ or Photoshop filters/actions. Some operators,
such as face-brightening, requires semantic understanding. Our model is even capable
of learning from highly subjective human-annotated input/output pairs, using the
MIT-Adobe FiveK dataset.

Chapter 5

Joint Demosaicking and Denoising

In chapters 3 and 4, we presented general models to approximate a large class of

image filters or even photographic edits from human retouchers. The assumptions

made by these models are central to their efficient runtime. Unfortunately, some

lower-level image processing operations require more precise control over the pixel

transformations, which precludes the use of such approximations. For these operations,

general neural networks can help. But as we will see throughout this chapter, an

adequate trainable model provides only half of the solution. High quality training

data is paramount if one wishes to improve the quality of core image processing tasks

that have been optimized for decades. This data is difficult to obtain. In this chapter,

we show how a carefully designed training corpus and a domain-specific model can

drastically improve the quality of image demosaicking and denoising.

Demosaicking and denoising are simultaneously the crucial first steps of most

digital camera pipelines. They are quintessentially ill-posed reconstruction problems:

at least two-thirds of the data is missing and the existing data is corrupted with noise.

Furthermore, complex aliasing issues arise because the red, green and blue channels

are sampled at different locations and at different rates. While most image areas are

easy to address, the rare challenging regions can still lead to catastrophic failure and

visually disturbing artifacts such as checkerboard patterns, zippering around edges,

94 Chapter 5. Joint Demosaicking and Denoising

FlexISP
32.5 dB

Ours
38.4 dB

Adobe CR
31.7 dB

reference noisy

ours
33.3 dB

ref.

[Condat 2012]
32.4 dB

Figure 5-1: We propose a data-driven approach for jointly solving denoising and
demosaicking. By carefully designing a dataset made of rare but challenging image
features, we train a neural network that outperforms both the state-of-the-art and
commercial solutions on demosaicking alone (group of images on the left, insets show
error maps), and on joint denoising–demosaicking (on the right, insets show close-ups).
The benefit of our method is most noticeable on difficult image structures that lead
to moiré or zippering of the edges.

and moiré.

For modularity, demosaicking and denoising are often solved independently and

sequentially. This unfortunately leads to error accumulation because demosaicking

needs to cope with unreliable samples and denoising suffers from the non-linear and

variable per-pixel noise introduced by demosaicking. It has long been recognized

that exploiting the regularity of natural images is key to lifting underdetermination.

Traditional techniques have hard-coded hand-crafted heuristics into local filters [Cok,

1987; Laroche and Prescott, 1994; Buades et al., 2009]. Heide et al. [2014] proposed a

joint solution to denoising and demosaicking by embedding a non-local natural image

prior into an optimization approach. However, their prior is still hand-crafted and

the combination of optimization and a non-local prior leads to a steep increase in

computation cost.

5.1. Related work 95

In contrast, we address demosaicking and denoising jointly using a data-driven

local filtering approach for efficiency. We train our model on a large set of ground

truth data to optimally leverage regularities found in natural images. We build on

the success of deep learning and convolutional neural networks, e.g. [LeCun et al.,

2015]. While data-driven local-filtering has been explored previously [Klatzer et al.,

2016; Tian et al., 2014; Lansel and Wandell, 2011], assembling a quality training set

is always key and we found that the characteristics of demosaicking and denoising

make this a challenge, in particular because catastrophically hard inputs are rare and

because salient artifacts are not well captured by standard image metrics. Another

challenge is that deep learning often requires to train a new network or to fine-tune

an existing one for even slightly different instances of a problem. This is particularly

problematic for issues such as sensor noise, whose strength varies with the ISO setting,

and other imaging characteristics.

Our contributions to joint denoising-demosaicking are a Convolutional Neural

Network capable of handling a wide range of noise levels and a procedure to build a

training set rich in challenging images prone to moiré and artifacts. We demonstrate

that our approach enables higher-quality results than previous work and runs faster

on both CPU and GPU.

5.1 Related work

Demosaicking is a well-studied problem and most algorithms perform well in flat

regions of the image. But all tend to struggle around strong edges and textured areas

(Figure 5-1). This leads to conspicuous artifacts such as zippering, color moiré and

loss of detail. Many approaches derive edge-adaptive interpolation schemes to control

such artifacts [Laroche and Prescott, 1994]. A popular solution is to design nonlinear

filters that avoid interpolating across the strong local edges [Li et al., 2008]. The

key ingredient for demosaicking is to leverage cross-channel dependencies to recover

96 Chapter 5. Joint Demosaicking and Denoising

details beyond the Nyquist frequency of each channel. Correlations between color

channels can be captured by the smooth hue prior [Cok, 1987] where color ratios or

differences are modeled as smoothly varying signals. Algorithms based on this heuristic

interpolate channels sequentially starting with the luminance component i.e. green

channel [Zhang et al., 2009; Chang and Tan, 2004]. The demosaicked green channel is

then used to guide the chrominance interpolation. In these techniques, image quality is

adversely affected when the smooth hue heuristic does not hold, leading to false color

(Figure 5-1). Hirakawa and Parks [2005] use median filtering on color differences to

mitigate the effect. But such post-processing techniques have drawbacks like excessive

blurring, and do not fundamentally change the issue of color moiré. We propose to

replace hand-crafted filters by a machinery that can jointly interpolate the three color

channels, is fully trainable and can learn to disambiguate error-prone patterns directly

from natural images without relying on hard-coded heuristics.

Self-similarity and data-driven demosaicking Recent methods overcome the

ill-posedness of demosaicking by exploiting local self-similarity in natural images and fill

in the missing color information from similar neighboring patches [Buades et al., 2009;

Zhang et al., 2011]. He et al. [2012] use SVM regression to learn on-line a demosaicking

process tailored to the input image. Another approach to the demosaicking problem is

to employ machine-learning. Kwan and Xiaolin [2004] adopt a classification approach

to select one of two discrete directions of interpolation with hand-designed features.

Some techniques employ fully connected shallow neural network architectures with

small spatial footprints [Go et al., 2000; Kapah and Hel-Or, 2000]. Early data-driven

techniques used simple architectures and hard-coded heuristics. They were trained

on small datasets of up to a few hundred images, and do not compare favorably with

the state-of-the-art. This has been attributed to the lack of appropriate training

datasets [Zhang et al., 2009]. Learning-based methods enable experimentation with

new sensor designs and alternative mosaick patterns [Lansel and Wandell, 2011; Tian

5.2. Learning to jointly demosaick and denoise 97

et al., 2014]. In this work, we gather a dataset of millions of difficult patches from

online photo collections according to the severity of the artifacts produced by a baseline

demosaicking method. We train a model directly from the input mosaick to the final

color image and achieve state-of-the art quality.

Joint denoising and demosaicking Demosaicking is further complicated by the

presence of noise. Estimates of edge orientation in noisy data are less reliable which

leads to noticeable artifacts in the demosaicked image. The techniques that perform

these steps sequentially usually start with denoising [Park et al., 2009]. A notable

exception, Akiyama et al. [2015] first denoise the Bayer array viewed as a four-

channels quarter-resolution image. Recent attempts have shown the advantages of

joint approaches [Hirakawa and Parks, 2006; Condat and Mosaddegh, 2012]. Jeon and

Dubois [2013] optimize a set of filters for discrete noise levels. Heide et al. [2014] use

a global primal-dual optimization with a self-similarity prior. The nearest neighbor

search and the iterative nature of the algorithm makes it slow and somewhat impractical.

Khashabi et al. [2014] demonstrate a learning approach that generalizes to non-Bayer

mosaick patterns. Klatzer et al. [2016] use a sequential energy minimization approach

which can be interpreted as a convolutional network with trainable activation functions

and where intermediate layers are constrained to output a color image. Klatzer et al.

can learn a noise model from data but this model is tailored to a single noise level and

fixed after training. Instead, we expose a runtime parameter and train our network so

it adapts to a wide range of noise levels.

5.2 Learning to jointly demosaick and denoise

Demosaicking and denoising have traditionally been addressed using nonlinear filter

design, incorporating prior heuristics about inter- and intra-channel correlation, behav-

ior around edges, and exploiting intra-image patch similarity. A convolutional network

seems a natural choice for the problem in this context. First, it enables discovery

98 Chapter 5. Joint Demosaicking and Denoising

noise level

input

conv. features

upsampled
forward masked input

full-res. conv. features

downsampled

 output

residual

W
W

125
6

Figure 5-2: Our proposed architecture. The first layer of the network packs 2 × 2
blocks in the Bayer image into a 4D vector to restore translation invariance and speed
up the processing. We augment each vector with the noise parameter 𝜎 to form
5D vectors. Then, a series of convolutional layers filter the image to interpolate the
missing color values. We finally unpack the 12 color samples back to the original pixel
grid and concatenate a masked copy of the input mosaick. We perform a last group
of convolutions at full resolution this time to produce the final features. We linearly
combine them to produce the demosaicked output.

of natural correlations in the data. Second, the network can represent a superset of

the pipelines implemented by many previous techniques while all its parameters are

optimized jointly to minimize a single objective.

A network alone is not sufficient to tackle denoising/demosaicking. We will see

in Section 5.3 that the choice of training data has critical impact, especially because

difficult inputs are rare yet cause visually disturbing artifacts.

We cast joint denoising and demosaicking as a supervised learning problem: we

train our algorithm on a set of input measurements for which the desired output is

known. We create the training set from millions of sRGB images, generating the

corresponding mosaicked arrays by leaving out two color channels per pixel and adding

noise. We then build a convolutional neural network and train it in an end-to-end

fashion. The inputs are the mosaicked array M with a single channel per pixel and an

estimate 𝜎 of the noise level; the output is an image O of the same size with a RGB

triplet per pixel. We start our exposition focusing on demosaicking and then discuss

noise.

5.2. Learning to jointly demosaick and denoise 99

5.2.1 Network architecture

We use a standard feed-forward network architecture to implement our demosaicking

operator (Figure 5-2). Our network is composed of 𝐷 + 1 convolutional layers. Each

convolution layer has 𝑊 outputs and uses kernels of size 𝐾×𝐾. We denote by 𝐹 𝑑 the

feature map of the 𝑑-th layer. In addition to the input mosaick M, the network takes

as input an estimate of the noise level 𝜎. We first describe the general architecture

of the network. Details on how 𝜎 comes into play can be found in § 5.2.2. Since the

Bayer mosaick is ubiquitous, we specialize our network to exploit its structure. We

show however in § 5.4.5 that our approach generalizes to non-Bayer patterns.

We first rearrange the samples of the Bayer input mosaick to obtain a quarter-

resolution multi-channel image which makes the spatial pattern translation invariant

with a period of 1 pixel and reduces the computational cost of the subsequent steps.

The first layer 𝐹 0 extracts 2×2 patches from M and packs them as a 4 channel feature

map indexed by 𝑐.

𝐹 0
𝑐 (𝑥, 𝑦) = M

(︁
2𝑥 + (𝑐 mod 2), 2𝑦 +

⌊︁ 𝑐
2

⌋︁)︁
(5.1)

The bulk of the processing is performed at this lower resolution by the next 𝐷 layers.

They share the same structure and consist in convolutions with a bank of filters of

spatial footprint 𝐾 ×𝐾 followed by a point-wise ReLU non-linearity 𝑓(·) = max(0, ·).

𝐹 𝑑
𝑐 = 𝑓

(︃
𝑏𝑑𝑐 +

𝑊∑︁
𝑐′=1

𝑤𝑑
𝑐𝑐′ * 𝐹 𝑑−1

𝑐′

)︃
for 𝑐 ∈ {1 . . .𝑊} (5.2)

𝑏𝑑𝑐 is a scalar bias for the 𝑐-th channel of layer 𝑑, and 𝑤𝑑
𝑐𝑐′ is a two-dimensional

convolution kernel of size 𝐾 × 𝐾. Each layer uses a total of 𝑊 2 such filters. The

final low-resolution feature map 𝐹𝐷 has 12 channels instead of 𝑊 (and accordingly

uses 12𝑊 filters). These final features correspond to the color samples of a 2 × 2

neighborhood. We upsample them back to full-resolution, reversing the process of

100 Chapter 5. Joint Demosaicking and Denoising

Equation 5.1. We also concatenate masked copies of the input mosaick M as channels

in 𝐹𝐷+1. The masks 𝑚𝑐 effectively isolate the RGB color samples on three distinct

channels.

𝐹𝐷+1
𝑐 (𝑥, 𝑦) = 𝑚𝑐(𝑥, 𝑦)M(𝑥, 𝑦) for 𝑐 ∈ {1 . . . 3} (5.3)

𝐹𝐷+1
𝑐 (𝑥, 𝑦) = 𝐹𝐷

𝑐′

(︁⌊︁𝑥
2

⌋︁
,
⌊︁𝑦

2

⌋︁)︁
for 𝑐 ∈ {4 . . . 6} (5.4)

Here 𝑐′ = 4(𝑐− 4) + 1 + (𝑥 mod 2) + 2(𝑦 mod 2). This implements a form of residual

network: we fast-forward the identity mapping to deeper layers, thereby allowing

the network to learn a residual instead of the absolute mapping. Propagating the

identity through many non-linear layers is harder an uses more parameters than with

this shorcut [He et al., 2016]. However, we do not force the network to use both the

fast-forwarded identity and the non-linear stack in fixed proportions but rather let

it learn the appropriate mix: we perform a last convolution (Equation (5.2)), at full

resolution this time, to produce 𝐹𝐷+2. The final output O of the network is an affine

combination of the last feature maps 𝐹𝐷+2.

O𝑐(𝑥, 𝑦) = 𝑏O𝑐 +
∑︁
𝑐′

𝑤O
𝑐𝑐′𝐹

𝐷+2
𝑐′ (𝑥, 𝑦) (5.5)

Overall we opted for a thin (small 𝑊), deep (large 𝐷) architecture that is most similar

to that of [Simonyan and Zisserman, 2014]. We experimented with networks of depth

from 𝐷 = 5 up to 20. For each convolutional layer, we used kernels with spatial

footprint 𝐾 = 3. The network thus implements a non-linear filter with a receptive

field of 2𝐷(𝐾 − 1) + 𝐾 + 1 pixels with respect to the input’s resolution. We pad

the input of each convolution layer by 𝐾−1
2

pixels on each side so that the spatial

dimension does not decrease with depth. The network thus also learns the boundary

condition and does not reduce the dimensions of the input image, which would happen

if we were to keep only the valid part of the convolutions. While processing the image

at full-resolution with the color masks of Equation (5.4) directly applied to the input

5.2. Learning to jointly demosaick and denoise 101

mosaick is possible (§ 5.4.5), it incurs a higher computational cost since the network

then processes four times as many pixels. This also reduces the receptive field of

the final layer. We did not find this alternative approach to significantly affect the

denoising/demosaicking performances.

5.2.2 Joint denoising with multiple noise levels

A combination of Poisson and Gaussian noises in linear space accurately models

camera noise [Foi et al., 2008]. Because we work with white-balanced gamma-corrected

sRGB images, we use an additive Gaussian noise model as [Jeon and Dubois, 2013]

recommends.

We want to alleviate the need for a specialized network for each noise level. Instead,

we train a single network on a continuous range of noise levels and explicitly add

the noise level as an input parameter to the network. At training time and for each

new input M, we randomly sample a noise level 𝜎 ∈ [𝜎1, 𝜎2]. We corrupt M with a

centered additive Gaussian noise of variance 𝜎2 before feeding it to the network. We

also provide the network with the scalar estimate of the noise level 𝜎 as extra input

(Figure 5-2). In practice, since camera model and settings are stored alongside the raw

data and one can rely on offline noise calibration, the noise level is typically known

and used to inform demosaicking. In order to incorporate this new information into

the convolutional architecture, we spatially replicate the noise level to match the input

dimensions of the first layer 𝐹 0 and concatenate it as an extra channel: 𝐹 0 now has 5

channels (Figure 5-2). [Burger et al., 2012] used a similar approach for denoising-only

in a non-convolutional setup.

5.2.3 Training details

At training time, we use a dataset 𝒟 = {(𝜎𝑖,M𝑖, I𝑖)}𝑖 of mosaicked/ground-truth image

patches where M𝑖 is generated from I𝑖 and corrupted with additive white Gaussian

noise of variance 𝜎2
𝑖 on-line. We optimize the weights and biases by minimizing the

102 Chapter 5. Joint Demosaicking and Denoising

normalized 𝐿2 loss on this training set:

ℒ
(︀{︀

𝑤(𝑑), 𝑏(𝑑)
}︀
𝑑

)︀
=

1

𝑝2|𝒟|
∑︁
𝑖

||O𝑖 − I𝑖||2 (5.6)

In all our experiments, we use a patch size 𝑝 = 128 pixels for the training samples.

The filter weights 𝑤(𝑑) are initialized according to [He et al., 2015] and the biases 𝑏(𝑑)

are first set to 0. The optimization is carried out by ADAM [Kingma and Ba, 2015], a

flavor of stochastic gradient descent that maintains an adaptive estimate of the first

and second order moments of the gradient and uses them to be independent of any

diagonal rescaling of the gradient. We use a batch size of 64, and an initial learning

rate of 10−4. We used an 𝐿2 weight decay of 10−8 on 𝑤(𝑑). All other parameters are

left at the value recommended by the authors. As learning progresses, we decrease the

learning rate by a factor 10 whenever the validation error on an independent dataset

stalls, typically twice, after 10 epochs. In our experience, higher initial learning rates

fail to converge to a good solution. The training is performed with a customized

version of CAFFE [Jia et al., 2014] on a NVIDIA Titan X, and usually takes 2-3

weeks.

5.3 Curating a dataset of challenging images

When trained on standard datasets, our neural network works well on average but

produces disturbing artifacts on a number of hard cases, the common plague of

demosaicking and denoising. These challenges are due to two important issues. First,

hard cases are rare and get diluted by the vastly more common easy areas. Second,

metrics such as 𝐿2 or PSNR fail to notice demosaicking artifacts that are salient to

humans.

We now present an algorithm for detecting challenging patches and focus the

training on them using a combination of adaptive training based on human visual

difference predictors and a new metric optimized to detect moiré artifacts.

5.3. Curating a dataset of challenging images 103

We first train a network on standard datasets and use it to demosaick and denoise

millions of ground-truth photographs in order to mine for hard cases. We look for

two classes of artifacts frequently missed by the network: luminance artifacts and

color moiré. Inspired by curriculum learning [Bengio et al., 2009], we adaptively

build a new dataset composed of these artifact-prone patches. We use this dataset to

fine-tune or train the network from sratch. This improves the model’s performance on

difficult cases and can be seen as reweighting the loss function to give more weight to

artifact-prone patches. Next, we discuss our selection strategy and the metrics we use.

5.3.1 Obtaining a ground-truth and the corresponding mosaic

We start with a large number of sRGB images downloaded from the web to generate

ground truth data. We create a mosaick from each image, add noise, and use this

pair for training. We restrict our selection to images with at least 16 Mpix to favor

higher quality images. To avoid biasing the network towards distortions caused by the

camera pipeline that first created the downloaded images, we downsample them by a

factor 4 using bicubic interpolation and use this as ground-truth. While more complex

downsampling techniques are possible [Khashabi et al., 2014], they do not help in

our context: our training images are JPEG-compressed and come from unknown and

diverse sources.

We create the mosaicked and noisy image M by retaining only one color channel per

pixel according to the Bayer pattern from the sRGB image. We also augment patches

from the training set with random rotations in 90∘ steps, random left-right mirror

images, and 1-pixel shifted copies in either dimension. This augments the training

data by a factor 32× and provides some rotational and translational invariance.

5.3.2 Challenging patches are rare

Publicly available demosaicking datasets contain a few hundred images which is

insufficient for training the thousands of parameters of a deep network. Instead, we

104 Chapter 5. Joint Demosaicking and Denoising

our dataset

Imagenet+MirflickR

PSNR (dB)

percentage of patches

challenging patches
useful for training

Figure 5-3: Most of the patches in a generic training dataset (here Imagenet and
Mirflickr) are easy cases for modern demosaicking algorithms (in this figure, we measure
the PSNR of AHD Hirakawa and Parks [2005]). For a network to perform well in
challenging situations, it needs to be trained on challenging patches, i.e., on data that
lies on the tail of the patch distribution. This plot shows that our dataset contains
more such patches. Further, not shown in this figure is the fact that demosaicking
failures on our patches lead to more visually unpleasant artifacts: we explicitly selected
the patches for this reason.

trained our first network using 1.3 million images from Imagenet [Deng et al., 2009]

and 1 million images from MirFlickr [Huiskes and Lew, 2008]. While this network

matches the PSNR statistics of previous work, a closer inspection reveals artifacts

near thin edges and complex textures (see Figure 5-4). Large quantity of training

samples do not guarantee convincing demosaicking.

A random selection of images is mainly composed of smooth patches as these

dominate natural images [Levin et al., 2012]. Challenging structures only make up

a small fraction, shown as the tail of the patch distribution in Figure 5-3. Smooth

patches account for a majority of the training time, even though results on such cases

are already perceptually indistinguishable from ground truth. We compensate for this

by assembling a training set with more difficult patches.

5.3. Curating a dataset of challenging images 105

re
fe

re
nc

e
im

ag
en

et
ou

r d
at

as
et

di
fe

rre
nc

e

Figure 5-4: A network trained on a standard image dataset (second row) creates
noticeable artifacts in its output such as the zippering on the thin yellow line, confusion
around curves in the first and last example, and moiré in the third example. When
training the same network on our new dataset of difficult cases, these artifacts are
mostly gone (third row). The last row shows the difference map between the two
network outputs, and the first row is the ground-truth image. (best viewed in digital
form)

106 Chapter 5. Joint Demosaicking and Denoising

5.3.3 Mining difficult image patches

We create a database of difficult patches by applying the first network (trained on

Imagenet) to millions of new patches we download from the web and retaining the

failure cases. We detect patches that pose two specific challenges: luminance artifacts

around thin structures (e.g. zipper) and color moiré. We use separate metrics to detect

these cases. Rejecting trivial cases effectively reweighs the loss function (Eq. (5.6))

towards challenging ones.

Salient luminance artifacts We first use the perceptually based HDR-VDP2

[Mantiuk et al., 2011] to detect luminance artifacts around thin edges. We have

found that standard metrics like PSNR, SSIM, S-CIELAB do not capture perceptual

artifacts as convincingly as HDR-VDP2. It has also been empirically shown to correlate

well with human judgement for simpler demosaicking [Sergej and Mantiuk, 2014]. It

compares the visibility of local artifacts as well as overall image quality to a reference.

It models the response of the human visual system including phenomena such as

spectral sensitivity, luminance adaptation and frequency masking and is calibrated

against contrast sensitivity measurements. For each new image, we apply demosaicking

using the pre-trained network. We then compare the network’s output to the ground

truth using HDR-VDP and compute a probability of artifacts at each pixel. We

smooth the probability map using Gaussian blur (𝜎 = 3) and extract up to 30 local

maxima if the artifact probability exceeds 0.1. This resulted in 2,489,180 problematic

patches from 1,393,107 15.2 Mpix images (∼ 3% of total pixels). We adjusted the

metric to approximate the response of a human viewing a 2560 × 1600 30-inch sRGB

display from a distance of 1m. HDR-VDP detects high-frequency luminance artifacts

(Fig. 5-5a); training our network on these patches yielded drastically improved results.

The metric however misses color moiré artifacts because it only analyzes the luminance

channel (Fig. 5-5, bottom row).

5.3. Curating a dataset of challenging images 107

reference LDI-NAT demosaicked HDR-VDP2 prediction
Figure 5-5: HDR-VDP run on the demosaicked output of LDI-NAT Zhang et al. [2011].
First, row full image. Second row, HDR-VDP correctly detects the zipper pattern due
to luminance variations. It signals some anomalies in the output image but with a low
probability of detection. It works only on luminance, therefore misses the chrominance
moiré artifacts.

108 Chapter 5. Joint Demosaicking and Denoising

Moiré and aliasing Moiré is an interference pattern caused by aliasing. Repetitive

details close to or smaller than the resolution of the sampling grid can give rise to

artificial low frequency patterns. Mosaic images have their color channels at spatial

offsets; moiré appears as distracting false color bands (Fig.5-6b) after demosaicking

because of erroneous interpolation of color samples. The effect of aliasing is best

understood in the Fourier domain because it introduces undesirable frequencies. We

quantify moiré artifacts by measuring the change in frequency content from the

ground-truth I to the demosaicked image O image. We first convert both I and O

to the Lab space and compute the 2D Fourier transform of each channel ℱI(𝜔) and

ℱO(𝜔) respectively. We then compute the gain of the demosaicked image with respect

to the input at each frequency.

𝜌(𝜔) =

⎧⎪⎨⎪⎩log
(︁

|ℱO(𝜔)|2+𝜂
|ℱI(𝜔)|2+𝜂

)︁
if |𝜔| ≤ 𝑟

1 otherwise
(5.7)

We only compare the gain in frequencies lower than 𝑟 to mitigate boundary effects

and high-frequency noise. We smooth the gain map with Gaussian blur and mark

the patch as aliased if the maximum gain value across all channels and frequencies

exceeds a threshold 𝑡. For 128× 128 patches, we set the the low-pass radius 𝑟 = 0.95𝜋,

the standard deviation of the Gaussian kernel to 3, and gain map threshold to 𝑡 = 2.

This criterion consistently selects moiré-prone patches. Figure 5-6 shows the gain map

for an aliased patch.

These moiré patches are rare; they lie at the end of the tail of natural patch

distribution (Figure 5-3). We found 0.05% of patches from 2 million images patches

are aliased. Nonetheless, these artifacts are important because they can still affect

large areas of an image (e.g. a 128 × 128 patch), making it unusable.

5.4. Results 109

(a) input (b) demosaicked
output

(c) error (d) amplitude gain
in the Fourier do-
main

Figure 5-6: Frequency Gain due to moire

5.4 Results

We evaluate our network in various conditions. Unless stated otherwise, all the

experiments in this section use a network with 𝐷 = 15 layers (each with 𝑊 = 64

3 × 3 filters) trained from scratch on 2,590,186 128 × 128 hard patches. The network

has 559,776 trainable parameters. We stop the training when the error on a separate

validation set of 4000 images stops decreasing. We test all techniques on another

dataset of 2000 images. All three datasets are independent and have been mined in

the same fashion, as described in Section 5.3. Half of the test set was mined using

the HDR-VDP metric (we refer to this half as the vdp test set). The other half

was assembled using the moiré metric (we refer to it as moiré). The parameters of

competing techniques are set to the values recommended by their authors, often tuned

on the Kodak/McMaster datasets included in our comparison. Our main metric is

PSNR where the error is averaged over pixels and color channels before taking the

logarithm.

First, we compare our algorithm against previous work on the demosaicking-only

task with noise-free sRGB images (Table 5.1, in particular no denoising is applied).

This evaluation illustrates that high PSNR statistics can obscure subtle perceptual

artifacts: we demonstrate this on hard cases from our testing dataset (Figure 5-9).

We then present our results on demosasicking noisy inputs, which we refer to as

110 Chapter 5. Joint Demosaicking and Denoising

joint denoising and demosasicking (Figure 5-7). Although our network is trained on

8-bits sRGB data, we also evaluate our network on linear RGB data (Table 5.2) and

non-Bayer mosaicks. This shows that our approach generalizes to other demosaicking

conditions. We finally describe implementation details and show that our algorithm is

faster than the previous best-performing methods on both CPU and GPU.

5.4.1 Demosaicking noise-free images

We first evaluate our algorithm on noise-free inputs from two common demosaicking

datasets: McMaster [Zhang et al., 2011] and Kodak [Li et al., 2008]. Table 5.1 (first

two columns) show that our network outperforms the previous techniques on these

datasets. These results alone however are not sufficient because these datasets are

known to have flaws and to misrepresent the statistics of digital images [Levin et al.,

2012]. To provide a more accurate depiction of the demosaicking challenges, we

also compare our technique with the state of the art on a testing set of 2000 hard

cases not seen during training (Table 5.1 third and fourth columns). Our method

produces consistently better results quantitatively and the improvement is also visually

significant (Figure 5-9). Our network (trained on difficult cases) successfully handles

complex patterns and generates artifact-free results. We also compare to the widely

used Adobe Camera Raw software. Results for all the datasets and techniques can be

found in the supplemental material. Since the test images are noise-free, no denoising

has been applied in this experiment.

5.4.2 Training set and training time

We initially trained our network on the 1.3 million images from Imagenet [Deng et al.,

2009] and 1 million from MirFlickr [Huiskes and Lew, 2008] instead of our dataset

of difficult cases. Despite reaching competitive PSNR levels (on-par with FlexISP

[Heide et al., 2014]), the network produced noticeable artifacts, mainly along thin

structures and moiré-prone textures. We believe that this is due to the inherent bias

5.4. Results 111

kodak mcm vdp moiré

bilinear 32.9 32.5 25.2 27.6
Adobe Camera Raw 9 33.9 32.2 27.8 29.8
Klatzer* [2016] 35.3 30.8 28.0 30.3
Gunturk [2002] 35.8 33.2 29.3 31.3
Lu [2010] 36.0 33.4 29.4 31.4
Li [2005] 36.1 33.1 29.2 31.5
Hirakawa [2005] 36.1 33.8 28.6 30.8
Condat [2011] 35.5 33.3 28.4 30.9
Condat [2012] 36.1 33.6 29.6 31.9
Jeon [2013] 36.4 34.0 27.8 30.4
Hirakawa [2006] 36.5 33.9 30.0 32.1
Hamilton [1997] 36.9 35.2 28.9 30.9
Zhang [2005] 37.3 34.7 30.3 32.4
Buades [2009] 37.3 35.5 29.7 31.7
Zhang (NLM) [2011] 37.9 36.3 30.1 31.9
Getreuer [2011] 38.1 36.1 30.8 32.5
Heide [2014] 40.0 38.6 27.1 34.9
ours 41.2 39.5 34.3 37.0

Table 5.1: PSNR comparison of our approach to state of the art techniques on the
demosaicking-only scenario. First and second column show evaluation on standard
datasets. Third and fourth column show comparisons on our datasets containing
images prone to luminance artifacts and color moiré respectively. No denoising is
applied for any of the competing methods. (*) For Klatzer et al., we used the published
model which was trained on linear data and ran it on linearized images. The training
code was not available at the time of publication.

112 Chapter 5. Joint Demosaicking and Denoising

of these standard datasets towards trivial cases like smooth patches or unambiguous

edges. Training a network on the difficult cases significantly improves visual quality

(Figure 5-4). We found that fine-tuning the Imagenet+MirFlickr network or retraining

from scratch worked equally well. All the results we report are trained from scratch on

the hard examples only. Accuracy is numerically competitive after a day of training

but image quality improves with longer training. Week-long training is common with

deep networks and has no impact on the practicality of our approach since it is done

only once before the algorithm is deployed.

5.4.3 Joint denoising and demosaicking results

We now present results for joint denoising and demosaicking (Figure 5-10). We train on

images corrupted with continuous levels of noise 𝜎 ∈ [0; 20]. Similar to previous work,

we model noise in the white-balanced gamma-corrected images as signal-independent

white Gaussian noise [Jeon and Dubois, 2013]. During evaluation, we tested images at

6 levels of noise within the range used for training (Fig. 5-7). Our results consistently

outperform previous techniques on all noise levels.

We also experimented with networks trained on a single noise level instead of

continuous levels and did not observe noteworthy change in result quality (Fig. 5-7).

This suggests that the network is already optimally trained, and does not require

fine-tuning for each noise level.

5.4.4 Processing linear data

Khashabi et al. [2014] suggest that demosaicking should be evaluated on raw RGB

data with an affine noise model [Foi et al., 2008; Hasinoff et al., 2010]. In previous

experiments, we instead trained and evaluated on sRGB to facilitate comparisons with

state-of-the-art techniques that choose to do the same. Without any further training

on linear data or affine noise models, our sRGB trained network outperforms the best

techniques on the MSR 16-bits linear Panasonic testing set [Khashabi et al., 2014]

5.4. Results 113

noise level

Figure 5-7: PSNR comparison joint denoising and demosaicking at different levels
of Gaussian noise with standard deviation σ. The metric is averaged across all four
datasets from Table 5.1: mcm, kodak, vdp, moiré.

dcraw (no denoising)full image (dcraw)

IS
O

 1
00

IS
O

 1
00

IS
O

 6
40

0

ours Klatzer et al. 2016

Figure 5-8: Our algorithm trained on sRGB data generalizes to real (linear) RAW
images. It successfully removes color moiré on the fabric at various noise levels whereas
dcraw does not (first and second rows). In comparison, Klatzer et al. [2016] does not
generalize well to widely different noise levels: it denoises too aggressively the ISO100
image (first row), and produces artifacts on the ISO6400 image (second row). This is
particularly visible on the smooth wall. Our output is free of checkerboard patterns
and staircase artifacts (third row). DCRaw exhibits these artifacts on the red lettering
and Klatzer et al. has checkboard on the blue line on the right.

114 Chapter 5. Joint Demosaicking and Denoising

(Table 5.2). Since noise parameters for individual images are not provided in this

dataset, we estimate the average noise variance and use it as our noise parameter.

We also fine-tuned our network on our dataset of hard cases linearized from sRGB

and observed virtually the same performance. This shows that our network is not

restricted to sRGB data and generalizes well to linear data. Real RAW training data

would be ideal, but available datasets do not contain enough challenging cases: we

observed no quality improvement when training on MIT5k [Bychkovsky et al., 2011a]

or the MSR training set. Figure 5-8 shows the output of our algorithm on real (linear)

RAW images captured by a Canon 5D mark II at various ISO levels.

noise-free with noise
linear sRGB linear sRGB

bilinear 30.9 24.9 – –
Hamilton [1997] 36.7 30.0 – –
Hirakawa [2005] 37.2 31.3 – –
Zhang (NAT) [2011] 37.6 31.6 – –
Gunturk [2002] 38.2 31.0 – –
Lu [2010] 38.3 31.0 – –
Zhang (NLM) [2011] 38.4 32.1 – –
Zhang [2005] 38.8 31.7 – –
Getreuer [2011] 39.4 32.9 – –
Khashabi [2014] 39.4 32.6 37.8 31.5
Heide* [2014] 40.0 33.8 – –
Klatzer [2016] 40.9 34.6 38.8 32.6
ours 41.6 35.3 38.4 32.5
ours (f.t.) 42.7 35.9 38.6 32.6

Table 5.2: Evaluation on linear data for both noise-free and noisy data. We report
PSNR in both linear and sRGB space. We feed a single estimate of the average noise
level to our network a test time. We also fine tuned our network to linearized sRGB.
Among all competing techniques, only KhashabiKhashabi et al. [2014] and Klatzer
Klatzer et al. [2016] techniques were specifically designed for linear data. Results on
noisy images are excluded from the table for methods that do not attempt to denoise.

5.4. Results 115

5.4.5 Alternative mosaick patterns

With a few simple modifications, our method generalizes to non-Bayer patterns.

We experimented with the Fuji X-Trans pattern. Compared to the Bayer network

illustrated in Figure 5-2, we no longer process the image at quarter resolution. Instead,

the mosaicked input RGB values are kept at full-resolution on separate planes: we

remove layers 𝐹 0 and 𝐹𝐷+1. The X-Trans pattern is 6x6 pixels; this would imply a

much more aggressive downsampling. At train time, we apply a color mask to the

ground truth that converts it to the non-Bayer mosaick. We trained this modified

network from scratch for three days on our dataset of hard-cases. We evaluate this new

network on the MSR Panasonic X-Trans dataset [Khashabi et al., 2014]. The table

below shows that our algorithm consistently performs better than previous techniques.

linear sRGB

Khashabi [2014] 36.9 30.6

Klatzer [2016] 39.6 33.1

ours 39.7 33.2

5.4.6 Variations on the network configuration

Using as few as 𝐷 = 7 layers has a minimal impact on general accuracy, but patches

prone to moiré are significantly degraded: they benefit from the large spatial footprint

of the deeper network. 𝑊 = 64 filters per layer worked well, using 𝑊 = 128 was

superfluous and 𝑊 = 32 decreased the PSNR.

5.4.7 Running time

Unless stated otherwise, we benchmark all methods with 1MPix images on an Intel

Core i7-3770K and GeForce Titan 700 and report the average time over 10 runs.

Our technique is linear in the pixel count. Superlinear competitors can be made

to run in linear-time by processing the image in tiles. We use the Halide image

116 Chapter 5. Joint Demosaicking and Denoising

CPU (ms/Mpix) GPU (ms/Mpix)

bilinear 127 –
Hamilton [1997] 385 –
Condat [2011] 566 –
Lu [2010] 737 –
Li [2005] 1117 –
Hirakawa [2006] 1618 –
Gunturk [2002] 1991 –
Hirakawa [2005] 2998 –
Condat [2012] 11,211 –
Jeon [2013] 14,728 –
Zhang [2005] 30,642 –
Khashabi [2014] 36,157* –
Zhang (NLM) [2011] 264,243 –
Zhang (NAT) [2011] 1,700,510 –
Heide [2014] 1,815,111 3000*
Klatzer [2016] 3,560,510 1600*
ours 2,932 325

Table 5.3: Runtime of different demosaicking algorithms in their publicly available
implementations. Our approach is faster than previous high quality techniques like
FlexISP Heide et al. [2014]. Timings with an asterisk (*) are reported from the
respective original paper.

processing language [Ragan-Kelley et al., 2013a] to implement our network. Our CPU

implementation of a 𝐷 = 15 layers network is 8× faster than ATLAS Caffe [Jia et al.,

2014] and 3.5× faster than Caffe with Intel’s Math Kernel Library. It processes image

at 3s/Mpix on a modern desktop CPU. Our approach is up to two orders of magnitude

faster than previous high-quality techniques that use global optimization like FlexISP

[Heide et al., 2014] and other non-local techniques [Zhang et al., 2011] (Table 5.3).

5.5 Limitations

Our approach relies on image metrics to detect challenging patches and build a ground-

truth dataset. We used HDR-VDP for luminance artifacts, but it is not perfect and

we can benefit from a better metric. Also, if the sRGB ground truth is corrupted with

5.5. Limitations 117

color moiré, our network will learn the corruption; a no-reference moiré detector is

required to alleviate this.

118 Chapter 5. Joint Demosaicking and Denoising

difference ours differenceFlexISPdifferenceAdobe CRreference

38.7 dB

40.2 dB

39.9 dB

38.6 dB

30.7 dB

38.8 dB

26.7 dB

30.0 dB

27.7 dB

22.0 dB

43.2 dB

37 dB

27.5 dB

32.5 dB

21.8 dB

23.9 dB

26.0 dB

29.8 dB

29.3 dB

30.8 dB

25.3 dB

31.8 dB

23.5 dB

26.3 dB

Figure 5-9: Comparison of our approach with Adobe Camera Raw, FlexISP Heide
et al. [2014] on noise-free images. Exhaustive results can be found in supplementary
material.

5.5. Limitations 119

re
fe

re
nc

e
ou

rs
Co

nd
at

 2
01

2
Co

nd
at

 2
01

2
Co

nd
at

 2
01

2
ou

rs
ou

rs
re

fe
re

nc
e

re
fe

re
nc

e

30.7 dB

26.2 dB

28.1 dB

24.3 dB

26.4 dB

23.3 dB

30.2 dB

25.8 dB

37.4 dB

36.1 dB

31.8 dB

31.6 dB

29.5 dB

29.5 dB

35.7 dB

34.8 dB

39 dB

36 dB

33 dB

30.3 dB

28.7 dB

28.2 dB

35.9 dB

34.2 dB

Figure 5-10: Joint denoising and demosaicking results. Our approach outperforms
previous best techniques on noisy data in challenging images on different levels
of Gaussian noise with standard deviation σ. Exhaustive results can be found in
supplementary material.

120 Chapter 5. Joint Demosaicking and Denoising

Chapter 6

Conclusion

In this thesis, we have developed fast algorithms for high-fidelity image processing.

These algorithms are parameterized such that they can be reconfigured to approximate

new photographic transformations on-demand (chapters 3 and 4). Their computation is

fully differentiable, which makes them amenable to automatic parameter optimization.

This property, paired with appropriate training datasets, led to significant quality

improvements on difficult, long-standing image processing problems (chapter 5).

We have seen that cloud image enhancement can only be made more efficient if

the power and time cost of data transfers is minimized. In the case of algorithms

that preserve the content of an image and do not spatially warp it, we have shown

that we can exploit the similarity between the input and the output images. We have

introduced transform recipes, a flexible representation which captures how images are

locally modified by an image operator. Recipes dramatically reduce the bandwidth

required for cloud computation. They are compact and allow us to work on the server

with a highly-degraded input-output pair, and apply the recipe on the client to the

high-quality input. Finally, we have demonstrated that transform recipes can support

a wide range of algorithms and, in practical scenarios, lead to reduced power and

time costs. Transform recipes laid out the basic building blocks for general filter

approximation that inspired our subsequent work.

122 Chapter 6. Conclusion

We have presented a new network architecture that performs image enhancement

in real-time on full-resolution images while still accurately capturing high-frequency

effects. Unlike transform recipes, which are tailored to a single image, our model is

trained using many pairs of input/output images, allowing it to learn from a reference

implementation of some algorithm or even from human adjustments. By performing

most of its computation within a bilateral grid and by predicting local affine color

transforms, our model is able to strike the right balance between expressiveness and

speed. We train it end-to-end and optimize the loss function at full resolution (despite

most of the model working at a heavily reduced resolution). Thus, our model is

capable of learning full-resolution and non-scale-invariant effects. Its accuracy has

been demonstrated on a variety of different image operators, pipelines, and subjective

human-annotated datasets.

Some image processing tasks require more direct control over the pixels. We

demonstrated that a joint approach based on a convolutional network can significantly

improve the quality of demosaicking and denoising. It can resolve even challenging

situations that usually result in zippering or moiré artifacts. However, we have seen

that traditional supervised learning must be adapted because the vast majority of

image regions are easy to address and the real hard cases do not occur enough and are

not well characterized by even advanced perceptual image metrics. We have proposed

an adaptive approach as well as a new moiré detection metric to tackle these challenges.

Our method outperforms state-of-the-art solutions in terms of both perceptual and

statistical visual quality, while being an order of magnitude faster.

6.1 Future directions

The applications we have presented in this dissertation show that gradient-based

optimization of highly-parameterized pipelines can improve the speed and quality of

many image processing tasks. The tools we used to develop these models provide

6.1. Future directions 123

gradients for compositions of a limited set of operators. This often turned out

to be insufficient for our purpose, for instance when we required particular access

patterns or custom image manipulation routines. We implemented these custom

operations as low-level extensions to deep learning packages, which also required

manually deriving and implementing the gradients. This is an error-prone process

that slows down prototyping, because the forward and gradient code needs to be

sufficiently optimized to keep training time reasonable. Having derivatives as first-class

citizen in a programming language and automatic code optimization would greatly

streamline this workflow. We have already taken steps in this direction, adding

automatic differentiation [Griewank and Reese, 1991] to the Halide programming

language, together with an automatic scheduler that synthesizes fast derivative code

[Li et al., 2018]. The general optimization of low-level code for pipelines that grow

increasingly complex remains a challenging endeavor. Can machine learning help us

explore some of the performance trade-offs?

The human eye is highly sensitive to rare, but catastrophic image artifacts. As-

sembling datasets that exhibit these issues to reweigh the loss function and give them

more prominence, like we have done for demosaicking, is a delicate task. New metrics

that correlate well with human perception could automate this selection process and

generalize more easily to other problems. Recent work on perceptual losses built from

neural networks are a step in this direction [Johnson et al., 2016; Berardino et al.,

2017; Zhang et al., 2018]. The demosaicking problem also illustrates that oftentimes,

only a small fraction of an image’s pixels do in fact call for the more sophisticated

reconstruction algorithm (e.g. smooth patches are easy to demosaick). A no-reference

metric that could efficiently detect such patterns, and adaptively apply the costly

reconstruction only where it is truly needed, would improve performance. Large

and complex pipelines, that are optimized from data also raise new challenges. In

particular, their failures modes are not well understood. The systematic analysis of

such failures (e.g. [Goodfellow et al., 2014; Elsayed et al., 2018]) and the uncertainty

124 Chapter 6. Conclusion

around model predictions [Kendall and Gal, 2017] is still a largely open problem.

Finally, machine learning offers unprecedented opportunities to automate tedious

and repetitive tasks. By and large, automation is beneficial, but in a creative context,

it could also become normalizing. The model of chapter 4 suggests we can make our

algorithms more personalized. But it only scratches the surface and still requires

thousands of training example pairs. Can our programs learn from limited datasets

containing only a dozen of examples? Can they progressively adapt to a particular

user’s taste or style, tapping into sparse feedback signals?

Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/.

Andrew Adams, Jongmin Baek, and Myers Abraham Davis. Fast high-dimensional
filtering using the permutohedral lattice. Computer Graphics Forum, 2010.

H. Akiyama, M. Tanaka, and M. Okutomi. Pseudo four-channel image denoising
for noisy cfa raw data. In Image Processing (ICIP), 2015 IEEE International
Conference on, pages 4778–4782, Sept 2015. doi: 10.1109/ICIP.2015.7351714.

Mathieu Aubry, Sylvain Paris, Samuel W. Hasinoff, Jan Kautz, and Frédo Durand.
Fast local laplacian filters: Theory and applications. ACM Trans. Graph., 33(5):
167:1–167:14, September 2014a. ISSN 0730-0301. doi: 10.1145/2629645. URL
http://doi.acm.org/10.1145/2629645.

Mathieu Aubry, Sylvain Paris, Samuel W Hasinoff, Jan Kautz, and Frédo Durand.
Fast local laplacian filters: Theory and applications. ACM TOG, 2014b.

Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet: A deep convolu-
tional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv
preprint arXiv:1505.07293, 2015.

Kenneth C. Barr and Krste Asanović. Energy-aware lossless data compression. ACM
Trans. Comput. Syst., 24(3):250–291, August 2006. ISSN 0734-2071. doi: 10.1145/
1151690.1151692. URL http://doi.acm.org/10.1145/1151690.1151692.

Jonathan T Barron and Ben Poole. The fast bilateral solver. ECCV, 2016.

http://tensorflow.org/
http://doi.acm.org/10.1145/2629645
http://doi.acm.org/10.1145/1151690.1151692

126 Bibliography

Jonathan T Barron, Andrew Adams, YiChang Shih, and Carlos Hernández. Fast
bilateral-space stereo for synthetic defocus. CVPR, 2015.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 41–48, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-516-1. doi: 10.1145/1553374.1553380. URL http://doi.acm.org/10.1145/
1553374.1553380.

Alexander Berardino, Valero Laparra, Johannes Ballé, and Eero Simoncelli. Eigen-
distortions of hierarchical representations. In Advances in Neural Information
Processing Systems, pages 3533–3542, 2017.

Floraine Berthouzoz, Wilmot Li, Mira Dontcheva, and Maneesh Agrawala. A frame-
work for content-adaptive photo manipulation macros: Application to face, land-
scape, and global manipulations. ACM Transactions on Graphics, 30(5), 2011.

Adrien Bousseau, Sylvain Paris, and Frédo Durand. User-assisted intrinsic images.
ACM TOG, 2009.

Antoni Buades, Bartomeu Coll, Jean-Michel Morel, and Catalina Sbert. Self-similarity
driven color demosaicking. Image Processing, IEEE Transactions on, 18(6):1192–
1202, 2009.

H.C. Burger, C.J. Schuler, and S. Harmeling. Image denoising: Can plain neural
networks compete with BM3D? In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 2392–2399, June 2012. doi: 10.1109/
CVPR.2012.6247952.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code.
IEEE Transactions on Communications, 31(4):532–540, 1983.

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photo-
graphic global tonal adjustment with a database of input / output image pairs. In
The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition,
2011a.

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning pho-
tographic global tonal adjustment with a database of input / output image pairs.
CVPR, 2011b.

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photo-
graphic global tonal adjustment with a database of input / output image pairs. In
IEEE Conference on Computer Vision and Pattern Recognition, 2011c.

http://doi.acm.org/10.1145/1553374.1553380
http://doi.acm.org/10.1145/1553374.1553380

Bibliography 127

Lanlan Chang and Yap-Peng Tan. Effective use of spatial and spectral correlations
for color filter array demosaicking. Consumer Electronics, IEEE Transactions on,
50(1):355–365, 2004.

Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-aware image processing
with the bilateral grid. ACM TOG, 2007.

Jiawen Chen, Andrew Adams, Neal Wadhwa, and Samuel W Hasinoff. Bilateral guided
upsampling. ACM TOG, 2016.

Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 869–876, June 2012. doi:
10.1109/CVPR.2012.6247760.

Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep colorization. In Proceedings of
the IEEE International Conference on Computer Vision, pages 415–423, 2015.

David R Cok. Signal processing method and apparatus for producing interpolated
chrominance values in a sampled color image signal, February 10 1987. US Patent
4,642,678.

Laurent Condat. A new color filter array with optimal properties for noiseless and
noisy color image acquisition. Image Processing, IEEE Transactions on, 20(8):
2200–2210, 2011.

Laurent Condat and Saleh Mosaddegh. Joint demosaicking and denoising by total
variation minimization. In Image Processing (ICIP), 2012 19th IEEE International
Conference on, pages 2781–2784. IEEE, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

P. Deutsch. Deflate compressed data format specification version 1.3, 1996.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep
convolutional network for image super-resolution. ECCV, 2014.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. v.d. Smagt,
D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional
networks. In IEEE International Conference on Computer Vision (ICCV), Dec 2015a.
URL http://lmb.informatik.uni-freiburg.de//Publications/2015/DFIB15.

Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to generate
chairs with convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1538–1546, 2015b.

http://lmb.informatik.uni-freiburg.de//Publications/2015/DFIB15

128 Bibliography

David Eigen, Dilip Krishnan, and Rob Fergus. Restoring an image taken through a
window covered with dirt or rain. In IEEE International Conference on Computer
Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013, pages 633–640, 2013.
doi: 10.1109/ICCV.2013.84. URL http://dx.doi.org/10.1109/ICCV.2013.84.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single
image using a multi-scale deep network. NIPS, 2014.

Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex
Kurakin, Ian J. Goodfellow, and Jascha Sohl-Dickstein. Adversarial examples
that fool both human and computer vision. CoRR, abs/1802.08195, 2018. URL
http://arxiv.org/abs/1802.08195.

Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. Edge-preserving
decompositions for multi-scale tone and detail manipulation. In ACM Transaction
on Graphics (SIGGRAPH), SIGGRAPH ’08, pages 67:1–67:10, New York, NY,
USA, 2008. ACM. ISBN 978-1-4503-0112-1. doi: 10.1145/1399504.1360666. URL
http://doi.acm.org/10.1145/1399504.1360666.

Zeev Farbman, Raanan Fattal, and Dani Lischinski. Convolution pyramids. ACM
TOG, 2011a.

Zeev Farbman, Raanan Fattal, and Dani Lischinski. Convolution pyramids. ACM
Transactions on Graphics (Proc. of SIGGRAPH Asia), 30(6), 2011b.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. Deep-
stereo: Learning to predict new views from the world’s imagery. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
URL http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/
Flynn_DeepStereo_Learning_to_CVPR_2016_paper.html.

Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian. Practical
poissonian-gaussian noise modeling and fitting for single-image raw-data. Image
Processing, IEEE Transactions on, 17(10):1737–1754, 2008.

William T. Freeman and Antonio Torralba. Shape recipes: Scene representations that
refer to the image. In Vision Sciences Society Annual Meeting, pages 25–47. MIT
Press, 2002.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2414–2423, 2016.

Pascal Getreuer. Color demosaicing with contour stencils. In Digital Signal Processing
(DSP), 2011 17th International Conference on, pages 1–6. IEEE, 2011.

http://dx.doi.org/10.1109/ICCV.2013.84
http://arxiv.org/abs/1802.08195
http://doi.acm.org/10.1145/1399504.1360666
http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Flynn_DeepStereo_Learning_to_CVPR_2016_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Flynn_DeepStereo_Learning_to_CVPR_2016_paper.html

Bibliography 129

Michaël Gharbi, YiChang Shih, Gaurav Chaurasia, Jonathan Ragan-Kelley, Sylvain
Paris, and Frédo Durand. Transform recipes for efficient cloud photo enhancement.
ACM TOG, 2015.

Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. Deep joint
demosaicking and denoising. ACM TOG, 2016.

Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoff, and Frédo
Durand. Deep bilateral learning for real-time image enhancement. ACM TOG,
2017.

Jinwook Go, Kwanghoon Sohn, and Chulhee Lee. Interpolation using neural networks
for digital still cameras. Consumer Electronics, IEEE Transactions on, 46(3):
610–616, 2000.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the
Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, pages
126–135. 1991.

Bahadir K Gunturk, Yucel Altunbasak, and Russell M Mersereau. Color plane
interpolation using alternating projections. Image Processing, IEEE Transactions
on, 11(9):997–1013, 2002.

Eric Hamilton. Jpeg file interchange format. C-Cube Microsystems, 1992.

John F Hamilton Jr and James E Adams Jr. Apparatus for utilizing a digitized image
signal, May 13 1997. US Patent 5,629,734.

Samuel W Hasinoff, Frédo Durand, and William T Freeman. Noise-optimal capture
for high dynamic range photography. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 553–560. IEEE, 2010.

Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T Barron,
Florian Kainz, Jiawen Chen, and Marc Levoy. Burst photography for high dynamic
range and low-light imaging on mobile cameras. ACM TOG, 2016.

Fang-Lin He, Yu-Chiang Frank Wang, and Kai-Lung Hua. Self-learning approach to
color demosaicking via support vector regression. In Image Processing (ICIP), 2012
19th IEEE International Conference on, pages 2765–2768. IEEE, 2012.

Kaiming He and Jian Sun. Fast guided filter. CoRR, 2015.

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. TPAMI, 2013.

130 Bibliography

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imageNet classification. CoRR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen,
Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Darkroom:
compiling high-level image processing code into hardware pipelines. ACM TOG,
2014.

Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pajkak, Dikpal
Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen Egiazarian, et al. Flexisp:
a flexible camera image processing framework. ACM Transactions on Graphics
(TOG), 33(6):231, 2014.

Keigo Hirakawa and Thomas W Parks. Adaptive homogeneity-directed demosaicing
algorithm. Image Processing, IEEE Transactions on, 14(3):360–369, 2005.

Keigo Hirakawa and Thomas W Parks. Joint demosaicing and denoising. Image
Processing, IEEE Transactions on, 15(8):2146–2157, 2006.

Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and
Oliver Spatscheck. A close examination of performance and power characteristics of
4g lte networks, 2012. URL http://doi.acm.org/10.1145/2307636.2307658.

D.A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, Sept 1952. ISSN 0096-8390. doi:
10.1109/JRPROC.1952.273898.

Mark J Huiskes and Michael S Lew. The mir flickr retrieval evaluation. In Proceedings
of the 1st ACM international conference on Multimedia information retrieval, pages
39–43. ACM, 2008.

Sung Ju Hwang, Ashish Kapoor, and Sing Bing Kang. Context-based automatic local
image enhancement. ECCV, 2012.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be Color!: Joint
End-to-end Learning of Global and Local Image Priors for Automatic Image Col-
orization with Simultaneous Classification. ACM Transactions on Graphics (Proc.
of SIGGRAPH 2016), 35(4), 2016a.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be color!: joint
end-to-end learning of global and local image priors for automatic image colorization
with simultaneous classification. ACM TOG, 2016b.

http://doi.acm.org/10.1145/2307636.2307658

Bibliography 131

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks.
CoRR, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. ICML, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. CoRR, 2016.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in Neural Information Processing Systems, pages 2017–2025,
2015.

Vidit Jain and Erik Learned-Miller. Fddb: A benchmark for face detection in uncon-
strained settings. Technical Report UM-CS-2010-009, University of Massachusetts,
Amherst, 2010.

Varun Jampani, Martin Kiefel, and Peter V. Gehler. Learning sparse high dimensional
filters: Image filtering, dense CRFs and bilateral neural networks. CVPR, 2016.

Gwanggil Jeon and Eric Dubois. Demosaicking of noisy bayer-sampled color images
with least-squares luma-chroma demultiplexing and noise level estimation. Image
Processing, IEEE Transactions on, 22(1):146–156, 2013.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22Nd ACM In-
ternational Conference on Multimedia, MM ’14, pages 675–678, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-3063-3. doi: 10.1145/2647868.2654889. URL
http://doi.acm.org/10.1145/2647868.2654889.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In European Conference on Computer Vision, pages
694–711. Springer, 2016.

Oren Kapah and Hagit Z Hel-Or. Demosaicking using artificial neural networks. In
Electronic Imaging, pages 112–120. International Society for Optics and Photonics,
2000.

Liad Kaufman, Dani Lischinski, and Michael Werman. Content-aware automatic
photo enhancement. Computer Graphics Forum, 2012a.

Liad Kaufman, Dani Lischinski, and Michael Werman. Content-aware automatic
photo enhancement. Computer Graphics Forum, 31(8):2528–2540, 2012b. ISSN
1467-8659. doi: 10.1111/j.1467-8659.2012.03225.x. URL http://dx.doi.org/10.
1111/j.1467-8659.2012.03225.x.

http://doi.acm.org/10.1145/2647868.2654889
http://dx.doi.org/10.1111/j.1467-8659.2012.03225.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03225.x

132 Bibliography

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision? In Advances in Neural Information Processing Systems, pages
5580–5590, 2017.

Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary, and Andrew W Fitzgibbon.
Joint demosaicing and denoising via learned nonparametric random fields. Image
Processing, IEEE Transactions on, 23(12):4968–4981, 2014.

Jin-Hwan Kim, Won-Dong Jang, Jae-Young Sim, and Chang-Su Kim. Optimized
contrast enhancement for real-time image and video dehazing. J. Vis. Comun.
Image Represent., 24(3):410–425, April 2013. ISSN 1047-3203. doi: 10.1016/j.jvcir.
2013.02.004. URL http://dx.doi.org/10.1016/j.jvcir.2013.02.004.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR,
2015.

Teresa Klatzer, Kerstin Hammernik, Patrick Knobelreiter, and Thomas Pock. Learning
joint demosaicing and denoising based on sequential energy minimization. In 2016
IEEE International Conference on Computational Photography (ICCP), pages 1–11.
IEEE, 2016.

Johannes Kopf, Michael F Cohen, Dani Lischinski, and Matt Uyttendaele. Joint
bilateral upsampling. ACM TOG, 2007.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with
deep convolutional neural networks. NIPS, 2012.

Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. A survey
of computation offloading for mobile systems. Mob. Netw. Appl., 18(1):129–140,
February 2013. ISSN 1383-469X. doi: 10.1007/s11036-012-0368-0. URL http:
//dx.doi.org/10.1007/s11036-012-0368-0.

Cindy Kwan and Wu Xiaolin. A classification approach to color demosaicking. In
International Conference on Image Processing, 2004.

Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian, and James Hays. Tran-
sient attributes for high-level understanding and editing of outdoor scenes. ACM
Transaction on Graphics (SIGGRAPH), 33(4):149:1–149:11, July 2014. ISSN
0730-0301. doi: 10.1145/2601097.2601101. URL http://doi.acm.org/10.1145/
2601097.2601101.

Steven Lansel and Brian Wandell. Local linear learned image processing pipeline. In
Imaging Systems and Applications, page IMC3. Optical Society of America, 2011.

Claude A Laroche and Mark A Prescott. Apparatus and method for adaptively
interpolating a full color image utilizing chrominance gradients, December 13 1994.
US Patent 5,373,322.

http://dx.doi.org/10.1016/j.jvcir.2013.02.004
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0
http://doi.acm.org/10.1145/2601097.2601101
http://doi.acm.org/10.1145/2601097.2601101

Bibliography 133

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representations
for automatic colorization. In European Conference on Computer Vision (ECCV),
2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Sergey Grizan, Alec
Wolman, and Jason Flinn. Outatime: Using speculation to enable low-latency
continuous interaction for cloud gaming. Technical Report MSR-TR-2014-115, 2014.

Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimization.
ACM Transaction on Graphics (SIGGRAPH), 23(3):689–694, August 2004. ISSN
0730-0301. doi: 10.1145/1015706.1015780. URL http://doi.acm.org/10.1145/
1015706.1015780.

Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image
matting. TPAMI, 2008.

Anat Levin, Boaz Nadler, Fredo Durand, and William T Freeman. Patch complexity,
finite pixel correlations and optimal denoising. In Computer Vision–ECCV 2012,
pages 73–86. Springer, 2012.

Marc Levoy. Polygon-assisted jpeg and mpeg compression of synthetic images. In
Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages 21–28, New
York, NY, USA, 1995. ACM. ISBN 0-89791-701-4. doi: 10.1145/218380.218392.
URL http://doi.acm.org/10.1145/218380.218392.

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. Differentiable programming for image processing and deep learning in halide.
ACM TOG, 2018.

Xin Li. Demosaicing by successive approximation. Image Processing, IEEE Transac-
tions on, 14(3):370–379, 2005.

Xin Li, Bahadir Gunturk, and Lei Zhang. Image demosaicing: A systematic survey.
In Electronic Imaging 2008, pages 68221J–68221J. International Society for Optics
and Photonics, 2008.

Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin Zhong, and Paramvir
Bahl. Energy characterization and optimization of image sensing toward continuous
mobile vision. In Proc. of International Conference on Mobile Systems, Applications,
and Services, pages 69–82. ACM, 2013.

Sifei Liu, Jinshan Pan, and Ming-Hsuan Yang. Learning recursive filters for low-level
vision via a hybrid neural network. ECCV, 2016.

http://doi.acm.org/10.1145/1015706.1015780
http://doi.acm.org/10.1145/1015706.1015780
http://doi.acm.org/10.1145/218380.218392

134 Bibliography

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440, 2015a.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. CVPR, 2015b.

Yue M Lu, Mina Karzand, and Martin Vetterli. Demosaicking by alternating projec-
tions: theory and fast one-step implementation. Image Processing, IEEE Transac-
tions on, 19(8):2085–2098, 2010.

Rafał Mantiuk and Hans-Peter Seidel. Modeling a generic tone-mapping operator.
Computer Graphics Forum (Proc. of Eurographics), 27(2), 2008.

Rafat Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolfgang Heidrich. HDR-VDP-2:
a calibrated visual metric for visibility and quality predictions in all luminance
conditions. In ACM Transactions on Graphics (TOG), volume 30, page 40. ACM,
2011.

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. Automatically scheduling halide image processing pipelines.
ACM TOG, 2016.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network
for semantic segmentation. CoRR, abs/1505.04366, 2015. URL http://arxiv.org/
abs/1505.04366.

Sylvain Paris and Frédo Durand. A fast approximation of the bilateral filter using a
signal processing approach. ECCV, 2006.

Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. Local laplacian filters: Edge-aware
image processing with a laplacian pyramid. In ACM Transaction on Graphics
(SIGGRAPH), SIGGRAPH ’11, pages 68:1–68:12, New York, NY, USA, 2011a.
ACM. ISBN 978-1-4503-0943-1. doi: 10.1145/1964921.1964963. URL http://doi.
acm.org/10.1145/1964921.1964963.

Sylvain Paris, Samuel W Hasinoff, and Jan Kautz. Local laplacian filters: edge-aware
image processing with a laplacian pyramid. ACM TOG, 2011b.

Sung Hee Park, Hyung Suk Kim, Steven Lansel, Manu Parmar, and Brian A Wandell.
A case for denoising before demosaicking color filter array data. In Signals, Systems
and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference
on, pages 860–864. IEEE, 2009.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros.
Context encoders: Feature learning by inpainting. 2016.

http://arxiv.org/abs/1505.04366
http://arxiv.org/abs/1505.04366
http://doi.acm.org/10.1145/1964921.1964963
http://doi.acm.org/10.1145/1964921.1964963

Bibliography 135

Thibaut Perol, Michaël Gharbi, and Marine Denolle. Convolutional neural network
for earthquake detection and location. Science Advances, 4(2):e1700578, 2018.

Majid Rabbani and Paul W. Jones. Digital Image Compression Techniques. Society
of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA, 1st
edition, 1991. ISBN 0819406481.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. Decoupling algorithms from schedules for easy optimiza-
tion of image processing pipelines. ACM TOG, 2012a.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Ama-
rasinghe, and Frédo Durand. Decoupling algorithms from schedules for easy op-
timization of image processing pipelines. ACM Transactions on Graphics, 31(4):
32:1–32:12, July 2012b. ISSN 0730-0301. doi: 10.1145/2185520.2185528. URL
http://doi.acm.org/10.1145/2185520.2185528.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Du-
rand, and Saman Amarasinghe. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. SIGPLAN
Not., 48(6):519–530, June 2013a. ISSN 0362-1340. doi: 10.1145/2499370.2462176.
URL http://doi.acm.org/10.1145/2499370.2462176.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for op-
timizing parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI, pages 519–530, New York, NY, USA,
2013b. ACM. ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.2462176. URL
http://doi.acm.org/10.1145/2491956.2462176.

C. Rhemann, C. Rother, Jue Wang, M. Gelautz, P. Kohli, and P. Rott. A perceptually
motivated online benchmark for image matting. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1826–1833, June 2009. doi: 10.1109/CVPR.
2009.5206503.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, 2015.

Tomasz Sergej and Radosław Mantiuk. Perceptual evaluation of demosaicing artefacts.
In Image Analysis and Recognition, pages 38–45. Springer, 2014.

Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and Jiaya Jia. Deep automatic
portrait matting. ECCV, 2016.

http://doi.acm.org/10.1145/2185520.2185528
http://doi.acm.org/10.1145/2499370.2462176
http://doi.acm.org/10.1145/2491956.2462176

136 Bibliography

Yichang Shih, Sylvain Paris, Frédo Durand, and William T. Freeman. Data-driven
hallucination of different times of day from a single outdoor photo. ACM Trans-
action on Graphics (SIGGRAPH), 32(6):200:1–200:11, November 2013a. ISSN
0730-0301. doi: 10.1145/2508363.2508419. URL http://doi.acm.org/10.1145/
2508363.2508419.

Yichang Shih, Sylvain Paris, Frédo Durand, and William T Freeman. Data-driven
hallucination of different times of day from a single outdoor photo. ACM TOG,
2013b.

YiChang Shih, Sylvain Paris, Connelly Barnes, William T. Freeman, and Frédo Durand.
Style transfer for headshot portraits. ACM Transaction on Graphics (SIGGRAPH),
33(4):148:1–148:14, July 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601137.
URL http://doi.acm.org/10.1145/2601097.2601137.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi. The jpeg 2000
still image compression standard. IEEE Signal Processing Magazine, 18(5):36–58,
2001.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–9, 2015.

Qiyuan Tian, Steven Lansel, Joyce E Farrell, and Brian A Wandell. Automating
the design of image processing pipelines for novel color filter arrays: Local, linear,
learned (l3) method. In IS&T/SPIE Electronic Imaging, pages 90230K–90230K.
International Society for Optics and Photonics, 2014.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B, 58:267–288, 1994.

Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images.
ICCV, 1998.

A. Torralba and W.T. Freeman. Properties and applications of shape recipes. In
IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages
II–383–90 vol.2, June 2003. doi: 10.1109/CVPR.2003.1211494.

G.K. Wallace. The jpeg still picture compression standard. IEEE Transactions on
Consumer Electronics, 38(1):xviii–xxxiv, Feb 1992. ISSN 0098-3063. doi: 10.1109/
30.125072.

http://doi.acm.org/10.1145/2508363.2508419
http://doi.acm.org/10.1145/2508363.2508419
http://doi.acm.org/10.1145/2601097.2601137

Bibliography 137

Xiaolong Wang, David Fouhey, and Abhinav Gupta. Designing deep networks for
surface normal estimation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 539–547, 2015.

T.A. Welch. A technique for high-performance data compression. Computer, 17(6):
8–19, June 1984. ISSN 0018-9162. doi: 10.1109/MC.1984.1659158.

Ian H Witten, Radford M Neal, and John G Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, 1987.

Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. Image smoothing via l0 gradient minimization.
ACM Transaction on Graphics (SIGGRAPH), 30(6):174:1–174:12, December 2011.
ISSN 0730-0301. doi: 10.1145/2070781.2024208. URL http://doi.acm.org/10.
1145/2070781.2024208.

Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural network for
image deconvolution. In Advances in Neural Information Processing Systems, pages
1790–1798, 2014.

Li Xu, Jimmy Ren, Qiong Yan, Renjie Liao, and Jiaya Jia. Deep edge-aware filters.
ICML, 2015.

Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu. Automatic
photo adjustment using deep neural networks. ACM TOG, 2016.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
CoRR, 2015.

Lu Yuan and Jian Sun. High quality image reconstruction from raw and jpeg image
pair. ICCV, 2011.

Fan Zhang, Xiaolin Wu, Xiaokang Yang, Wenjun Zhang, and Lei Zhang. Robust color
demosaicking with adaptation to varying spectral correlations. Image Processing,
IEEE Transactions on, 18(12):2706–2717, 2009.

Lei Zhang and Xiaolin Wu. Color demosaicking via directional linear minimum mean
square-error estimation. Image Processing, IEEE Transactions on, 14(12):2167–2178,
2005.

Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. Color demosaicking by local
directional interpolation and nonlocal adaptive thresholding. Journal of Electronic
Imaging, 20(2):023016–023016, 2011.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. ECCV,
2016.

http://doi.acm.org/10.1145/2070781.2024208
http://doi.acm.org/10.1145/2070781.2024208

138 Bibliography

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep networks as a perceptual metric. In CVPR, 2018.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, May 1977. ISSN 0018-9448.
doi: 10.1109/TIT.1977.1055714.

	Introduction
	Overview
	Online content

	Background
	Optimizing image processing algorithms
	Automatic photographic editing
	Neural networks for image processing

	Transform Recipes for Cloud Image Processing
	Related work
	Reducing data transfers
	Transform Recipes
	Reconstructing the filtered image
	Data compression

	Evaluation
	Expressiveness and robustness
	Practical prototype system

	Bilateral Learning for Real-Time Image Enhancement
	A fast architecture for photographic enhancement
	Low-resolution prediction of bilateral coefficients
	Image features as a bilateral grid
	Upsampling with a trainable slicing layer
	Assembling the full-resolution output
	Training procedure

	Results
	Reproducing image operators
	Learning from human annotations
	Performance

	Discussion and limitations

	Joint Demosaicking and Denoising
	Related work
	Learning to jointly demosaick and denoise
	Network architecture
	Joint denoising with multiple noise levels
	Training details

	Curating a dataset of challenging images
	Obtaining a ground-truth and the corresponding mosaic
	Challenging patches are rare
	Mining difficult image patches

	Results
	Demosaicking noise-free images
	Training set and training time
	Joint denoising and demosaicking results
	Processing linear data
	Alternative mosaick patterns
	Variations on the network configuration
	Running time

	Limitations

	Conclusion
	Future directions

