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ABSTRACT
The use of mutual information as a tool in private data sharing
has remained an open challenge due to the difficulty of its
estimation in practice. In this paper, we propose InfoShape,
a task-based encoder that aims to remove unnecessary sensi-
tive information from training data while maintaining enough
relevant information for a particular ML training task. We
achieve this goal by utilizing mutual information estimators
that are based on neural networks, in order to measure two
performance metrics, privacy and utility. Using these together
in a Lagrangian optimization, we train a separate neural net-
work as a lossy encoder. We empirically show that InfoShape
is capable of shaping the encoded samples to be informative
for a specific downstream task while eliminating unnecessary
sensitive information. Moreover, we demonstrate that the clas-
sification accuracy of downstream models has a meaningful
connection with our utility and privacy measures.

Index Terms— Task-based encoding, privacy, utility, mu-
tual information, private training.

1. INTRODUCTION

Mutual information (MI) is a measure to quantify how much
information is obtained about one random variable by observ-
ing another random variable [1]. In a data sharing setting,
the data-owner often would like to transform their sensitive
samples such that only the necessary information for a specific
task is preserved, while sensitive information that can be used
for adversarial purposes is eliminated. MI is an excellent can-
didate that can be used to develop task-based compression for
data-sharing to address the privacy-utility trade-off problem
[2]. However, estimating MI without knowing the distribution
of original data and transformed data is very difficult, and,
consequently, using this critical metric has remained limited.
In this paper, we utilize numerical estimation of MI to train a
task-based lossy encoder for data sharing.
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Machine learning (ML) efforts in various sensitive do-
mains face a major bottleneck due to the shortage of publicly
available training data [3]. Acquisition and release of sensi-
tive data is a primary issue currently hindering the creation of
public large-scale datasets. For example, certain federal regu-
latory laws such as HIPAA [4] and GDPR [5] prohibit medical
centers from sharing their patients’ identifiable information.
This motivates us to approach the issue from an information
theoretic perspective. Our goal is to enable data-owners to
eliminate sensitive parts of their data that are not critical for
a specific training task before data sharing. We consider a
setting where a lossy compressor encodes the data according
to two objectives: (i) training a shared model on the combined
encoded data of several institutions with a predictive utility
that is comparable to the un-encoded baseline; (ii) limiting
the use of data for adversarial purposes. In practice, there is a
trade-off between the utility and privacy goals.

The state-of-the-art solutions to tackle this privacy-utility
trade-off problem mainly involve data-owners sharing their
encrypted data, distorted data, or transformed data. Cryp-
tographic methods [6, 7, 8] enable training ML models on
encrypted data and offer extremely strong security guaran-
tees. However, these methods have a high computational and
communication overhead, thereby hindering practical deploy-
ment. Distorting the data by adding noise is another solution
which can obtain the theoretical notion of differential privacy
[9, 10, 11], but, unfortunately, often results in notable utility
cost. Finally, transformation schemes convert the sensitive data
from the original representation to an encoded representation
by using a randomly-chosen encoder [12, 13, 14]; however, if
the instance of the random encoder chosen by the data-owner
is revealed, the original data can be reconstructed.

In contrast, we design an encoding scheme to convert the
original representation of the training data into a new represen-
tation that excludes sensitive information. Thus, the privacy
comes from the lossy behaviour of the encoder (i.e., compres-
sor) that we design for a targeted training task. The privacy
goal is to limit the disclosed information about sensitive fea-
tures of a sample given its encoded representation, and the
utility goal is to obtain a competent classifier when trained on
the encoded data. We propose a dual optimization approach
to preserve privacy while maintaining utility. In particular, we
use MI to quantify the privacy and utility performance, and we
train a neural network that plays the role of our lossy encoder.

There has been recent progress for estimating bounds onIC
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the mutual information via numerical methods [15, 16, 17,
18]. We combine the privacy and utility measures using MI
estimations into a single loss metric to improve an encoder in
its training phase. Once the encoder is trained, it is utilized
by individual data owners as a task-based lossy compressor to
encode their data for release with the associated labels.

2. PROBLEM STATEMENT

We denote the set of all samples of a distribution by X . Each
sample x ∈ X is labeled via function L : X → Y . A data-
owner has a sensitive dataset D ⊆ X that she wishes to out-
source to a third party for training a specific classification
model (i.e., to learn the function L). For privacy concerns,
the data-owner first encodes the sensitive data, via an encoder
T : X → Z , and then publicly releases the labeled encoded
data {(T (x), L(x))}x∈D. An adversary may have access to the
deposited dataset, but uses it for adversarial purposes, i.e., de-
riving a sensitive feature S(x) from T (x), where S : X → Y ′.
We call L(x) and S(x) the public and private label of sample
x ∈ X , respectively.

The utility goal is to preserve from each sample as much
information as needed to train a competitive downstream clas-
sification model. The privacy goal is to eliminate unnecessary
sensitive data from each sample, which is not critical for the
training task but might be misused by an adversary. There
are several methods to quantify the privacy and utility perfor-
mance, and here, we use Shannon entropy [1].

Definition 1. The utility score is negative of the average uncer-
tainty about the public label given its encoded representation,

Mutility(T ) ≜ −H[L(x)|T (x)]. (1)

There are two potential ways to express the privacy: Given
the encoded representation, one is the average uncertainty
about the original sample and one is the average uncertainty
about a sensitive feature of the original sample. While each
can be advantageous over the other depending on the problem
setting, without loss of generality and for simplicity, we use
the second approach in this paper.

Definition 2. The privacy score is the average uncertainty
about the private label given its encoded representation,

Mprivacy(T ) ≜ H[S(x)|T (x)]. (2)

The privacy and utility are competing targets, and in this
paper, we design a lossy encoder that offers a desired trade-off
via a Lagrangian optimization. Consider the family of possible
encoders as T . An optimal encoder T ∗ ∈ T is obtained as,

T ∗ = arg min
T∈T

Mutility(T ) + λMprivacy(T ),

where λ is a non-negative metric that controls the trade-off
between privacy and utility, chosen to be 1 in our experiment.

Encoder Privacy

Utility

x

L(x)

z
×𝜆

Training Loss
Performance 
Estimation

Fig. 1. InfoShape design procedure: At each training iteration,
the privacy and utility are scored for improving the encoder.

There has been increasing theoretical interest in using
information theoretic measures to encode data for privacy
goals. These are organized under the Information Bottleneck
method [19]. However, since it is difficult to calculate these
measures due to their dependence on certain (often intractable)
probability distributions, they have remained impractical to
use. Recent efforts for estimating and incorporating these
measures have also faced practical challenges, and deriving
connections between optimizing variations of these measures
and the success of the task-based encoding (both the utility
and privacy aspects) are still open challenges [15, 17, 20].

3. ELIMINATING SENSITIVE DATA

We propose a dual optimization mechanism, dubbed InfoShape,
to simultaneously preserve privacy while also maintaining
utility on downstream classification tasks, see Fig. 1. We
choose the name of InfoShape since our scheme trains a neural
network encoder to act as a task-specific lossy compressor,
by keeping as much relevant information as possible for our
intended downstream task while “shaping” the data to achieve
a private representation.

Consider InfoShape as an encoder Tθ with set of parame-
ters θ (i.e., an ML model with weights described by θ). We
define the loss metric Q(θ) for evaluating the privacy-utility
performance of Tθ as follows:

Q(θ) = Mprivacy(Tθ) + λMutility(Tθ). (3)
This loss is used for training the encoder by adjusting θ.

Our optimization problem is to determine the set of param-
eters θ such that the loss metric defined in Eq (3) is minimized.
We solve this optimization , i.e., θ∗ = argminQ(θ), numeri-
cally via the stochastic gradient descent (SGD) method [21],

G = ∇Q(θitr), θitr+1 = h
(
θitr, G

)
. (4)

Eq. (4) shows the gradient of the loss function with respect
to weights of the encoder, as well as the weight update step.
Here, h(.) is a gradient-based optimizer.

Once the encoder is trained, it can be utilized by individual
data-owners as a task-based lossy compressor to encode their
data and to enable the release of data for collaborative training.

3.1. Neural Estimation of Performance Scores

We utilize neural estimation of MI to numerically approximate
the privacy and utility scores. For this, we re-write the privacy
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and utility scores in Eq. (1)-(2), as follows:

Mutility(T ) = I[L(x);T (x)]−H[L(x)],

Mprivacy(T ) = H[S(x)]− I[S(x);T (x)].
(5)

Note that the terms H[L(x)] and H[S(x)] do not depend on
the encoder, and so they vanish in the gradient.

For training the lossy encoder, we use a set of samples
{x, L(x), S(x)}x∈P , such that P ⊂ X \ D. The underlying
distributions are unknown (e.g., P[L(x)|x] which characterizes
a perfect classifier, and P[S(x)|T (x)] which characterizes a
computationally unbounded adversary). Consequently, MI is
difficult to compute for a finite dataset of high-dimensional
inputs [22]. Thus, we consider tractable variational lower
bounds that approximate MI [15, 18].

Let us consider two random variables α ∈ A and β ∈
B. By definition, MI can be expressed in terms of the KL-
divergence (a measure of distance between two distributions
[23]) between the joint distribution and multiplications of the
marginal distributions of α and β,

I[α;β]=DKL(P[α,β]||P[α]P[β])=
∑
α,β

P[α, β] log
P[α, β]

P[α] P[β]
.

The Donsker-Varadhan representation of KL-Divergence
[24] is as follows: Let Ω be the product sample space of two
distributions P1 and P2.

DKL(P1 ||P2) = sup
F :Ω→R

EP1 [F ]− log EP2 [e
F ],

where the supremum is taken over all functions F such that
the two expectations are finite. In [15], the sufficiently rich set
of functions F is modeled with a neural network Fϕ parame-
terized with set of weights ϕ ∈ Φ. Let

Iϕ[α;β] = EP[α,β][Fϕ]− log EP[α]P[β][e
Fϕ ]. (6)

The optimal parameter ϕ∗ ∈ Φ that maximizes Iϕ[α;β] can be
identified via SGD. Ĩ[α;β] = Iϕ∗ [α;β] acts as a lower bound
of I[α;β]. In practice, the two expectations in (6) are replaced
with empirical averages over samples of a minibatch that are
drawn according to P[α,β] and P[α]P[β], respectively.

Numerically solving (6) using SGD to estimate the MI has
some practical challenges. In particular, it suffers from bias
and a high-variance in the estimation, when MI is large [25].
To remedy this problem, a regularization term was added to
the neural estimation of MI to help with stability [18]:

Iϕ[α;β] = EP[α,β][Fϕ]− log EP[α]P[β][e
Fϕ ]

− 0.1(log EP[α]P[β][e
Fϕ ])2.

(7)

The intuition behind the extra regularization term in Eq. (7)
is to encourage the optimizer to concentrate on finding one
solution in {Fϕ : ϕ ∈ Φ}, rather than drifting within a class
of equally-behaved functions. To reduce the bias, multiple
mini-batches were used to update the MI estimation. For more
details we refer the readers to [18], as our core MI estimation
method to compute Eq. (5) in our experimental results.

Algorithm 1 Training InfoShape (Optimizing θ).
1: Input: λ and {x, L(x), S(x)}x∈P .
2: Initialize the encoder parameters θ.
3: repeat
4: Find Ĩ[L(x);Tθ(x)] and Ĩ[S(x);Tθ(x)].
5: Compute Q(θ) = Mprivacy(Tθ) + λMutility(Tθ).
6: Compute G = ∇Q(θ) and update θ ← h (θ,G)
7: until convergence

3.2. Training Procedure of InfoShape
We present the training procedure for designing InfoShape

that keeps the necessary information for learning the function
L, but eliminates the sensitive information needed for learning
the function S. By training such an encoder, one can ensure
that even if an adversary knows the encoder Tθ, they cannot
use it to infer sensitive information about the encoded samples.
This is because the encoder is not invertible by construction,
and even by having Tθ and public samples with disclosed
private labels {x, S(x)}x∈P , one cannot train a competent
classifier that infers sensitive information in the encoded do-
main. This fact is also supported by our experimental results
showing that training a classifier to estimate the private labels
in the encoded domain is highly unsuccessful compared to
training a classifier to estimate the public labels.1

Algorithm 1 shows the step-by-step procedure for training
Tθ. The input for the algorithm is the trade-off parameter λ,
and a public set of samples with both public and private labels
{x, L(x), S(x)}x∈P , line 1. We first sample a set of random
layer weights θ for the encoder, line 2. Now, starting from the
first iteration and until convergence, we iteratively evaluate
the performance of Tθ and update its weights accordingly,
lines 4-6. In particular, we need to estimate I[L(x);Tθ(x)]
and I[S(x);Tθ(x)] (line 4), for which we use the neural MI
estimator in [18, Algorithm 1] due to its numerical stability
advantages. We have provided public access to our code and
data at https://github.com/billywu1029/infoshape.

4. SIMULATION RESULTS

In this section, we empirically show the potential of our tasked-
based lossy encoding scheme through evaluation of its privacy
and utility scores. For this purpose, we consider classifiers that
are trained and tested on four separate datasets: original data,
randomly encoded data, noisy data (by adding independent
Gaussian noise per sample), and encoded data using InfoShape.
For each training dataset, we compare the accuracy between
two classifiers: one that identifies the public label (faithful
user) and one that identifies the private label (unfaithful user).
Further, we show the estimation of privacy score and utility

1Our experiments implemented the task-based encoder using a simple neu-
ral network. If an adversary obtains a good prediction accuracy for sensitive
features, one can use a more complicated encoder architecture or increase the
training iterations to kill more sensitive data.
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score at different training epochs of our InfoShape encoder
using the MI estimators.

We utilize a balanced dataset which contains 10,000 sam-
ples, each being a vector of size 10 features belonging to one
of four different classes.2 Each sample has 3 primitive fea-
tures, 2 redundant features, and 5 noisy features. We created 2
clusters of samples per class, and each cluster is constructed as
follows: The primitive features are first drawn independently
from a standard Gaussian distribution and then randomly lin-
early combined within each cluster in order to add covariance.
The clusters are placed on the vertices of a 3d hypercube with
sides of length 2. For each sample, the redundant features
are generated as random linear combinations of the primitive
features, and the noisy (useless) features are attained using
random noise. Samples and the features are then shuffled, and
99% of samples within each cluster are assigned to the same
class. In order to obtain both private labels and public labels
for our dataset, we represent each class with two bits (i.e.,
{00, 01, 10, 11}), whose most significant and least significant
bits represent the private and public labels, respectively.

We first describe our InfoShape design parameters: Our
encoder is modeled with a dense neural network with 10 input
nodes, one intermediate layer with 10 nodes, 3 output nodes,
and Tanh non-linearity. We use 50 epochs for training, Adam
optimizer, and learning rate 1e-3. As for the loss function, we
need to estimate I[L(x);T (x)] and I[S(x);T (x)], see Eq. (5).
We use the procedure in [18], with custom architectures for
the neural networks used for MI estimation: a dense neural
network with 4 input nodes (3 for the encoded sample and 1
for the label), two intermediate layers with 100 nodes each, 1
output node, and ReLu non-linearity. For the back propaga-
tion algorithm to estimate MI, we run 2000 iterations using
an Adam optimizer and a learning rate of 1e-4, with a batch
size of 2000 for each iteration. To encourage numerical stabil-
ity, we only update the gradients for the MI estimation after
accumulating and averaging gradients for 10 iterations.

Fig. 2 depicts the validation ROC, a graph showing the per-
formance of a classification model at all classification thresh-
olds: the left and right sub-figures show the classification
performance for the public label and private label, respectively.
The architecture of the classifiers is a dense neural network
with 3 inputs nodes, one intermediate layer with 20 nodes, 1
output node with a Sigmoid activation, and ReLU non-linearity
between other layers. We use SGD optimizer, batch size 100,
learning rate 1e-4, and 50 epochs for training the classifiers,
and we use 20% of data for the validation of trained models.

The dashed black line in Fig. 2 represents the accuracy of
classifiers trained on the original un-encoded data. The red,
green, and blue lines show the accuracy of classifiers trained
on randomly-encoded data, and noisy data, and InfoShape-
encoded data respectively. Compared to the random encoder
baseline, our proposed scheme enables a higher accuracy for

2We used the sklearn.datasets.make classification Python library function
to generate this random 4-class dataset.
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and I[S(x);x] are shown in black for reference.

the public label and a lower accuracy for the sensitive label,
showing success of the task-specific lossy compression. Com-
pared to the Gaussian noise baseline, InfoShape-trained model
results in slightly better utility performance (AUC3 of 0.91
vs. 0.88) and much better privacy preservation (AUC 0.69 vs.
0.86), verifying that adding noise indistinguishably degrades
the AUC of both the sensitive and public features. This experi-
ment shows that an adversary who has access to some public
relevant data and the exact encoder would not achieve a good
accuracy to identify the sensitive features of encoded data.

Fig. 3 shows the estimated values of I(L(x), T (x)) and
I(S(x), T (x)) per iteration obtained by the MI estimators at
various epochs of the encoder training. The average value of
the final iterations are used in Eq. (5) to obtain the loss value
at each epoch. The estimators show an increase by a factor
of 5.1 in the MI between encoded data and public label and a
decrease by a factor of 0.65 in the MI between encoded data
and sensitive label, between training epochs 1 and 50.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented InfoShape, a neural network trained
using neural MI estimations to tackle the critical privacy-utility
trade-off problem in data sharing. The presented framework
can be combined with future MI estimators that offer better
numerical stability to apply to real world data, e.g., imaging
data in healthcare. The usage of other information measures,
such as guesswork, and developing mechanisms to add noise
just to the sensitive content of samples remain as future work.

3Area under the ROC curve
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