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Abstract—This paper presents Caliper, a highly-accurate
packet injection tool that generates precise and responsive traffic.
Caliper takes live packets generated on a host computer and
transmits them onto a gigabit Ethernet network with precise
inter-transmission times. Existing software traffic generators rely
on generic Network Interface Cards which, as we demonstrate,
do not provide high-precision timing guarantees. Hence, per-
forming valid and convincing experiments becomes difficult or
impossible in the context of time-sensitive network experiments.
Our evaluations show that Caliper is able to reproduce packet
inter-transmission times from a given arbitrary distribution while
capturing the closed-loop feedback of TCP sources. Specifically,
we demonstrate that Caliper provides three orders of magnitude
better precision compared to commodity NIC: with requested
traffic rates up to the line rate, Caliper incurs an error of 8 ns
or less in packet transmission times. Furthermore, we explore
Caliper’s ability to integrate with existing network simulators
to project simulated traffic characteristics into a real network
environment. Caliper is freely available online.

I. INTRODUCTION AND MOTIVATION

Making any changes to the Internet infrastructure is ex-

tremely difficult, if possible at all. Any new network com-

ponent, protocol, or design implemented on a global scale

requires extensive and accurate testing in sufficiently realistic

settings. Real network experiments are extremely difficult:

network operators usually do not like any modifications to

their network, unless the proposed changes have been tested

exhaustively in a large scale network. The only remaining

option for testing the impact of a given change is using

testbeds for network experiments. In this paper, we present

the design, implementation, and evaluation of Caliper, a pre-

cise and responsive traffic generator based on the NetFPGA

platform with highly-accurate packet injection times. Caliper

can be easily integrated with various software-based traffic

generation tools. Caliper injects dynamically created packets,

and thus, it can react to feedback and model the closed-loop

behavior of TCP and other protocols. The ability to produce

live traffic makes Caliper useful to explore a variety of what-if

scenarios by tuning user, application, and network parameters.

There are many challenges associated with performing valid

experiments in network testbeds. Generating realistic and

responsive traffic that reflects different network conditions and

topologies is one of such key challenges. To perform network

experiments, researchers often use a collection of commodity

Linux machines as traffic generators. However, creating a

large number of connections in order to accurately model the

A preliminary version of this work appeared in the NetFPGA Developers
Workshop 2009.

traffic shape in networks with thousands of flows is difficult

for several reasons. Below, we summarize some of these key

challenges.
Using pre-recorded network traces: It is not always

possible to use packet level network traces. The reason is

that pre-recorded packet traces do not maintain the feedback

loop behavior between the network and traffic sources. For

example TCP operates in a closed-loop fashion and it reacts

to the congestion feedback it receives from the network. A pre-

recorded TCP trace does not react to new network conditions

such as packet drops and to perform closed loop experiments,

one needs to collect traces at higher levels.
Using network simulation tools: The complexity of traffic

generation increases when trying to capture the heterogeneity

of link capacities using only a limited number of physical

machines. While network simulation tools can be very helpful

in understanding the impact of a given change to a network,

their predictions might not be accurate due to their simplified

and restricted models and settings. For example, to perform

router buffer sizing experiments, it is not obvious how to

precisely simulate a real production router with many stages

of buffering and a unique architecture [1].
Using commodity hardware: Commodity hardware does

not guarantee the precision of generated traffic, which is

bounded by the system timer resolution.1 In addition, there are

differences in implementation and default settings (and some-

times lack of a way to change those settings) in commodity

hardware. Our experiments with Linux using an Intel NIC with

three different drivers leads us to believe that not only does

these device drivers require different parameters for adjusting

their operations, but also the outcome is different. Seemingly

similar experiments might result in different outcomes due

to differences in devices. For example, Figure 1 shows the

differences between the CDFs of packet inter-arrival times

when the Interrupt Coalescence (IC) option is turned off for

an Intel NIC card with three different drivers.
Hence, it is intrinsically difficult to perform time-sensitive

network experiments with confidence on the accuracy of

packet injection times. Time-sensitive experiments are those

that need high-precision timings for packet injections into

the network. Experimenting with congestion control algo-

rithms [2], buffer sizing in Internet routers [1], and denial of

service attacks which use low-rate packet injections [3] are

all examples of time-sensitive experiments, where a subtle

1A Linux kernel is typically capable of providing resolutions of 1 ms. In
comparison, a packet of 1500 bytes on a 1 Gbps link has a transmission time
of less than 12 μs.

2012 IEEE 20th Annual Symposium on High-Performance Interconnects

978-0-7695-4831-9/12 $26.00 © 2012 Crown Copyright

DOI 10.1109/HOTI.2012.16

25



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100  1000

Inter-packet time (microseconds)

Inter-packet Time CDF

e1000
bnx2

tg3

Fig. 1. CDF of packet inter-arrival times for different NIC card drivers.

variation in packet injection times can change the results

significantly [4]. 2

As an alternative, commercial traffic generators such as

Spirent Communications’ Avalanche box [5], Ixia [6], and

Endace DAG cards [7] are useful for some experiments,

but they have their own drawbacks. They are usually very

expensive and their proprietary nature makes them inflexible

for research purposes. Prasad et al. [8] describe differences

observed between a TCP Reno packet sequence generated by

Avalanche traffic generator and the expected behavior of the

standard TCP Reno protocol.

A more precise and desirable solution for research commu-

nity is using hardware based packet generators such as the

traffic generator by Covington et al. [9] (hereafter referred to

as the Stanford Packet Generator or SPG). SPG is based on

NetFPGA [10], a PCI-based programmable board containing

an FPGA, four gigabit Ethernet ports, and memory. SPG

generates more precise traffic by accurately replicating the

transmission times recorded in a pcap trace file, similar to the

operation of the tcpreplay software program; this method

eliminates the dependence between the generated traffic and

the NIC model. While the traffic that SPG generates is more

precise than many prior approaches, it has several limitations.

The closed-loop feedback for TCP sources (and any other

protocol that depends on the feedback from the system) is not

kept because the trace files are based on past measurements.

Furthermore, replaying a prerecorded trace on a link with

different properties (such as capacity and buffer size) does

not necessarily result in realistic traffic without performing

non-trivial adjustments. Finally, SPG can only (i) replay the

exact packet inter-arrival times provided by the trace file, or (ii)

produce fixed inter-arrival times between packets; i.e., ignoring

the variation of packet timings from the original trace.

In this paper, we present the design, implementation, and

evaluation of Caliper, a precise and responsive traffic generator

based on the NetFPGA platform with highly-accurate packet

injection times that can be easily integrated with various

2For instance, consider a simple router buffer sizing experiment with buffer
size of 90 packets and a 10 Gbps link transmitting 1500 bytes packets to the
buffer. In this case, having 120 μs packet injection inaccuracy can lead to
transmission of 100 back-to-back packets affecting the experiment by filling
up the buffer and causing unnecessary packet drops.

software-based traffic generation tools. Caliper provides a key

feature that makes it useful in a large range of network

experiments: Caliper injects dynamically created packets, and

thus, it can react to feedback and model the closed-loop

behavior of TCP and other protocols. Note that characterizing

real-traffic is not the goal of this work, instead, our objective

is packet injection accuracy that complements existing work

on traffic characterization and realistic traffic generation.

Our evaluations demonstrate that Caliper is able to repro-

duce packet inter-arrival times from a given arbitrary distri-

bution with high accuracy while capturing the closed-loop

feedback of TCP sources. We present the accuracy of Caliper

with various packet arrival rates and demonstrate that with

requested traffic rates up to the line rate, the maximum error

that Caliper incurs is 8 ns which is the resolution of the

measuring system’s clock. We further demonstrate integration

of Caliper with existing software-based traffic generators as

well as the ns-2 network simulator.

II. PRECISE TRAFFIC GENERATION

Caliper’s main objective is to precisely control the trans-

mission times of live packets which are created in the host

computer, continually streamed to the NetFPGA, and trans-

mitted on the wire. The generated packets are sent out of a

single Ethernet port of the NetFPGA, according to any given

sequence of requested inter-transmission times. It is important

to note that because packets are streamed, the generator

can immediately change the traffic in response to feedback.

Unlike previous works that replay packets with prerecorded

transmission times from a trace file, Caliper generates live

packets and supports closed-loop traffic. Therefore, Caliper

can easily be coupled with existing traffic generators (such as

Iperf [11]) to improve their accuracy at small time scales.

A. Caliper’s Components

Caliper is built on NetThreads [12], a platform we have cre-

ated for developing packet processing applications on FPGA-

based devices and the NetFPGA in particular. NetThreads is

primarily composed of FPGA-based multithreaded processors,

providing a familiar yet flexible environment for software de-

velopers: programs are written in C, and existing applications

can be ported to the platform. In contrast with a PC or NIC-

based solution, NetThreads is similar to a custom hardware

solution since it offers direct network I/O and allows the

programmer to specify accurate timing requirements.

Caliper’s components are illustrated in Figure 2 showing

the life cycle of a packet through the system, from creation to

transmission. First, a user space process or a kernel module on

the host computer determines when a packet should be sent. A

description of the packet, containing the transmission time and

all the information necessary to assemble the packet is sent to

the NetFPGA driver. In the driver, multiple packet descriptions

are combined and copied to the NetFPGA card. Combining

descriptions reduces the number of separate transfers required

and is necessary for sending packets at the line rate of 1 Gbps.

From there, packet descriptions are processed in software on

the NetThreads soft multithreaded processors. Each software
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Fig. 2. Components of Caliper packet generator.

thread assembles packets in the output memory. Next, a

selected thread sends all of the prepared packets in the correct

order at the requested transmission times. Finally, the hardware

pipeline of the NetFPGA transmits the packets onto the wire.

Note that users can edit all parts of Caliper to modify and

extend its functionality [13].

In the rest of this section we briefly explain each stage of

a packet’s journey through Caliper. We also describe the un-

derlying limitations and challenges that influenced our design.

Due to lack of space, we omit hardware implementation details

and refer the interested reader to our technical report [14].

Packet Creation to Driver: The reasons and context of

packet creation are application-specific. To produce realis-

tic traffic, we envision that a network simulator, such as

Swing [15], will decide when to send each packet. This

simulation may be running in either a user space process, like

ns-2 [16], or a Linux kernel module, as in ModelNet [17]. To

easily allow either approach, we send packets to the NetFPGA

driver using Linux NetLink sockets, which allow arbitrary

messages to be sent and received from either user space or the

kernel. In Section III we describe examples of using Caliper

with Iperf traffic generator and our own user space program.

In [14], we describe and evaluate a prototype that we develop

to allow packets from the ns-2 simulator to be sent on a

real network using Caliper. At this stage, the messages sent

to the NetFPGA driver do not contain the entire packet as it

will appear on the wire. Instead, packets are represented by

minimal descriptions which contain the size of the packet and

enough information to build the packet headers. The parts of

the payload that are not set will be zeroed when the packet is

eventually transmitted.

Driver to NetThreads: We modified the driver provided

with NetFPGA to support Caliper. Its main task is to copy the

packet descriptions to the NetFPGA card using DMA over the

PCI bus. It also assembles the packet headers and computes

checksums. To obtain the line rate throughput, the driver

combines the headers of multiple packets and copies them to

the NetFPGA in a single DMA transfer. Next, the NetFPGA

hardware pipeline stores them into the input memory of the

NetThreads system.

NetThreads to Wire: This last part of Caliper runs as

software on the NetThreads platform inside the NetFPGA. The

driver sends its messages containing the headers of multiple

packets and their corresponding transmission times. Then,

Caliper prepares these packets for transmission and sends them

at the appropriate times.

Sender Receiver

1 Gbps

NetFPGA router

1 Gbps

Fig. 3. Topology of experiments.

B. Integration with Existing Tools

Caliper is intended to be integrated with software traffic

generators. Since Caliper is acting as a network card device in

the kernel, it can transmit packets generated within the Linux

kernel with any software packet generator (i.e., ping, Iperf,

etc.) according to user-specified inter-arrival times. When

using TCP sources, Caliper can transmit live TCP connections

and closed-loop sessions. As a result, the generated traffic

becomes “responsive” to changing network conditions or com-

peting application traffic by capturing the congestion feedback

of TCP sources and any other Linux implemented protocols.

For example, one desirable advantage of using Caliper for TCP

sources is the ability to define an inter-packet gap to provide

TCP pacing [18] in hosts. TCP pacing addresses the burstiness

of TCP traffic by minimizing the possibility of overflow in

router buffers [1]. Towards this goal, Caliper is able to adjust

precisely the interval between outgoing packets and produce

smoothed and stable traffic. In Sections III-A and III-C, we

demonstrate that Caliper provides three orders of magnitude

better precision compared to commodity NIC when using Iperf

to generate TCP and UDP traffic.

III. EVALUATION

In this section we evaluate the performance of Caliper by

focusing on its accuracy and flexibility features. We set-up

our experiments to reflect Caliper’s intended use: to comple-

ment existing traffic generators by allowing them to precisely

control when packets are transmitted. Hence, we present our

experiments where the most important metric is the accuracy

of packet transmission times. We also present measurements

of an existing network emulator which clearly demonstrate the

need that Caliper fulfills. We further present a prototype that

integrates Caliper with the ns-2 simulator.

We perform our evaluations using Dell Power Edge 2950

servers running Debian GNU/Linux 5.0.1 (codename Lenny)

each with an Intel Pro/1000 Dual-port gigabit network card

and a NetFPGA card. The topology of our experiments is

illustrated in Figure 3. In each test, there is a single server

sending packets and a single server receiving packets via a

NetFPGA-based router in the middle that measures the packets

inter-arrival times. In the experiment described in Section

III-D, the router is replaced with a server running a software

network emulator which routes packets between the sender

and receiver.

Since Caliper’s main goal is to transmit packets exactly

when requested, the measurement accuracy is vital to the eval-

uation. Measuring arrival times in software using tcpdump or

similar applications is imprecise: generic NICs combined with
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Fig. 4. Comparing the 95th percentile of absolute error (|DR −DM |)
between Caliper, SPG, and commodity NIC when injecting UDP packets.

OS overheads are intrinsically inaccurate at the level we oper-

ate [4]. Therefore, we use a NetFPGA router to measure packet

inter-arrival times at the middle node (router). The NetFPGA

router is configured with the “event capturing module” of the

NetFPGA router design[1], [19] which supports instrumenting

the router’s output queues:3 when a packet arrives, departs or

is dropped, the system clock time of the NetFPGA, which

has an 8 ns granularity, is recorded. To reduce overhead, the

NetFPGA router batches multiple events in packets that are

periodically sent out and we obtain the packet inter-arrival

times at the router by subtracting successive timestamps in

the payload of those event packets.

A. Sending UDP Packets at Fixed Intervals

The simplest test case for Caliper is to generate UDP

packets with a fixed inter-transmission time. Comparing the

requested inter-transmission time with the observed inter-

arrival times demonstrates Caliper’s degree of precision. As

explained in Section II, Caliper leverages software running

on what has previously been a hardware-only network device,

the NetFPGA. Even executing software, NetThreads should

provide sufficient performance and control for precise packet

generation.

To evaluate the above criteria we compare Caliper’s trans-

mission times against those of Stanford’s Packet Generator

(SPG), which is implemented on the NetFPGA solely in

hardware. Moreover, we demonstrate the lack of precision

when using a commodity NIC transmitting Iperf traffic. Fig-

ure 4 shows the 95th percentile of absolute error between

the measured inter-arrival times (DM ) and the requested

inter-transmission times (DR) corresponding to various packet

transmission rates (TR). It is important to note that the 95th

percentile error is a more conservative metric than the average

error as it captures the 5% largest errors. For each transmission

rate, we send 1,500,000 UDP packets of size 1518 bytes

3To increase the accuracy of the timestamps even more, we removed two
parts of the router pipeline that could add a variable delay to packets before
they reach the output queues. This is possible because we are only interested
in measuring packets that arrive at a particular port and the routing logic is
unnecessary.
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(including Ethernet headers) using Caliper, SPG, or an Intel

commodity Ethernet NIC. To generate constant bit rate traffic

over the commodity NIC we use the Iperf traffic generator

with rate TR. We then capture a portion of traffic in a trace

file and replay it with SPG while configuring SPG with the

exact same packet inter-arrival time that we used with Caliper,

DR.

As Figure 4 illustrates, for all range of transmission times

up to 1 Gbps, the 95th percentile absolute error is around 8 ns
for both Caliper and STG. The clock period of the sending and

measuring NetFPGA systems is 8 ns, and hence an error of 8

ns implies that most of the inter-transmission times are within

one clock cycle (the measurement resolution). This shows that

even though NetThreads is executing software, it still allows

precise control on when packets are transmitted. On the other

hand, note that the commodity NIC’s error is almost three

orders of magnitude higher than both Caliper and STG. At 1

Gbps rate, we notice that the error is minimum for Caliper,

STG as well as the commodity NIC case because the network

is operating at its maximum utilization and packets are sent

and received back-to-back.

Although both Caliper and STG packet generators are of

similar accuracy, SPG has a limitation that makes it unsuitable

for the role we intend for Caliper. The packets sent by SPG

must first be loaded onto the NetFPGA as a pcap file before

they can be transmitted. This two-stage process means that

SPG can only replay relatively short traces that have been

previously captured.4 Although SPG can optionally replay the

same short trace multiple times, it can not dynamically be

instructed to send packets by a software packet generator or

network emulator using a series of departure times that are

not known a priori. Caliper, on the other hand, can be used

to improve the precision of packet transmissions streamed by

any existing packet generation software.

B. Variable Inter-arrival Times and Packet Sizes

Another advantage of Caliper is its ability to generate

packets with an arbitrary sequence of inter-arrival times and

4The largest memory on the board is 64 MB which is only about 0.5
seconds of traffic at the 1 Gbps line rate.
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sizes that are both essential parts of performing realistic large

scale experiments. Figure 5 shows the CDFs of both the

requested and the measured transmission times for an exper-

iment with 4000 packets with inter-arrival times following a

Pareto distribution. Interestingly, only a single curve is visible

in the figure since the two curves match entirely (for clarity

we add crosses to the figure at intervals along the input

distribution’s curve). As we will demonstrate in Section III-D,

this property of Caliper is exactly the component that the

network emulators need. Caliper can take a list of packets

and transmission times and send the packets when requested.

The crucial difference between Caliper and SPG is that SPG

has a separate load phase that prevents it from being used by

network emulators.

As another example, Figure 6 shows the CDFs of the

requested and the measured transmission times when the re-

quested inter-arrival of packets follows the spike bump pattern

probability density function observed in the study on packet

inter-arrival times in the Internet by Katabi et al. [20]. In

this distribution, a flow traverses a low bandwidth bottleneck

with an inter-arrival of 8 ms followed by a high bandwidth

bottleneck. Moreover, to demonstrate Caliper’s ability in gen-

erating packets with variable sizes, we choose the packet sizes

according to another realistic distribution from the same study:

50% are 1518 bytes, 10% are 612 bytes, and 40% are 64

bytes. Note that, again, Caliper generates the traffic exactly as

expected and hence only one curve is visible.

C. Generating Responsive Traffic

As explained in Section III-E, Caliper has the ability to

receive packets from the Linux network stack and hence it

can be used to produce live TCP connections and closed-

loop sessions. In this section, we evaluate the performance

of Caliper to inject smoothed TCP packets (paced TCP) at

precise time intervals and compare the precision of using TCP

Iperf traffic with Caliper and a commodity NIC.5 As in [1],

we use the Precise Software Pacer (PSPacer) [21] package

5Note that in this set of experiments we are unable to include SPG due to
its open-loop limitation.
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Fig. 7. Comparing the 95th percentile of absolute error (|DR −DM |)
between Caliper and a commodity NIC when injecting TCP packets.

as a loadable kernel module to enforce pacing while using

the commodity NIC. The challenges to accomplish precise

packet pacing are discussed in [19]. PSPacer paces packets by

injecting gap packets between the real packets. By knowing

the speed of the link and controlling the number and size

of the gap packets, PSPacer controls the timing of packets in

software without using timers. The trade-off is that packets are

being sent at the line rate through a regular NIC even when

the data rate has been limited by pacing. In both experiments,

we use an unmodified version of TCP, as implemented by the

Linux network stack.

Similar to experiments in Section III-A, we calculate the

absolute error (|DR −DM |) between the measured inter-

arrival times (DM ) and the requested inter-transmission times

(DR) corresponding to the requested packet transmission rate

(TR) of Iperf. As illustrated in Figure 7, Caliper improves the

95th percentile of absolute error by almost three orders of

magnitude compared to the commodity NIC. Hence, Caliper’s

accuracy enables researchers to perform live and time-sensitive

network experiments with confidence on the accuracy of

packet injection times. As in Figure 4, at 1 Gbps rate, the error

of both Caliper and the commodity NIC is minimal because

packets are sent and received back-to-back.

D. Accuracy of Existing Software Network Emulators

The goal of network emulators is to allow arbitrary networks

to be emulated inside a single machine or using a small number

of machines. Each packet departure time is calculated based on

the packet’s path through the emulated network topology and

on interactions with other packets. The result of this process is

an ordered list of packets and corresponding departure times.

How close the actual transmission times are to these ideal

departure times is critical for the precision of the network

emulator.

Existing software network emulators have been built on

Linux and FreeBSD [17], [22]. To minimize overhead, they

process packets in the kernel and use a timer or interrupt

firing at a fixed interval to schedule packet transmissions. They

effectively divide time into fixed-size buckets, and all packets

scheduled to depart in a particular bucket are collected and
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sent at the same time. Clearly, the bucket size controls the

scheduling granularity; i.e., packets in the same bucket will

essentially be sent back-to-back.

To quantify the scheduling granularity problem, we focus

on the transmission times generated by NIST Net[22], a

representative network emulator. Here, we generate MTU-

sized UDP packets at a fixed arrival rate using Caliper. The

packets are received by a server running NIST Net, pass

through the emulated network, and are routed to a third

server which measures the resulting packet inter-arrival times.

NIST Net is configured to add 100 ms of delay to each packet.

Although adding a delay to every packet is a simple application

of a network emulator, by varying the input packet inter-arrival

times, NIST Net’s scheduler inaccuracy is clearly visible.

Figure 8 is a CDF of the measured intervals between

packet arrivals in NIST Net’s input and output traffic where

the requested packet inter-transmission time is 70 μs. As

shown, Caliper accurately delivers packets to NIST Net in

the intermediate sever, but NIST Net is unable to preserve

the precision. Here a packet is sent by Caliper to NIST Net,

and thus should depart from NIST Net, every 70 μs. This

interval is smaller than the fixed timer interval used by NIST

Net, which has a period of 122 μs[22], thus NIST Net

will either send the packet immediately or in the next timer

interval. Consequently, in Figure 8, 40% of the packets are

received back-to-back if we consider that it takes just over

12 μs to transmit a packet of the given size on the wire (the

transmission time of a single packet is marked with a “T”

on the X-axis). Very few packets actually depart close to the

correct 70 μs interval between them. Most of the remaining

intervals are between 100 μs and 140 μs. Note that the server

running NIST Net is using a commodity NIC which also plays

a negative role in preserving the packet inter-transmission

times.

Even when the interval between arriving packets is larger

than NIST Net’s bucket size, the actual packet transmission

times are still incorrect. We repeated the same experiment with

inter-transmission times of 640 μs and 700 μs arrivals and

observed that in both cases, 70% of the intervals are actually

either 610 μs or 732 μs, which are multiples of NIST Net’s

122 μs bucket size. It is only possible for NIST Net to

1.#Caliper’s interval in seconds:

2.set caliper_interval 0.001

3.#define the nodes n0, n1, n2, and n3

4.#define the links (n0, n2), (n2, n3), and (n3, n1)

5.#obtain the queue of the specific caliper queue:

6.set caliper_queue_ [$ns simplex-link-op $n2 $n3 queue]

7.#call use-caliper function:

8.$cliper_queue_ use-caliper

9.#set the physical IP/MAC addresses mapping table:p y pp g

10.$ns insert_nat IP_N2 IP_N3 PORT_N2 PORT_N3 MAC_N2 MAC_N3

11.#Create a UDP agent and attach it to node n0

12.#Create a CBR traffic source and attach it to udp0

13.#set the rate of the CBR source:

14.$cbr0 set interval_ $caliper_interval

Fig. 9. Illustration of a simple topology expressed in our integration of ns-2
with Caliper.

send packets either back-to-back or with intervals that are

multiples of 122 μs. When we vary the inter-arrival time of

the input traffic between 610 μs and 732 μs, it only varies

the proportion of the output intervals that are either 610 μs

or 732 μs.

The cause of the observed inaccuracies is not specific

to NIST Net’s implementation of a network emulator. Any

software that uses a fixed-size time interval to schedule packet

transmissions will suffer similar failures at small time scales,

and the generated traffic will not be suitable for experiments

that are sensitive to the exact inter-arrival times of packets. The

exact numbers will differ, depending on the length of the fixed

interval. To our knowledge, Modelnet[17] is the software net-

work emulator providing the finest scheduling granularity of

100 μs with a 10KHz timer. Although higher resolution timers

exist in Linux that can schedule a single packet transmission

relatively accurately, the combined interrupt and CPU load of

setting timers for every packet transmission would overload

the system. Therefore, our conclusion is that an all-software

network emulator executing on a general-purpose operating

system requires additional hardware support (such as the one

we propose) to produce realistic traffic at very small time

scales.

E. Network Emulation by Integrating Caliper with ns-2

Simulation and testbed construction represent the two most

important methodologies available to network researchers for

the design and evaluation of both novel and existing network-

ing elements. Employing an emulation capability in network

simulation provides the ability for real-world traffic to interact

with a simulation. Since many researchers are already familiar

with the Network Simulator ns-2, this is a useful tool to

test real network devices together with simulated networks.

Such integrations will enable researchers to repeat simulation

experiments under different link and environment conditions.
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Fig. 10. CDF of simulated packets’ and physical packets’ inter-transmission
times when integrating Caliper with ns-2.

Compared to previous attempts to connect ns-2 to a real

network [23], our integration of Caliper with ns-2 enables

generating real packets with transmission times that match the

ns-2 simulated times even on very small time scales. In our

integration, we mark a particular link in ns-2’s simulated

network to be mapped to physical link(s). When the simu-

lation starts, the simulated packets are built and traverse the

simulated links and nodes until they reach the specific marked

queue (caliper queue) connecting the simulation and physical

worlds. At this point, Caliper builds real packets and transmits

them according to their simulated inter-arrival times. The

mapping between simulated node IDs and physical IP/MAC

addresses and port numbers is also specified in the simulation

configuration file. On the other end of the caliper queue,

there is another simulation running, which receives the physi-

cal packet, and fires the appropriate simulation event indicating

that the corresponding simulated packet has been received.

Our implementation only requires a few additional com-

mands to a simulation program written in the Tcl language

which makes it extremely convenient to work with. As an

example, Figure 9 illustrates a simple topology expressed in

our extension. Lines 1 to 6 define the topology and the nodes

conventionally in ns-2 language. In line 8, we define the link

between node 2 (n2) and node 3 (n3) as caliper queue so that

when packets depart the link’s queue the simulator will send

the packet to Caliper’s driver. In line 10, we create a mapping

table for the physical IP and MAC addresses corresponding to

the physical ends of wire between n2 and n3. Finally in line

14 we assign a traffic source to n0 with the packet inter-arrival

time defined in line 2 (1 ms).

Figure 10 compares the CDF of measured physical packets’

inter-transmission times with the simulated packet logs from

the ns-2 trace file. The ns-2 sources are set to send

UDP packets with 1 ms inter-transmission times and our

integration of Caliper with ns-2 is able to preserve the inter-

arrival times of 80% of the packets. One of the challenges to

integrate Caliper with simulation software is synchronizing the

simulation time and real-time. In order to keep the difference

between real-time and simulation time minimum, we pause the

simulation scheduler and as a result, we maintain the same

simulation clocks between the simulated world and the real

world. We envision that the main cause for the inaccuracy in

20% of the packets is due to our inefficiency in synchronizing

real and simulated times.

IV. DISCUSSION AND FUTURE WORK

The limitations of Caliper stem from copying packets be-

tween the host computer and the NetFPGA over the 32-bit,

33-MHz PCI bus, which has a bandwidth of approximately

1 Gbps. As explained in Section II, the payloads of packets

sent by Caliper are usually all zeros, which requires sending

only the packet headers over the PCI bus. This is sufficient for

network experiments that do not involve packet payloads. A

larger body of experiments ignore most of the packet payloads

except for a minimal amount of application-layer signaling

between sender and receiver. To support this, arbitrary custom

data can be added to the start of any packet payload. This

additional data is copied to the NetFPGA card and is included

in the packet. In the future, we plan to allow a number of

predefined packet payloads to be copied to the NetFPGA in a

preprocessing phase to later be attached to outgoing packets

without the need to repeatedly copy them over the PCI bus. We

envision this feature would support many experiments where

multiple flows send packets with the same or similar payloads.

We are working on extending the Caliper software on

NetThreads to enable more features while preserving the

precision of the traffic. For NetThreads applications in general,

the maximum achievable packet rate depends on the amount of

computations done per packet and hence it also is a function

of the packet size (the shortest packets are the worst case

leaving less cycle budget per packet: the 125MHz clock allows

for 1 cycle per packet byte per processor). Finally, we made

both NetThreads and Caliper available as free software to

download [13].

V. RELATED WORK

There have been many software- and hardware-based packet

generators presented in the literature. Some of the software

workload generators try to characterize network traffic by

empirically deriving models for web traffic [24], [25], or

other network applications, such as TELNET, SMTP, NNTP,

and FTP [26]. Cao et al. [27] model the HTTP traffic and

parameterize the network characteristics such as the round-

trip times at the clients rather than capturing it empirically.

Netspec [28] builds source models to generate traffic for

TELNET, FTP, HTTP, voice and video.

One popular way to generate traffic for testbeds is through

packet traces from existing networks. RAMP [29] generates

high bandwidth traces using a simulation environment in-

volving source-level models for HTTP and FTP. Rupp et
al. [30] introduce a packet trace manipulation framework for

testbeds. They present a set of rules to manipulate a given

network trace, for instance, stretch the duration of existing

flows, add new flows, change packet size distributions, etc.

Hernandez et al. [31] generate realistic TCP workloads using

a one-to-one mapping of connections from the original trace

to the test environment. Swing [15] can create responsive,

closed-loop traffic with similar burstiness characteristics on

multiple time scales to existing traces by estimating wide-area
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network characteristics. Another popular way to create realistic

traffic is to use network emulators. For example, Swing uses

ModelNet [17] to emulate a network of links each with its own

bandwidth, delay and drop probability. Unfortunately, relying

on network emulators has its own limitations. The network is

emulated in software, and the position of packets within the

network is only updated e.g. 10000 times per second or once

every 100 μs for ModelNet. Thus, the packets sent do not

have high precision timings as roughly 8 MTU sized packets

can be transmitted at 1 Gbps in 100 μs. Using the discrete

event simulator ns-2 as the network emulator also suffers

from similar timing issues. Mahrenholz et al. [32] recommend

several modifications to ns-2 to improve the accuracy of

its network emulation feature. The NetFPGA-based packet

generator introduced by Covington et al. [9] can reliably replay

a trace file and capture packets at Gbps line rate. However, as

mentioned in Section I the traces are based on prior recording

and it would be difficult to extrapolate them to closed-loop

traffic and other workload/topology scenarios.

There are a number of other available software tools for

traffic generation such as Harpoon [33] and tcplib [34].

However, they are all designed to match the property distri-

butions of a trace at a coarse granularity and none attempt

to guarantee the behavior of traffic at short time scales. They

ignore the unavoidable timing issues introduced by the users’

hardware and OS choices. Our efforts are complementary to

the above mentioned works as we focus only on constructing

real packets and providing exact transmission times. To the

best of our knowledge, we present the first framework for

generating precise closed-loop traffic providing guarantees for

inter-transmission times at very short time scales.

VI. CONCLUSIONS

Generating realistic traffic in network testbeds is challenging

yet crucial for performing valid measurement experiments.

Software network emulators schedule packet transmission

times in software, incurring unavoidable inaccuracy for inter-

transmission intervals in the sub-millisecond range – hence

they are insufficient for experiments sensitive to the inter-

arrival times of packets. In this paper we present Caliper,

a precise and responsive traffic generator built on NetFPGA

board. Caliper allows packets generated on the host computer

to be sent with extremely accurate inter-transmission times

and is designed to be integrated with existing software traffic

generators and network emulators. We demonstrate Caliper’s

precision and integration with existing software to generate

traffic that is realistic and accurate at almost all time scales.

In our experiments, the maximum error that Caliper incurs

is around 8 ns which is the NetFPGA’s clock cycle time

and also our measurement resolution. Overall, Caliper allows

researchers to perform experiments that were previously in-

feasible.
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