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Abstract. In this paper we present OpenTM, a traffic matrix estima-
tion system for OpenFlow networks. OpenTM uses built-in features pro-
vided in OpenFlow switches to directly and accurately measure the traffic
matrix with a low overhead. Additionally, OpenTM uses the routing in-
formation learned from the OpenFlow controller to intelligently choose
the switches from which to obtain flow statistics, thus reducing the load
on switching elements. We explore several algorithms for choosing which
switches to query, and demonstrate that there is a trade-off between
accuracy of measurements, and the worst case maximum load on indi-
vidual switches, i.e., the perfect load balancing scheme sometimes results
in the worst estimate, and the best estimation can lead to worst case load
distribution among switches. We show that a non-uniform distribution
querying strategy that tends to query switches closer to the destina-
tion with a higher probability has a better performance compared to the
uniform schemes. Our test-bed experiments show that for a stationary
traffic matrix OpenTM normally converges within ten queries which is
considerably faster than existing traffic matrix estimation techniques for
traditional IP networks.

1 Introduction

A traffic matrix (TM) represents the volume of traffic between origin-destination
(OD) pairs in a network. Estimating the point-to-point TM in a network is an
essential part of many network design and operation tasks such as capacity
planning, routing protocol configuration, network provisioning, load balancing,
and anomaly detection.

Direct and precise measurement of TM in large IP networks is extremely
difficult, if not infeasible, due to the large number of OD pairs, the high volume
of traffic at each link, and the lack of measurement infrastructure [1]. Previous
works infer the TM (a) indirectly from link loads [2,3], (b) directly from sampled
flow statistics (e.g., using Cisco NetFlow) [4, 5], or (c) using a combination of
both [1]. Indirect methods are sensitive to the statistical assumptions made in
their models and are shown to have large errors [6]. Direct methods can be
quite attractive due to their high accuracy levels. However, the lack of required
measurement infrastructure and the prohibitively large overhead imposed on the
network components are two main drawbacks of direct measurements.



In this paper, we revisit the TM estimation problem using direct measure-
ments in the context of OpenFlow-based networks [7]. OpenFlow is an open
standard that makes any changes to the network control plane very easy by sep-
arating the data and control planes. An OpenFlow network consists of OpenFlow
switches (data plane) managed by a logically centralized OpenFlow controller
(control plane) which has a network-wide view. OpenFlow’s unique features re-
move the prohibitive cost of direct measurements for TM estimation. Unlike com-
modity switches, flow level operations are streamlined into OpenFlow switches
which lets us query for flow statistics, enabling access to accurate flow statistics.

Taking advantage of these features, we have designed OpenTM, a TM esti-
mator for OpenFlow networks. OpenTM reads byte and packet counters kept by
OpenFlow switches for active flows and therefore incurs a minimal overhead on
network elements. At the same time the highest level of accuracy is preserved, be-
cause the TM is derived directly without making any simplifying mathematical
and statistical assumptions. Our work shows the possibility of direct measure-
ment of TM with the least overhead as long as the infrastructure (OpenFlow
here) provides the appropriate feature set for measurements. We note that the
scope of our work is limited to the networks where OpenFlow can be deployed,
i.e., where maintaining per-flow counters is likely tractable.

For different flows, OpenTM can query any switch along the flow path. This
choice, however, can affect the accuracy of the measurement as well as the load
on individual switches. We present several strategies for choosing which switch
to query at any point of time. Even though all these schemes result in TM
estimations with very small errors, our analysis and experiments show that there
is a trade-off between the accuracy of the TM measurements and the maximum
query load on individual switches, i.e., the perfect query distribution sometimes
results in the worst estimate, and the best estimation can lead to the worst query
distribution amongst switches.

We have implemented OpenTM as an application for NOX [8], an open-source
OpenFlow controller. We study OpenTM’s performance on a small testbed of
OpenFlow switches. Even though using a small testbed for evaluation has its own
shortcomings, we believe that most results would not be significantly different
in larger networks. Our results show that in a system with a stationary traffic
matrix, OpenTM normally converges within 10 queries to a value within 3% of
the average rate which is notably faster than existing techniques for traditional
IP networks.

The contributions of this work are two-fold. First, we present the design and
implementation of OpenTM for OpenFlow-based networks. Based on the eval-
uation, we argue that low-overhead accurate TM estimation is feasible using
direct measurements in a setting where the switches keep track of flow statistics.
Second, we explore the idea of constructing the TMs from switch-level measure-
ments, where the choice of which switch to query can be decided at runtime. To
the best of our knowledge, this is in contrast to the existing techniques that usu-
ally instrument all ingress/egress links leading to an very uneven measurement



load on the boundary switches or routers (switches internal to the network have
a very little measurement load).

2 Design

Direct measurements in large traditional IP networks is prohibitively costly due
to the processing required to handle the large volume of traffic at each inter-
face [1]. On the other hand, OpenFlow switches keep track of active flows in
the network and update per flow counters. The measurement infrastructure that
OpenFlow provides enables direct and precise flow measurements without packet
sampling or incurring any prohibitive overhead on switches. We take advantage
of these features to present OpenTM’s design in this section.

OpenTM’s logic is quite simple. It keeps track of all the active flows in the
network, gets the routing information from the OpenFlow controller’s routing
application, discovers flow paths, and periodically polls flow byte and packet-
count counters from switches on the flow path. Using the routing information,
OpenTM constructs the TM by adding up statistics for flows originated from
the same source and destined to the same destination1. Using the information
available to an OpenFlow controller, OpenTM can create different types of TMs
with different aggregation levels for sources and destinations. Our implementa-
tion of OpenTM computes the TM for switches, but the implementation can be
easily augmented to derive other TM types described in [9].

The total number of queries generated by OpenTM during each querying in-
terval is bounded by the number of active flows in the network. It is commonly
believed that the number of concurrently active flows in large enterprise IP net-
works is small. According to the data from the 8000-host network at LBNL,
the total number of active flows in their network never exceeds 1200 in any
second [10]. The data from the Stanford Computer Science and Electrical Engi-
neering network with 5500 active hosts shows that their number of active flows
stays well below 10000 [11]. Currently, our system generates a single query for
a single source-destination IP pair. As an improvement, a single query can be
generated for all flows sharing the same path, as long as the IP addresses could
be aggregated.

Different switches on the path may observe different rates for a given flow
due to packet loss. We consider the last switch on the flow path to be the point
of reference since this is what is seen by the receiver. Consequently, we query the
last switch on the path for the most accurate TM. However, this strategy im-
poses an uneven and substantially high amounts of load on the first/last switches
and does not scale well. We expect to get close statistics if other switches on the
flow path are queried since packet loss is negligible in enterprise networks (where
OpenFlow is designed for). Based on this observation, we propose different switch
querying strategies: (a) querying the last switch, (b) querying switches on the
1 Multipath routing, routing changes or hot potato routing do not affect the correct-

ness of OpenTM, because OpenTM coordinates with the controller routing applica-
tion to discover any change in flow paths.



flow path uniformly at random, (c) round-robin querying, (d) non-uniform ran-
dom querying that tends to query switches closer to the destination with a higher
probability, and (e) querying the least loaded switch.

Querying the last switch results in the most accurate TM, but imposes a sub-
stantial load on edge switches. Uniform random querying of switching elements
of a given flow’s path evenly distributes the load amongst switches as long as all
switches are equally capable. The price, however, is losing some accuracy. Round-
robin querying deterministically queries switches on a round-robin fashion. On
average, we expect both uniform random querying and round-robin querying
to behave similarly, but round-robin querying may result in synchronization in
querying, because the same switch might be queried by several flows simulta-
neously. Using a non-uniform distribution for querying switches gives us control
over the accuracy and the load of OpenTM. A distribution which chooses last
switches in the path with a higher probability, results in a more accurate TM but
imposes more load on those switches. In our experiments, for non-uniform query-
ing, we randomly select two switch along the flow path and query the one closer
to the destination. Querying the least loaded switch evenly distributes queries
among all switches in the network, contrary to the uniform random querying
method which only distributes queries among switches on individual flow paths.
In Section 5, we compare these methods with each other.

The frequency at which OpenTM queries switches for statistics is another
factor that directly affects the accuracy and overhead of TM estimation. Query-
ing more frequently results in a more accurate TM but with the cost of added
overhead. Here we only consider fixed length intervals for querying different
switches for all the flows. Switch querying interval can be adaptively adjusted
for each source-destination IP pair based on the flow and network dynamics
(e.g., round trip time, available bandwidth). The relation between an efficient
querying frequency and flow and network dynamics is outside the scope of this
work.

3 Implementation

We implemented OpenTM as a C++ application for NOX [8], an open-source
OpenFlow controller designed to simplify developing network applications. A
NOX application can get notified of all network events (e.g., flow initiation and
termination), has access to the routing information, and can interact with the
switches in the network. NOX also lets applications interact with each other2.

In each querying interval, OpenTM queries the network for the statistics of
all active IP pairs. Element (i, j) in the TM is then computed by summing up
the flow rates that are originated from switch i and are destined to switch j. We
note that the flow statistic queries do not hit switches at the same time, because
flow initiation among OD-pairs are not synchronized.

OpenTM starts querying for statistics periodically once it sees the first flow
between an OD-pair and stops querying once all the flows between an OD-pair
2 For instance, OpenTM exposes the real-time traffic matrix to other applications.



are expired. To keep track of the number of active IP pairs in the network,
OpenTM counts the number of TCP/UDP flows between IP pairs. OpenTM in-
crements the mentioned counter upon receiving a Flow in event and decrements
it upon receiving the corresponding Flow expired event3.

Once the IP pair’s flow count becomes one, OpenTM fetches the flow path
(a list of switches) from the routing application and sends an aggregate statis-
tics query to a switch in the flow path according the desired querying strategy.
OpenTM updates the TM when it gets the aggregate query statistics reply back
from the network. At this time, if the IP pair flow count is non-zero, OpenTM
registers a callback function to query the network for the flow statistics again
after a certain period of time4. An implicit assumption here is that all packets
flowing from the same source to the same destination take the same path. This
enables us to query the same set of routers to get statistics for all flows between
an IP pair.

OpenTM keeps track of switch loads, so it can choose the least loaded one
and optimally balance the queries among all of them. We use the number of
outstanding queries on each switch as the load metric. When a switch is queried,
a counter that keeps track of the number of outstanding requests on each switch
is incremented. Upon receiving the reply back, that counter is decremented.
This simple method captures the difference in the processing power of switches.
More capable switches can handle more requests and should get more queries
compared to the less capable ones. In the following section, we present the results
of our empirical evaluation based on our implementation.

4 Experiments and Results

In this section, we present real-time traffic measurements in a testbed to evaluate
OpenTM. We study the performance and convergence time of OpenTM. We also
compare different switch querying schemes introduced in Section 2.

For our experiments, we use HP DL320 G5p servers equipped with an
HP NC326i PCIe dual-port gigabit network card running Debian Lenny and
OpenFlow-enabled NEC IP8800/S3640 switches. In all our experiments, we use
TCP cubic with the maximum advertised TCP window size set to 20MB. The
path MTU is 1500 bytes and the servers send maximum-sized packets. We use
the NetEm [12] to emulate network delay and loss, and use Iperf to generate
the input traffic.

Our testbed topology is illustrated in Figure 1(a), where Hi, 1 ≤ i ≤ 10,
are host machines, Sj , 1 ≤ j ≤ 10 are OpenFlow switches, and Lk, 1 ≤ k ≤ 3
are loss emulator machines. Five OD pairs Hi-Hj are created in which host Hi

sends TCP traffic to host Hj . Specifically, we create 10 TCP flows between each
OD pair H1-H10, H2-H9, H3-H4, H5-H6, and H7-H8. We add 100ms of delay on
3 Both Flow in and Flow expired events are fired by the NOX’s authenticator appli-

cation upon flow initiation and termination, respectively. A flow expires when the
switch does not see any packets belong to that flow after a specific timeout.

4 The querying interval which is set to five seconds in our current implementation
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Fig. 1. (a) Testbed topology consisting of Hi: host machines, Si: OpenFlow switches,
and Li: loss emulators. (b) Measured average flow rate for each of the five OD pairs
in the network.

the forward path of each flow. The delay emulators are also configured to each
emulate 1% packet loss. For the purpose of evaluation, OpenTM logs the flow
statistics of all switches every five seconds for a duration of two hours; we then
analyze the data offline. Note that this is not the case in the real application
where the switches are queried according to the querying scheme chosen by the
network operator. Since we are interested in studying the system in equilibrium,
we remove the first 15 minutes of our data as the warm up period.

We start with a very basic question: How fast does OpenTM rate measure-
ments converge? For an element f in the TM, let us assume we have t queries.
The i-th query, ri, is the average rate from the beginning of the measurement
up to that point in time. We define the convergence point c as the first query for
which all the proceeding queries are within 3% of the overall mean rate. We note
that since the rate is assumed to be stationary in this system5, such an average
exists. Also, by a simple application of the Central Limit Theorem, we can show
that the queries will converge to the real average as we increase the number
of queries. Roughly speaking, the convergence point is when the estimated rate
becomes and remains very close to the overall average rate that we are trying to
estimate.

Figure 1(b) shows the average rate over time for each of the five OD pairs. The
measurement is performed at the last switch in each path with a querying interval
of only five seconds. We can see that in all cases convergence point, marked by
vertical arrows in the graph, is within 50 seconds, or just 10 queries. Note that

5 This assumption does not break the generality of our results. We make the stationar-
ity assumption in order to have a well-defined notion of convergence time. However,
as long as the changes in system are slower than our convergence rate, OpenTM
gives a close estimate of the TM.
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Fig. 2. (a) Comparing the querying strategies methods for traffic between H1 and
H10 with a querying interval of 5 seconds. (b) CDF of difference between querying
strategies and the last switch’s traffic.

OD pairs H1-H10 and H2-H9 receive the least rate as they are traversing the
longest path in the topology through three loss emulators hence experiencing
3% drop rate. On the other hand, H3-H4, H5-H6, and H7-H8 only experience
1% drop rate and thus have higher rates.

In the next set of experiments, we compare different querying strategies pro-
posed in Section 2. Figure 2(a) shows the measured average throughput versus
time for traffic between H1 and H10 when each of the querying strategies are
used and the querying interval is five seconds. To make it more visible, the plot
is zoomed in and only shows 100 seconds of the measurement. From the figure,
it appears that the least loaded method is almost always reporting a rate higher
than the last switch method and having the largest estimation error. This is
because in our setup, the least loaded switches are mostly the first switch in a
flow’s path which is before all three drop emulators and hence this method suf-
fers from the most inaccuracy. This is not necessarily the case in other network
topologies and it is dependent on the traffic load over the switches.

To better illustrate the difference between querying strategies, Figure 2(b)
shows the CDF of differences between each querying strategy and the last
switch’s rate for traffic between H1 and H10 when each of the querying strate-
gies are used and the querying interval is five seconds. The ideal case is to
always measure the last switch’s rate and hence having zero difference and it
is shown by a vertical line at zero in the graph. As expected from the analysis
presented in Section 5, the figure shows that the non-uniform random querying
method has the best performance, as it tends to query switches closer to the
destination with higher probability. Both the round-robin and uniform random
querying methods are performing very close to each other, and worse than the
non-uniform querying method. As mentioned above, the least loaded method is



performing the worse in this case, since in our setup the first switch on the path
is almost always the least loaded switch.

Finally, we note that the overall difference between all these schemes is rela-
tively small. In fact, the maximum difference between the best and worst query-
ing schemes is about 2 Mbps, which is about 2.3% of the actual rate (86 Mbps)
between H1 and H10. This observation suggests that when we do not need ex-
tremely accurate TM, any of these querying schemes can be used. Clearly, in
this case the least loaded scheme might be the preferred scheme as it minimizes
the maximum load among switches. For higher-accuracy requirements, however,
one might want to use schemes which favor the last few switches on the path.

5 Analysis

In this section we analytically compare the querying strategies proposed in Sec-
tion 2 in terms of their accuracy in estimating the flow rates between source and
destination. Intuitively, as long as there are no packet drops in the network, all
measurements from switches should be the same6, and thus all querying strate-
gies should be very close to each other; our experiments confirm this. However,
when there are packet drops in the system, we expect to see differences in the
various querying schemes proposed before.

Let us consider a topology similar to Figure 1(a). We are interested in finding
the expected value of rate of a given flow f . We denote the link between switches
Si and Si+1 by ei and the measured rate corresponding to f over ei by ri. If
ei has a drop rate d, then the rate measured at ei+1 will be ≤ ri × (1 − d).
Assuming there are M uniform randomly distributed congestion points in the
network, each with a drop rate of d, we can find the expected rate for each
querying strategy as follows. Note that here for simplicity we assume that all
links have equal drop probability of d.

Querying the last switch before the destination. We define the rate be-
tween an OD pair as the rate seen by the destination. Assuming negligible packet
drops on the link connecting the last switch to the destination node, querying
the last switch must give us the rate as seen by the destination regardless of net-
work conditions. We use this rate as the baseline for comparing with randomized
querying techniques presented below.

Uniform random querying. We first consider the simple case where there is
only one congested link in the network and call the measured rate by this method
at a time slot i as Rr(i) and the rate at the last switch by Rt(i). There are two
possible cases: (1) if the randomly selected switch is between the congested link
and the last switch before the destination, then rate scene by the selected switch
is same as the rate at the last switch; Rr(i) = Rt(i) (2) if the selected switch
is between the source and the congested link, then rate at the selected switch is
higher than the rate at the last hop switch before the destination. In particular,

6 We ignore the difference caused by the delay between switches.



Rr(i) = Rt(i)
1−d . Hence, Rt(i) ≤ Rr(i) ≤ Rt(i)

1−d . Assuming that the congested link
is placed uniformly random over the path then each of the above cases has an
equal probability of one half. If we take the average rate over N queries, the
expected rate Rr =

∑N
i=1 Rr(i)/N , will lie exactly in between the two cases;

i.e., Rr = 0.5× (Rt + Rt/(1− d)).
Similarly, if there are M congestion points in the network then we have

Rt(i) ≤ Rr(i) ≤ Rt(i)/(1− d)M and if we assume that the congestion points are
distributed uniformly over the path, then the probability of Rr(i) = Rt(i)

(1−d)m is
1

M+1 , where 0 ≤ m ≤ M is the number of congestion points that the flow has
traversed before reaching the querying switch. Hence,

Rur =
Rt

M + 1

MX
m=0

1

(1− d)m
=

Rt

M + 1
×

1− (1− d)M+1

d(1− d)M
(1)

Non-uniform random querying. In this method, we generate two random
numbers i and j, 1 ≤ i, j ≤ N , where N is the number of switches in a flow’s
path and query the switch with ID equal to max(i, j), assuming the switch with
larger ID is the one closer to the destination. With same assumptions as the
above and in the case that there are M congestion points in the network we
have (M + 1)2 cases and if we take the average over N queries for large N , the
expected average rate will be:

Rnr =
Rt

(M + 1)2

 
1 + 2

M−1X
m=0

M −m

(1− d)m
+

1

(1− d)M

!
(2)

Round-Robin querying. The expected value of average rate for the round-
robin querying method, Rrr, is similar to the uniform random method since on
average 1

M+1 of queries will have rate Rt(i), 1
M+1 of queries will have rate Rt(i)

1−d
and so on.

Least-loaded switch querying. The performance of least-loaded switch query-
ing highly depends on packet processing power of network switches, as well as
how network load is distributed amongst them. If switches have equal processing
power and load this scheme will perform very similar to uniform random query-
ing. However, in the worst case, the least loaded switch might be the first switch
on the path in which case it will lead to the worst case estimation of the rate.

6 Conclusion

This paper presents OpenTM, a traffic matrix estimator for OpenFlow net-
works. OpenTM derives the TM of an OpenFlow network in real-time with high
accuracy using direct measurements without packet sampling. OpenTM evenly
distributes the statistic queries among all the switches in the network and thus
imposes the least overhead on the network. Our evaluation in a testbed using
OpenTM implemented as a NOX application shows that OpenTM derives an



accurate TM within 10 switch querying intervals, which is extremely faster than
existing TM estimation techniques. Despite the limitations of our evaluation
and the need for more comprehensive evaluation, we believe OpenTM can be
deployed in OpenFlow networks with a very negligible overhead.
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