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Abstract
In this paper, we present a new map-building algorithm for dynamic indoor environments. Instead of accurate 

but expensive laser ranger finder, we have employed ultrasonic sensors and an uncalibrated camera to obtain a 

map for dynamic indoor and structured environments. We model the environment via a Fuzzy-Tuned Grid-

Based Map (FTGBM). To detect and track moving objects in the vicinity of the robot when mapping a dynamic 

environment, we propose two methods: Ultrasonic Temporal Difference (UTD) and Statistical Background 

Subtraction (SBS). The former is realized by monitoring a sequence of temporal lattice maps for a certain 

number of measurement periods to detect moving objects by using ultrasonic sensors. The latter is a statistical 

background subtraction technique which is realized with an EM learned 3-class mixture of Gaussians of 

background model based on sufficient updates. After finding the moving objects, we propose a Fuzzy-Tuned 

Integration (FTI) technique to incorporate the results of above two types of motion tracking to filter out the 

moving objects from the resulting map. Furthermore, since Bayesian update rule is used in FTGBM, our 

approach also has the capability to estimate and update the states of the dynamic objects which change their 

states slowly during map building process. The simulation and experimental studies demonstrate the capabilities 

and the robustness of our approach. 

1 Introduction 

Robotic map building is to generate spatial models of physical environments from sensor 

measurements through navigation in the environment. This procedure is generally regarded as 

one of the most important problems in the pursuit of building truly autonomous mobile robot. 

Over the past two decades, the field has been received considerable attention and matured to a 

point where detailed maps of complex environments can be built in real-time, specifically 

indoors [1]. However, published works suggest that most approaches are designed for static 

environments, which assumes that the mobile robot is the only moving object in the map 

world. Nevertheless, the real world is usually dynamic, that is, the states of the objects in the 

environments do often change over time. Therefore, an autonomous mobile robot should be 

equipped with the capacity to be conscious of the changes around it and to filter out the 

spurious models of moving objects when building maps and to constantly update its map of 

the environment, if it is going to perform services in real world. 

Recently, there has been work on updating maps in dynamic environments. Burgard et al. 

[2] update a given static map using the most recent sensor information to deal with people in 

the environment. Montemerlo et al. [3] present an approach to simultaneous localization and 

people tracking. Fox et al. [4] propose a probabilistic technique to identify range 

measurements that do not correspond to the given model of the environment. These 

approaches, however, only refine maps which are generated before to remove the influence of 

state changes, like door is open and later is close, or trash bin is relocated, etc. More recently, 

there also exist several approaches to map building in dynamic environments which contain 

moving objects in perceptual range of the robots. Wang and Thorpe [5] present a heuristic and 

feature-based approach to identify dynamic objects in range scans. The corresponding 

measurements are then filtered out during 2D and 3D scan registration. R. Biswas et al. [6]

derive an approximate Expectation-Maximization (EM) algorithm for learning object shape 
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parameters at both levels of the hierarchy, using local occupancy grid maps for representing 

shape. J. Andrade-cetto et al. [7] combine landmark strength validation and Kalman filtering

for map updating and robot position estimation to learn moderately dynamic indoor 

environments. M. Di Marco et al. [8] adopt a set theoretic approach to address dynamic

SLAM problem. D. Hähnel et al. [9] present a probabilistic approach to map building in 

populated environments by using Sample-based Joint Probability Data Association Filters 

(SJPDAFs) to track people in the data obtained with the laser range scanners of the robot. The 

results of the people tracking are integrated into the scan alignment process and into the map

generation process, thus filtering out the spurious objects in the resulting maps. However, 

virtually all state-of-the-art approaches use SICK scanning laser range-finders. While the 

SICK is ideal for this because of the accurate and detailed range information provided, there 

are drawbacks. In particular, the SICK is expensive and quite heavy and bulky. 

In our work, we respectively use sonar and camera to detect and track motions, and then 

fuzzy-tuned integrate the results of above two actions to filter out the moving objects from the 

resulting map. Furthermore, we use Bayesian update rule in fuzzy-tuned grid-based map to 

estimate and refine the states of some dynamic objects which change slowly. It should be 

noted that the similar ideas about fuzzy system and Fuzzy-Tuned Grid-Based Map (FTGBM) 

come from our previous work [10]. So, in this paper we omit this work and you can refer to 

[10] for details. The rest of this paper is organized as follows. We will describe the ultrasonic 

temporal difference by ultrasonic sensors in Section 2 and statistical background subtraction 

in Section 3, and then report the fuzzy-tuned integration to incorporate the both motion

detection results into the resulting map update in Section 4. And Section 5 will contain our 

experiments carried on a real mobile robot and in simulation to illustrate the capabilities and 

the robustness of our approach. Finally, conclusion and future work will be presented in 

Section 6. 

2 Ultrasonic Temporal Difference (UTD) 

The fundamental idea to identify temporal changes in the surrounding environment of a robot 

is to monitor a temporal sequence of spatial observations and then to determine how these 

observations differ from each other. An inconsistency between two temporally subsequent 

observations is a strong indication of a potential motion in the environment. Such 

inconsistency is mainly caused by dynamic objects in a dynamic indoor environment. In 

computer vision literature, temporal difference is simple and popular method for detecting 

moving objects with a static observer. However, for a moving mobile robot, it in itself is not 

sufficient to unequivocally identify moving objects. Here, we propose a new scheme to detect 

moving objects using ultrasonic sensors called Ultrasonic Temporal Difference (UTD) 

borrowing from the etymology in the computer vision literature, which is realized by 

monitoring sensor-based information called Time-Variant Map (TVM) along the time axis 

with a certain time duration of ( nt , t is sampling time) and simultaneously filtering out 

the same information, i.e. stationary objects, thus obtaining the trajectories and outliers of 

moving objects during time span . Note that all the sensor information has been transformed

into the same global coordinate frame.
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2.1 Time-Variant Map (TVM) 

Ultrasonic Temporal Difference is realized by monitoring a temporal sequence of Time-

Variant Maps (TVMs). This procedure is not new and we have borrowed it from [11-12]. We

adopt occupancy grid model to represent time-variant map because it is easy to incorporate 

the result of ultrasonic temporal difference into the resulting map. In occupancy grid-based 

mapping procedure, each time that new measurements are available, a significant amount of 

time is spent in updating the posterior including free space or stationary object state from

Bayesian update rule. However, it is less important in the context of short-term motion

detection since all the sensor data information is synchronically registered in fuzzy-tuned 

grid-based map. Hence, we only update the occupancy probabilities of those cells in local 

sensor cone at time t while all other cells remain untouched. Fig.2 clearly shows the relevant 

transformation. It should be noted that our experimental platform is Pioneer 1 mobile robot 

[13] that only has seven sonar sensors, five in front and two at each side, separated by 15-

degrees. Here, we are only concerned with the front 75-degree region. Therefore, there is only 

a 75-degree cone shown in Fig.1b. We call this representation a time-variant map. Building 

such maps is rather simple: in each sensor measurement at time t, the cell that corresponds to 

the object detection is labeled with this time tag t. The tag means that the cell occupied at 

time t. No other cells are updated during this operation. Therefore, the temporal changing 

features of the environment are captured by the sequence of time-variant maps: TVMt, TVMt-1,

…, TVMt-n. An example of such a sequence is shown in Fig.2a-c. Note that the maps are 

already transformed into the same frame of reference. 

Figure 1: (a) The kinematical transformation; (b) Local sensor cone; (c) Image coordinate 

transformation

2.2 Detecting Moving Objects 

Due to the noise and uncertainty inherently in the ultrasonic sensors, to keep false detection at 

a low rate, we do not track single cells that are apparently moving, but cluster ensembles of 

coherently moving cells into distinct objects even though which may be only part of certain 

object. The cell clustering algorithm is temporarily simple: to check the adjacent cells, if 

occupied, they are considered as the same class, otherwise considered as different ones. In 
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this work, we use ultrasonic temporal difference with a sequence of time-variant maps to 

detect moving objects. We consider the set of cells in TVMt which carry a time tag t (occupied

at time t) and test whether the corresponding cells in TVMt-1 were occupied too, i.e., carry a 

time tag t-1. If corresponding cells in TVMt, TVMt-1 carry time tags t and t-1, respectively, 

then we interpret the spatial region circumscribed by these cells occupied by a stationary 

objectCELL . If, however, the cells in TVMt-1 carry a time tag different from t-1 or no time

tag at all, then the occupation of the cells in TVMt must be due to a moving objectCELL . If 

it is detected as a stationary object, we filter this object out of the time-variant map by simply

freeing the corresponding occupied cells, while the moving objects stay left in the time-

variant map. Fig.2d shows the result of ultrasonic temporal difference based on the sequence 

of time-variant maps shown in Fig.2a-c. Note that here we consider only the two most recent 

maps, TVMt and TVMt-1, for detecting moving objects. This limits our motion detection 

resolution, since objects that move very slowly as compared to the sensor sampling rate will 

not be detected as moving. This problem can be alleviated by selecting an appropriate value 

of n ( n

sat

t/

mov

) and by using Bayesian update rule which updates the dynamic object states in 

fuzzy-tuned grid-based map. The outline of ultrasonic temporal difference algorithm is shown 

in pseudo-code in Tab.1. 

( a) ( b)   ( c) ( d)

Figure 2: A sequence of time-variant maps describing a simple environment, different gray levels 

represent the age of observation, darker ones corresponding to the more recent 

3 Statistical Background Subtraction (SBS) 

A common method to track motion in image sequences is background subtraction between an 

estimate of the image without moving objects and the current image. Previous researcher [14-

16] have shown that the disruption can be somewhat suppressed by using statistical model of 

background in image-subtraction to find motion. Here, we also adopt a statistical method to 

model the background: a 3-class mixture of Gaussians, which is learned by using 

Expectation-Maximization (EM) algorithm [17]. We consider the intensity values of a 

particular pixel over time as an independent statistical process called “pixel process”. In a 

structured indoor environment, due to the lighting changes, scene changes, and moving

objects, the distribution of each pixel is fitted with multiple Gaussians. Since illumination is 

one of the important components which compose the indoor environments, it is necessary to 

discriminate the shadows from background and foreground. Therefore, we adopt a 3-class 

mixture of Gaussians to model the pixel process. Since it is hard to estimate the distribution of 

foreground along the image sequence, we adopt a widely distribution of Gaussian (here 

uniform distribution is used). 
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SBF ,, : Weights of the three distributions in the mixture, respectively. 

SB xx , : Means of the two Gaussians in the mixture, respectively. 

SB xx , : Standard deviations of the two Gaussians in the mixture, respectively. 

R : Parameter of the uniform distribution in the mixture, decided by the valid range of the 

intensity value. Usually it is 256. 

In the learning stage, we use EM algorithm to estimate the model parameters by given a 

training sequence like [15]. It should be noted that EM algorithm is not guaranteed to find 

global maximum and very sensitive to the starting point. That is, the algorithm will not 

converge quickly and fail to fit the distribution properly, if given a poor initial estimate of the 

distribution. In our work, we empirically determine the initialization similar with [14].

Table1: Motion detection by ultrasonic temporal difference algorithm

Begin Algorithm MotionDetection_UTD

FOR each cell class ccx, t representing an object x in TVMt

FOR each cell ci, t in ccx, t

FOR each corresponding cell ci, t-1, …, ci, t-k, …, ci, t-n in TVMt-1, …, TVMt-k, …, TVMt-n

IF ci, t-k carries a time tag t-k THEN

ci is occupied by a stationary object 

ELSE

ci is occupied by a moving object 

IF majority of cells ci, t in ccx, t is moving THEN

cell class ccx, t is moving, i.e. movCELL

ELSE

cell class ccx, t is stationary, i.e. satCELL

IF CELL THENsat

free the corresponding occupied cells 

ELSE IF CELL THENmov

do nothing 

End Algorithm

3.1 Motion Detection

In our work, each time new frame is available, we have to compensate the sensor motion in 

order to use background subtraction to detect foreground objects. That is, we map each pixel 

in current frame into background frame. Note that due to the errors in feature localization, 

motion estimation etc., this map process is not very accurate. So, at best, we predicate a 

position , i.e. , where 

Cx

Bx̂ BC xsx ˆ is the transition matrix for background motion

compensation and s is an arbitrary nonzero scalar. We use traditional method to determine

. That is, we extract corners from current frame and background and select the best n

corresponding pairs, C },,2,1,{},,,2,1, ,, nicCni iBBi{cCC .  and c  are the

corresponding corners in current and background frame respectively. Then we use least-

square-estimation (LSE) method to estimate the transition matrix

iCc , iB,

according to the assumed

transformation model, which is usually the affine or projective transformation.

Because the motion compensation is not accurate, that is x will not definitely the 

corresponding pixel x , in order to comprise this approximate alignment, we adopt another 

B
ˆ

C
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Gaussian model called Alignment Gaussian Model (AGM), which centers at x  with 

covariance matrix  in a validation region 

B
ˆ

Bx̂  similar with SGD in [16].
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is important for determining the size of AGM 
Bx̂ and will be different from pixel to 

pixel. But here for computational simplicity, we assume it is constant and estimated by 

Eq.(8). With Ê is estimated, as coefficient increases, the size of AGM increase and 

different results of the detection are obtained accordingly. In our work, since the environment

is structured, we select a proper empirically. Therefore, for a particular pixel in current 

frame , there is a corresponding AGM in the background map. If belongs to any of the 

background Gaussians of its AGM, it is labeled as background. If no corresponding 

background distribution can be found in its AGM, the pixel  is regarded as foreground. 

Cx Cx

Cx

3.2 Background Update

Everything above works well while the background is adequately updated. But this is not easy 

for a moving background, especially when there is an occlusion and/or uncovered 

background. Here we use the similiar approach with [16] to update non-stationary 

background. We briefly report the algorithm as Tab.2. For details, please refer to [16]. 

Table2: Background Update Algorithm

Begin Background_Update Algorithm

Initialization with the first frame. Number_of_Gausssian 1

Gaussian[1].Mean Pixel_Value of frame 1 

Gaussian[1].Variance
2

FOR Frame 2 to N

Motion compensation and obtaining Cx̂

Find ),( **

jCx

Gaussian_Number ; Value
*

Cx

IF  THEN DDi

Number_of_Gaussian++

Gaussian[Number_of_Gaussian].Mean Cx̂

Gaussian[Number_of_Gaussian].Variance

ELSE

Gaussian[Gaussian_Number].Count++

Update the parameters of Gaussian[Gaussian_Number] with Value 

END IF 

Find ][max
__1

jGaussian
ofNumberj

Update the background 
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END FOR 

End Algorithm

4 Fuzzy-Tuned Integration (FTI) 

After detecting moving objects, we need to integrate these two different sources into the result 

map with filtering out the spurious objects. However, since the camera is uncalibrated, we can 

not know the precise range information from images, additionally, the sonar is also not very 

accurate because of the uncertainty in radial and angular. Therefore, we can not directly use 

traditional multisensor fusion [18] which requires precise sensor-sensor calibration to 

integrate these two detection results into a common reference frame. In order to achieve a 

reliable integration, in this paper, we propose Fuzzy-Tuned Integration (FTI) algorithm to find 

out the spurious objects in the fuzzy-tuned grid-based map, which needs two necessary 

parameters: location and size of the spurious objects in the resulting map, and then filter them

out. To design this fuzzy system, we first define the input variables and output variables as 

follows. The fuzzy rule base and membership design is similar with [10].

Input Variables 

: The centroid of  in robot frame.),(_ yxCentroidB movBLOB

: The centroid of CELL in robot frame.),(_ yxCentroidC
mov

: The size of the  in vision frame in number of pixels. SizeB _ movBLOB

: The size of the CELL in grid-based map in number of grids. SizeC _ mov

Output Variables 

: The centroid of update region in robot frames.),(_ yxCentroidO

: The size of update region in number of grids. SizeO _

Everything above works fine under the assumption that motion correspondence problem has 

been well solved, that is the moving object pair respectively detected by ultrasonic sensor and 

uncalibrated camera already finely associated to each other. However, this problem can 

seriously damage the resulting map if the motion correspondence is not well done. In our 

work, we use the Nearest-Neighbor algorithm to solve the motion association. In our 

experiment, where closest is defined using the Euclidean distance of the centroids of the 

detected moving objects formulated by Eq.8. Note that B  and 

have been transformed into the same coordinate frame according to Fig.2. 

),(_ yxCentroid

),(_ yxCentroidC

|),(_),(_| yxCentroidCyxCentroidBDIST                             (8) 

Since our experiment is performed in the indoor dynamic environment which is structured 

and also has not many moving objects to detect and track, hence the nearest-neighbor 

algorithm can satisfy our need. So, our fuzzy-tuned integration works only when we find 

there exist corresponding moving objects, i.e. only when DIST correspond
, where  is 

motion correspondence threshold obtained by trial and error. So, when making sure of the 

locations and sizes of the moving objects via above fuzzy system and nearest neighbor 

algorithm, we can easily filter out the moving objects from the resulting map just by freeing

the corresponding occupied cells. The whole outline of proposed fuzzy-tuned integration 

algorithm is shown in pseudo-code in Tab.3. 

correspond

Table 3: Fuzzy-tuned integration algorithm

Begin Algorithm FuzzyTunedIntegration
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FOR each detected moving objects by camera in image, i.e. ),(_ yxCentroidB

FOR each detected moving objects by sonar in grid map, i.e. C ),(_ yxCentroid

Computing DIST

IF
correspondDIST  THEN 

Incorporating the results of two types of motion detection by using fuzzy-tuned integration and filter 

these spurious objects out of the grid-based map by freeing the corresponding occupied cells 

ELSE

Do nothing 

Improving the resulting grid-based map by freeing much isolated occupied grids 

Waiting for next map update cycle 

End Algorithm

5 Simulation and Experimental Results 

5.1  To Update States of Dynamic Objects in Simulation Study 

In this simulation study, we try to illustrate that the Bayesian update rule used in our proposed 

algorithm is capable to update dynamic object states.  To explain more easily, we only consider 

the 1D environment and assume that the sensor measurement is ri and there is a dynamic obstacle 

which changes its location over time with the motion profile:

Location 1: Obstacle is stayed 1m away from the sensor. i.e. { ri =1m, i=1,2,…,8}

Location 2: Obstacle is moved to 1.6m away from the sensor. i.e. { ri =1.6m, i =9,10,…,16} 

Location 3: Obstacle is moved to 0.5m away from the sensor. i.e. { ri =0.5m, i =17,18,19,…} 

The profiles of occupancy probabilities corresponding to 7
th
, 8

th
, 15

th
, 16

th
, 23

rd
, 24

th
 readings of 

our algorithm are shown in Fig.3. From this figure, we can see that our algorithm can provide 

good estimates of the moving obstacle positions. Therefore, our proposed algorithm is suitable 

for updating the states of dynamic objects. 
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Figure 3: The result of the algorithm to update the state of dynamic object 

5.2  Experimental Study 

The goal of the experiment is to illustrate that incorporating motion tracking into the map

building leads to a better global resulting map since spurious objects were filtered out. The 

experiment was carried out on the Pioneer 1 mobile robot [13] in a corridor at HKPU. The 
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robot is equipped with one uncalibrated camera with a fixed angle and seven ultrasonic 

sensors, five locating front, separated by 15 degrees each, and two locating at each side. The 

software is written in C language and Saphira software [19] with API libraries. The 

navigation is not autonomous in current step and the robot is manually navigated to 

predefined locations to avoid the dead reckoning error. The range of sonar is up to 3 meters

and the maximum distance of the camera visual zone we concerned in this experiment is also 

around 3 meters which can highly improve the quality of the fuzzy-tuned integration. Fig.4 

shows the hand-measured model of this environment to be mapped.

Figure 4: Hand-measured model of the corridor at HKPU 

During map building, there were several (up to three) people walking in front of the robot. 

Fig.5 shows the robot during the map building process. Fig.6a shows the raw range ultrasonic 

measurements and the map obtained without people filtering. And the resulting map obtained 

with our proposed algorithm is shown in Fig.6b. Both maps have a resolution of 50mm per 

cell. As seen from Fig.6a, there are many cells in the resulting grid map, which have a high 

occupancy probability since people covered the corresponding area while the robot was 

mapping the environment. If, however, we use the proposed algorithm and filter out the most

of moving objects (here is people), the effect of the people is seriously reduced in the 

resulting map. Therefore, the algorithm is more reliable for map building in dynamic

environments than fuzzy-tuned grid-based map building method proposed in our previous 

work in [10], as well as other traditional map building methods. Note that since we 

temporarily used odemetric measurements to estimate the robot’s position with predefined 

landmarks, there must be some dead reckoning errors. Thus the resulting map was not 

rectangular compared with the hand-measured map. The localization problem will be 

addressed in future work. 

6 Conclusions and Future Work 

In this paper, we presented a new solution to map indoor dynamic environments by 

incorporating motion tracking: ultrasonic temporal difference and statistical background 

subtraction. The former is constructed by monitoring a sequence of temporal local lattice 

maps. The latter is achieved based on sufficient background update with a 3-class mixture of 

Gaussians. After detecting the moving objects, due to the inaccuracy of both methods, we 

used a fuzzy system to integrate the results to filter the spurious objects out of the resulting 

map. Additionally, the motion correspondence problem is also addressed and solved by the 

nearest-neighbor algorithm. Preliminary simulation and experiment results demonstrated the 

capabilities and the robustness of our approach. And the further experimental studies are still 

ongoing now. In the future work, we try to design much more robust methods to solve the 

motion correspondence problem and extend our work to address SLAM in dynamic

environments.
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Figure 5: Pioneer 1 mobile robot map building in a dynamic corridor environment at HKPU 

Figure 6: (a) Fuzzy-tuned grid-based map without filtering out moving objects; (b) Resulting map of 

our proposed algorithm
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