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Abstract

Autonomous robots are emerging as candidates for performing increasingly complex tasks,

such as surveillance and environment monitoring, search and rescue, and planetary exploration.

Nonlinear estimation (i.e., estimating the state of a nonlinear system from noisy measurements)

arises in all these applications. For instance, robot localization – which is considered as one of

the fundamental problems in robotics – seeks to determine the robot’s pose (position and ori-

entation) using measurements from onboard sensors (e.g., an odometer and a camera). Another

closely-related and important example is target tracking,where the objective is to estimate the

target’s state using remote sensor observations. Even though many different algorithms, such as

the extended Kalman filter (EKF) and the batch maximum a posteriori (MAP) estimator, have

been developed for solving these problems, substantial empirical evidence shows that most ex-

isting nonlinear estimators tend to becomeinconsistent(i.e., the state estimates are biased and

the error covariance estimates are smaller than the true ones). Moreover, a significant limita-

tion is that the causes of inconsistency have not been sufficiently studied in the literature; if an

estimator is inconsistent, the accuracy of its estimates isunknown, which makes the estimator

unreliable. The objective of this dissertation is to investigate the main causes of inconsistency

of nonlinear estimation and develop new algorithms for improving consistency.

As one of the main research thrusts, we study in depth the inconsistency problem in robot

localization, including simultaneous localization and mapping (SLAM) and multi-robot coop-

erative localization (CL). In particular, we showfor the first time everthat one fundamental

cause of inconsistency is the mismatch between the observability properties of the underlying

nonlinear system and the linearized system used by the estimator. By performing observability

analysis, we prove that the linearized error-state system used by standard filtering/smoothing

algorithms – the EKF, the unscented Kalman filter (UKF), and the sliding-window filter (SWF)

– has an observable subspace ofhigher dimension than that of the underlying nonlinear sys-

tem. This implies that these estimators gainspuriousinformation (more specifically, about the

global orientation) from the measurements, which unjustifiably reduces the uncertainty of the

state estimates and causes inconsistency. Based on this keyinsight, for unobservable nonlin-

ear systems, we propose a novel methodology for designing consistent linearized estimators.

Specifically, we develop a family of Observability-Constrained (OC)-estimators – including the
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OC-EKF, the OC-UKF, and the OC-SWF – whose Jacobians are computed in a way to ensure

that the estimator’s linearized system model has an observable subspace of thesamedimension

as that of the underlying nonlinear system.

Furthermore, we investigate the inconsistency of estimators for observable nonlinear sys-

tems, such as target tracking using distance or bearing measurements, whose cost functions are

non-convex and often havemultiple local minima. In such cases, we discover that the inconsis-

tency of a standard linearized estimator, such as the EKF, isprimarily due to the fact that the

estimator is able to find and track onlyone local minimum. To address this issue, we convert

the estimator’s nonlinear cost function into polynomial form and employ algebraic geometry

techniques toanalytically compute all its local minima. These local minima are used as initial

estimates by a bank of MAP estimators to efficiently track themost probable hypotheses for

the entire state trajectory. Moreover, we adapt this idea toparticle filters (PFs) and develop an

Analytically-Guided-Sampling (AGS)-PF. Specifically, the AGS-PF employs ananalytically-

determinedGaussian mixture as proposal distribution which not only takes into account the

most recent measurement but also matches all the modes of theposterior (optimal proposal)

distribution. As a result, the AGS-PF samples the most probable regions of the state space and

hence significantly reduces the number of particles required.

As precise long-term localization and tracking are essential for a variety of robotic applica-

tions, by introducing a solid theoretical framework for improving the consistency of nonlinear

estimators, this work offers significant benefits for robotsemployed in these tasks. Moreover,

the proposed solutions constitute novel paradigms for engineers to follow when designing con-

sistent estimators for other nonlinear systems, and hence have the potential to benefit applica-

tions beyond robotics.
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Chapter 1

Introduction

1.1 Nonlinear estimation in robotics

Autonomous mobile robots have the potential to assist people (e.g., during search and rescue

operations [25]) and to augment human capabilities (e.g., working in dangerous or inaccessible

environments [46]). To achieve this, however, a fundamental estimation problem that must be

first solved islocalization– that is, determining the position and orientation (pose) of a robot

using measurements from its onboard sensors. Another important nonlinear estimation problem

arising in robotics istarget tracking, in which one or more, possibly mobile, sensors observe

and track a target in order to estimate its position, velocity, etc. Localization and target tracking

appear in many practical applications, such as transportation [19,156], construction [128,141],

planetary exploration [46], guidance for the visually impaired [61, 164], surveillance and envi-

ronment monitoring [24, 129], as well as search and rescue operations in disaster zones [25].

In this work, we primarily focus on these two key robotic problems and use them to illustrate

our methodologies of improving the consistency of nonlinear estimation algorithms. In what

follows, we first provide a brief overview of robot localization and target tracking in order to

better understand the ensuing discussion on estimator consistency.

1.1.1 Robot localization

The objective of robot localization is to fuse proprioceptive (e.g., from an odometer) and extero-

ceptive (e.g., from a laser) sensor measurements in order tocompute an estimate of the robot’s

3
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pose. There exist many variants of this problem, depending on the number of robots involved

and the prior knowledge they may have about the environmentswithin which they operate. In

this thesis, we particularly focus on the following two important cases:

• Simultaneous Localization and Mapping (SLAM): When exploring an unknown environ-

ment, a robot seeks to estimate both its own pose and the positions of the landmarks it ob-

serves (e.g., corner points detected from images, or line segments extracted from the laser

scanner data) [11,43,121,145,157]. This process offers several benefits: By observing static

landmarks over multiple time instants, or when the robot revisits an area (i.e., loop closing),

the estimation errors over long time periods remain bounded[116]. Thus, a SLAM solu-

tion permits accurate, long-term localization in unknown environments, and is considered an

enabling technology for robot autonomy [155].

• Cooperative Localization (CL): A team of robots can localize by sharing robot-to-robot mea-

surements and jointly estimating their poses [102]. A CL solution provides the means for

implicit sensor sharing, as localization information is dissipated over a (wireless) network

to all the members of the group, and results in considerable gains in terms of localization

accuracy for all robots [117]. Moreover, when at least one ofthe robots is capable of ob-

taining measurements to static landmarks, then the poses ofall robots and the positions of

all landmarks can be simultaneously estimated, through multi-robot cooperative SLAM (C-

SLAM) [118]. C-SLAM enjoys the advantages of both SLAM and CLand attains bounded

localization errors for all robots within the team [118].

1.1.2 Target tracking

Target tracking is the problem of estimating the kinematic state of a moving target using range

and/or bearing measurements provided by a (mobile) sensor whose pose is often assumed to be

known. This is a classical nonlinear estimation problem that has attracted significant interest

over the past decades [14,17]. Examples of recent research on target tracking include designing

new estimation algorithms and adaptively controlling the sensor’s motion [7, 31, 99, 170–172].

Depending on the type of measurements used, it includes range-only tracking [28, 135] and

bearing-only tracking [47,122], which are the two cases also studied in this work.
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1.2 Consistency of nonlinear estimation

Nonlinear estimation problems, such as mobile robot localization and target tracking, are chal-

lenging for a number of reasons. In contrast to the linear-model Gaussian-noise case, a nonlinear

estimator is generally intractable without imposing simplifying assumptions. Specifically, it is

not feasible to propagate and update either an entire probability density function (pdf) for the

state conditioned on the available measurements or an infinite number of parameters describing

that density. One particular difficulty arising in the design of nonlinear estimators is theconsis-

tencyissue, since no provably consistent estimator can be constructed for a nonlinear system.

As defined in [14], a state estimator isconsistentif the estimation errors are zero-mean and have

covariance matrix smaller than or equal to the one calculated by the estimator. Consistency is

one of the primary criteria for evaluating the performance of any estimator; if an estimator is

inconsistent, then the accuracy of the produced state estimates is unknown, which in turn makes

the estimator unreliable.

Despite these challenges, the problems of robot localization and target tracking have been

studied for decades [17,155], and various estimators have been employed for solving them, such

as the extended Kalman filter (EKF) [14, 43], the maximum likelihood estimator (MLE) [64],

the maximum a posteriori (MAP) estimator [124], and the particle filter (PF) [8, 48]. Among

these algorithms, the EKF remains a popular choice primarily due to its relatively low pro-

cessing requirements and its ease of implementation. However, its performance depends on

the magnitude of the linearization errors. To reduce the linearization errors, the iterated EKF

(IEKF) [82] is often used, which iteratively relinearizes the nonlinear measurement model till

convergence. Alternatively, the unscented Kalman filter (UKF) [84] deterministically samples

the nonlinear model around the current state estimate and employs linear regression to im-

prove the accuracy of the linear approximation. Nevertheless, the EKF, as well as any (ex-

plicit or implicit) linearization-based filtering approach, marginalizes all but the current state

and hence is unable to correct linearization errors involving previous states. For this reason,

smoothing algorithms, either in batch or incremental fashion, have become popular, especially

for SLAM [36, 38, 53–55, 67, 87, 88, 95, 100, 142, 150]. In particular, a sliding-window filter

(SWF) [142] (or fixed-lag smoother (FLS) [38, 111, 132]) estimates the states over a sliding

time window, by concurrently processing all the measurements involving these states, hence
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reducing the effect of the linearization errors. Moreover,a batch-MAP estimator [91] com-

putes the estimates for the states at all time steps using allavailable measurements. This allows

continuous relinearization around all the states, which can greatly reduce the linearization er-

rors. However, most filters and smoothers typically can track only one, of the potentially many,

modes of the posterior pdf, which can degrade the performance. Only a few estimators, such

as the multi-hypothesis EKF (MHEKF) [99] (i.e., the Gaussian sum filter (GSF) [3]) and the

PF [8, 41, 58], are specifically designed to handle multimodal distributions by simultaneously

tracking a set of different hypotheses for the state estimates. Most of the time, however, these

hypotheses are generated randomly, thus wasting a considerable portion of the computational

resources.

Due to the aforementioned reasons (i.e., large linearization errors and multiple local min-

ima), most estimators (either filters or smoothers) tend to becomeinconsistentwhen applied

to robot localization and target tracking. The lack of understanding of the fundamental causes

of estimator inconsistency in these applications clearly is a significant limitation, which we

seek to address in this dissertation. In particular, we prove that the observability of the system

model based on which an estimator is built, profoundly affects the estimator’s performance,

and plays a significant role in determining consistency. Furthermore, we show that the inability

of an estimator to track all modes of the multimodal posterior pdf can cause inconsistency or

even divergence. Once the root causes of estimator inconsistency are identified, we design new

estimation algorithms that explicitly address these causes and improve consistency. In what

follows, we discuss the research objectives of this dissertation in more detail.

1.3 Research objectives

The primary objectives of this research effort are to determine the fundamental causes of esti-

mator inconsistency and design new estimation algorithms that improve consistency. While the

proposed analysis and algorithms can be generalized to a broad class of nonlinear systems, we

hereafter focus on the problems of mobile robot localization and target tracking. Specifically,

the goals of this research are the following:
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1.3.1 Investigate the fundamental causes of estimator inconsistency

We first study the problem of estimation inconsistency from the perspective of system observ-

ability. Observability examines the feasibility of estimating the state given all available mea-

surements. A dynamical system is observable if its state at acertain time instant can be uniquely

determined based on a finite sequence of its outputs (measurements) [18]. By performing ob-

servability analysis, we are able to determine the observable directions in the state space along

which an estimator should acquire information from the available measurements. We conjec-

ture thatif the observable directions are erroneous, the estimator may become inconsistent. For

instance, for the robot localization systems [i.e., SLAM (see Section 2.4) and CL (see Sec-

tion 3.4)], we analytically prove that the standard EKF employs a linearized error-state system

model that has an unobservable subspace oflower dimension than that of the underlying non-

linear system. As a result, the estimator gains spurious information from the measurements

and hence incorrectly reduces the estimated covariance. This is shown to be the main cause of

inconsistency in this case.

Although system observability has been identified as an important cause of estimator in-

consistency, there certainly exist other issues affectingthe consistency of nonlinear estimators.

For example, the observability properties of systems such as range-only and bearing-only target

tracking, have less impact since both systems are observable [146,147], and the corresponding

linearized system models are also observable. However, as it will be shown, most estimators,

such as the EKF, can still become inconsistent. In this case,we discover that the fundamental

cause of inconsistency isthe inability of the estimator to track a multimodal posterior pdf (see

Section 7.4). In particular, if the estimator erroneously tracks a mode different from the global

optimum, its estimates may become inconsistent.

The PF can ideally track multiple modes of the pdf and does notrequire linearization.

However, it can also become inconsistent when applied to robot localization and target track-

ing [13, 165]. We conjecture that this is primarily due toparticle depletion[8], where the very

few surviving particles (i.e., particles with significant weights) cannot sufficiently represent the

underlying posterior pdf (see Chapter 8).
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1.3.2 Improve the consistency of nonlinear estimators

Our objective is to design new nonlinear estimation algorithms that improve consistency,

by explicitly addressing the primary causes of inconsistency. Firstly, we propose a novel

observability-based methodology for improving estimatorconsistency in robot localization in-

cluding SLAM and CL. The key idea behind our approach is to compute the filter Jacobians

in such a way that the resulting linearized system model usedby the estimator has an unob-

servable subspace of appropriate dimensions. Within this framework, we develop a family of

Observability-Constrained (OC)-estimators, including both filters and smoothers [i.e., the OC-

EKFs (see Chapters 2 and 3), the OC-UKF (see Chapter 4), and the OC-SWF (see Chapter 5)].

Moreover, we study filter consistency for a certain class ofobservablenonlinear systems, and

employ the same observability-based methodology to develop new estimation algorithms for

improving their consistency (see Chapter 6).

Secondly, we introduce a general framework for finding and tracking the modes of multi-

modal posterior pdfs for a broad class of nonlinear estimation problems in robotics and com-

puter vision that can be expressed in (or converted into) polynomial form. The key idea of this

approach is to convert the estimator’s nonlinear cost function into polynomial form, and then

employ algebraic-geometry techniques [33] to analytically compute all the stationary points,

and thus the local minima, which correspond to the multiple modes of the posterior pdf. Fur-

thermore, we employ a bank of MAP estimators, which allow relinearization of the entire state

history as well as multi-hypothesis tracking, and introduce an efficient hypothesis generation

scheme (see Chapter 7). Moreover, we adapt this idea of analytically selecting hypotheses to

PFs, and develop an Analytically-Guided-Sampling (AGS)-PF (see Chapter 8). Specifically, the

AGS-PF employs ananalytically-determinedGaussian mixture as proposal distribution which

not only takes into account the most recent measurement but also matches all the modes of the

posterior (optimal proposal) distribution. As a result, the AGS-PF samples along the most prob-

able regions of the state space and hence dramatically reduces the number of particles required.

Persistent long-term localization and tracking are essential for various robotic applications,

ranging from planetary and underwater exploration to service robots for businesses and homes.

By introducing a solid theoretical framework for designingconsistency-improved nonlinear

estimators, this dissertation will offer significant benefits to robots employed in a wide range of

tasks such as surveillance. Moreover, the proposed solutions provide novel paradigms for other
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engineers to follow when designing consistent estimators for nonlinear systems. Thus, the

proposed methodologies have the potential to be extended toan even broader class of nonlinear

estimation problems and hence to benefit the corresponding applications.

1.4 Organization of the manuscript

In the following chapters, the estimator inconsistency in robot localization is first addressed

from the perspective of system observability. In particular, Chapters 2 and 3 focus on the EKF

inconsistency in SLAM and CL, respectively, and the observability-based methodology for im-

proving EKF consistency is presented. The UKF-SLAM inconsistency is studied in Chapter 4,

where the UKF computational complexity is also reduced. In Chapter 5, the observability-

based methodology is extended to the smoothing framework and the OC-SWF for SLAM is

introduced. Furthermore, in Chapter 6, this methodology isgeneralized to a special class of

observable nonlinear systems, i.e., discrete-time nonlinear systems with partial-state measure-

ments. In Chapters 7 and 8, the estimator inconsistency is studied from a different perspective

for the case of posterior pdfs with multiple modes. In particular, a bank of MAP estimators

and the AGS-PF are developed for tracking the most probable hypotheses of the target’s state.

Finally, Chapter 9 provides concluding remarks and an outlook on future research directions.



Chapter 2

Observability-Constrained EKFs for

SLAM

In this chapter, we study the EKF consistency of SLAM from theperspective of system ob-

servability. We analytically show that the linearized system employed by the EKF has different

observability properties than the underlying nonlinear SLAM system, which is one fundamental

cause of inconsistency. To address this problem, we developan observability-based methodol-

ogy to ensure that the EKF linearized system has the same number of unobservable directions

as the nonlinear SLAM system. Parts of this chapter have beenpublished in [66,70,72].

2.1 Introduction

Simultaneous localization and mapping (SLAM) is the process of building a map of an envi-

ronment and concurrently generating an estimate of the robot’s pose (position and orientation)

using sensor readings. For autonomous vehicles exploring unknown environments, the ability

to perform SLAM is essential. Since [144] first introduced a stochastic-mapping solution to

the SLAM problem, rapid and exciting progress has been made,resulting in several compet-

ing solutions. Recent interest in SLAM has focused on the design of estimation algorithms

(e.g., [115, 130]), data association techniques [123], andfeature extraction [140]. Among the

numerous algorithms developed thus far for SLAM, the EKF remains one of the most popular

approaches, and has been used in several applications (e.g., [92, 125, 169]). However, in spite

of its widespread adoption, the fundamental issue ofconsistencyof the EKF-SLAM algorithm

10
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has not yet been sufficiently investigated.

As discussed in the preceding chapter (see Section 1.2), a state estimator isconsistentif the

estimation errors are zero-mean and have covariance smaller than or equal to the one calculated

by the estimator [14]. Consistency is one of the primary criteria for evaluating the performance

of any estimator. If an estimator is inconsistent, then the accuracy of the produced state esti-

mates is unknown, which in turn makes the estimator unreliable. Since SLAM is a nonlinear

estimation problem, no provably consistent estimator can be constructed for it. The consistency

of every estimator has to be evaluated experimentally. In particular for thestandardEKF-SLAM

algorithm, there exists significant empirical evidence showing that the computed state estimates

tend to beinconsistent(see Section 2.2). Clearly, the lack of understanding the causes of the

filter inconsistency is a significant limitation, which negatively affects long-term autonomous

navigation.

In this chapter, we investigate in depth one fundamental cause of the inconsistency of the

standard EKF-SLAM algorithm. In particular, we revisit this problem from a new perspective,

i.e., by analyzing the observability properties of the filter’s system model. Our key conjecture

in this work is that the observability properties of the EKF linearized system model profoundly

affect the performance of the filter, and are a significant factor in determining its consistency.

Specifically, the major contributions of this work are the following:

• Through an observability analysis, we prove that the standard EKF-SLAM employs a

linearized error-state system model that has an unobservable subspace of dimension two,

even though the underlying nonlinear system model has threeunobservable degrees of

freedom (d.o.f.), corresponding to the position and orientation of the global reference

frame. As a result, the filter gains spurious information along directions of the state space

where no information is actually available. This leads to anunjustified reduction of the

estimated covariance, and is a primary cause of filter inconsistency.

• Motivated by the observability analysis, we propose a new observability-based method-

ology for improving the EKF consistency. The key idea of thisapproach is to compute

the EKF Jacobians in such a way that ensures that the unobservable subspace of the EKF

system model is of correct dimensions. This can be achieved in three different ways, re-

sulting in three different Observability-Constrained (OC)-EKF algorithms: i) OC-EKF1
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computes the Jacobians using thefirst-everavailable estimates for each of the state vari-

ables and hence is also called First-Estimates-Jacobian (FEJ)-EKF. ii) OC-EKF2 selects

the linearization points that not only guarantee the desired observability properties but

also minimize the expected linearization errors (i.e., thedifference between the lineariza-

tion point and the true state). This is formulated as a constrained minimization problem,

which we solve to determine the linearization points used for computing the filter Ja-

cobians. iii) OC-EKF3directly computes themeasurementJacobian at each time step

in such a way that ensures the information acquired from the available measurements

is only along the observable directions in the state space. This is achieved by project-

ing the best-available measurement Jacobian (which is computed using the latest state

estimates as in the standard EKF) onto the observable directions. This is in contrast to

the OC-EKFs 1 and 2 which compute the Jacobiansindirectly by first finding appropri-

ate linearization points that ensure correct observability properties for the corresponding

linearized systems.

• Through extensive Monte-Carlo simulations and real-worldexperiments, we verify that

the proposed OC-EKFs substantially outperform the standard EKF, even though they use

less accurate filter Jacobians (since the Jacobians of the OC-EKFs, in general, are dif-

ferent from those computed using the latest, and thus best, state estimates). This result

supports our conjecture that the observability propertiesof the EKF system model play a

fundamental role in determining consistency.

2.2 Related work

The EKF is one of the most widely used algorithms for SLAM. However, its inconsistency issue

has only recently begun to attract research interest [12,26,27,66,70,72,78,79,85].

Specifically, the work of [85] first reported the issue of EKF inconsistency by observing

that when a stationary robot measures the relative positionof a landmark multiple times, the

estimated variance of the robot’s orientation error becomes smaller. Since the observation of

a previously unseen feature does not provide any information about the robot state, this reduc-

tion is incorrect and leads to inconsistency. In addition, acondition was described that the filter

Jacobians need to satisfy in order to permit consistent estimation. Recently, the work of [79] ex-

tended the analysis of [85] to the case in which a robot observes a landmark from two positions
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(i.e., the robot observes a landmark, moves and then re-observes the landmark). A constraint

was provided that the filter Jacobians need to fulfill in this case so as to allow for consistent

estimation. It was also shown that this condition is generally violated, due to the fact that the

filter Jacobians at different time instants are evaluated using different estimates for the same

state variables. Interestingly, we will show that these conditions, i.e., for a stationary robot [85]

and a one-step motion [79], are special cases of an observability-based condition derived for the

general case of a moving robot (see Section 2.5.4).

The authors of [12] examined several symptoms of the inconsistency of the standard EKF-

SLAM algorithm, and based on Monte-Carlo simulations, argued that the uncertainty in the

robot orientation is the main cause of the EKF inconsistency. However, no theoretical results

were provided. The work of [78] further confirmed the empirical findings in [12], and argued

by example that the inconsistency of the standard EKF-SLAM is always in the form of over-

confident estimates (i.e., the computed covariance is smaller than the actual one).

The first attempt to improve filter consistency was reported in [26, 27] where the robocen-

tric mapping algorithm was proposed by expressing the landmarks in a robot-relative (instead

of world-centric) frame of reference. In this formulation,during each propagation step,all

landmark position estimates need to be recalculated, sincethey are expressed with respect to

the moving robot frame. As a result, during propagation, alllandmark estimates and their co-

variances are affected by the linearization errors of the process model, which degrades perfor-

mance. Note that this issue does not exist in the world-centric formulation of SLAM. Moreover,

in comparison to our proposed OC-EKFs, the computational cost of the robocentric mapping

filter is significantly higher. Specifically, the OC-EKFs have computational cost identical to

the standard world-centric EKF-SLAM algorithm:linear, in the number of landmarks, during

propagation, andquadraticduring update. In contrast, in the robocentric mapping filter, both the

propagation and update steps have computational costquadraticin the number of landmarks.

Most previous work has only empirically examined several symptoms of the SLAM incon-

sistency, except for a few special cases (e.g., a stationaryrobot [85], and one-step motion [79])

where analytical studies were performed. However, no theoretical analysis of the cause of

filter inconsistency was conducted. In this thesis, we studythis problem from the system ob-

servability perspective, and identify as a fundamental cause of inconsistency the mismatch in

the dimensions of the observable subspaces between the standard EKF linearized system and
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the underlying nonlinear system. Relying on this key finding, we propose an observability-

constrained framework for improving filter consistency, where the filter Jacobians are computed

so as to ensure that the observable subspace of the EKF linearized system has the correct dimen-

sions. Specifically, the OC-EKF1 (i.e., FEJ-EKF) [66, 70] selects the first-ever state estimates

as the linearization points used in computing the filter Jacobians. The OC-EKF2 [72] finds the

optimal linearization points that not only ensure that the observable subspace of the EKF lin-

earized system model has correct dimensions, but also minimize the linearization errors. The

OC-EKF3, instead of first finding appropriate linearizationpoints as is the case for the OC-

EKFs 1 and 2, directly computes the necessary measurement Jacobian, by projecting the most

accurate measurement Jacobian onto the observable directions of the system model.

2.3 Standard EKF-SLAM formulation

In this section, we present the equations of the standard EKF-SLAM formulation withgeneral-

izedsystem and measurement models. To preserve the clarity of presentation, we first focus on

the case where asinglelandmark is included in the state vector, while the case of multiple land-

marks is addressed later on. In the standard formulation of SLAM, the state vector comprises

the robot pose and the landmark position in the global frame of reference. Thus, at time-stepk

the state vector is given by:

xk =
[
pTRk

φRk
pTL

]T
=
[
xTRk

pTL

]T
(2.1)

wherexRk
= [pTRk

φRk
]T denotes the robot pose (position and orientation), andpL is the

landmark position. EKF-SLAM recursively evolves in two steps: propagation and update, based

on the discrete-time process and measurement models, respectively.

2.3.1 EKF propagation

In the propagation step, the robot’s odometry measurementsare processed to obtain an estimate

of the pose change between two consecutive time steps, and then employed in the EKF to

propagate the robot state estimate. On the other hand, sincethe landmark is static, its state

estimate does not change with the incorporation of a new odometry measurement. The EKF
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propagation equations are given by:1

p̂Rk+1|k
= p̂Rk|k

+C(φ̂Rk|k
)Rk p̂Rk+1

(2.2)

φ̂Rk+1|k
= φ̂Rk|k

+ Rk φ̂Rk+1
(2.3)

p̂Lk+1|k
= p̂Lk|k

(2.4)

whereC(·) denotes the2 × 2 rotation matrix, andRk x̂Rk+1
= [Rk p̂TRk+1

Rk φ̂Rk+1
]T is the

odometry-based estimate of the robot’s motion between time-stepsk andk + 1. This estimate

is corrupted by zero-mean, white Gaussian noisewk = RkxRk+1
− Rk x̂Rk+1

, with covariance

matrix Qk. This process model is nonlinear, and can be described by thefollowing generic

nonlinear function:

xk+1 = f(xk,
Rk x̂Rk+1

+wk) (2.5)

In addition to the state propagation equations, the linearized error-state propagation equation

is necessary for the EKF. This is given by:

x̃k+1|k =

[
ΦRk

03×2

02×3 I2

][
x̃Rk|k

p̃Lk|k

]
+

[
GRk

02×2

]
wk

, Φkx̃k|k +Gkwk (2.6)

whereΦRk
andGRk

are obtained from the state propagation equations (2.2)-(2.3):

ΦRk
=

[
I2 JC(φ̂Rk|k

)Rk p̂Rk+1

01×2 1

]
(2.7)

≡


 I2 J

(
p̂Rk+1|k

− p̂Rk|k

)

01×2 1


 (2.8)

GRk
=

[
C(φ̂Rk|k

) 02×1

01×2 1

]
(2.9)

with J ,

[
0 −1

1 0

]
.

1 Throughout this dissertation, the subscriptℓ|j refers to the estimate of a quantity at time-stepℓ, after all
measurements up to time-stepj have been processed.x̂ is used to denote the estimate of a random variablex, while
x̃ = x − x̂ is the error in this estimate.0m×n and1m×n denotem × n matrices of zeros and ones, andIn is the
n× n identity matrix. Finally, we use the concatenated formssφ andcφ to denote thesinφ andcos φ functions.
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It is important to point out that the form of the propagation equations presented above is

general, and holds for any robot kinematic model (e.g., unicycle, bicycle, or Ackerman model).

In Appendix A.1, we derive the expressions for (2.2)-(2.4),as well as the state and noise Jaco-

bians, for the common case where the unicycle model is used.

2.3.2 EKF update

During SLAM, the measurement used for updates in the EKF is a function of the relative posi-

tion of the landmark with respect to the robot:

zk = h(xk) + vk = h
(
RkpL

)
+ vk (2.10)

whereRkpL = CT (φRk
)(pL − pRk

) is the position of the landmark with respect to the robot

at time-stepk, andvk is zero-mean Gaussian measurement noise with covarianceRk. In this

work, we allowh to beanymeasurement function. For instance,zk can be a direct measurement

of relative position, a pair of range and bearing measurements, bearing-only measurements

from monocular cameras, etc. Generally, the measurement function is nonlinear, and hence it is

linearized for use in the EKF. The linearized measurement error equation is given by:

z̃k ≃
[
HRk

HLk

] [x̃Rk|k−1

p̃Lk|k−1

]
+ vk

, Hkx̃k|k−1 + vk (2.11)

whereHRk
andHLk

are the Jacobians ofh with respect to the robot pose and the landmark

position, respectively, evaluated at the state estimatex̂k|k−1. Using the chain rule of differenti-

ation, these are computed as:

HRk
= (∇hk)C

T (φ̂Rk|k−1
)
[
−I2 −J(p̂Lk|k−1

− p̂Rk|k−1
)
]

(2.12)

HLk
= (∇hk)C

T (φ̂Rk|k−1
) (2.13)

where∇hk denotes the Jacobian ofh with respect to the robot-relative landmark position (i.e.,

with respect to the vectorRkpL), evaluated at the state estimatex̂k|k−1.

2.4 SLAM observability analysis

In this section, we perform an observability analysis for the generalized EKF-SLAM formu-

lation derived in the previous section, and compare its properties with those of the underlying



17

nonlinear system. Based on this analysis, we draw conclusions about the filter consistency.

It should be pointed out that the observability properties of SLAM have been studied in

only a few cases in the literature. In particular, the work of[4, 5] investigated the observability

of a simple linear time-invariant (LTI) SLAM system, and showed that it is unobservable. The

work of [167] approximated the SLAM system by a piecewise constant linear (PWCL) sys-

tem, applied the technique of [51] to study the observability properties of bearing-only SLAM,

and showed that it is also unobservable. On the other hand, in[70, 72, 105] the observability

properties of the nonlinear SLAM system were studied using the nonlinear observability rank

condition introduced by [60]. It was proved that the nonlinear SLAM system is unobservable,

with threeunobservable d.o.f., corresponding to global translationand rotation of the state vec-

tor.

All the aforementioned approaches examine the observability properties of the nonlinear

SLAM system, or of linear approximations to it. However, to the best of our knowledge, an

analysis of the observability properties of the EKFlinearized error-statesystem model had not

been carried out prior to our work [66, 70, 72]. Since this model is the one used in any actual

EKF implementation, a lack of understanding of its observability properties appears to be a

significant limitation. In fact, as shown in this chapter, these properties play a significant role

in determining the consistency of the filter, and form the basis of our approaches for improving

estimation performance.

2.4.1 Nonlinear SLAM observability analysis

We start by carrying out the observability analysis for the continuous-time nonlinear SLAM

system. This analysis is based on the observability rank condition introduced in [60]: “If a non-

linear system is locally weakly observable, the observability rank condition is satisfied generi-

cally”. We show that the SLAM system does not satisfy the observability rank condition, and

thus is neither locally weakly observable nor locally observable. Note that we here conduct the

analysis for ageneralmeasurement model, instead of only relative-position or distance-and-

bearing measurement as in [70,105].

We employ a unicycle kinematic model for the robot, while similar conclusions can be
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drawn if different models are used [105]. The process model in continuous-time form is:




ẋR(t)

ẏR(t)

φ̇R(t)

ẋL(t)

ẏL(t)




=




cφR(t)

sφR(t)

0

0

0




v(t) +




0

0

1

0

0




ω(t)

⇒ ẋ(t) = f1v(t) + f2ω(t) (2.14)

where
[
v ω

]T
=: u is the control input, consisting of the linear and rotational velocities.

Since any type of measurement in SLAM is a function of the relative position of the landmark

with respect to the robot, we can write the measurement modelin the following generic form:

z(t) = h(ρ, ψ) (2.15)

ρ = ||pL − pR|| (2.16)

ψ = atan2(yL − yR, xL − xR)− φR (2.17)

whereρ andψ are the robot-to-landmark distance and bearing angle, respectively. Note that

parameterizing the measurement with respect toρ andψ is equivalent to parameterizing it with

respect to the landmark position expressed in the robot frame,RpL. The relation between these

quantities isRpL = ρ

[
cψ

sψ

]
. To facilitate the ensuing nonlinear observability analysis, we first

prove that:

Lemma 2.4.1.All the Lie derivatives of the nonlinear SLAM system [see(2.14)and (2.15)] are

functions ofρ andψ only.

Proof. See Appendix A.2

We will now employ this result for the nonlinear observability analysis. In particular, as-

sume that a number of different measurements are available,zi = hi(ρ, ψ), i = 1, 2, ..., n.

Then, since all the Lie derivatives for all measurements arefunctions ofρ andψ only, we can

prove that:

Lemma 2.4.2. The space spanned by all thek-th order Lie derivativesLkfjhi (∀k ∈ N, j =

1, 2, i = 1, 2, ..., n) is denoted byG, and the spacedG spanned by the gradients of the elements
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of G is given by:

dG = span
row

[
sφR −cφR −cφRδx− sφRδy −sφR cφR

cφR sφR sφRδx− cφRδy −cφR −sφR

]
(2.18)

whereδx , xL − xR andδy , yL − yR.

Proof. See Appendix A.3

The matrix shown above is the “observability matrix” for thenonlinear SLAM system under

consideration. Clearly, this is not a full-rank matrix, andhence the system is unobservable.

Intuitively, this is a consequence of the fact that we cannotgainabsolute, but rather onlyrelative

state information from the available measurements. Even though the notion of an “unobservable

subspace” cannot be strictly defined for this system, the physical interpretation of the basis of

dG⊥ will give us useful insight for our following analysis in Section 2.4.2. By inspection, we

see that one possible basis for the spacedG⊥ is given by:

dG⊥ = span
col.




1 0 −yR
0 1 xR

0 0 1

1 0 −yL
0 1 xL




, span
[
n1 n2 n3

]
(2.19)

From the structure of the vectorsn1 andn2 we see that a change in the state by∆x = αn1 +

βn2, α, β ∈ R, corresponds to a “shifting” of thex − y plane byα units alongx, and byβ

units alongy. Thus, if the robot and landmark positions are shifted equally, the statesx and

x+∆x will be indistinguishable given the measurements. To understand the physical meaning

of n3, we consider the case where thex − y plane is rotated by a small angleδφ. Rotating the

coordinate system transforms any pointp = [x y]T to a pointp′ = [x′ y′]T , i.e.,

[
x′

y′

]
= C(δφ)

[
x

y

]
≃
[
1 −δφ
δφ 1

][
x

y

]
=

[
x

y

]
+ δφ

[
−y
x

]

where we have employed the small angle approximationsc(δφ) ≃ 1 ands(δφ) ≃ δφ. Using

this result, we see that if the plane containing the robot andlandmarks is rotated byδφ, the
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SLAM state vector will change to:

x′ =




x′R
y′R
φ′R
x′L
y′L




≃




xR

yR

φR

xL

yL




+ δφ




−yR
xR

1

−yL
xL




= x+ δφn3 (2.20)

which indicates that the vectorn3 corresponds to a rotation of thex − y plane. Sincen3 ∈
dG⊥, this result shows that any such rotation is unobservable, and will cause no change to the

measurements. The preceding analysis for the meaning of thebasis vectors ofdG⊥ agrees with

intuition, which dictates that theglobal coordinatesof the state vector in SLAM (rotation and

translation) are unobservable.

2.4.2 Linearized SLAM observability analysis

Since the standard EKF employs the linearized system model defined by (2.6) and (2.11) for

propagating and updating the state and covariance estimates, the observability properties of this

model significantly affect the performance of the estimatoras shown below. It is important

to note that, in general, the Jacobian matricesΦk, Gk, andHk used in the EKF linearized

error-state model [see (2.6) and (2.11)] are defined as:

Φk = ∇xk
f

∣∣∣
{x⋆

k|k
,x⋆

k+1|k
,0}

, Gk = ∇wk
f

∣∣∣
{x⋆

k|k
,0}

, Hk = ∇xk
h

∣∣∣
{x⋆

k|k−1
}

(2.21)

wherex⋆
k|k−1 andx⋆

k|k denote thelinearization pointsfor the statexk, used for evaluating the

Jacobians before and after the EKF update at time-stepk, respectively, while a linearization

point equal to the zero vector is chosen for the zero-mean noise. Since the linearized error-

state model is time-varying, we employ thelocal observability matrix[30, 112] to perform the

observability analysis. Specifically, the local observability matrix for the time interval between
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time-stepsko andko +m is defined by:

M ,




Hko

Hko+1Φko

...

Hko+mΦko+m−1 · · ·Φko




(2.22)

=




HRko
HLko

HRko+1
ΦRko

HLko+1

...
...

HRko+m
ΦRko+m−1

· · ·ΦRko
HLko+m




(2.23)

= M(x⋆ko|ko−1,x
⋆
ko|ko, . . . ,x

⋆
ko+m|ko+m−1) (2.24)

The last expression (2.24) makes explicit the fact that the observability matrix is a func-

tion of the linearization points used for computing all the Jacobians within the time interval

[ko, ko+m]. In turn, this implies thatthe choice of linearization points affects the observability

propertiesof the linearized error-state system of the EKF. This key fact truly is the basis of our

ensuing analysis, where we discuss different possible choices of linearization points, and the

observability properties of the corresponding linearizedsystems.

Ideal EKF-SLAM

Before considering the rank of the matrixM, which is constructed using theestimatedvalues

of the state in the filter Jacobians, it is interesting to study the observability properties of the

“oracle”, or “ideal” EKF (i.e., the filter whose Jacobians are evaluated using thetrue values of

the state variables, in other words,x⋆
k|k−1 = x⋆

k|k = xk, for all k). In the following, all matrices

evaluated using the true state values are denoted by the symbol “ ˘ ”.

We start by noting that [see (2.8)]:

Φ̆Rko+1
Φ̆Rko

=

[
I2 J

(
pRko+2

− pRko

)

01×2 1

]
(2.25)

Based on this property, it is easy to show by induction that:

Φ̆Rko+ℓ−1
Φ̆Rko+ℓ−2

· · · Φ̆Rko
=

[
I2 J

(
pRko+ℓ

− pRko

)

01×2 1

]
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which holds for allℓ > 0. Using this result, and substituting for the measurement Jacobians

from (2.12) and (2.13), we can prove the following useful identity:

H̆Rko+ℓ
Φ̆Rko+ℓ−1

· · · Φ̆Rko
= (∇h̆ko+ℓ)C

T (φRko+ℓ
)
[
−I2 −J(pL − pRko

)
]

= H̆Lko+ℓ

[
−I2 −J(pL − pRko

)
]

(2.26)

which holds for allℓ > 0. The observability matrix̆M can now be written as:

M̆ = Diag
(
H̆Lko

, H̆Lko+1
, · · · , H̆Lko+m

)

︸ ︷︷ ︸
D̆




−I2 −J(pL − pRko
) I2

−I2 −J(pL − pRko
) I2

...
...

...

−I2 −J(pL − pRko
) I2




︸ ︷︷ ︸
Ŭ

(2.27)

Lemma 2.4.3. The rank of the observability matrix,̆M, of the ideal EKF-SLAM is 2.

Proof. The rank of the product of the matrices̆D andŬ is given by (see (4.5.1) in [113]):

rank(D̆Ŭ) = rank(Ŭ)− dim
(
null(D̆)

⋂
rng(Ŭ)

)
(2.28)

wherenull(·) denotes the right null space of a matrix,rng(·) represents the matrix range, and

dim(·) the dimension of a subspace. SinceŬ comprisesm + 1 repetitions of the same2 × 5

block row, it is clear thatrank(Ŭ) = 2, and the range of̆U, rng(Ŭ), is spanned by the vectors

u1 andu2, defined as follows:

[
u1 u2

]
=




I2
...

I2


 (2.29)

We now observe that in general̆Dui 6= 0, for i = 1, 2. Moreover, note that any vector

y ∈ rng(Ŭ) \ 0 can be written asy = α1u1 + α2u2 for someα1, α2 ∈ R, whereα1

andα2 are not simultaneously equal to zero. Thus, we see that in general D̆y = α1D̆u1 +

α2D̆u2 6= 0, which implies thaty does not belong to the nullspace ofD̆, null(D̆). Therefore,

dim(null(D̆)
⋂

rng(Ŭ)) = 0, and, finally,rank(M̆) = rank(Ŭ)−dim(null(D̆)
⋂

rng(Ŭ)) =

rank(Ŭ) = 2.
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Most importantly, it can be easily verified that a basis for the right nullspace of̆U (and thus

for the right nullspace of̆M) is given by the vectors shown in (2.19). Thus, the unobservable

subspace of the ideal EKF system model isidentical to the spacedG⊥, which contains the

unobservable directions of the nonlinear SLAM system. We therefore see that if it was possible

to evaluate the Jacobians using the true state values, the linearized error-state model employed

in the EKF would have observability properties similar to those of the nonlinear SLAM system.

The preceding analysis was carried out for the case where a single landmark is included in

the state vector. We now examine the more general case whereM > 1 landmarks are included

in the state. Suppose theM landmarks are observed at time-stepko + ℓ (ℓ > 0), then the

measurement matrix̆Hko+ℓ is given by:2

H̆ko+ℓ =




H̆
(1)
Rko+ℓ

H̆
(1)
Lko+ℓ

· · · 0

...
...

. . .
...

H̆
(M)
Rko+ℓ

0 · · · H̆
(M)
Lko+ℓ


 (2.30)

whereH̆(i)
Rko+ℓ

andH̆(i)
Lko+ℓ

(i = 1, 2, ...,M ), are obtained by (2.12) and (2.13) using the true

values of the states, respectively. The observability matrix M̆ now becomes:

M̆ =




H̆
(1)
Rko

H̆
(1)
Lko

· · · 0

...
...

. . .
...

H̆
(M)
Rko

0 · · · H̆
(M)
Lko

H̆
(1)
Rko+1

Φ̆Rko
H̆

(1)
Lko+1

· · · 0

...
...

. . .
...

H̆
(M)
Rko+1

Φ̆Rko
0 · · · H̆

(M)
Lko+1

...
...

...
...

H̆
(1)
Rko+m

Φ̆Rko+m−1
· · · Φ̆Rko

H̆
(1)
Lko+m

· · · 0

...
...

. . .
...

H̆
(M)
Rko+m

Φ̆Rko+m−1
· · · Φ̆Rko

0 · · · H̆
(M)
Lko+m




(2.31)

2 We here assume that allM landmarks are observed at every time step in the time interval [ko, ko +m]. This
is done only to simplify the notation, and is not a necessary assumption in the analysis.
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Using the identity (2.26), substitution of the Jacobian matrices in (2.31) yields:

M̆ = Diag
(
H̆

(1)
Lko

, · · · , H̆(M)
Lko+m

)

︸ ︷︷ ︸
D̆




−I2 −J(pL1
− pRko

) I2 · · · 02×2

...
...

...
. . .

...

−I2 −J(pLM
− pRko

) 02×2 · · · I2

−I2 −J(pL1
− pRko

) I2 · · · 02×2

...
...

...
. . .

...

−I2 −J(pLM
− pRko

) 02×2 · · · I2

...
...

...
...

...

−I2 −J(pL1
− pRko

) I2 · · · 02×2

...
...

...
. . .

...

−I2 −J(pLM
− pRko

) 02×2 · · · I2




︸ ︷︷ ︸
Ŭ

(2.32)

Clearly, the matrixŬ now consists ofm+ 1 repetitions of theM block rows:

[
−I2 −J(pLi

− pRko
) 02×2 · · · I2︸︷︷︸

ith landmark

· · · 02×2

]

for i = 1, 2, ...,M . Therefore,rank(M̆) = 2M . Furthermore, by inspection, a possible basis

for the right nullspace of̆M is given by:

null(M̆) = span
col.




I2 JpRko

01×2 1

I2 JpL1

...
...

I2 JpLM




(2.33)

By noting the similarity of this result with that of (2.19), the physical interpretation of this result

is analogous to that of the single-landmark case: the globaltranslation and orientation of the

state vector are unobservable.
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Standard EKF-SLAM

We now study the observability properties of the standard EKF-SLAM, in which the Jacobians

are evaluated at the latest state estimates (i.e.,x⋆
k|k−1 = x̂k|k−1 andx⋆

k|k = x̂k|k, for all k). Sim-

ilarly, we begin by examining the single-landmark case. By deriving an expression analogous

to that of (2.25), we obtain (see Section 2.4.2):

ΦRko+1
ΦRko

=

[
I2 J

(
p̂Rko+2|ko+1

− p̂Rko|ko
−∆pRko+1

)

01×2 1

]

where∆pRko+1
, p̂Rko+1|ko+1

− p̂Rko+1|ko
is the correction in the robot position due to the

EKF update at time-stepko + 1. Using induction, we can show that:

ΦRko+ℓ−1
ΦRko+ℓ−2

· · ·ΦRko
=


 I2 J

(
p̂Rko+ℓ|ko+ℓ−1

− p̂Rko|ko
−∑ko+ℓ−1

j=ko+1∆pRj

)

01×2 1




(2.34)

whereℓ > 0. Therefore [see (2.11), (2.12), and (2.13)]

HRko+ℓ
ΦRko+ℓ−1

· · ·ΦRko
= HLko+ℓ

[
−I2 −J

(
p̂Lko+ℓ|ko+ℓ−1

− p̂Rko|ko
−∑ko+ℓ−1

j=ko+1 ∆pRj

)]

(2.35)

Using this result, we can writeM as [see (2.22)]:

M = Diag
(

HLko
,HLko+1

, · · · ,HLko+m

)

︸ ︷︷ ︸

D














−I2 −J
(

p̂Lko|ko−1
− p̂Rko|ko−1

)

I2

−I2 −J
(

p̂Lko+1|ko
− p̂Rko|ko

)

I2

−I2 −J
(

p̂Lko+2|ko+1
− p̂Rko|ko

−∆pRko+1

)

I2

...
...

...

−I2 −J
(

p̂Lko+m|ko+m−1
− p̂Rko|ko

−∑ko+m−1
j=ko+1 ∆pRj

)

I2














︸ ︷︷ ︸

U

(2.36)

Lemma 2.4.4. The rank of the observability matrix,M, of the standard EKF-SLAM is 3.

Proof. First, we note that the estimates of any given state variableat different time instants

are generally different. Hence, in contrast to the case of the ideal EKF-SLAM, the following

inequalities generally hold:̂pRko+i|ko+i−1
6= p̂Rko+i|ko+i

andp̂Lko+i|ko+i−1
6= p̂Lko+ℓ|ko+ℓ−1

, for

i 6= ℓ. Therefore, the third column ofU will be, in general, a vector with unequal elements,

and thusrank(U) = 3. Proceeding similarly to the proof of Lemma 2.4.3, we first find one
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possible basis for the range space ofU, rng(U). By inspection, we see that such a basis is

given simply by the first 3 columns ofU, which we denote byui (i = 1, 2, 3). Moreover, it

can be verified that generallyDui 6= 0. Therefore,dim(null(D)
⋂

rng(U)) = 0, and finally

rank(M) = rank(U) − dim(null(D)
⋂

rng(U)) = rank(U) = 3.

We thus see that the linearized error-state model employed in the standard EKF-SLAM

has different observability properties than that of the ideal EKF-SLAM (see Lemma 2.4.3)

and that of the underlying nonlinear system (see Lemma 2.4.2). In particular, by processing

the measurements collected in the interval[ko, ko + m], the filter acquires information in 3

dimensions of the state space (along the directions corresponding to the observable subspace

of the EKF). However, the measurements actually provide information in only 2 directions

of the state space (i.e., the robot-to-landmark relative position). As a result, the EKF gains

“spurious information” along the unobservable directionsof the underlying nonlinear SLAM

system, which leads to inconsistency.

To probe further, we note that the basis of the right nullspace ofM is given by:

null(M) = span
col.




I2

01×2

I2


 = span

[
n1 n2

]
(2.37)

Note that these two vectors correspond to a shifting of thex−y plane, which implies that such a

shifting is unobservable. On the other hand, the direction corresponding to the global orientation

is “missing” from the unobservable subspace of the EKF system model [see (2.19) and (2.20)].

Therefore, we see that the filter will gain “nonexistent” information about the robot’s global

orientation. This will lead to an unjustified reduction in the orientation uncertainty, which will,

in turn, further reduce the uncertainty in all the state variables. This agrees in some respects

with [12,79], where it was argued that the orientation uncertainty is the main cause of the filter’s

inconsistency in SLAM. However, we point out that theroot causeof the problem is that the

linearization points used for computing the Jacobians in the standard EKF-SLAM (i.e., the latest

state estimates) change the dimension of the observable subspace, and thus fundamentally alter

the properties of the estimation process.

Similar conclusions can be drawn whenM > 1 landmarks are included in the state vector.
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In particular, in this case the observability matrix can be found as follows:

M =Diag
(
(∇h

(1)
ko

)CT (φ̂Rko |ko−1
), · · · , (∇h

(M)
ko+m)CT (φ̂Rko+m|ko+m−1

)
)

︸ ︷︷ ︸
D

×




−I2 −J
(
p̂
(1)
Lko|ko−1

− p̂Rko|ko−1

)
I2 · · · 02×2

...
...

...
. . .

...

−I2 −J
(
p̂
(M)
Lko|ko−1

− p̂Rko|ko−1

)
02×2 · · · I2

−I2 −J
(
p̂
(1)
Lko+1|ko

− p̂Rko|ko

)
I2 · · · 02×2

...
...

...
. . .

...

−I2 −J
(
p̂
(M)
Lko+1|ko

− p̂Rko|ko

)
02×2 · · · I2

−I2 −J
(
p̂
(1)
Lko+2|ko+1

− p̂Rko|ko
−∆pRko+1

)
I2 · · · 02×2

...
...

...
. . .

...

−I2 −J
(
p̂
(M)
Lko+2|ko+1

− p̂Rko|ko
−∆pRko+1

)
02×2 · · · I2

...
...

...
...

...

−I2 −J
(
p̂
(1)
Lko+m|ko+m−1

− p̂Rko|ko
−∑ko+m−1

j=ko+1 ∆pRj

)
I2 · · · 02×2

...
...

...
. . .

...

−I2 −J
(
p̂
(M)
Lko+m|ko+m−1

− p̂Rko|ko
−∑ko+m−1

j=ko+1 ∆pRj

)
02×2 · · · I2




︸ ︷︷ ︸
U

(2.38)

The nullspace of the observability matrix (2.38) can be shown to be equal to:

null(M) = span
col.




I2

01×2

I2
...

I2




(2.39)

We thus see that the global orientation is erroneously observable in this case as well, which

leads to inconsistent estimates.

An interesting remark is that the covariance matrices of thesystem and measurement noise

do not appear in the observability analysis of the filter’s system model. Therefore, even if these

covariance matrices are artificially inflated, the filter will retain the same observability proper-

ties (i.e., the same observable and unobservable subspaces). This shows that no amount of co-

variance inflation can result in correct observability properties. Similarly, even if the IEKF [14]
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is employed for state estimation, the same, erroneous, observability properties will arise, since

the landmark position estimates will generally differ at different time steps.

2.5 Observability-Constrained (OC)-EKF SLAM algorithms

We have seen from the preceding section that when the EKF Jacobians are evaluated using the

latest state estimates, the EKF error-state model has an observable subspace of higher dimension

than the actual nonlinear SLAM system. This will always leadto an unjustified reduction of

the estimated covariance, and thus inconsistency. We now propose a general framework for

addressing this problem.

Our key conjecture is that, by ensuring an unobservable subspace of appropriate dimension,

we can avoid the influx of spurious information in the erroneously observable direction of the

state space, and thus improve the consistency of the estimates. To do so, we propose computing

the EKF Jacobians in such a way that guarantees the linearized error-state system model has

an unobservable subspace of dimension three. This corresponds to satisfying conditions (2.40)-

(2.41) of the following lemma:

Lemma 2.5.1. If the EKF JacobiansΦk andHk+1 at every time step, are computed so as to

fulfill the following conditions:

HkoN = 0 , for ℓ = 0 (2.40)

Hko+ℓΦko+ℓ−1 · · ·ΦkoN = 0 , ∀ ℓ > 0 (2.41)

whereN is a full-rank matrix whose 3 column vectors define the desired unobservable subspace,

then the corresponding observability matrix is of correct rankdim(x) − 3.

Proof. When (2.40)-(2.41) hold, then all the block rows of the observability matrix [see (2.22)]

will have the same nullspace, spanned by the columns ofN.

Essentially, the selection ofN is a design choice, which allows us to control the unobserv-

able subspace of the resulting EKF system model. Ideally, wewould like the column vectors

of N to be identical to those in (2.19), which define the unobservable directions of the actual

nonlinear systems. However, this cannot be achieved in practice, since these directions depend

on thetruevalues of the states, which are unavailable during any real-world implementation. A
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natural selection, which is realizable in practice, is to define the unobservable subspace using

thefirst-availablestate estimates, i.e., for the single-landmark case to choose3

N =




I2 Jp̂Rko|ko−1

01×2 1

I2 Jp̂Lko|ko


 (2.42)

Note that the matrixN in (2.42) satisfies condition (2.40), sinceHko is the first block row

of the observability matrix in (2.22). It is also important to note that advanced initialization

techniques, such as delayed-state initialization [107], can be used to improve the first estimates’

accuracy and thus yield an unobservable subspace as close aspossible to the true one. OnceN is

selected, the next step is to appropriately compute the filter Jacobians so as to ensure that (2.41)

holds. Clearly, several options exist, each of which leads to a different algorithm within the

general framework described here. In what follows, we present three different Observability-

Constrained (OC)-EKF algorithms to achieve this goal.

2.5.1 OC-EKF1

We start by describing the first version of our OC-EKF algorithms, the OC-EKF1, which was

originally proposed in [70]. The key idea of this approach isto choose thefirst-ever-available

state estimates as the linearization points [and hence it isalso termed as First-Estimates-

Jacobian (FEJ)-EKF] so as to guarantee the appropriate observability properties of the EKF

linearized system. The procedure of the OC-EKF1 SLAM is explained in detail by the follow-

ing lemma:

Lemma 2.5.2. If the linearization points, at which the filter JacobiansΦRk
=

ΦRk
(x⋆Rk+1|k

,x⋆Rk|k
) andHk = Hk(x

⋆
Rk|k−1

,p⋆Lk|k−1
) are evaluated, are selected as:

x⋆Rk+1|k
= x̂Rk+1|k

, x⋆Rk|k
= x̂Rk|k−1

, x⋆Rk|k−1
= x̂Rk|k−1

, p⋆Lk|k−1
= p̂Lko|ko

(2.43)

then it is guaranteed that the unobservable subspace of the resulting EKF linearized SLAM

error-state model is of dimension 3.

Proof. Using the linearization points (2.43), as compared to the standard EKF, we have the

following two changes in computing the filter Jacobians:

3 In the case where multiple (M > 1) landmarks are included in the state vector,N can be chosen analogously,
augmented by a new block row,

[

I2 Jp̂Li,ko|ko

]

, corresponding to each landmark,Li (i = 1, 2, . . . ,M ) [72].
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1. Instead of computing the state-propagation Jacobian matrix ΦRk
as in (2.8), we employ

the expression:

Φ
′

Rk
=


 I2 J

(
p̂Rk+1|k

− p̂Rk|k−1

)

01×2 1


 (2.44)

The difference compared to (2.8) is that the prior robot position estimate,̂pRk|k−1
, is used

in place of the posterior estimate,p̂Rk|k
.

2. In the evaluation of the measurement Jacobian matrixHk+1 [see (2.11), (2.12), and

(2.13)], we always utilize the landmark estimatefrom the first timethe landmark was

detected and initialized. Thus, if a landmark was first seen at time-stepko, we compute

the measurement Jacobian as:

H
′

k+1 =
[
HRk+1

HLk+1

]

= (∇hk+1)C
T (φ̂Rk+1|k

)
[
−I2 −J(p̂Lko|ko

− p̂Rk+1|k
) I2

]
(2.45)

As a result of the above modifications, only thefirst estimates of all landmark positions and

all robot poses appear in the filter Jacobians. It is easy to verify that the above Jacobians

satisfy (2.40) and (2.41) for the choice ofN in (2.42). Thus, the OC-EKF1 SLAM is based on

an error-state system model whose unobservable subspace isof dimension 3.

2.5.2 OC-EKF2

We now describe the second version of our OC-EKF algorithms,the OC-EKF2. We first note

that, when linearizing a generic scalar nonlinear functionf(x) around a pointx⋆, the lineariza-

tion error depends on the accuracy of the linearization point x⋆; if x⋆ is inaccurate, the lineariza-

tion error will be large. To see this, using Taylor’s theorem, we have:

f(x) = f(x⋆) + f ′(x⋆)(x− x⋆) +
f ′′(ξ)
2

(x− x⋆)2 (2.46)

where the last quadratic term,f
′′(ξ)
2 (x − x⋆)2, defines the linearization error, andξ is a point

that lies betweenx andx⋆. It is clear that the linearization error is approximately proportional

to the error square of the linearization point,(x−x⋆)2. This result will be useful for the ensuing

derivations.
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Even though the OC-EKF1 typically performs substantially better than the standard EKF

(see Sections 2.6 and 2.7), it relies heavily on the initial state estimates; if these estimates are

inaccurate, the linearization errors become large and thusthe performance of the estimator may

degrade. This could be the case when the first estimates of thelandmark positions are of poor

quality (e.g., in bearing-only SLAM). We note that the selection of the linearization points

employed in the OC-EKF1 is not the only one that ensures that (2.41) is satisfied. However,

all linearization points chosen in a way that only fulfills (2.41), can result in large linearization

errors, and thus improved performance cannot always be guaranteed. On the other hand, we

also know that, in the standard EKF, the latest, and thus best, state estimates are used as the

linearization points, which, in general, have the smallestlinearization errors. However, as shown

in Section 2.4.2, since the linearization points (i.e., thebest state estimates) do not satisfy the

observability condition (2.41), filter inconsistency occurs, which degrades performance.

Therefore, we propose selecting the linearization points of the EKF so as to minimize the

linearization errors while satisfying the observability conditions (2.40)-(2.41). This can be for-

mulated as a constrained minimization problem where the constraints express the observability

requirements. Specifically, at time-stepk + 1, we aim at minimizing the linearization error of

the pointsx⋆Rk|k
andx⋆

k+1|k, which appear in the filter JacobiansΦk andHk+1, subject to the

observability constraint (2.41). Mathematically, this isexpressed as:

min
x⋆
Rk|k

,x⋆
k+1|k

∫ ∣∣∣∣xRk
−x⋆Rk|k

∣∣∣∣2p(xRk
|z0:k)dxRk

+

∫ ∣∣∣∣xk+1−x⋆k+1|k
∣∣∣∣2p(xk+1|z0:k)dxk+1 (2.47)

subject to Hk+1Φk · · ·ΦkoN = 0 , ∀k ≥ ko (2.48)

wherez0:k denotes all the measurements available during the time interval [0, k]. Note that

during EKF propagation, since the landmarks are static, only the robot pose participates in the

linearization process [see (2.6)], while during EKF update, both the robot pose and the landmark

positions are involved in the linearization of measurementequation [see (2.11)]. This justifies

the choice of above optimization variables. In general, theconstrained minimization prob-

lem (2.47)-(2.48) is intractable. However, when the two pdfs, p(xRk
|z0:k) andp(xk+1|z0:k),

are Gaussian distributions (which is the assumption employed in the EKF), we can solve the

problemanalytically.

We now show how the closed-form solution can be computed for the case where only one

landmark is included in the state vector. We note that the following lemma will be helpful for

the ensuing derivations:
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Lemma 2.5.3. The constrained optimization problem(2.47)-(2.48) is equivalent to:

min
x⋆
Rk|k

, x⋆
k+1|k

∣∣∣∣x̂Rk|k
−x⋆Rk|k

∣∣∣∣2 +
∣∣∣∣x̂k+1|k−x⋆k+1|k

∣∣∣∣2 (2.49)

subject to p⋆Lk+1|k
−p⋆Rk|k

= p̂Lko|ko
−p⋆Rk|k−1

+

k−1∑

j=ko

∆p⋆Rj
(2.50)

where∆p⋆Rj
, p⋆Rj|j

− p⋆Rj|j−1
.

Proof. See Appendix A.4.

Using the technique of Lagrangian multipliers, the optimalsolution to the problem (2.49)-

(2.50) can be obtained as:

p⋆Rk|k
= p̂Rk|k

+
λk

2
, φ⋆Rk|k

= φ̂Rk|k
,

x⋆Rk+1|k
= x̂Rk+1|k

, p⋆Lk+1|k
= p̂Lk+1|k

− λk

2
(2.51)

with

λk =
(
p̂Lk+1|k

− p̂Lko|ko

)
−


p̂Rk|k

− p⋆Rk|k−1
+

k−1∑

j=ko

∆p⋆Rj




Note that in the case where multiple landmarks are included in the state vector, each landmark

imposes a constraint analogous to (2.50), and thus the analytic solution of the optimal lineariza-

tion points can be obtained similarly [72]. Using the linearization points in (2.51), the filter

Jacobians in the OC-EKF2 SLAM are now computed as follows:

1. The state-propagation Jacobian matrix is calculated as:

Φ
′′

Rk
=


 I2 J

(
p̂Rk+1|k

− p̂Rk|k
− λk

2

)

01×2 1


 (2.52)

2. The measurement Jacobian matrix is calculated as:

H
′′

k+1 =
[
HRk+1

HLk+1

]

= (∇hk+1)C
T (φ̂Rk+1|k

)
[
−I2 −J

(
p̂Lk+1|k

− p̂Rk+1|k
− λk

2

)
I2

]
(2.53)
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2.5.3 OC-EKF3

We now present our OC-EKF3 algorithm, an alternative to the OC-EKF2. In particular, in

contrast to the OC-EKF2 whichindirectly computes both the propagation and measurement

Jacobians by first finding the optimal linearization points,the OC-EKF3directly computes the

measurement Jacobian by projecting the most accurate measurement Jacobian onto the observ-

able subspace, while the propagation Jacobian is calculated identically as in the standard EKF

[see (2.8)]. As a result, the observable subspace of the linearized EKF system model is guaran-

teed to have the correct dimensions.

Specifically, we aim to find the measurement Jacobian closestto the ideal one that has the

best accuracy, while satisfying the observability constraint (2.41), i.e.,

min
Hk+1

||Ho −Hk+1||2F (2.54)

subject to Hk+1Φk · · ·ΦkoN = 0 (2.55)

where||Ξ||F denotes the Frobenius norm of matrixΞ, andHo is the ideal measurement Jaco-

bian evaluated at the true states. However, since in real-world applications the true states are

generally unavailable, we instead evaluate it at the current best state estimates as in the stan-

dard EKF, i.e.,Ho = Ho(x̂k+1|k) [see (2.11)]. Therefore, the optimal closed-form solutionis

obtained by application of the following lemma:

Lemma 2.5.4. The optimal solution to the constrained minimization problem(2.54)-(2.55)is:

H
′′′

k+1 = Ho

(
Idim(x) −V(VTV)−1VT

)
(2.56)

whereV , Φk · · ·ΦkoN.

Proof. See Appendix A.5.

Note thatV in the above equation is the propagated unobservable subspace at time-step

k + 1, and
(
Idim(x) −V(VTV)−1VT

)
is the subspace orthogonal toV, i.e., the observable

subspace. Hence, as seen from (2.56), the measurement Jacobian of the OC-EKF3,H
′′′

k+1, is the

projection of the best-available measurement Jacobian onto the observable subspace. It is also

important to observe that in the case of multiple landmarks,each measurement only depends on

the robot pose and the measured landmark, and hence the corresponding measurement Jacobian

has sparse structure [see (2.11)]. Based on this observation and by exploiting the sparse structure
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of the Jacobian matrix, we only need to consider the nonzero submatrices of the measurement

Jacobian and solve a reduced-size problem similar to (2.54)-(2.55). Once the optimal solution

is attained, we can easily construct the full measurement Jacobian by padding it with zeros

[see (2.11)].

Remarks It is important to note that, as compared to the standard EKF,theonlychange in the

three OC-EKF algorithms is the way in which the Jacobians arecomputed. The state estimates

and covariance in the OC-EKFs are propagated and updated in the same way as in the standard

EKF. Moreover, we stress that the OC-EKFs are causal and realizable “in the real world,” since

they do not utilize any knowledge of the future or true states. In summary, the main steps of the

proposed OC-EKFs for SLAM are outlined in Algorithm 1.

2.5.4 Relation to prior work

At this point, it is interesting to examine the relation of our analysis, which addresses the general

case of a moving robot, to the previous work that has focused on special cases [79,85]. We first

note that the “correct” observability properties of the OC-EKFs are attributed to the fact that

conditions (2.40)-(2.41) hold, which is not the case for thestandard EKF. Thus, (2.40)-(2.41)

can be seen as sufficient conditions that, when satisfied by the filter Jacobians, ensure that

the observability matrix has a nullspace of appropriate dimensions. Note also that, due to the

identity (2.26), the conditions (2.40)-(2.41) are trivially satisfied by the ideal EKF with null

spaceN =
[
n1 n2 n3

]
[see (2.19)]. In what follows, we show that the conditions (2.40)-

(2.41) encompass the ones derived in [85] and [79] as specialcases.

Stationary robot

We first examine the special case studied in [85], where the robot remains stationary, while

observing the relative position of a single landmark. In [85], the following Jacobian constraint
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Algorithm 1 Observability-Constrained (OC)-EKFs for SLAM

Require: Initial state estimates and covariance
1: loop
2: Propagation: If proprioceptive (e.g., odometry) measurements are available,
3: propagate the state estimates [see (2.2), (2.3) and (2.4)]
4: compute the propagation Jacobian [see (2.44) for OC-EKF1, (2.52) for OC-EKF2,

and (2.8) for OC-EKF3]
5: propagate the state covariance:

Pk+1|k = ΦkPk|kΦ
T
k +GkQkG

T
k (2.57)

6: Update: If exteroceptive measurements are available,
7: compute the measurement residual:

rk+1 = zk+1 − h(x̂k+1|k) (2.58)

8: compute the measurement Jacobian [see (2.45) for OC-EKF1, (2.53) for OC-EKF2,
and (2.56) for OC-EKF3]

9: compute the residual covariance and Kalman gain:

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1 (2.59)

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 (2.60)

10: update the state estimate and covariance:

x̂k+1|k+1 = x̂k+1|k +Kk+1rk+1 (2.61)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1 (2.62)

11: end loop
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for consistent estimation was derived (see Theorem 1 therein):

∇hx −∇hp∇gx = 0

⇔ HRk
+HLk

∇gx = 0

⇔
[
HRk

HLk

] [ I3

∇gx

]
= 0

⇔ HkNs = 0 (2.63)

where, using our notation,∇hx = HRk
and−∇hp = HLk

are the measurement Jacobian

matrices with respect to the robot pose and landmark position, respectively, and∇gx is the

landmark initialization Jacobian with respect to the robotpose at time-stepko. Note that the

condition (2.63) is identical to the one in (2.40) for the special case of a stationary robot.

Remarkably, the space spanned by the columns of the matrixNs, for this special case, is the

same as the one spanned by the columns ofN in (2.42). To see that, we first need to derive an

expression for∇gx. In [85], a relative-position measurement model is employed (by combining

a distance and a bearing measurement), and thus the initialization functiong(·) is given by:

pLko
= g(xRko

, zko ,vko) = C(φRko
) (zko − vko) + pRko

(2.64)

wherezko is the first measurement of the landmark’s relative positionandvko denotes the noise

in this measurement. Evaluating the derivative of this function with respect to the robot pose at

the current state estimate we have:

∇gx =
[
I2 JC(φ̂Rko|ko−1

)zko

]

=
[
I2 J

(
p̂Lko|ko

− p̂Rko|ko−1

)]
(2.65)

where this last equation results from taking conditional expectations on both sides of (2.64) and

solving forzko .

Substituting (2.65) in the expression forNs [see (2.63)], yields:

Ns =




I2 02×1

01×2 1

I2 J
(
p̂Lko|ko

− p̂Rko|ko−1

)




One can easily verify thatNs and N span the same column space by noting that

Ns

[
I2 Jp̂Rko|ko−1

01×2 1

]
= N.
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Moving robot with one-step motion

We now consider the special case studied in [79], where a robot observes a landmark, moves

once and then re-observes the landmark. In [79], the key Jacobian relationship that needs to be

satisfied in order for consistent estimation in this case (see Theorem 4.2 therein) is given by:

Ae = Be∇fAφXr
(2.66)

Using our notation, the above matrices are written as:

∇fAφXr
= ΦRko

Ae = −H−1
Lko

HRko

Be = −H−1
Lko+1

HRko+1

Substituting in (2.66) and rearranging terms yields:

H−1
Lko+1

HRko+1
ΦRko

−H−1
Lko

HRko
= 0

⇔
[
HRko+1

HLko+1

]
[
ΦRko

03×2

0T3×2 I2

][
I3

−H−1
Lko

HRko

]
= 0

⇔ Hko+1ΦkoN1 = 0

which is the same as the condition in (2.41) for the special case ofℓ = 1 (i.e., the robot moves

only once). Additionally, it is easy to verify thatHkoN1 = 0, which corresponds to con-

dition (2.40). Moreover, it is fairly straightforward to show that for the case of distance and

bearing measurements considered in [79], the matrixN1 spans the same column space asN

in (2.42). This analysis demonstrates that the Jacobian constraints (2.40)-(2.41) derived based

on the observability criterion are general, and encompass the condition of [79] as a special case.

2.6 Simulation results

A series of Monte-Carlo simulations were conducted under various conditions, in order to val-

idate the preceding theoretical analysis and demonstrate the capability of the proposed OC-

EKFs to improve consistency. The metrics used to evaluate filter performance are: (i) the root

mean square error (RMSE), and (ii) the average normalized (state) estimation error squared

(NEES) [14]. Specifically, for the landmarks we compute the average RMSE and average NEES
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by averaging the estimation errors and the NEES, respectively, over all Monte-Carlo runs, all

landmarks, and all time steps. On the other hand, for each robot pose we compute these error

metrics by averaging over all Monte-Carlo runs for each timestep. The RMSE provides us

with a concise metric of the accuracy of a given estimator. Onthe other hand, the NEES is a

standard criterion for evaluating filter consistency. Specifically, it is known that the NEES of an

N -dimensional Gaussian random variable follows aχ2 distribution withN d.o.f. Therefore, if

a certain filter is consistent, we expect that the average NEES for the robot pose will be close to

3 for all time steps, and that the average landmark NEES will be close to 2. The larger the de-

viations of the NEES from these values are, the worse the inconsistency of the estimator is. By

studying both the RMSE and NEES of all the filters considered here, we obtain a comprehensive

picture of the estimators’ performance.

In all the simulation tests, a robot with a simple differential drive model moves on a planar

surface, at a constant linear velocity ofv = 0.25 m/sec. The two drive wheels are equipped

with encoders that measure revolutions and provide measurements of velocity (i.e., right and

left wheel velocities,vr andvl, respectively) with standard deviation equal toσ = 2%v for each

wheel. These measurements are used to obtain linear and rotational velocity measurements for

the robot, which are given byv = vr+vl
2 andω = vr−vl

a
, wherea = 0.5 m is the distance

between the drive wheels. Thus, the standard deviations of the linear and rotational velocity

measurements areσv =
√
2
2 σ andσω =

√
2
a
σ, respectively.

In this SLAM simulation, a robot moves on a circular trajectory and sequentially observes

20 landmarks in total. The robot records distance and bearing measurements to the landmarks

that lie within its sensing range of 5 m. The standard deviation of the distance measurement

noise is equal to 10% of the true distance, while the standarddeviation of the bearing measure-

ment noise is set to10 deg. Note that the sensor-noise levels selected for this simulation are

larger than what is typically encountered in practice. Thiswas done purposefully, since higher

noise levels lead to larger estimation errors, which make the effects of inconsistency more ap-

parent. We performed 50 Monte-Carlo simulations and compared six filters: (1) the ideal EKF,

(2) the standard EKF, (3) the OC-EKF1, (4) the OC-EKF2, (5) the OC-EKF3, and (6) the robo-

centric mapping filter [27], which aims at improving the consistency of SLAM by expressing

the landmarks in a robot-relative frame. During each run, all filters process the same data, to

ensure a fair comparison.

Fig. 2.1 shows the results for the robot orientation estimation errors, obtained from one
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Figure 2.1: Orientation estimation errors vs. 3σ bounds obtained from one typical realization
of the SLAM Monte-Carlo simulations. Theσ values are computed as the square-root of the
corresponding diagonal element of the estimated covariance matrix. Note that the estimation
errors and the 3σ bounds of the ideal EKF, the OC-EKFs, and the robocentric mapping filter are
almost identical, which makes the corresponding lines difficult to distinguish.

typical simulation of the 50 Monte-Carlo runs. As evident, the errors of the standard EKF grow

significantly faster than those of all other filters, which indicates that the standard EKF tends

to diverge. Note also that although the orientation errors of the ideal EKF, OC-EKFs, as well

as the robocentric mapping filter remain well within their corresponding 3σ bounds (computed

from the square-root of the corresponding diagonal elementof the estimated covariance matrix),

those of the standard EKF exceed them. Most importantly, the3σ bounds of the standard EKF

continuouslydecreaseover time, as if the robot’s orientation was observable. However, the

robot has no access to any absolute orientation information, and thus its orientation covariance
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Figure 2.2: Monte-Carlo simulation results for a SLAM scenario with multiple loop closures.
In these plots, the dotted lines correspond to the ideal EKF,the solid lines with circles to the
standard EKF, the dash-dotted lines to the OC-EKF1, the dashed lines to the OC-EKF2, the
solid lines to the OC-EKF3, and the solid lines with crosses to the robocentric mapping filter.
Note that the RMSE of the ideal EKF, and the OC-EKFs are almostidentical, which makes the
corresponding lines difficult to distinguish.

shouldnot continuously decrease. The results of Fig. 2.1 further strengthen our claim that

the incorrect observability properties of the standard EKFcause an unjustified reduction in the

orientation uncertainty.

The comparative Monte-Carlo results for all filters are presented in Fig. 2.2. Specifically,

Fig. 2.2(a) and Fig. 2.2(b) show the average NEES and RMSE forthe robot pose, respectively,

versus time. On the other hand, Table 2.1 presents the average values of all relevant performance

metrics for both the landmarks and the robot. As evident, theperformance of the OC-EKFs is

very closeto that of the ideal EKF, and substantially better than that of the standard EKF, both in

terms of RMSE and NEES. This occurs even though the Jacobiansused in the OC-EKFs are less

accurate than those used in the standard EKF, as explained inthe preceding section. This fact

indicates that the errors introduced by the use of inaccurate Jacobians have a less detrimental

effect on consistency and accuracy than the use of an error-state system model with incorrect

observability properties. Moreover, it is important to note that the performance of the OC-EKF

2 and 3 is superior to that of the OC-EKF1, by a small margin. This is attributed to the fact

that the OC-EKF1 has larger linearization errors than the OC-EKF 2 and 3, since the OC-EKF

2 and 3 are optimal by construction, in terms of linearization errors and hence filter Jacobians,
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Table 2.1: SLAM simulation results for robot and landmark estimation performance

Ideal-EKF Std-EKF OC-EKF1 OC-EKF2 OC-EKF3 Robocentric

Robot Position RMSE (m)

0.6556 1.1416 0.6440 0.6853 0.6465 1.0315

Robot Heading RMSE (rad)

0.0627 0.0964 0.0639 0.0657 0.0636 0.0895

Robot Pose NEES

3.1926 14.9305 3.8802 3.6282 3.6386 9.5894

Landmark Position RMSE (m)

0.6558 1.1895 0.7041 0.6791 0.6563 1.0532

Landmark Position NEES

2.2420 18.8000 5.6793 3.0222 2.8011 10.6310

under the observability constraints. We also observe that the OC-EKFs perform better than

the robocentric mapping filter [26, 27], both in terms of accuracy and consistency, which is

explained in detail in the next.

2.6.1 Comparison to the robocentric mapping filter

From the plots of Fig. 2.2, we clearly see that the OC-EKFs also perform better than the robo-

centric mapping filter [26, 27], both in terms of accuracy andconsistency. This result cannot

be justified based on the observability properties of the filters: in [26, 27], the landmarks are

represented in the robot frame, which can be shown to result in a system model with 3 unob-

servable degrees of freedom (see Appendix A.6). However, inthe robocentric mapping filter,

during each propagation stepall landmark position estimates need to be changed, since they are

expressed with respect to the moving robot frame. As a result, during each propagation step

(termedcompositionin [26, 27]), all landmark estimates and their covariance are affected by

the linearization errors of the process model. This problemdoes not exist in the world-centric

formulation of SLAM, and it could offer an explanation for the observed behavior.

To test this argument, we first examine the Kullback-Leiblerdivergence (KLD), between the

pdf estimated by each filter, and the pdf estimated by its “ideal” counterpart. Specifically, we
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compute the KLD (i) between the pdf computed by the OC-EKF4 and that of the ideal EKF,

and (ii) between the pdf computed by the robocentric mappingfilter and that produced by an

“ideal” robocentric mapping filter, which employs the true states in computing all the Jacobian

matrices. The KLD is a standard measure for the difference between probability distributions.

It is nonnegative, and equals zero only if the two distributions are identical [32]. By computing

the KLD between the estimated pdf and that of the “ideal” filter in each case, we can evaluate

how close each filter is to its respective “golden standard”.These results pertain to the same

simulation setup presented in the previous section.

Since the four filters considered here (i.e., the OC-EKF, theideal EKF, the robocentric

mapping filter, and the ideal robocentric mapping filter) employ a Gaussian approximation of

the pdf, we can compute the KLD in closed form. Specifically, the KLD from an approximation

distribution,pa(x) = N (µa,Pa), to the ideal distribution,po(x) = N (µo,Po), is given by:

dKL =
1

2

(
ln

(
det(Po)

det(Pa)

)
+ tr(P−1

o Pa) + (µo − µa)
TP−1

o (µo − µa)− dim(x)

)
(2.67)

Fig. 2.3 presents the KLD over time, between the Gaussian distributions computed by the robo-

centric mapping filter, the OC-EKF, and those computed by their respective ideal filters (note

that the vertical axis scale is logarithmic). It is evident that the KLD in the case of the robocen-

tric mapping filter is orders of magnitude larger than in the case of the OC-EKF. This indicates

that the linearization errors in the robocentric mapping filter result in a worse approximation of

the ideal pdf.

We attribute this fact to the structure of the filter Jacobians. During the update step, the

structure of the Jacobians in both the robocentric and the world-centric formulations is quite

similar [72]. In both cases, the terms appearing in the measurement Jacobians are either rotation

matrices, or the robot-to-landmark position vector. However, the Jacobians employed during the

composition step in the robocentric mapping filter are substantially more complex than those

appearing in the world-centric EKF propagation [see (2.6)]. Specifically, in the robocentric

mapping filter, the state vector is given by (assuming a single landmark for simplicity):

Rkxk =
[
RkpTGk

RkφGk

RkpTLk

]T
(2.68)

4 Due to the similar performance of the three OC-EKFs (see Fig.2.2 and Table 2.1), we here only compare the
OC-EKF2 to the robcentric mapping filter.
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Figure 2.3: Comparison results of the KLD in the SLAM scenario with multiple loop closures.
In this plot, the solid line with crosses corresponds to the OC-EKF, and the solid line with
squares to the robocentric mapping filter [27]. Note that thevertical axis scale is logarithmic.

The composition step is described by the following equations:

Rk p̂Gk|k−1
= CT (Rk−1 φ̂Rk|k−1

)(Rk−1 p̂Gk−1|k−1
− Rk−1p̂Rk|k−1

) (2.69)

Rk φ̂Gk|k−1
= Rk−1 φ̂Gk−1|k−1

−Rk−1 φ̂Rk|k−1
(2.70)

Rk p̂Lk|k−1
= CT (Rk−1 φ̂Rk|k−1

)(Rk−1 p̂Lk−1|k−1
− Rk−1p̂Rk|k−1

) (2.71)

whereRℓ p̂Lℓ|k−1
is the estimated landmark position with respect to the robotframe at time-

stepℓ (ℓ = k − 1, k), {Rk−1p̂Rk|k−1
,Rk−1 φ̂Rk|k−1

} is the estimate of the robot-pose change

between time-stepsk − 1 andk, expressed with respect to the robot frame at time-stepk − 1,

and{Rℓp̂Gℓ|k−1
,Rℓ φ̂Gℓ|k−1

} is the estimated transformation between the robot frame andthe

global frame at time-stepℓ. The linearized error propagation equation is given by:



Rk p̃Gk|k−1

Rk φ̃Gk|k−1

Rk p̃Lk|k−1


 = JLk

Rk−1p̃Lk−1|k−1
+ JGk

[
Rk−1p̃Gk−1|k−1

Rk−1φ̃Gk−1|k−1

]
+ JRk

[
Rk−1p̃Rk|k−1

Rk−1 φ̃Rk|k−1

]
(2.72)
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where

JLk
=

[
03×2

CT (Rk−1 φ̂Rk|k−1
)

]
(2.73)

JGk
=




CT (Rk−1 φ̂Rk|k−1
) 02×1

01×2 1

02×2 02×1


 (2.74)

JRk
=




−CT (Rk−1 φ̂Rk|k−1
) −JRk p̂Gk|k−1

01×2 −1

−CT (Rk−1 φ̂Rk|k−1
) −JRk p̂Lk|k−1


 (2.75)

We note that the state estimates appear in the Jacobian matricesJLk
andJGk

only through

the rotation matrixC(Rk−1 φ̂Rk|k−1
). As a result, the difference between the ideal and actual

Jacobians,JLk
− J̆Lk

andJGk
− J̆Gk

will only contain terms of the formc(Rk−1 φ̂Rk|k−1
) −

c(Rk−1φRk
), ands(Rk−1 φ̂Rk|k−1

) − s(Rk−1φRk
). The magnitude of these terms is in the same

order asRk−1 φ̃Rk
, which is typically a very small quantity. Thus, the discrepancy between the

actual and ideal Jacobians is expected to be very small forJLk
andJGk

.

On the other hand, inJRk
the estimates for the landmark position and for the origin ofthe

global frame with respect to the robot appear as well. As a result, the differenceJRk
− J̆Rk

will

also contain the termsRk p̃Gk|k−1
andRk p̃Lk|k−1

, whose magnitude can be significantly larger,

e.g., in the order of meters (see Fig. 2.2). Thus, the Jacobian JRk
can be very inaccurate. In

contrast, the propagation Jacobians in the world-centric formulation contain terms depending

on (i) the robot’s displacement between consecutive time steps, and (ii) the rotation matrix of

the robot’s orientation [see (2.8) and (2.9)]. Since both ofthese quantities can be estimated with

small errors, the world-centric EKF Jacobians are significantly more accurate than those of the

robocentric formulation.

To further test this argument, we ran a simulation of a “mini-SLAM” scenario, where both

the robot trajectory and the landmarks are confined within a small area of 1 m×1 m (while

all other settings are identical to the preceding simulation). In this setup, the estimation errors
Rk p̃Gk|k−1

andRk p̃Lk|k−1
remain small, and thus the Jacobians of the robocentric mapping

filter become more accurate. The plots of Fig. 2.4 show the average NEES and RMSE for the

robot pose in this scenario. Interestingly, we observe thatin this case the performance of the

OC-EKF, and the robocentric mapping filter arealmost identical. This validates the preceding
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Figure 2.4: Monte-Carlo results for a “mini-SLAM” scenariowith multiple loop closures where
the robot trajectory and all landmarks are confined within a very small area of 1 m× 1 m. In
these plots, the solid lines correspond to the ideal EKF, thesolid lines with circles to the standard
EKF, the dashed lines to the OC-EKF, and the dash-dotted lines to the robocentric mapping filter
of [27]. Note that in this case both the NEES and the RMSE of theideal EKF, the OC-EKF,
and the robocentric mapping filter are almost identical, which makes the corresponding lines
difficult to distinguish.

discussion, and indicates that the representation used in the robocentric mapping filter results in

performance loss in the case of large environments. This mayjustify the fact that the OC-EKF

outperforms the robocentric mapping algorithm [27], even though both filters employ a system

model with three unobservable d.o.f.

As a final remark, we note that, in comparison to the OC-EKF, the computational cost of the

robocentric mapping filter is significantly higher. Specifically, the OC-EKF has computational

cost identical to the standard world-centric SLAM algorithm: linear in the number of landmarks

during propagation, andquadraticduring updates. On the other hand, both the update and the

composition steps in the robocentric mapping filter have computational costquadratic in the

number of features, which results in approximately double overall computational burden.

2.7 Experimental results

We also performed a real-world experiment to further test the proposed OC-EKF algorithms.

This experiment was conducted in an indoor office environment. The robot was commanded
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Figure 2.5: The batch maximum-a-posteriori (MAP) estimateof the robot trajectory in the
indoor SLAM experiment (solid line), overlaid on the blueprint of the building. The boxes (�)
denote the corners whose exact location is known from the building’s blueprint. The batch-MAP
estimates of the robot poses and the known corners were used as ground truth for computing
the NEES and RMSE values.

to perform 11 loops around a square with sides approximatelyequal to 20 m (see Fig. 4.3).

This special trajectory was selected since repeated re-observation of the same landmarks tends

to make the effects of inconsistency more apparent, and facilitates discerning the performance

of the various filters. A Pioneer robot equipped with a SICK LMS200 laser range-finder and

wheel encoders was used in this experiment. From the laser range data, corner features were

extracted and used as landmarks, while the wheel encoders provided the linear and rotational

velocity measurements. Propagation was carried out using the kinematic model described in

Appendix A.1.

Because the ground truth of the robot pose could not be obtained using external sensors

(e.g., overhead cameras), in this experiment, we obtained areference trajectory by utilizing the

known map of the area where the experiment took place. Specifically, the exact location of

20 corners was known from the blueprints of the building. Measurements to these corners, as
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Table 2.2: SLAM experimental results for robot and landmarkestimation performance

Std-EKF OC-EKF1 OC-EKF2 OC-EKF3 Robocentric

Robot Position RMSE (m)

0.8209 0.5748 0.5754 0.5214 0.7160

Robot Heading RMSE (rad)

0.0604 0.0397 0.0397 0.0356 0.0391

Robot Pose NEES

11.0706 3.5681 3.5282 4.6127 7.2949

Landmark Position RMSE (m)

1.1041 0.8675 0.8680 0.8474 1.0957

Landmark Position NEES

8.5033 5.9821 5.9836 6.8402 9.6691
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Figure 2.6: SLAM experimental results. In these plots, the solid lines correspond to the standard
EKF, the dash-dotted lines to the OC-EKF1, the dashed lines to the OC-EKF2, the solid lines to
the OC-EKF3, and the solid lines with crosses to the robocentric mapping filter. Note that some
portions of the NEES and the estimation errors of the OC-EKFsare very close, which makes
the corresponding lines difficult to distinguish.

well as all other measurements obtained by the robot (including to corners whose location was

not knowna priori), were processed using a batch-MAP estimator [91], to obtain an accurate



48

estimate of the entire trajectory. This estimate, as well asthe locations of the known corners,

are shown in Fig. 4.3. This constitutes the ground truth against which the performance of the

following filters was compared: (1) the standard EKF, (2) theOC-EKF1, (3) the OC-EKF2, (4)

the OC-EKF3, and (4) the robocentric mapping filter [27]. Clearly, due to the way the ground

truth is computed, the filter errors are expected to have somecorrelation to the errors in the

ground truth. However, since these correlations are the same for all four filters, we can still

have a fair comparison of their relative performance.

The results of NEES and estimation errors (RMSE) for all filters are presented in Fig. 2.6

and Table 2.2. We point out that during the experiment the robot detected a number of features

that were not included in the set of 20 known corners (e.g., movable objects such as furniture).

Since no ground truth was available for the position of theseobjects, we only used the 20 known

corners for computing the landmarks’ error statistics. From the experimental results it becomes

clear that in this particular experiment the OC-EKFs outperform the standard EKF and the

robocentric mapping filter, and perform almost identicallyto each other. This agrees with the

simulation results presented in the preceding section.

2.8 Summary

In this chapter, we have presented an observability-based study of the inconsistency problem

in EKF-based SLAM. By comparing the observability properties of the nonlinear SLAM sys-

tem with those of the linearized error-state model employedin the EKF, we proved that the

observable subspace of the standard EKF is always of higher dimension than that of the un-

derlying nonlinear system. As a result, the covariance estimates of the EKF undergo reduction

in directions of the state space where no information is available, which is a primary cause of

inconsistency. Based on this analysis, we have proposed a new methodology for the design

of EKF-based estimators for SLAM. Our approach dictates computing the EKF Jacobians, ei-

ther indirectly or directly, so as to ensure that the resulting linearized system model has three

unobservable directions.

We have introduced three OC-EKF algorithms, which adhere tothe above design method-

ology. Specifically, the OC-EKF1 computes the Jacobians using the first-available estimate for

each state variable, while in the OC-EKF2 the linearizationpoints used for computing the Jaco-

bians are obtained in closed form by solving an observability-constrained minimization problem
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(i.e., minimizing the expected linearization errors subject to the observability constraints). Al-

ternatively, the OC-EKF3 directly computes the measurement Jacobian by projecting the most

accurate measurement Jacobian onto the observable subspace, while the propagation Jacobian

is calculated in the same way as in the standard EKF. As a result, the linearized system mod-

els employed in these filters have the desirable observability properties. Extensive simulation

and experimental tests verify that the OC-EKFs perform significantly better, in terms of both

accuracy and consistency, than the standard EKF and the robocentric mapping filter [27]. This

occurs despite the fact that the Jacobians used in the OC-EKFs are less accurate. These results

indicate that ensuring the correct observability properties of the linearized system model is a

crucial requirement.



Chapter 3

Observability-Constrained EKFs for

CL

In this chapter, we extend the observability-based methodology for SLAM presented in the pre-

vious chapter to the case of CL. In particular, we analytically show that the error-state system

model employed in the standard EKF-based CL always has an observable subspace of higher di-

mension than that of the actual nonlinear CL system. This results in unjustified reduction of the

EKF’s estimated covariance in directions of the state spacewhere no information is available,

and thus leads to inconsistency. To address this problem, weadapt the previously presented

observability-constrained methodology for designing consistent estimators to compute the fil-

ter Jacobians and ensure that the linearized CL system modelhas observable subspace of the

correct dimensions. Parts of this chapter have been published in [74,75].

3.1 Introduction

In order for multi-robot teams to navigate autonomously andsuccessfully perform tasks such

as exploration [80], surveillance [154], and search and rescue [83], they must be able to deter-

mine their positions and orientations (poses) precisely. In GPS-denied areas and in the absence

of robust landmarks, a team of robots can still localize by sharing relative robot-to-robot mea-

surements and jointly estimating their poses [101,133,136]. Current approaches to solving the

cooperative localization (CL) problem, in either centralized or distributed fashion, are based on

the EKF [136], MLE [64], MAP estimator [124], or PF [48]. Among these algorithms, the EKF

50
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arguably remains a popular choice primarily due to its relatively low computational cost and its

ease of implementation.

While recent research efforts have primarily focused on reducing the computational com-

plexity of EKF-based CL [90,108,117,127], the fundamentalissue ofconsistencyhas received

little attention. As we know, a state estimator is consistent if the estimation errors are zero-

mean, and have covariance smaller than or equal to the one calculated by the estimator [14].

Consistency is one of the primary criteria for evaluating the performance of any estimator; if an

estimator is inconsistent, then the accuracy of the produced state estimates is unknown, which

renders the estimator unreliable. Clearly the lack of understanding consistency in CL is a sig-

nificant limitation, and hence in this chapter, we study in depth the consistency of EKF-CL.

Specifically, based on the system observability analysis, we identify a major cause of the in-

consistency of standard EKF-CL and introduce new OC-EKF CL algorithms that significantly

improve consistency as well as accuracy. In particular, themajor contributions of this work are

the following:

• We investigate the observability properties of the error-state system model employed by

the EKF, and show that its observable subspace hashigher dimensionthan that of the

underlying nonlinear CL system. As a result, the estimated covariance of the EKF under-

goes reduction in directions of the state space where no information is available, hence

leading toinconsistency. To the best of our knowledge, we are the first to identify and

report this inconsistency of standard EKF-CL.

• Based on the observability analysis, we introduce three newOC-EKFs. These estimators

judiciously compute the EKF Jacobians to ensure that the linearized CL system has an

observable subspace of thesame dimensionsas that of the nonlinear CL system, thus

improving consistency. Specifically, in the OC-EKF1, the state-propagation Jacobians

are evaluated at theprior state estimates (i.e.,beforeinstead of after each update), while

the measurement Jacobians are computed in the same way as forthe standard EKF. In

the OC-EKF2, the linearization points are selected so as notonly to guarantee the desired

observability properties, but also to minimize the expected linearization errors (i.e., the

difference between the linearization point and the true state). This is formulated as a

constrained minimization problem, whose solution provides the linearization points used

for computing the filter Jacobians. In the OC-EKF3, the measurement Jacobians are
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directly computed by projecting the best-available measurement Jacobians (calculated

using the latest, and thus best, state estimates as in the standard EKF) onto the observable

directions, while the state-propagation Jacobians are computed in the same way as for the

standard EKF.

• Through extensive Monte-Carlo simulations and real-worldexperiments with bothho-

mogeneousand heterogeneousrobot teams, we verify that the OC-EKFs substantially

outperform the standard EKF in terms of consistency and accuracy, even though they use

less accurate state estimates to compute the filter Jacobians (since the OC-EKF Jacobians

are, in general, different from those computed using the latest, and thus best, state esti-

mates). This result in turn indicates that the observability properties of the system model

employed by the filer play a key role in determining the filter’s consistency.

3.2 Related work

To date, theoretical studies on the properties of CL have focused on issues such as initial-

ization [160–162, 173], system observability [109, 161, 173], accuracy bounds [117, 137],

and the complexity of deterministic (static) robot networklocalization [37]. However, to

the best of our knowledge, prior to our work [74, 75], no work has analytically examined

the consistency of CL. In contrast, recent research has focused on the consistency of EKF-

SLAM [12,27,66,70,72,78,79,85] showing that the computedstate estimates tend to be incon-

sistent (also see Section 2.2).

In the previous chapter, we conducted a theoretical analysis of the EKF-SLAM inconsis-

tency, and identified as a fundamental cause the mismatch between the dimensions of the ob-

servable subspaces of the linearized system employed by theEKF, and the underlying nonlinear

system. Furthermore, we introduced the OC-EKFs which significantly outperform the standard

EKF and the robocentric mapping algorithm [27], in terms of both accuracy and consistency.

The proposed estimators were derived by imposing the constraints inferred from the system ob-

servability analysis. In this work, we extend this observability-based methodology for designing

consistent estimators for nonlinear systems to address theinconsistency of EKF-CL.

We note that the work of [9] addresses a related but differentproblem, namely the consis-

tency of a distributed CL algorithm due to reuse of information. In the decentralized estimation
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scheme of [9], the cross-correlations between the state estimates of different robots are not es-

timated. However, it is well-known that if cross-correlations between robots are not properly

taken into account during filter updates, inconsistency canarise [48, 65, 136]. The algorithm

in [9] avoids inconsistency by maintaining a careful recordof past robot-to-robot measurement

updates. In contrast to the above fully decentralized scenario, in our work the cross-correlation

terms are maintained in the filter, and the EKF employed for estimation is optimal, except for

the inaccuracies introduced by linearization. Our work focuses on identifying and addressing

the cause of inconsistency of the EKF-CL estimator.

3.3 Standard EKF-CL formulation

In this section, we present the equations of the 2D EKF-CL formulation withgeneralsystem

and measurement models.1 In the standard formulation of CL, the state vector comprises the

N robots’ poses expressed in the global frame of reference. Thus, at time-stepk the state vector

is given by:

xk =
[
xT1k . . . xTNk

]T
(3.1)

wherexik , [pTik φik ]
T , [xik yik φik ]

T denotes theith robot pose (position and orientation).

In general, EKF-CL recursively evolves in two steps: propagation and update, based on the

discrete-time process and measurement models, respectively.

3.3.1 EKF propagation

During propagation, each robot integrates its odometry measurements to obtain an estimate of

its pose change between two consecutive time steps, which isthen employed in the EKF to

propagate the robot state estimate. The EKF propagation equations are given by:

p̂ik+1|k
= p̂ik|k +C(φ̂ik|k)

kp̂ik+1
(3.2)

φ̂ik+1|k
= φ̂ik|k +

kφ̂ik+1
(3.3)

for all i = 1, . . . , N . In the above expressions,C(·) denotes the2 × 2 rotation matrix, and
kx̂ik+1

, [kp̂Tik+1

kφ̂ik+1
]T is the odometry-based estimate of theith robot’s motion between

1 For the purpose of the consistency study and in order to simplify the derivations, in this work we focus on the
centralized EKF-CL. Note that a distributed implementation [136] does not alter the system properties.
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time-stepsk andk + 1, expressed with respect to the robot frame of reference at time instant

k. This estimate is corrupted by zero-mean white Gaussian noisewik = kxik+1
− kx̂ik+1

, with

covariance matrixQk. Clearly the process model is nonlinear, and can be described by the

following generic nonlinear function:

xik+1
= f(xik ,

kx̂ik+1
+wik) (3.4)

Linearization of (3.4) yields the error-state propagationequation:

x̃ik+1|k
≃Φik x̃ik|k +Gikwik (3.5)

whereΦik andGik are the system state and noise Jacobians, respectively, given by:

Φik =

[
I2 JC(φ̂ik|k)

kp̂ik+1

01×2 1

]
=


 I2 J

(
p̂ik+1|k

− p̂ik|k

)

01×2 1


 (3.6)

Gik =

[
C(φ̂ik|k) 02×1

01×2 1

]
(3.7)

By stacking allN robots’ error states to create the error state vector for theentire system, we

have:

x̃k+1|k ≃



Φ1k · · · 0

...
. . .

...

0 · · · ΦNk






x̃1k|k

...

x̃Nk|k


+



G1k · · · 0

...
. . .

...

0 · · · GNk






w1k

...

wNk




, Φkx̃k|k +Gkwk (3.8)

Note that the form of the propagation equations presented above is general, and holds for

any robot kinematic model (e.g., unicycle, bicycle, or Ackerman model). The specialization to

the common case of a unicycle model can be found in Appendix B.4 or A.1.

3.3.2 EKF update

The measurements used for updates in CL are always a functionof the relative pose (i.e., relative

position and orientation) of the observed robotj with respect to the observing roboti, and are

given by:

z
(ij)
k = h(xik ,xjk) + v

(ij)
k = h

(
ixjk

)
+ v

(ij)
k (3.9)
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where

ixjk =

[
ipjk
iφjk

]
=

[
CT (φik)(pjk − pik)

φjk − φik

]
(3.10)

is the relative pose of the observed robotj with respect to the observing roboti at time-stepk,

andv(ij)
k is zero-mean Gaussian noise with covarianceR

(ij)
k . In this work, we allowh to beany

measurement function. For instance,z
(ij)
k can be a direct measurement of relative pose, a pair

of distance and bearing measurements, bearing-only measurements from monocular cameras,

etc. In general, the measurement function is nonlinear, andhence it is linearized for use in the

EKF. The linearized measurement-error equation is given by:

z̃
(ij)
k ≃

[
0 · · · H

(ij)
ik

· · · H
(ij)
jk

· · · 0

]
x̃k|k−1 + v

(ij)
k

, H
(ij)
k x̃k|k−1 + v

(ij)
k (3.11)

whereH(ij)
ik

andH(ij)
jk

are the Jacobians ofh with respect to theith andjth robot poses, respec-

tively, evaluated at the state estimatex̂k|k−1. Using the chain rule of differentiation, these are

computed as:

H
(ij)
ik

= − (∇h
(ij)
k )A(φ̂ik|k−1

)

[
I2 J(p̂jk|k−1

− p̂ik|k−1
)

01×2 1

]
(3.12)

H
(ij)
jk

= (∇h
(ij)
k )A(φ̂ik|k−1

) (3.13)

whereA(φ̂ik|k−1
) ,

[
CT (φ̂ik|k−1

) 02×1

01×2 1

]
, and∇h

(ij)
k denotes the Jacobian ofh with respect

to the relative pose between theith andjth robots (i.e., with respect to the vectorixjk), evaluated

at the state estimatêxk|k−1. Appendix B.4 illustrates the specific form of the above expressions

in the case of distance and bearing measurements.

3.4 CL observability analysis

In this section, we perform an observability analysis for the EKF-CL system derived in the

previous section, and compare its observability properties with those of the underlying nonlinear

system. Based on this analysis, we draw conclusions about the consistency of the filter.

By applying theobservability rank conditionfor nonlinear systems [60], Martinelli and

Siegwart [109] have shown that the nonlinear system of CL in general has three unobservable
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d.o.f., corresponding to the global position and orientation. However, as we show in this section,

the unobservable subspace of the linearized error-state model of the standard EKF is generally

only of dimension two, which leads to inconsistency.2

Recall that, in analogy to (2.21), the Jacobian matricesΦk,Gk, andHk used in the EKF-CL

linearized error-state model [see (3.8) and (3.11)], in general, are defined as:

Φk = ∇xk
f

∣∣∣
{x⋆

k|k
,x⋆

k+1|k
,0}

, Gk = ∇wk
f

∣∣∣
{x⋆

k|k
,0}

, Hk = ∇xk
h

∣∣∣
{x⋆

k|k−1
}

(3.14)

In these expressions,x⋆
k|k−1 andx⋆

k|k denote thelinearization pointsfor the statexk, used

for evaluating the Jacobians before and after the EKF updateat time-stepk, respectively. A

linearization point equal to the zero vector is chosen for the noise. The EKF employs the

linearized system model defined by (3.8), (3.11), and (3.14)for propagating and updating the

state and covariance estimates, and thus the observabilityproperties of this model affect the

performance of the estimator.

Since the linearized error-state model of EKF-CL is time-varying, similarly to the case of

EKF-SLAM, we employ thelocal observability matrix[30, 112] to perform the observability

analysis. Specifically, the local observability matrix forthe time interval between time-stepsko

andko +m is defined by [see (2.22)]:

M ,




Hko

Hko+1Φko

...

Hko+mΦko+m−1 · · ·Φko




(3.15)

= M(x⋆ko|ko−1,x
⋆
ko|ko, . . . ,x

⋆
ko+m|ko+m−1) (3.16)

The last expression (3.16), makes explicit the fact that theobservability matrix is a function of

the linearization points used in computing all the Jacobians within the time interval[ko, ko+m].

In turn, this implies thatthe choice of linearization points affects the observability propertiesof

the linearized error-state system of the EKF. This key fact is the basis of our analysis. In what

2 For simplicity, in our analysis we assume that the relative measurements guarantee observability of the relative
poses between all robots. For instance, we exclude special cases where the robots’ trajectories give rise to additional
unobservable modes (e.g., robots moving exactly in parallel or in a straight line [173]). Another case not considered
here is that of the robots measuring relative orientation, (φj−φi), only. In this case the nonlinear system has2N+1
unobservable d.o.f. [109]. Moreover, since the relative-orientation measurement model islinear in the system state,
the problems caused by linearization, described in Section3.4.2, do not appear in this case.
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follows, we discuss different possible choices for linearization, and the observability properties

of the corresponding linearized systems.

3.4.1 Ideal EKF-CL

Before considering the rank of the matrixM, which is constructed using theestimatedvalues

of the state in the filter Jacobians, it is interesting to study the observability properties of the

“oracle”, or “ideal” EKF (i.e., the filter whose Jacobians are evaluated using thetrue values of

the state variables, so thatx⋆
k|k−1 = x⋆

k|k = xk, for all k).

To make the notation more compact, we define

δpij(k, ℓ) , pik − pjℓ (3.17)

which is the difference between two robots’ positions at time-stepsk andℓ. Using the above

definition, we note that [see (3.6)]

Φ̆iko+1
Φ̆iko

=

[
I2 Jδpii(ko + 2, ko)

01×2 1

]
(3.18)

Based on this identity, it is easy to show by induction that

Φ̆iko+ℓ−1
Φ̆iko+ℓ−2

· · · Φ̆iko
=

[
I2 Jδpii(ko + ℓ, ko)

01×2 1

]
(3.19)

which holds for allℓ > 0.

In the ensuing derivations, it is assumed that every robot continuously observes all other

robots in the team during the time interval[ko, ko + m], i.e., the relative-measurement graph

(RMG) is complete. Note that this assumption is made only to simplify the notation, and is not

necessary in the analysis. We hereafter first study the case where two robots comprise the team,

and then extend the analysis to the general case in which the group consists ofN > 2 robots.

Two-robot case

Based on the assumption of a complete RMG, two measurements,z
(12)
ko+ℓ

andz(21)ko+ℓ
, are available

at time-stepko + ℓ. Thus, the measurement JacobianH̆ko+ℓ in this case can be written as
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[see (3.11)-(3.13)]:

H̆ko+ℓ =

[
H̆

(12)
ko+ℓ

H̆
(21)
ko+ℓ

]
=

[
H̆

(12)
1ko+ℓ

H̆
(12)
2ko+ℓ

H̆
(21)
1ko+ℓ

H̆
(21)
2ko+ℓ

]
= (3.20)

−Diag
(
(∇h̆

(12)
ko+ℓ

)A(φ1ko+ℓ
), (∇h̆

(21)
ko+ℓ

)A(φ2ko+ℓ
)
)
×




I2 Jδp21(ko+ℓ, ko+ℓ) −I2 02×1

01×2 1 01×2 −1

−I2 02×1 I2 Jδp12(ko+ℓ, ko+ℓ)

01×2 −1 01×2 1




whereDiag(·) denotes a block diagonal matrix. On the other hand, the following identity is

immediate [see (3.8) and (3.19)]:

Φ̆ko+ℓ−1Φ̆ko+ℓ−2 · · · Φ̆ko =

Diag
(
Φ̆1ko+ℓ−1

· · · Φ̆1ko
, Φ̆2ko+ℓ−1

· · · Φ̆2ko

)
=




I2 Jδp11(ko+ℓ, ko) 02×2 02×1

01×2 1 01×2 0

02×2 02×1 I2 Jδp22(ko+ℓ, ko)

01×2 0 01×2 1




(3.21)

From (3.20) and (3.21) we obtain

H̆ko+ℓΦ̆ko+ℓ−1Φ̆ko+ℓ−2 · · · Φ̆ko = (3.22)

−Diag
(
(∇h̆

(12)
ko+ℓ

)A(φ1ko+ℓ
), (∇h̆

(21)
ko+ℓ

)A(φ2ko+ℓ
)
)

×



I2 Jδp21(ko+ℓ, ko) −I2 −Jδp22(ko+ℓ, ko)

01×2 1 01×2 −1

−I2 −Jδp11(ko+ℓ, ko) I2 Jδp12(ko+ℓ, ko)

01×2 −1 01×2 1






59

Thus, the observability matrix,̆M, can be written as [see (3.15)]:

M̆ =−Diag
(
(∇h̆

(12)
ko

)A(φ1ko ), · · · , (∇h̆
(21)
ko+m

)A(φ2ko+m
)
)

︸ ︷︷ ︸
D̆

× (3.23)




I2 Jδp21(ko, ko) −I2 02×1

01×2 1 01×2 −1

−I2 02×1 I2 Jδp12(ko, ko)

01×2 −1 01×2 1

I2 Jδp21(ko+1, ko) −I2 −Jδp22(ko+1, ko)

01×2 1 01×2 −1

−I2 −Jδp11(ko+1, ko) I2 Jδp12(ko+1, ko)

01×2 −1 01×2 1
...

...
...

...

I2 Jδp21(ko+m,ko) −I2 −Jδp22(ko+m,ko)

01×2 1 01×2 −1

−I2 −Jδp11(ko+m,ko) I2 Jδp12(ko+m,ko)

01×2 −1 01×2 1




︸ ︷︷ ︸
Ŭ

Lemma 3.4.1. The rank of the observability matrix,̆M, of the ideal EKF-CL in the two-robot

case, is equal to 3.

Proof. The rank of the product of the matrices̆D andŬ is given by (see (4.5.1) in [113])

rank(D̆Ŭ) = rank(Ŭ)− dim(null(D̆)
⋂

rng(Ŭ)) (3.24)

DenotingŬ ,

[
ŭ1 · · · ŭ6

]
, it is evident that̆u1 = −ŭ4, ŭ2 = −ŭ5, while ŭ3 + ŭ6 =

α1ŭ4 + α2ŭ5, whereJδp21(ko, ko) , −
[
α1

α2

]
. We also note that{ŭi}6i=4 are linearly in-

dependent. Therefore, the range of the matrixŬ is spanned by the vectors̆u4, ŭ5, and ŭ6,

i.e.,

rng(Ŭ) = span
col.

[
ŭ4 ŭ5 ŭ6

]
(3.25)
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Thus, rank(Ŭ) = 3. We now observe that in general̆Dŭi 6= 0, for i = 4, 5, 6. More-

over, note that any vectorx ∈ rng(Ŭ) \ 0 can be written asx = β1ŭ4 + β2ŭ5 + β3ŭ6

for someβi ∈ R, whereβi, i = 1, 2, 3, are not simultaneously equal to zero. Thus, in

general,D̆x = β1D̆ŭ4 + β2D̆ŭ5 + β3D̆ŭ6 6= 0, which implies thatx does not belong

to the nullspace,null(D̆), of D̆. Therefore,dim(null(D̆)
⋂

rng(Ŭ)) = 0, and, finally,

rank(M̆) = rank(Ŭ)− dim(null(D̆)
⋂

rng(Ŭ)) = rank(Ŭ) = 3.

The above lemma shows that three directions of the state space are unobservable. To identify

these directions, we examine the nullspace of the matrixM̆. It can be easily verified that a basis

for the right nullspace of̆U (and thus ofM̆) is given by:

null(M̆) = span
col.




I2 Jp1ko

01×2 1

I2 Jp2ko

01×2 1



, span

col.

[
n1 n2 n3

]
(3.26)

From the structure of the vectorsn1 andn2 we see that a change in the state by∆x = αn1 +

βn2, α, β ∈ R corresponds to a “shifting” of thex − y plane byα units alongx, and byβ

units alongy. Thus, if the two robots are shifted equally, the statesx andx′ = x + ∆x will

be indistinguishable given the odometry and relative measurements. To understand the physical

meaning ofn3, we consider the case where thex − y plane is rotated by a small angleδφ.

Rotating the coordinate system transforms any pointp = [x y]T to a pointp′ = [x′ y′]T , given

by:

[
x′

y′

]
= C(δφ)

[
x

y

]
≃
[
1 −δφ
δφ 1

][
x

y

]
=

[
x

y

]
+ δφ

[
−y
x

]

where we have employed the small-angle approximationscδφ ≃ 1 andsδφ ≃ δφ. Using this

result, we see that if the plane containing the two robots is rotated byδφ, the CL state vector
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will change to

x′ =




x′1
y′1
φ′1
x′2
y′2
φ′2




≃




x1

y1

φ1

x2

y2

φ2




+ δφ




−y1
x1

1

−y2
x2

1




= x+ δφn3 (3.27)

which indicates that the vectorn3 corresponds to a rotation of thex−y plane. This result implies

that any such global rotation is unobservable, and will cause no change to the measurements.

The preceding analysis for the meaning of the basis vectors of the unobservable subspace agrees

with [109] as well as with intuition, which dictates that theglobal coordinatesof the state vector

(rotation and translation) are unobservable, since the relative measurements only depend on the

relative robot configurations.

N-robot case

We now examine the general case whereN > 2 robots are included in the group. For a complete

RMG, the measurement Jacobian matrix at time-stepko + ℓ can be written as:

H̆ko+ℓ =




H̆
(12)
ko+ℓ

...

H̆
(1N)
ko+ℓ

...

H̆
(N1)
ko+ℓ

...

H̆
(NN−1)
ko+ℓ




=




H̆
(12)
1ko+ℓ

H̆
(12)
2ko+ℓ

· · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

H̆
(1N)
1ko+ℓ

0 · · · 0 · · · 0 H̆
(1N)
Nko+ℓ

...
...

. . .
...

. . .
...

...

H̆
(N1)
1ko+ℓ

0 · · · 0 · · · 0 H̆
(N1)
Nko+ℓ

...
...

. . .
...

. . .
...

...

0 0 · · · 0 · · · H̆
(NN−1)
N−1ko+ℓ

H̆
(NN−1)
Nko+ℓ




(3.28)

Similarly to (3.21), the following identity holds:

Φ̆ko+ℓ−1Φ̆ko+ℓ−2 · · · Φ̆ko = Diag
(
Φ̆1ko+ℓ−1

· · · Φ̆1ko
, · · · , Φ̆Nko+ℓ−1

· · · Φ̆Nko

)
(3.29)
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Therefore, by using the results of (3.28) and (3.29), forℓ = 1, · · · ,m, and proceeding similarly

as in the two-robot case [see (3.22)], we obtain the observability matrix, M̆, as follows:

M̆ =−Diag
(
(∇h̆

(12)
ko

)A(φ1ko ) , · · · , (∇h̆
(NN−1)
ko+m

)A(φNko+m
)
)

︸ ︷︷ ︸
D̆

× (3.30)




I2 Jδp21(ko, ko) −I2 02×1 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδp31(ko, ko) 02×2 02×1 −I2 02×1 · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
. ..

...
...

I2 JδpN1(ko, ko) 02×2 02×1 02×2 02×1 · · · −I2 02×1

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδp1N (ko, ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 02×1 02×2 02×1 · · · I2 Jδp2N (ko, ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
. ..

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 JδpN−1N (ko, ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1

I2 Jδp21(ko+1, ko) −I2 −Jδp22(ko+1, ko) 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδp31(ko+1, ko) 02×2 02×1 −I2 −Jδp33(ko+1, ko) · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
. ..

...
...

I2 JδpN1(ko+1, ko) 02×2 02×1 02×2 02×1 · · · −I2 −JδpNN (ko+1, ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −Jδp11(ko+1, ko) 02×2 02×1 02×2 02×1 · · · I2 Jδp1N (ko+1, ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 −Jδp22(ko+1, ko) 02×2 02×1 · · · I2 Jδp2N (ko+1, ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
. ..

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 JδpN−1N (ko+1, ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1

...
...

...
...

...
...

...
...

...

I2 Jδp21(ko+m,ko) −I2 −Jδp22(ko+m,ko) 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδp31(ko+m,ko) 02×2 02×1 −I2 −Jδp33(ko+m,ko) · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
. ..

...
...

I2 JδpN1(ko+m,ko) 02×2 02×1 02×2 02×1 · · · −I2 −JδpNN (ko+m,ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −Jδp11(ko+m,ko) 02×2 02×1 02×2 02×1 · · · I2 Jδp1N (ko+m,ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 −Jδp22(ko+m,ko) 02×2 02×1 · · · I2 Jδp2N (ko+m,ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
. ..

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 JδpN−1N (ko+m,ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1




︸ ︷︷ ︸
Ŭ
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Lemma 3.4.2. The rank of the observability matrix,̆M, of the ideal EKF-CL in the general

N -robot case, is3N − 3.

Proof. Proceeding similarly to the proof of Lemma 3.4.1, by denoting Ŭ ,

[
ŭ1 · · · ŭ3N

]
,

we first note that

ŭ1 = −
N∑

i=2

ŭ3i−2 , ŭ2 = −
N∑

i=2

ŭ3i−1

Our next goal is to show that̆u3 can also be expressed as a linear combination of other columns

of Ŭ. We observe that the summation of every third column of the block row ofŬ correspond-

ing to robotj measuring roboti at timeko + ℓ is given by:

[
Jδpij(ko + ℓ, ko)− Jδpii(ko + ℓ, ko)

0

]
=

[
Jδpij(ko, ko)

0

]

We can further decompose the termJδpij(ko, ko) as:

Jδpij(ko, ko) = Jδpi1(ko, ko)− Jδpj1(ko, ko)

Using these results, we have

N∑

i=1

ŭ3i =

N∑

i=2

α2i−1ŭ3i−2 +

N∑

i=2

α2iŭ3i−1 =

N∑

i=2

[
ŭ3i−2 ŭ3i−1

] [α2i−1

α2i

]

where

[
α2i−1

α2i

]
, −Jδpi1(ko, ko), ∀i = 2, . . . , N . Now we obtain the desired result

ŭ3 =−
N∑

i=2

ŭ3i +

N∑

i=2

α2i−1ŭ3i−2 +

N∑

i=2

α2iŭ3i−1

Moreover, we notice that{ŭi}3Ni=4 are linearly independent. Therefore, the range of the matrix

Ŭ is spanned by its column vectors̆ui, i = 4, . . . , 3N , i.e.,

rng(Ŭ) = span
col.

[
ŭ4 · · · ŭ3N

]
(3.31)

Thus, rank(Ŭ) = 3N − 3. Analogously, we observe that in generalD̆ŭi 6= 0, for

i = 4, . . . , 3N . Moreover, we note that any vectorx ∈ rng(Ŭ) \ 0 can be written asx =



64
∑3N−3

i=1 βiŭi+3 for someβi ∈ R, where theβi’s are not simultaneously equal to zero. Thus, in

general,D̆x =
∑3N−3

i=1 βiD̆ŭi+3 6= 0, which implies thatx does not belong to the nullspace,

null(D̆), of D̆. Therefore,dim(null(D̆)
⋂

rng(Ŭ)) = 0, and, finally, based on the matrix-

product rank theorem (see (4.5.1) in [113]),rank(M̆) = rank(Ŭ)−dim(null(D̆)
⋂

rng(Ŭ)) =

rank(Ŭ) = 3N − 3.

Furthermore, by inspection, a basis for the right nullspaceof M̆ is given by:

null(M̆) = span
col.




I2 Jp1ko

01×2 1

I2 Jp2ko

01×2 1
...

...

I2 JpNko

01×2 1




(3.32)

By noting the similarity of this result with that of (3.26), the physical interpretation of this

nullspace is analogous to that of the two-robot case: the global translation and orientation of the

state vector are unobservable.

3.4.2 Standard EKF-CL

We now study the observability properties of the standard EKF-CL, in which the Jacobians

are evaluated at the latest state estimates (i.e.,x⋆
k|k−1 = x̂k|k−1 andx⋆

k|k = x̂k|k, for all k).

Similarly, we begin with the case of a two-robot team, and then generalize to the case where an

arbitrary number of robots comprise the group.

We first introduce the following definitions, which will be useful for the ensuing derivations:

dp̂i(k) , p̂ik|k − p̂ik|k−1
(3.33)

∆p̂ij(k, ℓ) , p̂ik|k−1 − p̂jko|ko−1
−

ℓ∑

τ=ko

dp̂j(τ) (3.34)

δp̂ij(k, ℓ) , p̂ik|k−1 − p̂jℓ|ℓ−1 (3.35)

whereko is the first time instant of interest, andk, ℓ ≥ ko. In the above expressions,dp̂i
is the correction in theith robot position estimate due to the EKF update, whileδp̂ij is the
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estimated difference between two robot positions [see (3.17)] evaluated using the estimates

after the respective propagation steps.

Two-robot case

We start by deriving an expression analogous to that of (3.18), using (3.6) and the definition of

∆p̂ij in (3.34):

Φiko+1
Φiko

=

[
I2 J∆p̂ii(ko + 2, ko + 1)

01×2 1

]
(3.36)

Using induction, we can show that

Φiko+ℓ−1
Φiko+ℓ−2

· · ·Φiko
=

[
I2 J∆p̂ii(ko+ℓ, ko+ℓ−1)

01×2 1

]

for ℓ > 0. As a result, the following identity is immediate:

Φko+ℓ−1Φko+ℓ−2 · · ·Φko =




I2 J∆p̂11(ko+ℓ,ko+ℓ−1) 02×2 02×1

01×2 1 01×2 0

02×2 02×1 I2 J∆p̂22(ko+ℓ,ko+ℓ−1)

01×2 0 01×2 1




(3.37)

The measurement Jacobian now is given by [see (3.20)]:

Hko+ℓ = −Diag
(
(∇h

(12)
ko+ℓ

)A(φ̂1ko+ℓ|ko+ℓ−1
), (∇h

(21)
ko+ℓ

)A(φ̂2ko+ℓ|ko+ℓ−1
)
)

×




I2 Jδp̂21(ko+ℓ,ko+ℓ) −I2 02×1

01×2 1 01×2 −1

−I2 02×1 I2 Jδp̂12(ko+ℓ,ko+ℓ)

01×2 −1 01×2 1




(3.38)
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Multiplication of (3.38) and (3.37) yields:

Hko+ℓΦko+ℓ−1 · · ·Φko = −Diag
(
(∇h

(12)
ko+ℓ

)A(φ̂1ko+ℓ|ko+ℓ−1
), (∇h

(21)
ko+ℓ

)A(φ̂2ko+ℓ|ko+ℓ−1
)
)

×




I2 J∆p̂21(ko+ℓ,ko+ℓ−1) −I2 −J∆p̂22(ko+ℓ,ko+ℓ−1)

01×2 1 01×2 −1

−I2 −J∆p̂11(ko+ℓ,ko+ℓ−1) I2 J∆p̂12(ko+ℓ,ko+ℓ−1)

01×2 −1 01×2 1




(3.39)

Thus, the observability matrixM (see (2.22)) can be written as:

M =−Diag
(
(∇h

(12)
ko

)A(φ̂1ko|ko−1
), · · · , (∇h

(21)
ko+m

)A(φ̂2ko+m|ko+m−1
)
)

︸ ︷︷ ︸
D

×




I2 Jδp̂21(ko,ko) −I2 02×1

01×2 1 01×2 −1

−I2 02×1 I2 Jδp̂12(ko,ko)

01×2 −1 01×2 1

I2 J∆p̂21(ko+1,ko) −I2 −J∆p̂22(ko+1,ko)

01×2 1 01×2 −1

−I2 −J∆p̂11(ko+1,ko) I2 J∆p̂12(ko+1,ko)

01×2 −1 01×2 1
...

...
...

...

I2 J∆p̂21(ko+m,ko+m−1) −I2 −J∆p̂22(ko+m,ko+m−1)

01×2 1 01×2 −1

−I2 −J∆p̂11(ko+m,ko+m−1) I2 J∆p̂12(ko+m,ko+m−1)

01×2 −1 01×2 1




︸ ︷︷ ︸
U

(3.40)

Lemma 3.4.3. The rank of the observability matrix,M, of the standard EKF-CL in the two-

robot case, is equal to 4.

Proof. We first observe that the EKF update corrections in the robot position estimates,dp̂i
[see (3.33)], are in general different at different time steps. As a consequence,∆p̂ij [see (3.34)]
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are also different at different time steps, which means thatcolumns 3 and 6 of matrixU

are general column vectors and thus not linearly dependent on any other columns. Denoting

U ,

[
u1 · · · u6

]
, it is evident thatu1 = −u4, u2 = −u5, and moreoveru4 andu5

are linearly independent. Therefore, one possible basis ofthe range of the matrixU is its

columns vectors{ui}6i=3, i.e., rng(U) = span
col.

[
u3 · · · u6

]
. Therefore,rank(U) = 4. By

proceeding similarly to the proof of Lemma 3.4.1, we observethat in generalDui 6= 0, for

i = 3, . . . , 6, and moreover any vectorx ∈ rng(U) \ 0 can be written asx =
∑4

i=1 βiui+2

for someβi ∈ R, where theβi’s are not simultaneously equal to zero. As a result, in general,

Dx =
∑4

i=1 βiDui+2 6= 0. Therefore,dim(null(D)
⋂

rng(U)) = 0, and finally, using theo-

rem (4.5.1) in [113],rank(M) = rank(U) − dim(null(D)
⋂

rng(U)) = rank(U) = 4.

We thus see that the linearized error-state model employed in the standard EKF-CL has

different observability properties than that of the ideal EKF-CL. In particular, by processing the

measurements collected in the time interval[ko, ko +m], the EKF acquires information along

the 4 directions of the state space corresponding to the observable subspace of the linearized

system. However, the measurements actually provide information in only 3 directions of the

state space (i.e., the robot-to-robot relative pose), and as a result, the EKF gains “spurious

information” along the unobservable directions of the underlying nonlinear CL system, which

leads to inconsistency.

To probe further, we note that the basis of the right nullspace ofM is given by:

null(M) = span
col.




I2

01×2

I2

01×2



= span

col.

[
n1 n2

]
(3.41)

Note that these two vectors correspond to a shifting of thex− y plane, which implies that such

a shifting is unobservable. On the other hand, the directioncorresponding to the rotation is

“missing” from the unobservable subspace of the EKF system model [see (3.26) and (3.27)].

Therefore, the filter gains “nonexistent” information about the robots’ global orientation. This

leads to an unjustified reduction in the orientation uncertainty, which, in turn, further reduces

the uncertainty in all state variables.
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N-robot case

Similar results can be derived in the general case whereN robots comprise the team, i.e.,

Lemma 3.4.4.The rank of the observability matrix,M, of the standard EKF-CL in the general

N -robot case, is3N − 2.

Proof. See Appendix B.1.

We can draw identical conclusions as in the two-robot case. In particular, the dimension of

the nullspace of the observability matrix,M, erroneously becomes 2. Furthermore, one possible

basis for the nullspace can be shown to be:

null(M) = span
col.




I2

01×2

...

I2

01×2




(3.42)

Thus, the global orientation is erroneously observable in this case as well, which leads to incon-

sistent estimates.

3.5 Observability-Constrained (OC)-EKF CL algorithms

In the preceding section, it was shown that when the filter Jacobians are evaluated using the

latest state estimates, the error-state system model employed by the EKF has an observable

subspace of dimension higher than that of the actual CL system. This will always lead to unjus-

tified reduction of the covariance estimates, and thus to inconsistency. To address this problem,

we propose computing the EKF Jacobians in such a way that guarantees an unobservable sub-

space of dimension three for the linearized error-state model, which precisely corresponds to

Lemma 2.5.1, instead using the CL Jacobians.

Similarly, the selection ofN [see (2.40)-(2.41)] is a design choice, which allows us to

control the unobservable subspace of the EKF-CL system model. Ideally, we would like the

column vectors ofN to be identical to those in (3.32), which define the unobservable direc-

tions of the ideal EKF-CL system. However, this cannot be achieved in practice, since these



69

directions depend on thetrue values of the state, which are unavailable during any real-world

implementation. A natural selection, which is realizable in practice, is to define the unobserv-

able subspace of the observability matrix based on the first available state estimates, i.e., for the

two-robot case to choose3

N = span
col.




I2 Jp̂1ko|ko−1

01×2 1

I2 Jp̂2ko|ko−1

01×2 1




(3.43)

OnceN has been selected, the next design decision to be made is to compute appropriate

filter Jacobians at each time step. For the particular selection of N in (3.43), this amounts to

choosing the propagation and measurement Jacobians for allk > ko to ensure that (2.41) holds

(note that (2.40) is satisfied by construction in this case).Clearly, several options exist, each

of which leads to a different algorithm within the general framework described here. In what

follows, we present three OC-EKF algorithms to achieve thisgoal.

3.5.1 OC-EKF1

We start by describing the first version of the OC-EKF that wasoriginally proposed [74]. The

key idea of this approach is to choose the prior state estimates as the linearization points, so as

to guarantee the appropriate observability properties of the EKF linearized system model. This

procedure is explained in detail by the following lemma:

Lemma 3.5.1. If the linearization points, at which the filter Jacobian matrices Φik =

Φik(x
⋆
ik+1|k

,x⋆ik|k) andH(ij)
k = Hk(x

⋆
ik|k−1

,x⋆jk|k−1
) are evaluated, are selected as:

x⋆ik+1|k
= x̂ik+1|k

, x⋆ik|k = x̂ik|k−1

x⋆ik|k−1
= x̂ik|k−1

, x⋆jk|k−1
= x̂jk|k−1

(3.44)

then it is guaranteed that the unobservable subspace of the resulting EKF linearized error-state

model is of dimension 3.

3 When more than two robots (i.e.,N > 2) are included in the state vector,N can be chosen analogously,

augmented by a submatrix

[

I2 Jp̂iko|ko−1

01×2 1

]

corresponding to each robot (i = 1, 2, . . . , N ) [75].
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Proof. Using the linearization points (3.44), the state-propagation JacobianΦik [see (3.6)] is

now computed as:

Φ′
ik

=


 I2 J

(
p̂ik+1|k

− p̂ik|k−1

)

01×2 1


 (3.45)

The difference compared to (3.6), which is the Jacobian usedin the standard EKF, is that the

prior estimate of robot position,̂pik|k−1
, is used in place of the posterior estimate,p̂ik|k . In

contrast, the measurement Jacobian,H
(ij)
k , is computed in the same way as for the standard

EKF [see (3.11)]. As a result, using the definition ofδp̂ij (3.35), the observability matrixM′

in the OC-EKF1 algorithm for the two-robot case assumes the following form:

M′ =−Diag
(
(∇h

(12)
ko

)A(φ̂1ko|ko−1
), · · · , (∇h

(21)
ko+m

)A(φ̂2ko+m|ko+m−1
)
)

︸ ︷︷ ︸
D′

×




I2 Jδp̂21(ko,ko) −I2 02×1

01×2 1 01×2 −1

−I2 02×1 I2 Jδp̂12(ko,ko)

01×2 −1 01×2 1

I2 Jδp̂21(ko+1,ko) −I2 −Jδp̂22(ko+1,ko)

01×2 1 01×2 −1

−I2 −Jδp̂11(ko+1,ko) I2 Jδp̂12(ko+1,ko)

01×2 −1 01×2 1
...

...
...

...

I2 Jδp̂21(ko+m,ko) −I2 −Jδp̂22(ko+m,ko)

01×2 1 01×2 −1

−I2 −Jδp̂11(ko+m,ko) I2 Jδp̂12(ko+m,ko)

01×2 −1 01×2 1




︸ ︷︷ ︸
U′

(3.46)

It becomes evident that compared to the observability matrix of the ideal EKF-CL [see (3.23)],

the only difference arising inU′ is thatδpij is replaced by its estimate,δp̂ij , for i, j = 1, 2.
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Moreover, by inspection, the right null space ofM′ is

null(M′) = span
col.




I2 Jp̂1ko|ko−1

01×2 1

I2 Jp̂2ko|ko−1

01×2 1




(3.47)

Thus, matrixM′ has rank 3, which shows that the OC-EKF1 is based on an error-state system

model whose unobservable subspace is of dimension 3.

Similarly, in the case whereN > 2 robots comprise the team, it can be easily shown that the

corresponding observability matrixM′ follows the same structure as that of the ideal EKF-CL

but whereδpij is replaced by its estimate,δp̂ij , for all i, j = 1, . . . , N , i.e.,
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M′ =−Diag
(
(∇h

(12)
ko

)A(φ̂1ko |ko−1
), · · · , (∇h

(NN−1)
ko+m )A(φ̂Nko+m|ko+m−1

)
)

︸ ︷︷ ︸
D′

× (3.48)




I2 Jδp̂21(ko, ko) −I2 02×1 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδp̂31(ko, ko) 02×2 02×1 −I2 02×1 · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
.. .

...
...

I2 Jδp̂N1(ko, ko) 02×2 02×1 02×2 02×1 · · · −I2 02×1

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδp̂1N (ko, ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 02×1 02×2 02×1 · · · I2 Jδp̂2N (ko, ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
.. .

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδp̂N−1N (ko, ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1

I2 Jδp̂21(ko+1, ko) −I2 −Jδp̂22(ko+1, ko) 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδp̂31(ko+1, ko) 02×2 02×1 −I2 −Jδp̂33(ko+1, ko) · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
.. .

...
...

I2 Jδp̂N1(ko+1, ko) 02×2 02×1 02×2 02×1 · · · −I2 −Jδp̂NN (ko+1, ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −Jδp̂11(ko+1, ko) 02×2 02×1 02×2 02×1 · · · I2 Jδp̂1N (ko+1, ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 −Jδp̂22(ko+1, ko) 02×2 02×1 · · · I2 Jδp̂2N (ko+1, ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
.. .

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδp̂N−1N (ko+1, ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1

...
...

...
...

...
...

...
...

...

I2 Jδp̂21(ko+m,ko) −I2 −Jδp̂22(ko+m,ko) 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδp̂31(ko+m,ko) 02×2 02×1 −I2 −Jδp̂33(ko+m,ko) · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
.. .

...
...

I2 Jδp̂N1(ko+m,ko) 02×2 02×1 02×2 02×1 · · · −I2 −Jδp̂NN (ko+m,ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −Jδp̂11(ko+m,ko) 02×2 02×1 02×2 02×1 · · · I2 Jδp̂1N (ko+m,ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 −Jδp̂22(ko+m,ko) 02×2 02×1 · · · I2 Jδp̂2N (ko+m,ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
.. .

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδp̂N−1N (ko+m,ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1




︸ ︷︷ ︸
U′
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It is not difficult to show that the observability matrixM′ is of rank 3N − 3, and thus the

unobservable subspace is of dimension 3.

3.5.2 OC-EKF2

In the design of consistent estimators for CL, there are two competing goals that should be

reconciled: (i) reduced linearization errors at each time step, and (ii) correct observability prop-

erties of the linearized system model. In OC-EKF1, the state-propagation Jacobian is computed

using the predicted estimatêpik|k−1
for the robot position instead of the updated, and thus more

accurate, estimatêpik|k . These two estimates can differ substantially after a largefilter correc-

tion, which may introduce significant linearization errors. To formally address this limitation,

we propose an alternative, termed OC-EKF2, which selects the linearization points of the EKF

so as to minimize the expected squared error of the linearization points while satisfying the

observability conditions [see (2.40) and (2.41)]. This canbe formulated as a constrained mini-

mization problem where the constraints express the observability requirements.

Specifically, at time-stepk + 1, we aim at minimizing the linearization error of the points

x⋆
k|k andx⋆

k+1|k, which appear in the filter JacobiansΦk andHk+1 [see (3.8) and (3.11), re-

spectively], subject to the observability constraint (2.41). Mathematically, this is expressed as:

min
x⋆
k|k
, x⋆

k+1|k

∫ ∣∣∣∣xk−x⋆k|k
∣∣∣∣2p(xk|z0:k)dxk +

∫ ∣∣∣∣xk+1−x⋆k+1|k
∣∣∣∣2p(xk+1|z0:k)dxk+1 (3.49)

subject to Hk+1Φk · · ·ΦkoN = 0 , ∀k ≥ ko (3.50)

In general, the constrained minimization problem (3.49)-(3.50) is intractable. However,

when the two pdfs,p(xk|z0:k) andp(xk+1|z0:k), are Gaussian distributions (which is the as-

sumption employed in the EKF), we can solve the problemanalyticallyand find a closed-form

solution. In the following, we first show how the closed-formsolution can be computed for the

simple case where only two robots are included in the state vector, and the case ofN > 2 robots

is presented afterwards.

Two-robot case

We note that the following lemma will be helpful for the ensuing derivations:
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Lemma 3.5.2. Whenp(xk|z0:k) andp(xk+1|z0:k) are Gaussian, the constrained optimization

problem(3.49)-(3.50) is equivalent to:

min
x⋆
k|k
, x⋆

k+1|k

∣∣∣∣x̂k|k−x⋆k|k
∣∣∣∣2 +

∣∣∣∣x̂k+1|k−x⋆k+1|k
∣∣∣∣2 (3.51)

subject to p⋆2k|k − p⋆1k|k = ak (3.52)

where

ak = p⋆2k|k−1
− p⋆1k|k−1

−
k−1∑

τ=ko

(p⋆2τ |τ − p⋆2τ |τ−1
) +

k−1∑

τ=ko

(p⋆1τ |τ − p⋆1τ |τ−1
)

Proof. See Appendix B.2.

Using the technique of Lagrangian multipliers [16], the optimal solution to the prob-

lem (3.51)-(3.52) can be obtained as:

p⋆1k|k = p̂1k|k +
λk

2
, φ⋆1k|k = φ̂1k|k

p⋆2k|k = p̂2k|k −
λk

2
, φ⋆2k|k = φ̂2k|k

x⋆k+1|k = x̂k+1|k (3.53)

with

λk = p̂2k|k − p̂1k|k − ak

We see thatλk and thus the linearization point for the position of each robot,p⋆ik|k , depends on

all robots’ estimates. This increases the complexity of implementing the algorithm, but yields

the optimal linearization errors under the desired observability constraints.

Using the linearization points in (3.53), the state-propagation Jacobians in the OC-EKF2

are now computed as:

Φ′′
1k

=


 I2 J

(
p̂1k+1|k

− p̂1k|k − λk

2

)

01×2 1


 (3.54)

Φ′′
2k

=


 I2 J

(
p̂2k+1|k

− p̂2k|k +
λk

2

)

01×2 1


 (3.55)

while the measurement Jacobians are calculated in the same way as in the standard EKF

[see (3.11)].
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N-robot case

We now consider the case where more than two robots (i.e.,N > 2) are included in the state

vector. Analogous to Lemma 3.5.2, we start by proving the following lemma:

Lemma 3.5.3. Whenp(xk|z0:k) andp(xk+1|z0:k) are Gaussian, the constrained optimization

problem(3.49)-(3.50) in the general N-robot case, is equivalent to:

min
x⋆
k|k
, x⋆

k+1|k

∣∣∣∣x̂k|k−x⋆k|k
∣∣∣∣2 +

∣∣∣∣x̂k+1|k−x⋆k+1|k
∣∣∣∣2 (3.56)

subject to p⋆ik|k − p⋆1k|k = ai1k , ∀i = 2, . . . , N (3.57)

where

ai1k = p⋆ik|k−1
− p⋆1k|k−1

−
k−1∑

τ=ko

(p⋆iτ |τ − p⋆iτ |τ−1
) +

k−1∑

τ=ko

(p⋆1τ |τ − p⋆1τ |τ−1
)

Proof. See Appendix B.3.

It should be pointed out that we here assume that all the robots are connected in the RMG

(otherwise, the isolated robots, which neither have measurements nor are observed by any other

robots, will not impose any constraint). Now we employ the technique of Lagrangian mul-

tipliers [16] to solve the problem (3.56)-(3.57). Specifically, the Lagrangian function can be

constructed as:

L(x⋆k|k,x⋆k+1|k,λ2k , . . . ,λNk
) = (3.58)

∣∣∣∣x̂k|k−x⋆k|k
∣∣∣∣2 +

∣∣∣∣x̂k+1|k−x⋆k+1|k
∣∣∣∣2 +

N∑

i=2

λTik

(
p⋆ik|k − p⋆1k|k − ai1k

)

By setting the derivatives of the Lagrange function with respect to the optimization variables to

zero, we have:

∂L
∂p⋆1k|k

=− 2(p̂1k|k − p⋆1k|k)−
N∑

i=2

λik = 0 (3.59)

∂L
∂p⋆ik|k

=− 2(p̂ik|k − p⋆ik|k) + λik = 0 , ∀i = 2, . . . , N (3.60)

∂L
∂λik

= p⋆ik|k − p⋆1k|k − ai1k = 0 , ∀i = 2, . . . , N (3.61)

∂L
∂x⋆other

=− 2(x̂other − x⋆other) = 0 (3.62)
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wherex⋆other denotes all the optimization variables except the ones in (3.59)-(3.61). From the

above equations, we obtain the optimal solution in closed form as follows:

p⋆1k|k = p̂1k|k +

∑N
i=2 λik
2

, p⋆ik|k = p̂ik|k −
λik
2

, x⋆other = x̂other (3.63)

where the Lagrangian multipliers are attained by solving a linear system. In particular, sub-

stituting the above optimal linearization points (3.63) into (3.61), we have the following set of

equations with respect toλik (i = 2, . . . , N ):

λjk +
1

2

N∑

i=2,i 6=j
λik =

(
p̂jk|k − p̂1k|k

)
− aj1k =: bj , ∀j = 2, . . . , N (3.64)

By stacking the above equations into a matrix form, we have



I 1
2I · · · 1

2I

1
2I I · · · 1

2I

...
...

. . .
...

1
2I

1
2I · · · 2I




︸ ︷︷ ︸
A




λ2k

λ3k
...

λNk




︸ ︷︷ ︸
λk

=




b2

b3

...

bN




︸ ︷︷ ︸
b

⇒ λk = A−1b (3.65)

Using the optimal linearization points (3.63), we compute the state-propagation Jacobians in

the similar form as in the two-robot case [see (3.54)-(3.55)], while the measurement Jacobians

are calculated in the same way as in the standard EKF [see (3.11)].

3.5.3 OC-EKF3

We now describe our OC-EKF3 algorithm. In particular, the OC-EKF3 directly computes the

measurement Jacobian by projecting the most accurate measurement Jacobian onto the observ-

able subspace, while it calculates the propagation Jacobian identically as the standard EKF

[see (3.6)]. By doing so, it ensures that the EKF-CL system model has an observable subspace

of correct dimensions.

Specifically, in analogy to the OC-EKF3 for SLAM (see Section2.5.3), we aim to find

the measurement Jacobian closest to the ideal one while satisfying the observability con-

straint (2.41), i.e.,

min
Hk+1

||Ho −Hk+1||2F (3.66)

subject to Hk+1Φk · · ·ΦkoN = 0 (3.67)
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whereHo ideally is the measurement Jacobian evaluated at the true states. However, since in

practice the true states are generally not available, we instead compute it using the current best

state estimates as in the standard EKF (3.11), i.e.,Ho = Ho(x̂k+1|k). The optimal solution is

obtained by application of the following lemma:

Lemma 3.5.4. The optimal solution to the constrained minimization problem(3.66)-(3.67)is:

H
′′′

k+1 = Ho

(
Idim(x) −V(VTV)−1VT

)
(3.68)

whereV , Φk · · ·ΦkoN.

Proof. Analogous to the proof of Lemma 2.5.4.

Note thatV in the above lemma is the propagated unobservable subspace at time-stepk+1,

and
(
Idim(x) −V(VTV)−1VT

)
is the subspace orthogonal toV, i.e., the observable subspace.

Hence, as seen from (3.68), the measurement Jacobian of the OC-EKF3 is the projection of

the best-available measurement Jacobian onto the observable subspace. It is also important to

observe that in the case ofN > 2 robots, each measurement only depends on the poses of the

observing robot and the observed robot and hence the measurement JacobianH
′′′

k+1 typically has

sparse structure [see (3.11)]. Based on this observation and by exploiting the sparse structure

of the Jacobian matrix, we only need to consider the nonzero submatrices of the measurement

Jacobian and solve a reduced-size problem similar to (3.66)-(3.67). Once the optimal solution

is attained, we can easily construct the full measurement Jacobian by padding it with zeros

[see (3.11)].

Remarks It is important to point out that, as compared to the standardEKF, theonly change

in the OC-EKFs is the way in which the state-propagation and measurement Jacobians are com-

puted [see (3.45), (3.54), (3.55), and (3.68)], while the state estimates and covariance are propa-

gated and updated in the same way as in the standard EKF. For clarity, the steps of the OC-EKF

CL algorithms are outlined in Algorithms 2, and a simple CL example with two robots using

the unicycle motion model and relative distance and bearingmeasurements is provided in Ap-

pendix B.4. We stress that even though a complete RMG (i.e., each robot can observe all others)

is assumed at every time step in the preceding analysis, thisis not a necessary assumption for

the OC-EKFs, as the analysis can easily be extended to the case of limited sensor range, where

multiple propagation steps occur between updates (see Section 3.7). We also point out that the
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Algorithm 2 Observability-Constrained (OC)-EKFs for CL

Require: Initial state estimates and covariance
1: loop
2: Propagation: If proprioceptive (e.g., odometric) measurements are available,
3: propagate the state estimates [see (3.2) and (3.3)]
4: compute the propagation Jacobian [see (3.45) for OC-EKF1, (3.54)-(3.55) for OC-EKF2,

and (3.6) for OC-EKF3]
5: propagate the state covariance:

Pk+1|k = ΦkPk|kΦ
T
k +GkQkG

T
k (3.69)

6: Update: If exteroceptive measurements are available,
7: compute the measurement residual:

rk+1 = zk+1 − h(x̂k+1|k) (3.70)

8: compute the measurement Jacobian [see (3.11) for OC-EKF1/2, and (3.68) for OC-
EKF3]

9: compute the residual covariance and the Kalman gain:

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1 (3.71)

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 (3.72)

10: update the state estimate and covariance:

x̂k+1|k+1 = x̂k+1|k +Kk+1rk+1 (3.73)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1 (3.74)

11: end loop
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new OC-EKFs arecausaland realizable in practice, since they do not utilize any knowledge

of the future and true state. Interestingly, even though theproposed filters do not use the latest

state estimates for computing the Jacobians (and thus the Jacobians are less accurate than those

of the standard EKF), they exhibit better consistency than the standard EKF. As a final remark,

it is straightforward to extend the proposed OC-EKFs to C-SLAM. In particular, by performing

observability analysis, we can show that the unobservable subspace of the ideal-EKF linearized

system (as well as the underlying nonlinear system) has three d.o.f. corresponding to the global

translation and rotation, while the system model employed by the standard EKF has unobserv-

able subspace of dimension two. As is the case for SLAM and CL,this is the primary cause of

filter inconsistency. Thus, we can adapt the same observability-based methodology and develop

OC-EKFs for C-SLAM.

3.6 Simulation results

A series of Monte-Carlo comparison studies were conducted under various conditions, in order

to validate the preceding theoretical analysis and to demonstrate the capability of the OC-EKF

estimators to improve the consistency of EKF-CL. The metrics used to evaluate filter perfor-

mance are RMSE and NEES [14]. It is known that the NEES of anM -dimensional Gaussian

random variable follows aχ2 distribution withM d.o.f. Therefore, if a certain filter is consis-

tent, we expect that the average NEES for each robot pose willbe close to 3 for all time steps.

The larger the deviation of the NEES from these values is, theworse the inconsistency of the

filter is. By studying both the RMSE and NEES of all the filters considered here, we obtain a

comprehensive picture of the filters’ performance.

In the simulation tests, we consider a CL scenario in which four robots move randomly in

an area of size 20 m× 20 m. 50 Monte-Carlo simulations were performed, and duringeach

run, all filters process the same data, to ensure a fair comparison. The five estimators compared

are: (1) the ideal EKF, (2) the standard EKF, (3) the OC-EKF1,(4) the OC-EKF2, and (5) the

OC-EKF3.

For the results presented in this section, four identical robots with a simple differential drive

model move on a planar surface, at a constant linear velocityof v = 0.25 m/sec, while the

rotational velocity is drawn from the uniform distributionover [−0.5, 0.5] rad/sec. The two

drive wheels are equipped with encoders, which measure their revolutions and provide noisy
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Figure 3.1: Orientation estimation errors vs. 3σ bounds for one robot of the 4-robot team,
obtained from one typical realization of the CL Monte-Carlosimulations. The results for the
other robots are similar to the ones presented here. Theσ values are computed as the square-
root of the corresponding element of the estimated covariance matrix. Note that the estimation
errors as well as the 3σ bounds of the ideal and the OC-EKFs are almost identical, which makes
the corresponding lines difficult to distinguish.

measurements of velocity (i.e., right and left wheel velocities, vr andvl, respectively), with

standard deviation equal toσ = 5%v for each wheel. These measurements are used to obtain

linear and rotational velocity measurements for each robot, which are given byv = vr+vl
2 and

ω = vr−vl
a

, wherea = 0.5 m is the distance between the drive wheels. Thus, the standard

deviations of the linear and rotational velocity measurements areσv =
√
2
2 σ andσω =

√
2
a
σ,

respectively.

Each robot records distance and bearing measurements to allother robots. Note that for
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(a) Robot 1
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(c) Robot 3
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Figure 3.2: CL Monte-Carlo simulation results for the average NEES of the robot poses. In
these plots, the dotted lines correspond to the ideal EKF, the solid lines with circles to the
standard EKF, the dash-dotted lines to the OC-EKF1, the dashed lines to the OC-EKF2, and the
solid lines to the OC-EKF3. Note that the NEES of the ideal EKFand the OC-EKFs are almost
identical, which makes the corresponding lines difficult todistinguish.

simplicity we assume that all measurements occur at every time step in our simulations (but

this is not the case in our real-world experiments in Section3.7). The standard deviation of the

distance and bearing measurement noise was set toσd = 0.1 m andσθ = 5 deg, respectively.

Fig. 3.1 shows the orientation estimation errors for one of the robots, obtained from a typical

simulation (the results for the other three robots are very similar and thus omitted for clarity).

Clearly, the standard-EKF errors grow significantly fasterthan those of the ideal EKF and the

OC-EKFs, which indicates that the standard EKF tends to diverge. Note also that although the
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Figure 3.3: CL Monte-Carlo simulation results for the average RMSE of the robot poses. In
these plots, the dotted lines correspond to the ideal EKF, the solid lines with circles to the
standard EKF, the dash-dotted lines to the OC-EKF1, the dashed lines to the OC-EKF2, and the
solid lines to the OC-EKF3. Note that the RMSE of the ideal EKFand the OC-EKFs are very
close, which makes the corresponding lines difficult to distinguish.

orientation errors of the ideal EKF and the OC-EKFs remain well within their corresponding

3σ bounds, those of the standard EKF exceed them. Most importantly, in contrast to those

of the OC-EKFs, the 3σ bounds of the standard EKF (computed from the square-root ofthe

corresponding element of the estimated covariance matrix)remain almostconstantas if the ori-

entation of the robot was observable. However, as discussedin Section 3.4, the robots have no
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Table 3.1: CL simulation results for robot pose estimation performance

Ideal-EKF Std-EKF OC-EKF1 OC-EKF2 OC-EKF3

Robot Position RMSE (m)

Robot 1: 0.9378 2.5069 1.0331 1.0432 0.9388

Robot 2: 0.8807 2.2965 0.9575 0.9667 0.8861

Robot 3: 0.9533 2.4369 1.0286 1.0378 0.9594

Robot 4: 0.8950 2.3567 0.9728 0.9824 0.9013

Robot Heading RMSE (rad)

Robot 1: 0.1356 0.3751 0.1495 0.1511 0.1358

Robot 2: 0.1358 0.3751 0.1498 0.1514 0.1362

Robot 3: 0.1357 0.3744 0.1493 0.1509 0.1356

Robot 4: 0.1355 0.3742 0.1490 0.1506 0.1362

Robot Pose NEES

Robot 1: 3.7566 52.4160 4.1204 4.1440 3.9173

Robot 2: 3.7004 48.3953 4.0329 4.0559 3.8379

Robot 3: 3.7691 49.6612 4.0607 4.0759 3.9933

Robot 4: 3.7878 55.5077 4.2080 4.2341 3.9783

access to absolute orientation information and thus the orientation covariance should continu-

ously grow (as is the case for the ideal EKF and the OC-EKFs). The results of Fig. 3.1 clearly

demonstrate that the incorrect observability properties of the standard EKF cause an unjustified

reduction of the orientation uncertainty.

Figs. 3.2 and 3.3 show the average NEES and RMSE, respectively, for all four robots.

These plots show the average errors over all Monte-Carlo runs, plotted over time, while Ta-

ble 3.1 presents the average error values over all time steps. As evident, the performance of

both the OC-EKFs isalmost identicalto that of the ideal EKF, and substantially better than the

standard EKF, both in terms of RMSE and NEES. This occurs eventhough the Jacobians used

in the OC-EKFs are less accurate than those used in the standard EKF, as explained in the pre-

ceding section. This fact indicates that the errors introduced by the use of inaccurate Jacobians

have a less detrimental effect on consistency than the use ofan error-state system model with
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Figure 3.4: CL experimental setup: (a) Calibrated image of four Pioneer I robots with targets
mounted on top of them. (b) Trajectories of four Pioneer I robots that move inside a 2.5 m
× 4.5 m arena during the indoor experiment. For presentation clarity, only the parts of the
trajectories corresponding to the first 200 sec are plotted.Starting positions are marked by∗.

observable subspace of dimension higher than that of the actual CL system.

3.7 Experimental results

In what follows, we describe one real-world experiment performed to further validate the OC-

EKF algorithms. During the test, a team of four Pioneer I robots move in a rectangular area of

2.5 m× 4.5 m, within which the positions of the robots are being tracked by an overhead cam-

era. For this purpose, rectangular targets are mounted on top of the robots and the vision system

is calibrated in order to provide ground-truth measurements of the robots’ poses in a global

coordinate frame. The standard deviation of the noise in these measurements is approximately

0.5 deg for orientation and 0.01 m, along each axis, for position. The robots were commanded

to move at a constant velocity ofv = 0.1 m/sec while avoiding collision with the boundaries of

the arena as well as with their teammates. Fig. 3.4(a) shows the experimental setup. The trajec-

tories of the four robots are shown in Fig. 3.4(b), where onlypartial trajectories are plotted in

order to keep the figure clear.

Although four identical robots were used, calibration of their odometric sensors showed

that the accuracy of the wheel-encoders’ measurements is not identical for all robots. Specifi-

cally, the measurement errors are well-modeled as Gaussianzero-mean white noise processes
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(c) Robot 3
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Figure 3.5: CL experimental results for the NEES of the robotposes. In these plots, the solid
lines with circles correspond to the standard EKF, the dash-dotted lines to the OC-EKF1, the
dashed lines to the OC-EKF2, and the solid lines to the OC-EKF3. Note that the NEES of the
two OC-EKFs are almost identical, which makes the corresponding lines difficult to distinguish.

and the standard deviation of the velocity measurements ranges fromσvmin
= 3.8%v for the

most accurate odometer toσvmax = 6.9%v for the robot with the highest noise levels. Sim-

ilarly, the standard deviations of the rotational velocitymeasurements have values between

σωmin
= 0.0078 rad/sec andσωmax = 0.02 rad/sec for the four robots. We observe that as

a result of the variability of sensor characteristics, attributed to manufacturing imperfections,

the experiment involves aheterogeneousrobot team, despite all robots being the same model,

equipped with the same sensors. This gives us the opportunity to test the performance of the
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(d) Robot 4

Figure 3.6: CL experimental results for the estimation errors of the robot poses. In these plots,
the solid lines with circles correspond to the standard EKF,the dash-dotted lines to the OC-
EKF1, the dashed lines to the OC-EKF2, and the solid lines to the OC-EKF3. Note that the
estimation errors of the OC-EKFs are almost identical, which makes the corresponding lines
difficult to distinguish.

OC-EKF algorithms in a realistic scenario. We stress that the derivations of the OC-EKFs in

Section 3.5 require neither the homogeneity of robot teams,nor a complete RMG at every time

step. Besides the previous simulations in which a homogeneous robot team was used, this ex-

periment demonstrates the superior performance of the OC-EKFs versus the standard EKF also

for heterogeneous robot teams.

Relative distance-and-bearing measurements are producedsynthetically using the differ-

ences in the positions of the robots, as these are recorded bythe overhead camera, with the
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Table 3.2: CL experimental results for robot pose estimation performance

Std-EKF OC-EKF1 OC-EKF2 OC-EKF3

Robot Position RMSE (m)

Robot 1: 0.2132 0.1070 0.1066 0.1121

Robot 2: 0.2127 0.1083 0.1080 0.1060

Robot 3: 0.2104 0.1076 0.1073 0.1105

Robot 4: 0.2699 0.1317 0.1313 0.1301

Robot Heading RMSE (rad)

Robot 1: 0.1721 0.0785 0.0782 0.0800

Robot 2: 0.1694 0.0760 0.0757 0.0776

Robot 3: 0.1732 0.0794 0.0791 0.0808

Robot 4: 0.1749 0.0810 0.0807 0.0827

Robot Pose NEES

Robot 1: 24.2458 4.4080 4.4289 5.0305

Robot 2: 26.4881 4.5423 4.5801 4.5385

Robot 3: 25.3439 4.6060 4.6270 5.2248

Robot 4: 27.6313 4.9182 4.9501 5.7714

addition of noise. For the experimental results shown in this section, the distance and bear-

ing measurements are corrupted by zero-mean white Gaussiannoise processes, with standard

deviationσd = 0.05 m andσθ = 2 deg, respectively.

Four filters were implemented: (1) the standard EKF, (2) the OC-EKF1, (3) the OC-EKF2,

and (4) the OC-EKF3. Comparative results for the three filters are presented in Figs. 3.5 and 3.6,

while Table 3.2 shows the averaged NEES and RMSE of the robot pose, respectively. From the

experimental results it becomes clear that the three OC-EKFs outperform the standard EKF, in

terms of both accuracy and consistency, while both perform almost identically. This agrees with

the simulation results presented in the preceding section.Both the real-world and simulation

results thus support our conjecture that the mismatch in thedimension of the unobservable sub-

space between the linearized CL system and the underlying nonlinear system is a fundamental

cause of filter inconsistency.
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3.8 Summary

In this chapter, we have studied in depth the consistency issue of EKF-CL from an observabil-

ity perspective. By comparing the observability properties of the linearized error-state model

employed in the EKF with those of the underlying nonlinear CLsystem, we proved that the

observable subspace of the standard EKF system model is always of higher dimension than that

of the actual CL system. As a result, the estimated covariance of the EKF undergoes reduction

in directions of the state space where no information is available, thus leading to inconsistency.

Moreover, based on the analysis, we proposed three new OC-EKF algorithms, which signif-

icantly improve the consistency of EKF-CL. The design methodology followed is based on

appropriately computing the EKF Jacobians to ensure that the observable subspace of the lin-

earized error-state system model is of the same dimensions as that of the underlying nonlinear

system. Extensive simulation tests and real-world experiments have verified that the proposed

OC-EKFs perform better, in terms of both accuracy and consistency, than the standard EKF.



Chapter 4

Quadratic-Complexity

Observability-Constrained UKF for

SLAM

In this chapter, we adapt the observability-based methodology presented in the previous chap-

ters to the UKF, and develop an Observability-Constrained (OC)-UKF to improve the UKF

consistency. Moreover, we introduce a new sampling scheme to reduce the UKF computa-

tional complexity, which samples only a small (constant-size) subset of the states involved in

the process and measurement models at each time step. As a result, when applied to the SLAM

problem, the proposed UKF with the new sampling strategy attains quadratic complexity. Parts

of this chapter have been published in [68,71].

4.1 Introduction

For autonomous vehicles exploring unknown environments, the ability to perform simultane-

ous localization and mapping (SLAM) is essential. Among thealgorithms developed thus far

to solve the SLAM problem, the EKF remains a popular choice and has been used in many

applications [92,125,169], primarily due to its relative low computational complexity and ease

of implementation. However, EKF-based SLAM is vulnerable to linearization errors, which

89
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can cause poor performance or even divergence, and its stateestimates are typicallyinconsis-

tent[12,66,70,72,78,79,85]. As defined in [14], a state estimator isconsistentif the estimation

errors are zero-mean, and have covariance smaller or equal to the one calculated by the estima-

tor. Consistency is one of the primary criteria for evaluating the performance of any estimator;

if an estimator is inconsistent, then the accuracy of the computed state estimates is unknown,

which in turn makes the estimator unreliable. In order to reduce the estimation errors due to

linearization, the UKF [84] was introduced. The UKF has beenshown to generally perform

better than the EKF in nonlinear estimation problems, and one would expect similar gains in

the case of SLAM.

However, one of the main limitations of the standard (i.e., original) UKF algorithm [84]

is its computational complexity, which iscubic in the size of the state vector. In the case of

SLAM, where hundreds of landmarks are typically included inthe state vector, this increased

computational burden can preclude real-time operation. Moreover, when applied to SLAM, the

performance gains of the UKF over the EKF are generally not overwhelming (see [62,63,110]).

Most importantly, empirical evidence suggests [62, 63, 71,110] that the UKF also results in

inconsistent estimates in SLAM, even though its performance is better than the EKF in this

respect.

Our objective in this chapter is to address the aforementioned limitations of UKF-based

SLAM. In particular, the main contributions of this work arethe following:

• We introduce a new sampling strategy for UKF-based SLAM thathasconstantcompu-

tational cost, regardless of the number of landmarks included in the state vector. This

sampling scheme is provably optimal, in the sense that it minimizes the expected squared

error between the nonlinear function and its linear approximation employed by the UKF.

Using this strategy, the computational cost of UKF-based SLAM becomeslinear during

propagation andquadraticduring update, which is of the same order as that of EKF-based

SLAM. We stress that this new UKF sampling strategy is applicable to a large class of

nonlinear estimation problems (not only the SLAM problem) where the measurements at

each time step are of dimension lower than the state.

• We analytically examine the consistency of UKF-based SLAM,by studying the ob-

servability properties of the statistically-linearized (i.e., linear-regression-based) system
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model employed by the UKF. This analysis identifies a mismatch between the observabil-

ity properties of this model and those of the underlying nonlinear system, which is a fun-

damental cause of inconsistency. Based on this theoreticalanalysis, we propose a novel

UKF-based SLAM algorithm, termed Observability-Constrained (OC)-UKF SLAM. By

imposing the appropriate observability constraints on thelinear regression carried out by

the UKF, the proposed OC-UKF ensures that its system model has observability proper-

ties similar to those of the underlying nonlinear SLAM system. As a result, the OC-UKF

outperforms the standard UKF as well as other state-of-the-art algorithms, in terms of

accuracy and consistency, as validated by both simulation and experimental tests.

4.2 Related work

The SLAM problem has received considerable attention over the past two decades. Since [144]

first introduced a stochastic-mapping solution to this problem, rapid and exciting progress has

been made, resulting in many competing solutions, including both filtering and smoothing ap-

proaches. In particular, filtering methods such as the EKF and the UKF recursively estimate a

state vector consisting of the current robot pose and the observed landmarks [11, 43, 155, 157].

Due to the fact that any (implicit or explicit) linearization-based filter marginalizes out the previ-

ous robot poses, it cannot relinearize the nonlinear systemand measurement models at the past

states, which may result in large linearization errors and thus degrade the filter’s performance.

To better deal with nonlinearity, batch iterative optimization methods can be applied to

the SLAM problem [36, 53–55, 95, 100, 150]. These methods, following the paradigm of

bundle-adjustment (BA) algorithms originally developed in photogrammetry and computer vi-

sion [20–22,52,59,153,163], iteratively minimize a cost function involving the residuals of all

the measurements, with respect to the entire robot trajectory and all landmarks (i.e., with no

marginalization). These BA-based approaches exploit the sparsity of the measurement graph so

as to speed up computation. However, for large-scale SLAM problems, a batch solution may be

too computationally expensive to obtain in real time [87].

In order to reduce the computational complexity of BA, different approximate methods have

been developed that either use a subset of the data to optimize over only few variables, or solve

the BA problem only intermittently. Specifically, sliding-window filters (e.g., [67, 142]), com-

pute a solution for a constant-size, sliding window of states (robot poses and landmark positions)
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using only the measurements corresponding to that time interval. Similarly, keyframe-based ap-

proaches (e.g., [93,94,96]), perform batch optimization over only a subset of views/keyframes.

On the other hand, incremental approaches to BA such as the iSAM algorithm [88] reduce com-

putation by employing factorization-updating methods which allow reusing the information-

matrix factorization available from previous time steps. Computationally demanding proce-

dures, such as relinearization and batch factorization, are only performed intermittently. Alter-

natively, the iSAM2 algorithm [87] uses the Bayes tree data structure [86], which allows for

fluid or just-in-time relinearization (i.e., relinearizing only when the linearization point signifi-

cantly deviates from the current estimate), as well as partial variable reordering at every update

(instead of only periodic batch reordering as in iSAM [88]).Nevertheless, incremental methods

can also suffer from increased computational cost. For example, due to the accumulation of fill-

in between periodic batch steps, iSAM’s efficiency degradeswith frequent loop closures (e.g.,

if the number of constraints is more than five times the numberof poses as reported in [87]);

while in iSAM2, since typically many variables are affectedby every fluid relinearization, the

complexity of the algorithm can be negatively impacted [87].

Even though both filtering and smoothing approaches have been widely used, to this date,

very little is known about which conditions favor the use of one over the other. In particular,

Strasdat et al. [149, 150] recently argued that BA is, in general, better than filtering in terms of

accuracy and efficiency. However, their analysis focused exclusively on the restrictive scenario

of “small-scale” visual SLAM where overlapping views of thesame scene are assumed over

a short trajectory (less than 16 camera poses in total) and without any loop closure. Clearly,

based on this limiting case study, one cannot make inferences about the relative accuracy and

efficiency of filtering and smoothing algorithms in more realistic SLAM scenarios (i.e., lengthy

paths with varying number of visible landmarks and loop closure events).

Although such a general study is beyond the scope of this work, in this chapter we have

compared the proposed OC-UKF and the state-of-the-art iSAMalgorithm [88] in various SLAM

scenarios, both in simulations and in real-world datasets.In particular, as shown in Sections 4.7

and 4.8, iSAM doesnotnecessarily perform better than the proposed OC-UKF (in terms of esti-

mation accuracy/consistency and computational cost). Specifically, while BA methods are cer-

tainly preferable in problems involving thousands of landmarks and few loop closures, filtering-

based methods are still competitive in the case of sparser environments (e.g., tens to a few hun-

dreds of landmarks), long-term operation, and frequent loop closures. This is due to the fact
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that, in the latter scenario, the computational cost of smoothing methods will continuously in-

crease with the length of the robot’s path, while the runtimeof filtering algorithms will remain

bounded. It is worth noting that many applications of interest (e.g., a service robot operating

inside a home for an extended time period) fall under the second category.

Since in this work, we primarily focus on the computational complexity and consistency of

UKF-based SLAM, in what follows, we discuss in more detail the closely related work within

this category.

4.2.1 UKF computational complexity

A number of researchers have applied the standard UKF to the SLAM problem (e.g., [29, 104,

110]). However, this requires computing the square root of the state covariance matrix at each

time step, which has computational complexitycubic in the number of landmarks, and thus is

not suitable for real-time operation in larger environments. To address this problem, Holmes

et al. [62,63] proposed the square-root UKF (SRUKF) for monocular visual SLAM, which has

computational complexityquadratic both in the propagation and in the update phases. This

approach offers a significant improvement in terms of computational complexity, at the cost

of a considerably more complicated implementation. Additionally, as shown in [62, 63], the

algorithm is an order of magnitude slower than the standard EKF, due to the need to carry out

expensive numerical computations.

Andrade-Cetto et al. [6] presented a “hybrid” EKF/UKF algorithm, where the EKF is em-

ployed in the update phase, while the UKF is used during propagation for computingonly the

robot pose estimate and its covariance. The cross-correlation terms during propagation are

handled in a fashion identical to the EKF. Even though this algorithm achieves computational

complexity linear during propagation and quadratic duringupdates, the positive definiteness of

the state covariance matrix cannot be guaranteed during propagation. Moreover, the use of the

EKF for updates makes the approach vulnerable to large linearization errors.

In contrast to the aforementioned approaches, the proposedalgorithm described in Sec-

tion 4.4 employs the unscented transformationboth in the propagation and update phases, is

simple to implement, and attains computational complexitylinear during propagation, and

quadraticduring update.
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4.2.2 UKF consistency

Theconsistencyof UKF-based SLAM has received limited attention in the literature. In [62,63,

110], the consistency of the UKF was empirically examined, but, to the best of our knowledge,

no theoretical analysis exists to date. On the other hand, the consistency of EKF-based SLAM

has been studied in a number of publications [12, 66, 70, 72, 78, 79, 85]. In particular, in our

recent work [66,70,72] (also see Chapter 2), we have presented an analytical study of this issue

from the perspective of the observability properties of theEKF linearized system model.

In this chapter, we extend this analysis to the case of UKF-based SLAM. We analytically

show that the implicit (statistical) linearization performed by the UKF results in a system model

with “incorrect” observability properties, which is a fundamental cause of inconsistency. More-

over, we introduce the OC-UKF, which attains better performance than the standard UKF, by

ensuring that the observability requirements on the filter’s system model are satisfied. It is im-

portant to point out that, as compared to our previously-developed OC-EKF [72], the OC-UKF

proposed in this chapter introduces a new paradigm for computing filter Jacobians. Specifically,

the OC-EKF employs a derivative-based approach to find the filter Jacobians, and subsequently

optimizes the selection of linearization points. In contrast, the OC-UKF uses statistical lin-

earization anddirectly calculates the optimal (inferred) Jacobians by solving an observability-

constrained optimization (linear-regression) problem.

4.3 LRKF and UKF

In this section, we present the UKF in the context of the LRKF.As shown in [106], the UKF

is closely related to the LRKF (with its sample points chosendeterministically, instead of ran-

domly in the LRKF) and it can be viewed as performing an implicit statistical linearization

of the nonlinear propagation and update models. In what follows, we present the details of

this linearization mechanism, which will be instrumental in the development of the quadratic-

complexity UKF in Section 4.4.

4.3.1 Linear regression

The LRKF seeks to approximate a nonlinear functiony = g(x) with a linear modely ≃
Ax + b, whereA andb are the regression matrix and vector, respectively, ande , y −
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(Ax + b) denotes the linearization error. Once this linear approximation is computed, the

LRKF proceeds by applying the regular Kalman filter equations. In particular, in computing the

linear approximation ofg(x), it aims to minimize the expected value of the linearizationerror

square:

min
A,b

∫ +∞

−∞
[y− (Ax+ b)]T [y − (Ax+ b)] p(x)dx (4.1)

wherep(x) is the probability density function (pdf) of the statex. Due to the nonlinearity

of y = g(x), it is generally intractable to compute the optimal solution of this minimization

problem in closed form. To solve this problem, the LRKF instead first selectsr + 1 weighted

sample points,{Xi, wi}ri=0, so that their sample mean and covariance are equal to the mean and

covariance ofx:1

x̄ =

r∑

i=0

wiXi = E(x) (4.2)

P̄xx =

r∑

i=0

wi (Xi−x̄) (Xi−x̄)T = E
[
(x−x̄)(x−x̄)T

]
(4.3)

whereE(·) denotes the expectation operator. Then, using the standardsample-based approx-

imation p(x) ≃
r∑
i=0
wiδ(x − Xi), whereδ(·) is the Dirac delta function, the linear regression

problem (4.1) becomes:

min
A,b

r∑

i=0

wi [Yi − (AXi + b)]T [Yi − (AXi + b)] (4.4)

whereYi , g(Xi) are the regression points. We denote the linearization error corresponding to

the sample pointXi by ei , Yi − (AXi + b). Note that the above cost function is identical to

the one in [106], and hence the optimal solutions forA andb are given by [106]:

A = P̄yxP̄
−1
xx , b = ȳ −Ax̄ (4.5)

1 Throughout this chapter,̄x andP̄xx denote the sample mean and covariance of sample pointsXi, drawn from
the pdf of the random variablex. P̄xy denotes the sample cross-correlation between the sets of samplesXi andYi,
drawn from the pdfs of the random variablesx andy, respectively.
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where

ȳ =

r∑

i=0

wiYi (4.6)

P̄yx =
r∑

i=0

wi (Yi − ȳ) (Xi − x̄)T (4.7)

P̄yy =

r∑

i=0

wi (Yi − ȳ) (Yi − ȳ)T (4.8)

In addition, using (4.5), (4.7) and (4.8), the sample covariance of the linearization errors is

computed by:

P̄ee =

r∑

i=0

wieie
T
i = P̄yy −AP̄xxA

T (4.9)

During recursive estimation, the LRKF employs the above statistical linearization procedure

to approximate the nonlinear process and measurement models. It is important to note that,

in this case, the regression matrixA serves as aninferred Jacobianmatrix, analogous to the

Jacobian matrices in the EKF. The details are explained next.

4.3.2 LRKF propagation

During propagation, the LRKF approximates the nonlinear process model by a linear function:

xk+1 = f(xk,ok) (4.10)

= Φ̆kxk + Ğkok + bk + ek (4.11)

=
[
Φ̆k Ğk

]

︸ ︷︷ ︸
A

[
xk

ok

]
+ bk + ek (4.12)

wherexℓ is the state vector at time-stepℓ ∈ {k, k + 1}, ok = omk
− wk is the control input

(e.g., odometry),omk
is the corresponding measurement, andwk is the process noise vector,

assumed to be zero-mean white Gaussian, with covariance matrix Qk. The matricesΦ̆k and

Ğk can be viewed as inferred Jacobians, in an analogy to the corresponding Jacobians in the

EKF. We hereafter use the symbol “˘ ” to denote the inferred Jacobians.

In the LRKF propagation step,r+1 sample points{Xi(k|k)}ri=0 are selected based on the

augmentedvector that comprises the filter state and the control input [see (4.12)]. The sample
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mean and sample covariance of{Xi(k|k)}ri=0 are thus chosen as:

x̄k|k =

[
x̂k|k
omk

]
, P̄xxk|k

=

[
Pk|k 0

0 Qk

]
(4.13)

Subsequently, the LRKF produces the regression points,{Yi(k + 1|k) = f(Xi(k|k))}ri=0, by

passing the sample points through the nonlinear process function (4.10). The sample mean,

ȳk+1|k, and sample covariance,̄Pyyk+1|k
, of the regression pointsYi are used as the mean,

x̂k+1|k, and covariance,Pk+1|k, of the propagated state estimates, respectively, i.e.,

x̂k+1|k = ȳk+1|k , Pk+1|k = P̄yyk+1|k
(4.14)

Moreover, the inferred Jacobian matrices,Φ̆k andĞk, which will be needed later on, are given

by [see (4.5) and (4.12)]:

A =
[
Φ̆k Ğk

]
= P̄yxk|k

P̄−1
xxk|k

(4.15)

whereP̄yxk|k
is computed as in (4.7). Substituting (4.5) in (4.11) and using (4.13), (4.14)

and (4.15), we have:

xk+1 = Φ̆kxk + Ğkok + ȳk+1|k −Ax̄k|k + ek

= Φ̆kxk + Ğkok + x̂k+1|k −
[
Φ̆k Ğk

] [x̂k|k
omk

]
+ ek

⇒ x̃k+1|k = Φ̆kx̃k + Ğkwk + ek (4.16)

This last equation describes the linearized (based on regression) error-state propagation model

used by the LRKF.

4.3.3 LRKF update

During update, the LRKF employs statistical linearizationto approximate the nonlinear mea-

surement function:

zk+1 = h(xk+1) + vk+1 (4.17)

= H̆k+1xk+1 + b′
k+1 + e′k+1 + vk+1 (4.18)
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wherezk+1 is the measurement andvk+1 is the zero-mean white Gaussian measurement noise,

with covariance matrixRk+1. A set ofr + 1 sample points,{Xi(k + 1|k)}ri=0, are selected,

whose sample mean and sample covariance are equal tox̂k+1|k andPk+1|k, respectively, i.e.,

x̄k+1|k = x̂k+1|k , P̄xxk+1|k
= Pk+1|k (4.19)

We pass these sample points through the nonlinear measurement function in (4.17), to obtain

the regression points,{Zi(k+1|k) = h(Xi(k+1|k))}ri=0. The regression matrix (i.e., inferred

measurement Jacobian)H̆k+1is computed by [see (4.5)]:

H̆k+1 = P̄zxk+1|k
P̄−1

xxk+1|k
(4.20)

whereP̄zxk+1|k
is computed as in (4.7). Subsequently, the state and covariance are updated

using the EKF update equations:

Sk+1 = P̄zzk+1|k
+Rk+1 (4.21)

Kk+1 = Pk+1|kH̆
T
k+1S

−1
k+1 (4.22)

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 − z̄k+1|k) (4.23)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1 (4.24)

wherez̄k+1|k andP̄zzk+1|k
are computed from (4.6) and (4.8), respectively.

4.3.4 UKF sampling

In contrast to the LRKF [106], where the sample points are drawn randomly, in the UKF,r+1 =

2n + 1 so-called sigma pointsXi are deterministicallychosen along with their weightswi,

i = 1, . . . , n, according to the following equations [84]:

X0(ℓ|k) = x̄ℓ|k , w0 =
2κ

2(n + κ)
(4.25)

Xi(ℓ|k) = x̄ℓ|k +
[√

(n+ κ)P̄xxℓ|k

]
i
, wi =

1

2(n + κ)

Xi+n(ℓ|k) = x̄ℓ|k −
[√

(n+ κ)P̄xxℓ|k

]
i
, wi+n =

1

2(n + κ)

wheren is the dimension of̄xℓ|k [see (4.13) and (4.19)],
[√

(n+ κ)P̄xxℓ|k

]

i
is thei-th column

of the matrix
√

(n+ κ)P̄xxℓ|k
, ℓ ∈ {k, k + 1}, andκ is a design parameter in the selection of

the sigma points, usually chosen so thatn + κ = 3. This set of sigma points captures the

moments of the underlying distribution up to the third-order for the Gaussian case [84].
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4.4 Quadratic-Complexity UKF SLAM

In this section, we show how the computational cost of the UKF, when applied to the SLAM

problem, can be reduced. In particular, in this chapter we focus on 2D SLAM, in which the state

vector consists of the robot pose (position and orientation) and the positions ofM landmarks:

xk =
[
xTRk

pTL

]T
(4.26)

=
[
xTRk

pTL1
· · · pTLM

]T
(4.27)

wherexRk
,

[
pTRk

φRk

]T
denotes the robot pose (position and orientation), andpLi

(i =

1 . . .M ) is the position of thei-th landmark.

In the UKF algorithm presented in the preceding section, themain bottleneck is the compu-

tation of the square root of the covariance matrix [see (4.25)], which has complexityO(M3).

Clearly, in a scenario where a large number of landmarks are included in the state vector, car-

rying out this operation during each propagation and updatewould incur an unacceptable com-

putational burden. To address this problem, we here proposea new sampling scheme for the

UKF, which has computational costO(1), and hence reduces the complexity of the propagation

and update steps to linear and quadratic, respectively. Thederivation of this sampling scheme

is based on the observation that, during SLAM, only asmall subsetof the state vector appears

in the nonlinear propagation and measurement models. In particular, during propagation only

the robot state changes, while at each update, every measurement involves only the robot pose

and one observed landmark.2 To take advantage of this important property, we employ the

following lemma:

Lemma 4.4.1. Consider a nonlinear functiony = g(x) = g(x1), where only the state entries

x1 of the vectorx partitioned asx =

[
x1

x2

]
appear ing(x). Moreover, consider the regression

matrix A of the linear regression problem(4.4) accordingly partitioned asA =
[
A1 A2

]
,

i.e.,

y = Ax+ b+ e = A1x1 +A2x2 + b+ e (4.28)

2 When more than one landmarks are detected concurrently, their measurements can be processed sequentially,
given that the measurement noise in different observationsis independent.
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Then, the optimal solution to(4.4) is:

A1 = P̄yx1
P−1

x1x1
, A2 = 0, b = ȳ −A1x̂1 (4.29)

Proof. See Appendix C.1.

This lemma shows that, in order to minimize the expected squared error of the statistical

linearization (4.4), it suffices to draw sample points from the pdf ofx1. As mentioned before,

in SLAM the number of states participating in the nonlinear process and measurement models

is constant. Thus, we can reduce the cost of UKF sampling toO(1) by applying the unscented

transformation only to the pertinent state entries, instead of sampling over the whole state. Com-

pared to the EKF-SLAM, the proposed UKF-SLAM only incurs a small computational overhead

(for computing the square roots of constant-size matrices), and has computational complexity

of the same order. In the following, we present in detail thisnew sampling strategy used in the

UKF-SLAM. We stress again that apart from the particular problem of SLAM treated in this

chapter, this new UKF sampling scheme is applicable toanyproblem where the measurements

are of lower dimension than the state.

4.4.1 Propagation

During propagation, only the robot pose and the control input (odometry) participate in the

process model [see (4.10)]. Therefore, we are able to reducethe computational complexity by

applying the unscented transformation only to the part of the state comprising the robot pose

and the control input, instead of the full state vector. The resulting Jacobians are then used for

efficiently propagating the covariance matrix corresponding to the entire state.

We start by drawing the sigma pointsXi(k|k) based on the vector with the following mean

and covariance [see (4.13)]:

x̄k|k =

[
x̂Rk|k

omk

]
, P̄xxk|k

=

[
PRRk|k

0

0 Qk

]
(4.30)

wherePRRk|k
is the covariance matrix corresponding to the robot pose, obtained by partitioning

the state covariance matrix as follows [see (4.26)]:

Pk|k =


PRRk|k

PRLk|k

PT
RLk|k

PLLk|k


 (4.31)
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Note that the vector̄xk|k in (4.30) is of dimensionn = 5 (assuming that the odometry measure-

mentomk
is two-dimensional), and thus the computational cost of computing the sigma points

is very low.

Subsequently, we transform the sigma points,{Xi(k|k)}10i=0, using the process model (4.10),

to obtain the regression points of the propagated robot pose, {Yi(k + 1|k) = f(Xi(k|k))}10i=0.

This enables us to compute the mean,x̂Rk+1|k
= ȳk+1|k, and covariance,PRRk+1|k

= P̄yyk+1|k
,

of the propagated robot pose, in the same way as in the standard LRKF/UKF [see (4.14)]. More-

over, we can evaluate theinferredrobot state and odometry Jacobians as [see (4.29) and (4.15)]:

A1 = P̄yxk|k
P̄−1

xxk|k
=
[
Φ̆Rk

ĞRk

]
(4.32)

while A2 = 0.

Next, using (4.16), we compute the propagated cross-correlation between the robot and the

landmarks as follows:

PRLk+1|k
= E

[
x̃Rk+1|k

p̃TLk|k

]

= E

[(
Φ̆Rk

x̃Rk|k
+ ĞRk

wk + ek

)
p̃TLk|k

]

= Φ̆Rk
PRLk|k

(4.33)

Thus, the propagated state covariance matrix is given by:

Pk+1|k =


 P̄yyk+1|k

Φ̆Rk
PRLk|k

PT
RLk|k

Φ̆T
Rk

PLLk|k


 (4.34)

which is evaluated with cost onlylinear in the size of the state vector, similarly to the EKF.

The matrixΦ̆Rk
derived in (4.32) is the inferred propagation Jacobian for the robot state.

To compute the inferred Jacobian matrix for the entire SLAM state vector, which will be useful

for our ensuing analysis, we use (4.9), (4.30) and (4.32) to write

P̄yyk+1|k
=A1P̄xxk|k

AT
1 + P̄eek

=Φ̆Rk
PRRk|k

Φ̆T
Rk

+ ĞRk
QkĞ

T
Rk

+ P̄eek (4.35)

and therefore, (4.34) can equivalently be written as:

Pk+1|k = Φ̆kPk|kΦ̆
T
k +Q∗

k (4.36)
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where

Q∗
k =

[
ĞRk

QkĞ
T
Rk

+ P̄eek 0

0 0

]
(4.37)

Φ̆k =

[
Φ̆Rk

0

0 I2M

]
(4.38)

In the above expression,̆Φk is the inferred propagation Jacobian matrix for the SLAM state

vector comprising the robot pose and the landmark positions.

4.4.2 Update

Any measurement used for updating involves only the robot pose and the position of the ob-

served landmark. Therefore, we can apply the unscented transformation only to this subset of

states so as to reduce the computational cost. In particular, assume that thej-th landmark,Lj,

is observed at time-stepk + 1. Then, the set of sigma points{Xi(k + 1|k)}10i=0 are drawn from

a distribution with the following mean and covariance:

x̄k+1|k =

[
x̂Rk+1|k

p̂Lj,k+1|k

]
, P̄xxk+1|k

=

[
PRRk+1|k

PRLj,k+1|k

PLjRk+1|k
PLjLj,k+1|k

]
(4.39)

wherePRRk+1|k
andPLjLj,k+1|k

are the covariance matrices of the robot and the landmark,

respectively, whilePRLj,k+1|k
= PT

LjRk+1|k
is the corresponding cross-correlation matrix, ob-

tained from the following partitioning of the state covariance matrix:

Pk+1|k =




PRRk+1|k
· · · PRLj,k+1|k

· · · PRLM,k+1|k

...
. . .

...
. . .

...

PLjRk+1|k
· · · PLjLj,k+1|k

· · · PLjLM,k+1|k

...
. . .

...
. . .

...

PLMRk+1|k
· · · PLMLj,k+1|k

· · · PLMLM,k+1|k




Note that the matrix used for generating the sigma points hasconstant size [see (4.39)],

regardless of the number of landmarks in the state vector.

Once the set of sigma points are generated, the linear regression of the LRKF update

(see Section 4.3.3) is applied to obtain theinferred measurement Jacobian for the pertinent
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states [see (4.20) and (4.29)]:

A1 = P̄zxk+1|k
P̄−1

xxk+1|k
=
[
H̆Rk+1

H̆Lj,k+1

]
(4.40)

where the submatrix̆HRk+1
corresponds to the robot pose, whilĕHLj,k+1

corresponds to the

j-th landmark. To construct the inferred measurement Jacobian for the entire state vector, we

note that according to the new sampling scheme the unscentedtransformation is not applied to

the landmarks that are not currently observed (their regression matrices are zero according to

Lemma 4.4.1). Therefore, theinferredmeasurement Jacobian for the entire SLAM state vector

is:

H̆k+1 =
[
H̆Rk+1

0 · · · 0 H̆Lj,k+1
0 · · · 0

]
(4.41)

Once this matrix is available, (4.21)-(4.24) are applied toupdate the state estimate and

covariance in the UKF. It is important to point out that the computational cost of the proposed

UKF update equations is dominated by the covariance update (4.24), and hence is quadratic in

the number of landmarks, similarly to the EKF.

4.4.3 Landmark initialization

Suppose that thej-th landmark,Lj, is first observed at time-stepko. The corresponding mea-

surement is given by:3

zko = h(xRko
,pLj

) + vko = z∗ko + vko (4.42)

By solvingz∗ko = h(xRko
,pLj

) for pLj
, we can express the landmark position as a (generally

nonlinear) function of the robot pose and the noiseless measurement:

pLj
= g(xRko

, z∗ko) (4.43)

3 To preserve the clarity of presentation, we consider the case where a single measurement suffices to initialize
the landmark. This includes the distance-bearing measurement model, commonly used in practice. However, this is
not a necessary assumption and our analysis can be extended to the case where multiple measurements at different
time steps are needed to initialize the new landmark (e.g., bearing-only or distance-only measurements).
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In order to carry out the landmark initialization in the LRKF/UKF framework, we approximate

this nonlinear initialization function by a linear function:

pLj
= AxxRko

+Azz
∗
ko

+ b′′
ko

+ e′′ko (4.44)

=
[
Ax Az

]

︸ ︷︷ ︸
A1

[
xRko

z∗ko

]
+ b′′

ko
+ e′′ko (4.45)

whereAx andAz are the regression matrices corresponding to the robot poseand the mea-

surement, respectively. These matrices are computed by statistical linearization, similarly to the

cases of propagation and update.

Specifically, it becomes clear from (4.43) that only the robot pose and the measurement of

the newly detected landmark are involved in the initialization process. Therefore, we can apply

the result of Lemma 4.4.1 to draw the sigma points based on thevector with the following mean

and covariance:

x̄ko|ko−1 =

[
x̂Rko|ko−1

zko

]
, P̄xxko|ko−1

=

[
PRRko|ko−1

0

0 Rko

]
(4.46)

Suppose the measurement vector is of dimensionm. Then, the UKF will chooser+1 = 2×(3+

m)+1 sigma points,{Xi(ko|ko−1)}ri=0, and transform them through the nonlinear initialization

model (4.43) to obtain the regression points of the new landmark position{Yi(ko|ko − 1) =

g(Xi(ko|ko − 1))}ri=0. The sample mean of the regression points is used to initialize the new

landmark position:

p̂Lj,ko|ko
= ȳko|ko−1 (4.47)

In order to compute the covariance matrix of the augmented state vector comprising the

robot pose, the previously initialized landmarks, and the new landmark, we first note that the

regression matrix in (4.45) is [see (4.29)]:

A1 =
[
Ax Az

]
= P̄yxko|ko−1

P̄−1
xxko|ko−1

(4.48)

Subsequently, using (4.44), (4.46), (4.47), and (4.5), we compute the error in the posterior

estimate for the position of thej-th landmark:

p̃Lj,ko|ko
= pLj

− p̂Lj,ko|ko

= AxxRko
+Azz

∗
ko
+b′′

ko
+e′′ko−Axx̂Rko|ko−1

−Azzko−b′′
ko

= Axx̃Rko|ko−1
+Azvko + e′′ko (4.49)
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Based on (4.49), the cross-correlation terms between the new landmark and the robot and the

old landmarks are given by:

PLjRko|ko
= E

[
p̃Lj,ko|ko

x̃TRko|ko−1

]
= AxPRRko|ko−1

(4.50)

PLjLj′,ko|ko
= E

[
p̃Lj,ko|ko

p̃TLj′,ko|ko−1

]
= AxPRLj′,ko|ko−1

(4.51)

for j′ = 1, . . . ,M andj′ 6= j. Hence, the covariance matrix of the augmented state vector

becomes:

Pko|ko =




Pko|ko−1 Pko|ko−1

[
AT

x

02M×2

]

[
Ax 02×2M

]
Pko|ko−1 PLjLj,ko|ko


 (4.52)

wherePLjLj,ko|ko
= P̄yyko|ko−1

is the sample covariance of the set of the regression points

{Yi(ko|ko−1)}ri=0. Note that the computational complexity of the UKF landmarkinitialization

is linear in the number of landmarks, which is of the same order as in the EKF.

For our derivations in the following sections, it will be necessary to compute the inferred

measurement Jacobian matrices,H̆Rko
andH̆Lj,ko

, which correspond to the measurement used

for initializing the landmark. For this purpose, by solving(4.44) forz∗ko and then substituting

in (4.42), we have:

zko = −A−1
z AxxRko

+A−1
z pLj

−A−1
z b′′

ko
−A−1

z e′′ko+vko (4.53)

We thus conclude that theinferredmeasurement Jacobians corresponding to this measurement

are:

H̆Rko
= −A−1

z Ax , H̆Lj,ko
= A−1

z (4.54)

4.5 SLAM observability analysis

As discussed in Section 4.3, the UKF carries out recursive state estimation based on a linear

approximation (i.e., using sigma points) of the nonlinear system model. In this section, we

examine theobservabilityproperties of the UKF linear-regression-based system model, since

they can affect the filter’s performance. To the best of our knowledge, no such analysis has

appeared in the literature prior to [71].
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4.5.1 Background

Our motivation arises from our previous work [66, 70, 72], where it was shown that the ob-

servability properties of the EKF’s linearized system model greatly impact the filter’s consis-

tency in SLAM. Specifically, we have proven in [66, 70, 72] that the system model of anideal

EKF, whose Jacobians are evaluated at thetrue state, has3 unobservable degrees of freedom

(d.o.f.). These correspond to the global position and orientation, and match the unobservable

directions of the underlyingnonlinearSLAM system [72, 105]. Moreover, it was shown that

the ideal EKF exhibits excellent performance in terms of consistency. By contrast, the system

model of the (standard) EKF, which uses thecurrent state estimates for computing the Jaco-

bians, hasonly 2 unobservable d.o.f., corresponding to the global position. As a result, the

standard EKF becomes inconsistent since it acquires non-existent information along the direc-

tion of the global orientation. Based on this analysis, in [66,70], we derived the First-Estimates

Jacobian (FEJ)-EKF, which, by evaluating the Jacobians at the first available state estimates,

achieves the desired observability properties (i.e., its system model has3 unobservable d.o.f.).

However, the first state estimates may be inaccurate and result in large linearization errors,

thus degrading the filter’s performance. To improve the FEJ-EKF, in [72], we developed the

Observability-Constrained (OC)-EKF which instead selects linearization points that not only

ensure the linearized system model has thecorrect number of unobservable d.o.f., but alsomin-

imize the linearization errors. As a result, the OC-EKF attains consistency better than that of

the FEJ-EKF and comparable to that of the ideal EKF.

In this work, we adopt an analogous approach where we first examine the observability

properties of the UKF-SLAM system model and compare them to those of the underlying non-

linear SLAM system. Based on this analysis, we introduce an efficient algorithm for computing

the appropriateinferredmeasurement Jacobians that preserve the dimensions of the unobserv-

able subspace, thus improving consistency.
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4.5.2 UKF-SLAM observability

To examine the observability properties of the UKF-SLAM system model, we form the observ-

ability matrix [112] for the time interval[ko, ko + k] as follows:

M =




H̆ko

H̆ko+1Φ̆ko

...

H̆ko+kΦ̆ko+k−1 · · · Φ̆ko




(4.55)

where the inferred measurement Jacobian,H̆ko+ℓ, ℓ ∈ {0, . . . , k}, and inferred state propaga-

tion Jacobian,̆Φko+ℓ−1, ℓ ∈ {1, . . . , k}, are computed based on the UKF regression matrices

[see (4.32), (4.38), (4.40), and (4.41)].

Since the UKF approximates the nonlinear SLAM model by a regression-based linearized

system [see (4.12) and (4.18)], it is desirable that its observability properties match those of the

underlying nonlinear system, and thus those of the ideal EKF. That is, the UKF-SLAM system

model should have 3 unobservable d.o.f., or equivalently its observability matrix,M, should

have a nullspace of dimension 3.

However, this is generallynot the case. In fact, when numerically computing the dimension

of the nullspace ofM, we find that it is 3 only at time-stepko, when a landmark is initialized.

At that time, the observability matrix comprises only the first inferred measurement Jacobian,

i.e., M = H̆ko, which is a 2× 5 matrix and thus generally has a nullspace of dimension 3.

Later on and as more measurements become available, the dimension of the nullspace of the

observability matrix decreases fast. Typically, the observability matrix M becomes full-rank

after two time steps of consecutive observations.

A full-rank observability matrix indicates that the linear-regression-based system model em-

ployed by the UKF is observable, which contradicts the observability analysis of the nonlinear

SLAM system [72,105]. In practice, this implies that the UKFobtains “spurious” information,

in all directions of the state space, even in directions where no information is available, such

as the global position and orientation. This, in turn, leadsto an unjustified reduction of the

state estimates’ covariance matrix, which cannot be compensated for by the noise covariance

increase that the UKF uses to account for linearization errors [see (4.36)]. As shown in the sim-

ulation and experimental results in Sections 4.7 and 4.8, the inconsistency due to the mismatch

between the observability properties of the UKF linear-regression-based system model and the
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nonlinear (or equivalently the ideal EKF) system model, causes a significant degradation in the

filter’s performance.

4.6 Observability-Constrained (OC)-UKF SLAM

In this section, we introduce a novel OC-UKF algorithm that employs a linear-regression-based

system model with observability properties similar to those of the underlying nonlinear SLAM

system. Specifically, we construct the “inferred” Jacobians of the UKF in such a way that the

resulting system model has anunobservable subspace of dimension 3.

In particular, the propagation phase of the OC-UKF is identical to that of the standard UKF.

The difference arises in the update phase, where, instead ofemploying the unconstrained mini-

mization of (4.4) for computing the regression matrix, we formulate aconstrainedminimization

problem that enforces the desired observability properties. Specifically, if the first landmark was

observed at time-stepko, we require that [see (4.55)]:

MN = 0 ⇔ (4.56)



H̆koN = 0, for ℓ = 0

H̆ko+ℓΦ̆ko+ℓ−1 · · · Φ̆koN = 0, for ℓ > 0
(4.57)

In the above expressions,N is a(3+2M)×3 matrix, whose columns span the desired nullspace.

These constraints ensure that all the block rows of the observability matrixM (4.55) have the

samenullspace, which coincides with theunobservable subspaceof the filter’s system model.

By ensuring that its inferred system model has an unobservable subspace of dimension 3, the

OC-UKF avoids the infusion of erroneous information, and isempirically shown to attain sig-

nificantly improved consistency (see Sections 4.7 and 4.8).

In what follows, we show how the nullspace matrixN is determined, and based on that, we

compute the inferred measurement Jacobians.

4.6.1 Computing the nullspace matrixN

Consider the following partitioning of the matrixN:

N =
[
NT
R NT

L1
· · · NT

LM

]T
(4.58)
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whereNR is a3 × 3 submatrix corresponding to the robot pose, andNLi
, i = 1, . . . ,M , are

2× 3 submatrices corresponding to thei-th landmark. It is important to note that landmarks are

typically observed and initialized at different time instants, and hence the number of submatrices

comprisingN will increase over time, as new landmarks are included into the state vector.

Initialization of the first landmark

When the first landmark is initialized at time-stepko, we chooseN to be a matrix whose

columns span the nullspace of the2×5 inferred Jacobian̆Hko =
[
H̆Rko

H̆L1,ko

]
[see (4.54)],

i.e.,

null(H̆ko) = span
col.

(N) ⇒
[
H̆Rko

H̆L1,ko

] [NR

NL1

]
= 0 (4.59)

Thus,N can be readily computed via the singular value decomposition (SVD) of H̆ko [49].

Initialization of subsequent landmarks

Suppose that thej-th landmark is detected for the first time at time-stepko+k. This implies that

the state vector already contains the first (j−1) landmarks and thusNR andNLi
(i = 1, . . . , j−

1) have been computed. The nullspace matrixN now will have to be augmented byNLj
,

corresponding to the new landmark,Lj. To determineNLj
, we first notice that, based on the

structure of the measurement and state-propagation inferred Jacobians [see (4.41) and (4.38)],

the corresponding block row of the observability matrix at this time step, denoted byMko+k,

can be obtained as [see (4.55)]:

Mko+k , H̆ko+kΦ̆ko+k−1 · · · Φ̆ko = (4.60)
[
H̆Rko+k

Φ̆Rko+k−1
· · · Φ̆Rko

0 · · · 0 H̆Lj,ko+k

]

Since this is the newest landmark, it is appended at the end ofthe state vector. Then, we compute

NLj
based on the requirement that each block row of the observability matrix M has the same

nullspace, spanned byN, i.e.,

null(Mko+k) = span
col.

(N) ⇒ Mko+kN = 0 (4.61)
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Substitution of (4.58) (usingM = j) and (4.60) in (4.61) yields:

H̆Rko+k
Φ̆Rko+k−1

· · · Φ̆Rko
NR + H̆Lj,ko+k

NLj
= 0 ⇒

NLj
= −H̆−1

Lj,ko+k
H̆Rko+k

Φ̆Rko+k−1
· · · Φ̆Rko

NR (4.62)

4.6.2 Computing the inferred measurement Jacobians

We know from Lemma 4.4.1 that we only need to determine the regression matrixA1, in-

stead of the full regression matrixA, in order to compute the inferred measurement Jacobians

[see (4.40) and (4.41)]. Therefore, once the nullspace matrix N is available, at each update

step, we formulate the followingconstrainedlinear-regression problem with respect toA1 and

b [see (4.4)]:

min
A1,b

10∑

i=0

wi [Zi − (A1Xi + b)]T [Zi − (A1Xi + b)] (4.63)

s.t. A1Φ̆
′
ko+k−1 · · · Φ̆′

ko
Nj = 0 (4.64)

whereΦ̆′
ko+ℓ

,

[
Φ̆Rko+ℓ

0

0 I2

]
, ℓ = 0, . . . , k − 1, denotes the reduced-size regression ma-

trix obtained from propagation [see (4.32) and (4.38)], corresponding to the part of the state

comprising only the robot pose and the observedj-th landmark at time-stepko + ℓ; and

Nj ,

[
NT
R NT

Lj

]T
[see (4.58)] contains the corresponding block rows ofN. The sigma

points used in the minimization problem (4.63) are computedby the procedure described in

Section 4.4.2. The optimal solution ofA1 is obtained inclosed formusing the following lemma:

Lemma 4.6.1. The optimal solution to the constrained minimization problem (4.63)-(4.64) is

given by:

A1 =
[
H̆Rko+k

H̆Lj,ko+k

]

= P̄zxko+k|ko+k−1
LT
(
LP̄xxko+k|ko+k−1

LT
)−1

L (4.65)

with

L =
[
Im 0m×(5−m)

] (
I5 −U(UTU)−1UT

)
(4.66)

U , Φ̆′
ko+k−1 · · · Φ̆′

ko
Nj (4.67)

wherem is the dimension of the measurement vector.
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Proof. See Appendix C.2.

Lastly, once we construct the full inferred measurement Jacobian matrixH̆ko+k in (4.41)

from the regression matrixA1 in (4.65), we update the state estimate and covariance based

on (4.21)-(4.24). In summary, the main steps of the OC-UKF SLAM are outlined in Algo-

rithm 3.

We stress that if multiple landmarks are observed concurrently, the above process for de-

termining the inferred measurement Jacobians is repeated sequentially for each of the land-

marks. Note also that the maximum dimension of all the matrices involved in (4.65)-(4.66) is 5

[see (4.39)], and thus computing the regression matrixA1 incurs only aconstantcomputational

overhead, regardless of the number of landmarks in the state. As a result, the overall computa-

tional cost of the OC-UKF update step remains quadratic (as is the case for EKF-SLAM).

Algorithm 3 Observability-Constrained (OC)-UKF SLAM
Require: Initial state estimate and covariance

1: loop
2: Propagation: When an odometry measurement is received,
3: determine sigma points by (4.25) with mean and covariance (4.30).
4: produce regression points by passing the sigma points through (4.10).
5: compute the state estimate (4.14).
6: compute the regression matrix via (4.32).
7: compute the propagated covariance via (4.34).

8: Update: When a robot-to-landmark measurement is received,
9: determine sigma points by (4.25) with mean and covariance (4.39).

10: produce regression points by passing the sigma points through the nonlinear function
in (4.17).

11: compute the regression matrix via (4.65) and (4.40).
12: update the state and covariance via (4.21)-(4.24).

13: Initialization: When a new landmark is detected,
14: determine sigma points by (4.25) with mean and covariance (4.46).
15: produce regression points by passing the sigma points through (4.43).
16: compute the inferred Jacobian matrices via (4.54).
17: initialize the new landmark position (4.47) and update the state covariance (4.52).
18: if this is the first observed landmark, compute the nullspacematrixN via (4.59), else

augment the nullspace matrixN with NLj
, corresponding to the new landmark (4.62).

19: end loop
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4.7 Simulation results

A series of Monte-Carlo comparison studies were conducted under various conditions, in order

to verify the preceding consistency analysis and to comparethe performance of the proposed

OC-UKF to that of the standard UKF/EKF and the OC-EKF [72] as well as the iSAM al-

gorithm [88], in terms of consistency and accuracy. The metrics used to evaluate estimation

performance are RMSE and NEES [14]. The former provides a measure of accuracy, while

the latter is a standard criterion for evaluating estimatorconsistency. Specifically, it is known

that the NEES of anN -dimensional Gaussian random variable follows aχ2 distribution with

N d.o.f.. Therefore, if an estimator is consistent, we expectthat the average NEES for the robot

pose will be close to 3 for all time steps, and the average landmark NEES will be close to 2.

The larger the deviations of the NEES from these values, the worse the inconsistency of the

estimator. Note that when two estimators produce comparable RMSE, the one whose NEES

value is closer to the expected is also the one whose estimated covariance is closer to the true

one.4 By studying both the RMSE and NEES of an estimator, we obtain acomprehensive

picture of the estimator’s performance.

4.7.1 SLAM with range-and-bearing measurements

In the simulation tests presented in this section, a robot with a simple differential-drive model

drove on a planar surface, at a constant velocity ofv = 0.25 m/sec. The two drive wheels were

equipped with encoders, which measure their revolutions and provide measurements of velocity

(i.e., right and left wheel velocities,vr andvl, respectively), with standard deviation equal to

σ = 2%v for each wheel. These measurements were used to obtain the linear and rotational

velocity measurements for the robot, which are given by:

v =
vr + vl

2
, ω =

vr − vl

a

wherea = 0.5 m is the distance between the active wheels. The robot recorded distance and

bearing measurements to landmarks lying within its sensingrange of 5 m. The standard devi-

ation of the distance-measurement noise was equal to 10% of the robot-to-landmark distance,

while the standard deviation of the bearing-measurement noise was set to10 deg. It should be

4 It is important to stress that knowing the uncertainty of thecomputed estimates is often as important as the
estimates themselves. An inconsistent estimator that reports covariance values smaller than the true ones can be
unreliable for use in practice.
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noted that the sensor-noise levels selected for the simulations are larger than what is typically

encountered in practice. This was done on purpose in order tomake the effects of inconsistency

more apparent.

For the results shown here, a SLAM scenario with multiple loop closures was considered,

where during each run, the robot executed 10 loops on a circular trajectory, and observed 20

landmarks in total. The reported results were averaged over50 Monte-Carlo trials. During

the test, six estimators processed the same data, to ensure afair comparison.5 The compared

estimators were: (i) the ideal EKF, (ii) the standard EKF, (iii) the OC-EKF [72], (iv) the standard

UKF, (v) the OC-UKF, and (vi) the iSAM algorithm [88]. Note that, as shown in [87], the

performance of iSAM is very similar to (or even slightly better than) that of iSAM2 in landmark-

based SLAM, which is the case considered in this work. Hence,in this test, we compared

our algorithm to iSAM [88], using version 1.6 of its open-source implementation [89] with

standard parameters, i.e., solving at every time step and reordering/relinearizing every 100 time

steps. We also point out that, in order to ensure a fair comparison, we report the current-state

estimates (instead of the final batch estimates) of the iSAM algorithm at each time step, which

are computed by processing the measurements up to the current time step, without using any

future measurements’ information. Clearly, these incremental causalestimates are of more

practical importance in any real-time robotic operation. Lastly, it is important to note that the

ideal EKF isnot realizable in practice since its Jacobians are evaluated atthe (unknown) true

values of the state. However, we included it as a benchmark inour simulations, since it has been

shown to possess thecorrectobservability properties and exhibit the best performancein terms

of both consistency and accuracy [66,70–72].

The comparative results for all the estimators are presented in Fig. 4.1 and Table 4.1. Specif-

ically, Figs. 4.1(a) and 4.1(b) show the average NEES and RMSE, respectively, over all Monte-

Carlo runs for each time step for the robot pose. On the other hand, Table 4.1 presents the

average values of all relevant performance metrics for the landmarks and the robot. For the

landmarks, we computed the average RMSE and NEES by averaging over all Monte-Carlo

runs, all landmarks, and all time steps. For the robot position and orientation RMSEs and the

robot pose NEES, we averaged the corresponding quantities over all Monte-Carlo runs and all

5 In [72], the OC-EKF was shown to perform better, in terms of accuracy and consistency, than both the FEJ-
EKF [70] and the robocentric mapping algorithm [27], which aims at improving the consistency of EKF-SLAM by
expressing the landmarks in a robot-relative frame. Therefore, in this chapter we omitted the comparison between
the proposed OC-UKF and the FEJ-EKF as well as the robocentric mapping filter.
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Table 4.1: [Simulation Results. Range-and-bearing SLAM] Robot pose and landmark position
estimation performance

Ideal-EKF Std-EKF OC-EKF Std-UKF OC-UKF iSAM

Robot Position RMSE (m)

0.6297 1.2664 0.6771 1.1002 0.6635 0.7587

Robot Heading RMSE (rad)

0.0648 0.1070 0.0696 0.0954 0.0680 0.0760

Robot Pose NEES

3.1284 20.6195 4.6896 14.8696 3.9305 4.2649

Landmark Position RMSE (m)

0.6071 1.2552 0.6539 1.0890 0.6325 0.7732

Landmark Position NEES

2.1569 19.5556 4.6150 13.7205 2.8303 10.1408
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Figure 4.1: [Simulation Results. Range-and-bearing SLAM]Monte-Carlo results for a SLAM
scenario with multiple loop closures: (a) average NEES of the robot-pose errors, and (b) average
RMSE for the robot pose (position and orientation). In theseplots, the dotted lines correspond
to the ideal EKF, the solid lines with circles to the standardEKF, the dashed lines to the OC-
EKF, the solid lines with crosses to the standard UKF, the solid lines to the OC-UKF, and the
dash-dotted lines to the iSAM algorithm. Note that the RMSE of the ideal EKF, the OC-EKF,
the OC-UKF and the iSAM algorithm are very close, which makesthe corresponding lines
difficult to distinguish.

time steps.

Several interesting conclusions can be drawn from these results. Firstly, it becomes clear

that the performance of the proposed OC-UKF isvery closeto that of the ideal EKF, and sub-

stantially better than both the standard EKF and the standard UKF, in terms of both RMSE

(accuracy) and NEES (consistency). The observed performance gain indicates that the observ-

ability properties of the linear-regression-based systemmodel employed in the UKF play a key

role in determining the filter consistency: When these properties differ from those of the under-

lying nonlinear system, which is the case for the standard EKF and UKF, the filter’s consistency

is negatively impacted.

A second observation is that both the OC-UKF and the OC-EKF attain slightly better per-

formance than the iSAM algorithm, in terms of consistency and accuracy (see Fig. 4.1 and

Table 4.1). This can be justified by the fact that in order to reduce its processing requirements,

the iSAM algorithm doesnot iteratively update the whole measurement Jacobian matrix (and

thus the square-root information matrix) at every time step. Instead, it reuses partial results from
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the previous time steps and only updates the Jacobian matrixincrementally by appending to it

new rows corresponding to the most recent measurements. However, the previously-computed

parts of the Jacobian matrix can be quite inaccurate (especially right before a loop closure event

or in the presence of large measurement noise). Moreover, incremental updating process does

not guarantee the appropriate observability properties. These factors can lead to significant es-

timation errors, which will propagate in time and degrade the iSAM algorithm’s performance

for all time steps except the ones where batch relinearization is applied. Clearly, this issue

can be mitigated by performing periodic relinearization more frequently, which, however, will

significantly increase the computational cost.

Lastly, the OC-UKF also outperforms the OC-EKF [72], by a smaller margin, in terms of

both RMSE and NEES. It is interesting to note that the advantage of the OC-UKF over the

OC-EKF is more pronounced in terms of NEES. This indicates that the OC-UKF provides a

more accurate uncertainty measure (covariance) than the OC-EKF, and also implies that the

filter’s inconsistency primarily affects the covariance, rather than the state estimates. To further

highlight this performance difference, in the next section, we also compare these algorithms in

the case of bearing-only SLAM (BOSLAM), whose severe nonlinearities make the need for a

better linearization scheme, such as the one offered by the OC-UKF, more evident.

4.7.2 SLAM with bearing-only measurements

In this BOSLAM simulation test, we employed the same simulation setup as in the preceding

case, with some changes in the parameters. Specifically, therobot moved on a circular trajec-

tory at a constant velocity ofv = 0.5 m/sec, with wheel-velocity measurement noise standard

deviation equal toσ = 1%v, while the standard deviation of the bearing-measurement noise

was set to 2 deg. Note that we doubled the robot velocity in this simulation, because a larger

linear velocity increases the baseline between two consecutive time steps, leading to a more

reliable triangulation-based landmark initialization [10].

The comparative results6 of the robot pose and landmark position estimation are shown

in Fig. 4.2 and Table 4.2. As evident, in the case of BOSLAM where the measurement non-

linearity is more significant than that of the range-and-bearing SLAM considered earlier, the

standard UKF performs substantially better than the standard EKF, in terms of both consistency

6 Since the current implementation of iSAM [89] does not include the bearing-only case, in this test we omit the
comparison of the OC-UKF to the iSAM algorithm while focusing on that to the OC-EKF.
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Table 4.2: [Simulation Results. Bearing-only SLAM] Robot pose and landmark position esti-
mation performance

Ideal-EKF Std-EKF OC-EKF Std-UKF OC-UKF

Robot Position RMSE (m)

0.0427 0.1132 0.0529 0.0707 0.0455

Robot Heading RMSE (rad)

0.0045 0.0130 0.0055 0.0075 0.0043

Robot Pose NEES

2.6054 12.6715 4.4730 4.8453 2.6917

Landmark Position RMSE (m)

0.1066 0.1770 0.1305 0.1630 0.1471

Landmark Position NEES

1.8964 12.7627 12.6085 6.1927 4.3216
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Figure 4.2: [Simulation Results. Bearing-only SLAM] Monte-Carlo results for a SLAM sce-
nario with multiple loop closures: (a) average NEES of the robot-pose errors, and (b) average
RMSE for the robot pose (position and orientation). In theseplots, the dotted lines correspond
to the ideal EKF, the solid lines with circles to the standardEKF, the dashed lines to the OC-
EKF, the solid lines with crosses to the standard UKF, and thesolid lines to the OC-UKF. Note
that the RMSE of the ideal EKF and the OC-UKF are almost identical, which makes the corre-
sponding lines difficult to distinguish.

(NEES) and accuracy (RMSE). This performance gain is also shared by the OC-UKF over the

OC-EKF. We thus see that the OC-UKF combines the benefits of the OC-EKF (i.e., correct

observability properties) with those of the UKF (i.e., better linearization), to form an estimator

whose performance is comparable to that of the ideal EKF.

4.8 Experimental results

To further test the proposed OC-UKF SLAM algorithm, we also conducted real-world experi-

ments in both indoor and outdoor environments. These tests also allow us to examine the algo-

rithm’s runtime, as compared to the OC-EKF and the state-of-the-art iSAM algorithm. All the

timing results presented in this section were obtained on a Mac laptop with an Intel i5 processor

at 2.53 GHz, and 4GB of RAM.
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Figure 4.3: [Indoor Experiment] The batch maximum-a-posteriori (MAP) estimate of the robot
trajectory during the indoor experiment (solid line), overlaid on the blueprint of the build-
ing. The boxes (�) denote the corners whose exact locations were known from the building’s
blueprints. The batch MAP estimates of the robot poses and the known corners were used as
ground truth for computing the NEES and RMSE values shown in Table 4.3 and Fig. 4.4.

4.8.1 Indoor environment

We first present the results of the indoor experiment conducted in an office building. The robot

was commanded to perform 11 loops around a square with sides approximately equal to 20 m

(see Fig. 4.3). This trajectory was selected since repeatedre-observation of the same land-

marks tends to make the effects of inconsistency more apparent, and facilitates discerning the

performance of the various estimators. A Pioneer robot equipped with a SICK LMS200 laser

range-finder and wheel encoders was used in this experiment.From the laser-range data, corner

features were extracted and used as landmarks, while the wheel encoders provided the linear

and rotational velocity measurements. In particular, thisdataset was recorded over about 40

minutes, and contains 23425 robot poses and 63 landmarks with 11392 measurements to them.

Since no ground truth for the robot pose could be obtained using external sensors (e.g.,
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overhead cameras) in this experiment, we obtained a reference trajectory, treated as ground

truth, by utilizing the known map of the area where the experiment took place. Specifically, the

exact locations of 20 corners were known from the blueprintsof the building. Measurements

to these corners, as well as all other measurements obtainedby the robot (including those to

corners whose locations were not knowna priori), were processed offline using a batch MAP

estimator [91] to obtain an accurate estimate of the entire trajectory. This estimate, as well as

the locations of the known corners, are shown in Fig. 4.3. This constitutes the ground truth

against which the performance of the following five estimators was compared: (i) the standard

EKF, (ii) the OC-EKF, (iii) the standard UKF, (iv) the OC-UKF, and (v) the iSAM. Clearly,

due to the way the ground truth is computed, the estimation errors are expected to have some

correlation to the errors in the ground truth. However, since these correlations are the same for

all estimators, we can still have a fair comparison of their relative performance.

The comparative results for all estimators are presented inFigs. 4.4(a) and 4.4(b), while

Table 4.3 shows the averaged NEES and RMSE of the robot pose and landmark position, re-

spectively. We point out that during the experiment the robot detected a number of landmarks

that werenot included in the set of 20 known corners (e.g., movable objects such as furniture).

Since no ground truth was available for these objects, we only used the 20 known corners for

computing the landmarks’ error statistics. From the experimental results, it becomes evident

that the OC-UKF outperforms both the standard EKF and UKF, and also achieves better ac-

curacy than the OC-EKF. This agrees with the simulation results presented in the preceding

section. It should be noted that the reported NEES in Fig. 4.4(a) was computed only from a

single run (i.e., this is not an average over many Monte-Carlo runs as in the simulations). To

evaluate an estimator’s consistency, the average NEES overmany Monte-Carlo runs is a suit-

able metric, while the NEES values in a single experiment do not dictate which estimator is

consistent or not. Regardless, we show these results mainlyto demonstrate the large difference

in performance between the OC-EKF/UKF and the standard EKF/UKF. These experimental re-

sults, along with those from the simulations, further support our conjecture that the mismatch in

the dimension of the unobservable subspace between the statistically-linearized SLAM system

and the underlying nonlinear system is a fundamental cause of filter inconsistency.

As evident from Fig. 4.4(b) and Table 4.3, the OC-EKF/UKF achieve similar accuracy to,

and better consistency than, the iSAM algorithm. As mentioned in the previous section, one

possible explanation for this is that the iSAM algorithm does not iteratively update the whole
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Table 4.3: [Indoor Experiment] Robot pose and landmark position estimation performance and
runtime

Std-EKF OC-EKF Std-UKF OC-UKF iSAM

Robot Position RMSE (m)

0.7323 0.5896 0.7268 0.5384 0.6108

Robot Heading RMSE (rad)

0.0512 0.0392 0.0508 0.0349 0.0388

Robot Pose NEES

6.0939 3.4575 6.0307 4.5442 9.1270

Landmark Position RMSE (m)

0.9929 0.8438 0.9894 0.8183 0.6528

Landmark Position NEES

7.3180 6.0354 7.2928 7.0123 9.6627

Total CPU Execution Time (sec)

304.761 304.251 306.689 307.930 350.379
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Figure 4.4: [Indoor Experiment] Experimental results: (a)NEES of the robot-pose errors, and
(b) estimation errors of the robot pose (position and orientation). In these plots, the solid lines
with circles correspond to the standard EKF, the dashed lines to the OC-EKF, the solid lines
with crosses to the standard UKF, the solid lines to the OC-UKF, and the dash-dotted lines to
the iSAM algorithm. Note that the NEES and estimation error values of the standard EKF and
the standard UKF are almost identical, and the estimation errors of the OC-UKF, the OC-EKF
and the iSAM algorithm are also very close to each other, which makes the corresponding lines
difficult to distinguish.

measurement Jacobian at each time step, which may incur large linearization and thus estima-

tion errors. Inaccuracies in the measurement Jacobian propagate into the covariance estimated

by the iSAM algorithm, which results in significantly higherNEES values as compared to the

OC-EKF/UKF. Interestingly, as seen from Table 4.3, the OC-UKF has a lower computational

cost than the iSAM in this experiment, although all the algorithms attain faster-than-real-time

performance. This can be justified by the fact that the computational cost of the iSAM algorithm

increases as the robot trajectory grows. Moreover, the 11 loop-closing events occurring along

the robot trajectory in this experiment significantly increase fill-in in the square-root information

matrix and thus the computational complexity for solving the system.

At this point we should note that in this indoor experiment (as well as the outdoor experi-

ment presented in the next section) the measurement correspondences were known. If not, then

to solve the data association problem, the iSAM algorithm would need to recover marginal co-

variances, which will significantly increase its processing requirements [88]. By contrast, since
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Table 4.4: [Outdoor Experiment] Estimation accuracy and runtime

iSAM OC-EKF OC-UKF

Robot Position RMSE (m)

4.2111 5.9069 3.8084

Total CPU Execution Time (sec)

31.5482 35.6811 34.6138

the covariance matrix is maintained in the OC-EKF/UKF, the marginal covariances are imme-

diately available and hence the maximum-likelihood data association incurs minimal overhead.

Lastly, it is very important to observe from Table 4.3 that the two UKFs (i.e., the stan-

dard UKF and the proposed OC-UKF) have similar timing performance as the two EKFs (i.e,

the standard EKF and the OC-EKF). This is attributed to the proposed sampling strategy (see

Lemma 4.4.1), which results in the UKF having computationalcomplexity of the same order as

that of the EKF.

4.8.2 Outdoor environment

To further examine the performance of the proposed OC-UKF, we tested our algorithm on a

publicly available SLAM dataset, the Sydney Victoria Park dataset. The experimental platform

was a 4-wheeled vehicle equipped with a kinematic GPS, a laser sensor, and wheel encoders.

The GPS system was used to provide ground truth for the robot position. Wheel encoders were

used to provide odometry measurements, and propagation wascarried out using the Ackerman

model. In this particular application, since the most common features in the environment were

trees, the profiles of trees were extracted from the laser data, and the centers of the trunks

were then used as the point landmarks. It should be pointed out that in this test, to ensure a

fair comparison with the iSAM algorithm, we employed the preprocessed dataset which is also

available in the iSAM package [89]. This preprocessed dataset contains 6969 robot poses and

151 landmarks with 3640 measurements, recorded over 26 minutes.

Since the OC-EKF and the OC-UKF were already shown in the preceding simulations and

experiment to perform significantly better, in terms of accuracy and consistency, than the stan-

dard EKF and UKF, in this test, we omitted the comparison to the two latter filters for clarity of
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Figure 4.5: [Outdoor Experiment] Experimental results: (a) Robot trajectory and landmark
estimates as compared to the GPS data, and (b) robot positionestimation errors. Note that,
since in this test the GPS satellite signals were not always available, we computed the estimation
errors only when GPS was available. In these plots, the dash-dotted lines and stars correspond
to the iSAM estimates of the trajectory and the landmarks, respectively, the dashed lines and
triangles to the OC-EKF, and the solid lines and circles to the OC-UKF, while the dots denote
the sparse GPS data points.

presentation. Instead, we focus on the accuracy comparisonof the OC-UKF with the OC-EKF

and the iSAM algorithm. In this experiment, true landmark positions and true robot orientations

were not available. We hence only compared the position-estimation performance of the three

approaches (i.e., the OC-EKF, the OC-UKF, and the iSAM algorithm). Note also that, as men-

tioned in Section 4.8.1, the NEES computed from a single experimental run is not well-suited

for analyzing the consistency of the estimators, and thus wehereafter focus on the comparison

of accuracy and processing requirements. Specifically, Fig. 4.5(a) depicts the trajectory and

landmark estimates produced by the three estimators as compared to the GPS ground truth,

while Fig. 4.5(b) shows the corresponding estimation errors of the robot position. Table 4.4

shows the average estimation errors (i.e., RMSE) of robot position as well as the total CPU

runtime for the three estimators compared. Clearly, the OC-UKF achieves better accuracy than

both the OC-EKF and iSAM, while incurring comparable computational cost. In particular, the

OC-UKF attains 36% and 10% reduction in robot position estimation errors as compared to the
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OC-EKF and iSAM, respectively, while at 3% lower7 and only 10% higher computational

cost. We repeat that the timing result for iSAM does not include the runtime of computing

marginal covariances for data association. These results agree with what we have observed in

the indoor experiment presented in Section 4.8.1.

4.9 Summary

This work focuses on UKF-based SLAM, and in particular on theissues of computational com-

plexity and filter inconsistency. The first contribution of this work is the formulation of a novel

UKF-based SLAM algorithm that has computational complexity of the same order as that of

EKF-based SLAM. In particular, we have proposed a new sampling scheme in which the un-

scented transformation employed by the UKF is only applied to the subset of states that appear

in the nonlinear process and measurement models, instead ofthe entire state. Thus, by adopt-

ing this new sampling scheme, the UKF-based SLAM requires computing the square root of

small, constant-size matrices, which leads to computational complexity linear during propa-

gation, andquadratic during update. Furthermore, we have shown that a mismatch between

the observability properties of the linear-regression-based system model employed by the UKF,

and those of the underlying nonlinear SLAM system, causes inconsistency. To address this

issue, we have introduced a novel Observability-Constrained (OC)-UKF, which ensures that

the UKF system model has an unobservable subspace of appropriate dimensions, by enforc-

ing observability constraints on the filter’sinferredJacobians. Through extensive Monte-Carlo

simulations and real-world experiments, the OC-UKF is shown to achieve comparable or better

performance, in terms of consistency, accuracy and computational complexity, as compared to

other state-of-the-art SLAM algorithms such as the OC-EKF and iSAM.

7 Note that in this experiment, the OC-UKF has lower cost than the OC-EKF, primarily because the Mahalanobis-
distance test [14] in the OC-UKF rejects more outlier measurements than that in the OC-EKF.



Chapter 5

Observability-Constrained SWF for

SLAM

In this chapter, we study the consistency issue of smoothingapproaches, in particular,

the sliding-window filter (SWF) when applied to the SLAM problem. By adapting our

observability-based methodology that was presented within the filtering framework, we develop

a novel Observability-Constrained (OC)-SWF. Part of this chapter has been published in [67].

5.1 Introduction

As discussed before, among the existing approaches for robot localization, the EKF is one of

the most popular methods, which is primarily due to its ease of implementation and relatively

low processing requirements. However, the EKF, as well as any linearization-based filtering

approach, may suffer from the accumulation of linearization errors. This is because once lin-

earization points are selected at a given time step for computing the filter Jacobians, they cannot

be updated at later times, when more measurements become available for improving them. In

contrast, a batch-MAP estimator [91] can improve the estimation accuracy by computing con-

sistent state estimates for all time steps based on all available measurements. Under a Gaussian

prior and measurement noise assumption (which is common in practice), finding the MAP es-

timates requires solving a nonlinear least-squares problem (see Section 5.2), whose counterpart

in computer vision is known as bundle adjustment [163]. A variety of iterative algorithms have

been employed for solving this problem. For example, the square-root SAM method [36] solves

126
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the SLAM problem efficiently by using variable reordering, awell-known technique for sparse

linear systems. However, since the size of the state vector in the batch-MAP estimator increases

continuously over time, the processing and memory requirements become too high for real-time

operation in large-scale problems (e.g., a robot exploringa large environment with millions of

landmarks).

To overcome this limitation, a sliding-window filter (SWF) [142] (also called a fixed-lag

smoother (FLS) [38,111,132]) can be used to estimate the states over a sliding time window at

a fixed computational cost. The SWF concurrently processes all the measurement constraints

between states in the window, and better addresses the nonlinearity of the problem by iteratively

relinearizing the process and measurement equations. Thisapproach is resource-adaptive: de-

pending on the available computational resources, it can scale from the iterated EKF solution if

only a single time step is maintained, to the optimal batch-MAP solution if the sliding window

spans the entire time horizon.

The key characteristic of the SWF is the marginalization of old states from the sliding win-

dow, a process that appropriately models the uncertainty ofthese states [132, 142, 163]. How-

ever, due to marginalization,different estimatesof the same statesare used aslinearization

points in computing the Hessian matrix during estimation (see Section 5.3 and [38]). This re-

sults in different parameter observability properties [14] as compared to the batch-MAP estima-

tor. Specifically, the Hessian (Fisher information matrix)of the standard SWF has a nullspace

of lower dimension than that of the batch-MAP estimator. This implies that the estimator erro-

neouslybelievesit has information along more directions of the state space than those contained

in the measurements. This leads to inconsistent estimates,i.e., estimates whose accuracy and

uncertainty measure are worse than the actual ones. This estimation inconsistency is a serious

problem, since when an estimator is inconsistent, the accuracy of the produced estimates is

unknown, which in turn makes the estimator unreliable [14].

In order to improve the consistency and accuracy of the SWF, in this chapter we propose

an Observability-Constrained (OC)-SWF as a general smoothing framework. In particular, we

postulate that by ensuring the Hessian matrix has a nullspace of appropriate dimension, we can

avoid the influx of spurious information in the unobservabledirections of the parameter (state)

space, thus improving the consistency of the estimates. Based on this insight, the OC-SWF

extends the observability-based methodology for designing consistent EKFs (see Chapter 2
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and [72]). The key idea behind our approach is to select the linearization points for comput-

ing the Jacobians, and thus the Hessian, so as to ensure that its nullspace dimension does not

arbitrarily decrease.

It should be pointed out that a prior-linearization (PL)-SWF for motion estimation was

proposed in [38]. In particular, the PL-SWF computes the Hessian using the prior, instead of

the current, estimates, for the states connected via measurements to marginalized states. This

ensures the same estimates for the same states are used, and the appropriate dimension of the

Hessian’s nullspace is preserved. However, if the prior estimates are inaccurate, the linearization

errors will be large and may degrade the estimator’s performance. In contrast, the proposed

OC-SWF selectsoptimal linearization points for computing the Hessian, in the sense that they

not only ensure the correct dimension for the nullspace of the Hessian, but also minimize the

linearization errors. We stress that apart from the SLAM problem treated in this work, the

proposed OC-SWF is applicable to a large class of nonlinear estimation problems in robotics

and computer vision, such as visual odometry [126] and vision-aided inertial navigation [120].

5.2 SLAM batch-MAP formulation

In this section, we describe the batch-MAP formulation of the SLAM problem, which forms

the basis for the ensuing derivations of the SWF. In particular, we aim at estimating the entire

robot trajectory up to the current time-stepk, as compared to the only current robot pose in the

filtering approaches, as well as the positions of all observed landmarks [see (2.1)]:

x0:k =
[
xTR0

xTR1
· · · xTRk

pTL1
. . . pTLM

]T
(5.1)

In what follows, we start by presenting the general motion and measurement models that

are similar to the ones used in the EKF-SLAM (see Section 2.3). Subsequently, we describe the

batch-MAP estimator.

5.2.1 Motion model

Consider a robot equipped with an odometry sensor moving on aplane. The odometry serves

as the control input to propagate the robot pose, according to the following motion model [also
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see (2.2) and (2.3)]:

pRk
= pRk−1

+C(φRk−1
) Rk−1pRk

(5.2)

φRk
= φRk−1

+ Rk−1φRk
(5.3)

whereC(·) denotes the2 × 2 rotation matrix, anduk−1 = Rk−1xRk
= [Rk−1pTRk

Rk−1φRk
]T

is the true odometry (control input), i.e., the robot’s motion between time-stepsk − 1 and

k, expressed with respect to the robot’s frame at time-stepk − 1, {Rk−1}. The corresponding

odometry measurement,umk−1
, is assumed to be corrupted by zero-mean white Gaussian noise,

wk−1 = uk−1−umk−1
, with covarianceQk−1. This motion model is described by the following

generic nonlinear function:

g(x0:k,uk−1) = xRk
− f(xRk−1

,umk−1
+wk−1) = 0 (5.4)

To employ the batch-MAP estimator, it is necessary to linearize (5.4) and compute the Jacobians

with respect to the state vector (5.1) and the noise, respectively, i.e.,

Φk−1 ,
∂g

∂x0:k

∣∣∣
{x⋆

0:k,0}
=
[
03×3 · · · ΦRk−1

I3 03×2 · · · 03×2

]
(5.5)

Gk−1 ,
∂g

∂wk−1

∣∣∣
{x⋆

0:k,0}
=

[
C(φ⋆Rk−1

) 02×1

01×2 1

]
(5.6)

with

ΦRk−1
= −


 I2 J

(
p⋆Rk

− p⋆Rk−1

)

01×2 1


 (5.7)

wherex⋆0:k denotes the linearization point for the state (5.1), while azero vector is used as the

linearization point for the noise. Clearly, the values of the Jacobian matrices depend on the

choice of linearization points, which is the key fact our approach relies on.

5.2.2 Measurement model

As discussed before, the robot-to-landmark measurements in SLAM are a function of the rela-

tive position of the observed landmark with respect to the robot [also see (2.10)]:

zij = hij(x0:k) + vij = h
(
RjpLi

)
+ vij (5.8)
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whereRjpLi
= CT (φRj

)(pLi
− pRj

) is the position of thei-th landmark with respect to the

robot at time-stepj, andvij is zero-mean Gaussian measurement noise with covarianceRij .

In this work, we allowh(·) to be any measurement function (e.g., a direct measurement of

relative position, a pair of range and bearing measurements, bearing-only measurements, etc.).

In general, the measurement function is nonlinear, and its Jacobian matrix is computed as:

Hij ,
∂hij

∂x0:k

∣∣∣
{x⋆

0:k ,0}
=
[
0 · · · HRij

0 · · · HLij
0 · · · 0

]
(5.9)

with

HRij
= (∇hij)C

T (φ⋆Rj
)
[
−I2 −J(p⋆Li

− p⋆Rj
)
]

(5.10)

HLij
= (∇hij)C

T (φ⋆Rj
) (5.11)

whereHRij
andHLij

are the Jacobians with respect to the robot pose at time-stepj and the

i-th landmark position, respectively, and∇hij denotes the Jacobian ofhij with respect to the

robot-relative landmark position,RjpLi
, evaluated at the linearization point,x⋆0:k.

5.2.3 Batch-MAP estimator

The batch-MAP estimator utilizes all the available information to estimate the state vector (5.1).

The information used includes: (i) the prior information about the initial state, described by a

Gaussian pdf with mean̂x0|0 and covarianceP0|0, (ii) the motion information (5.4), and (iii)

the sensor measurements (5.8). In particular, the batch-MAP estimator seeks to determine the

estimatêx0:k|k that maximizes the posterior pdf:

p(x0:k|Z0:k) ∝ p(xR0)

k∏

κ=1

p(xRκ |xRκ−1)
∏

zij∈Z0:k

p(zij |xRj
,pLi

) (5.12)
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whereZ0:k denotes all the available measurements in the time interval[0, k]. For Gaussian state

and measurement noise [see (5.4), and (5.8), respectively], this pdf (5.12) can be written as:

p(x0:k|z0:k) ∝ (5.13)

1√
(2π)n|P0|0|

exp

(
−1

2
||xR0 − x̂0|0||2P0|0

)
×

k∏

κ=1

1√
(2π)3|Q′

κ−1|
exp

(
−1

2
||xRκ − f(xRκ−1 ,umκ−1)||2Q′

κ−1

)
×

∏

zij∈Z0:k

1√
(2π)m|Rij |

exp

(
−1

2
||zij − hij(x0:k)||2Rij

)

wheren = dim(xR0) is the dimension of the prior statexR0 , andm = dim(zk) is the di-

mension of the measurementzk. In the above expression, we have also employed the notations,

||a||2M , aTM−1a andQ′
k , GRk

QkG
T
Rk

[see (5.4)]. Hence, maximizing (5.13) is equivalent

to minimizing the following cost function:

c(x0:k) =
1

2
||xR0 − x̂0|0||2P0|0

+ (5.14)

k∑

κ=1

1

2
||xRκ−f(xRκ−1 ,umκ−1)||2Q′

κ−1
+

∑

zij∈Z0:k

1

2
||zij − hij(x0:k)||2Rij

The cost functionc(x0:k) is nonlinear, and a standard approach to determine its minimum

is to employ Guass-Newton iterative minimization [163]. Specifically, at theℓ-th iteration of

this method, a correction,δx(ℓ)
0:k, to the current estimate,̂x(ℓ)

0:k|k, is computed by minimizing the

second-order Taylor-series approximation of the cost function which is given by:

c(x̂
(ℓ)
0:k|k+δx

(ℓ)
0:k) ≃ c(x̂

(ℓ)
0:k|k)+b

(ℓ)T

b δx
(ℓ)
0:k+

1

2
δx

(ℓ)T

0:k A
(ℓ)
b δx

(ℓ)
0:k (5.15)

where

b
(ℓ)
b ,∇x0:k

c(·)
∣∣∣
{x⋆

0:k=x̂
(ℓ)
0:k|k

}
(5.16)

A
(ℓ)
b ,∇2

x0:k
c(·)
∣∣∣
{x⋆

0:k=x̂
(ℓ)
0:k|k

}
(5.17)
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are the gradient and Hessian ofc(·) with respect tox0:k, evaluated at the current state esti-

matex̂(ℓ)
0:k|k, i.e.,x⋆0:k = x̂

(ℓ)
0:k|k. Specifically, at theℓ-th iteration,b(ℓ)

b is [see (5.5) and (5.9)]:

b
(ℓ)
b = ΠTP−1

0|0

(
x̂
(ℓ)
R0|k

−x̂0|0
)
− (5.18)

∑

zij∈Z0:k

H
(ℓ)T

ij R−1
ij

(
zij−hij(x̂

(ℓ)
0:k|k)

)
+

k∑

κ=1

Φ
(ℓ)T

κ−1Q
′−1

κ−1
(
x̂
(ℓ)
Rκ|k

−f(x̂
(ℓ)
Rκ−1|k

,umκ−1)
)

whereΠ =
[
In 0 · · · 0

]
. On the other hand, the Hessian matrix,A

(ℓ)
b , is approximated in

the Gauss-Newton method by [see (5.5) and (5.9)]:

A
(ℓ)
b ≃ ΠTP−1

0|0Π+
∑

zij∈Z0:k

H
(ℓ)T

ij R−1
ij H

(ℓ)
ij +

k∑

κ=1

Φ
(ℓ)T

κ−1 Q
′−1

κ−1Φ
(ℓ)
κ−1 (5.19)

which is a good approximation for small-residual problems [163]. Due to the sparse structure

of the matricesH(ℓ)
ij andΦ(ℓ)

κ [see (5.5) and (5.9)], the matrixA(ℓ)
b is also sparse, which can

be exploited to speed-up the solution of the linear system in(5.20) [163]. The valueδx(ℓ)
0:k that

minimizes (5.15) is found by solving the following linear system:

A
(ℓ)
b δx

(ℓ)
0:k = −b

(ℓ)
b (5.20)

Onceδx(ℓ)
0:k is found, the new state estimate is computed as:

x̂
(ℓ+1)
0:k|k = x̂

(ℓ)
0:k|k + δx

(ℓ)
0:k (5.21)

Given an initial estimatêx(0)
0:k|k that resides within the attraction basin of the global optimum,

this iterative algorithm will compute the global minimum (i.e., MAP estimate) for the entire

state given all measurements up to time-stepk.

5.3 SWF-based SLAM

It is clear from the preceding section that, as the robot continuously moves and observes new

landmarks, the size of the state vector of the batch-MAP estimator,x0:k, increases. Conse-

quently, the computational cost of obtaining a state estimate continuously grows, and at some

point it will inevitably become too high for real-time operation. In order to adapt to the avail-

able computational resources, marginalization [38, 132, 142] can be used to discard old, ma-

tured states. This results in a constant-cost SWF which maintains a constant-size window of
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states [142, 143]. In this section, we describe the effects of the marginalization used by the

standard SWF on the system’s observability properties. This analysis forms the basis for our

proposed algorithm (see Section 5.4). For more details on the derivation of the marginalization

equations, the interested reader is referred to [38].

We consider a general scenario where marginalization of oldstates is carried out at time-

stepko, when all the measurements during the time interval[0, ko] are available. Subsequently

the robot keeps moving and collects new measurements in the time interval [ko + 1, k], and

estimation takes place again at time-stepk. The old states that are marginalized out at time-step

ko are denoted by:

xM ,

[
xTR0:km

pTLM1
· · · pTLMm

]T

Note that it is not necessary to sequentially marginalize out the old robot poses,xR0:km
; instead,

we can selectively discard the most matured (i.e., accurately estimated) ones. The remaining

states that stay active in the sliding window after marginalization are denoted by:

xR ,

[
xTRkm+1:ko

pTLR1
· · · pTLRr

]T

Upon marginalization, all the states inxM, as well as all the measurements that involve these

states (denoted byZM) are discarded. In their place, we maintain a Gaussian pdf, that de-

scribes the information that the discarded measurements convey about the active states,xR.

The information matrix of this Gaussian is given by:

Ap(ko) = ARR(ko)−ARM(ko)A
−1
MM(ko)AMR(ko) (5.22)

where the matrices appearing in the above equation are defined as the partitions of the following

matrix:

Am(ko) = ΠTP−1
0|0Π+

km−1∑

κ=0

ΦT
κ (ko)Q

′−1
κ Φκ(ko) +

∑

zij∈ZM

HT
ij(ko)R

−1
ij Hij(ko) (5.23)

=:

[
AMM(ko) AMR(ko)

ARM(ko) ARR(ko)

]
(5.24)

Close inspection reveals thatAm(ko) is the matrix describing the information contained in all

the discarded measurements (odometry, robot-to-landmark, and prior). Thus,Ap(ko), which is

the Schur complement ofAMM(ko) in Am(ko), describes the information that the discarded

measurements give us aboutxR. We also note that, in the above, the time index(ko) has been
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added to denote the fact that all the Jacobians are computed using the estimatêx0:ko|ko as the

linearization point.

After marginalization the robot continues moving in its environment, and new states are

added to the state vector during[ko + 1, k]. These are denoted by:

xN ,

[
xTRko+1:k

pTLN1
· · · pTLNn

]T

Now, at time stepk, the “active states” arexR andxN. In order to compute estimates for

the active states, the SWF employs the “active” measurements, ZA = Z0:k \ ZM, along

with the motion model and the information from the marginalized states [expressed byAp(ko)

in (5.22)] [38].

As described above, the key idea in the SWF is that the information of all the marginalized

measurements is represented using a single Gaussian distribution. While this entails an approx-

imation, it also enables the SWF to maintain constant computational complexity, that depends

only on the number of currently active states, and not on the past history of marginalized states.

5.3.1 Parameter observability properties

We now examine the parameter observability properties [14]of the standard SWF-based SLAM,

which, for the time being, is considered as a parameter (instead of state) estimation problem.

The study of parameter observability examines whether the information provided by the avail-

able measurements is sufficient for estimating the parameters without ambiguity. When param-

eter observability holds, the Fisher information matrix (i.e., the Hessian matrix) is invertible.

Since the Fisher information matrix describes the information available in the measurements,

by studying its nullspace we can gain insight about the directions in the parameter (state) space

along which the estimator acquires information. In what follows, we will compare the param-

eter observability properties of the standard SWF with those of the batch-MAP estimator, to

draw conclusions about the estimator’s consistency.

We first notice that the nullspace of the Hessian matrix of thebatch-MAP estimator (5.19)
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at time-stepk, is given by:1

null (Ab(k)) = span
col.




I2 Jp̂R0|k

01×2 1
...

...

I2 Jp̂Rk|k

01×2 1

I2 Jp̂L1|k

...
...

I2 Jp̂LM|k




(5.25)

which is of dimension three. This agrees with the fact that inSLAM, three d.o.f. corresponding

to the global translation and rotation are unobservable (see Chapter 2 and [72]). However, as

shown below, this is not the case for the standard SWF.

In the standard SWF, the matrix that describes the information for theentirehistory of states,

x0:k =
[
xTM xTR xTN

]T
, is given by [38]:

A(k) =

km−1∑

κ=0

ΦT
κ (ko)Q

′−1
κ Φκ(ko) +

∑

zij∈ZM

HT
ij(ko)R

−1
ij Hij(ko)

︸ ︷︷ ︸
A1(ko)

+

k−1∑

κ=km

ΦT
κ (k)Q

′−1
κ Φκ(k)

∑

zij∈ZA

HT
ij(k)R

−1
ij Hij(k)

︸ ︷︷ ︸
A2(k)

(5.26)

where the matrixA1(ko) contains all the information pertaining to the marginalized states, and

A2(k) the information pertaining to the active states at time-step k. Again, we note that the

time indices(ko) and(k) indicate the state estimates (x̂0:ko|ko andx̂0:k|k, respectively) used as

linearization points in computing each of the above terms. The HessianA(k) in (5.26) has the

1 Since we are interested in the information contained in the available measurements, the case without prior (i.e.,
P0|0 → ∞) is considered here.
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following interesting structure:

A(k) =




AMM(ko) AMR(ko) 0

ARM(ko) ARR(ko) 0

0 0 0




︸ ︷︷ ︸
A1(ko)

+




0 0 0

0 ARR(k) ARN(k)

0 ANR(k) ANN(k)




︸ ︷︷ ︸
A2(k)

=




AMM(ko) AMR(ko) 0

ARM(ko) ARR(ko) +ARR(k) ARN(k)

0 ANR(k) ANN(k)


 (5.27)

It is clear now that different estimates,x̂R(ko) andx̂R(k), are used in computing the Hessian

matrix. This occurs because some of the states inxR are involved in measurements both in

ZM andZA. As a result of the above structure, it can be shown that the last column of the

matrix in (5.25) doesnot belong in the nullspace ofA(k) [38]. Instead, the nullspace ofA(k)

is spanned by only the first two columns of (5.25), which in turn shows that the rank of the

Hessian in the SWF ishigher than the rank of the Hessian of the batch MAP. Clearly, this

difference is not desirable, since both estimators processthe same measurements, and thus have

access to the same amount of information.

5.4 Observability-Constrained (OC)-SWF SLAM

As seen from the preceding section, due to marginalization,the standard SWF possesses dif-

ferent parameter observability properties from the batch-MAP estimator, since its Hessian has

a nullspace of lower dimension than that of the batch-MAP estimator. This implies that the

standard SWF acquires spurious information along one direction of the state space (the one

corresponding to global orientation), which can lead to inconsistency. To address this issue, we

adopt the idea of observability-based rules for choosing linearization points that was originally

proposed in our previous work [72] (also see Section 2.5), and develop a new Observability-

Constrained (OC)-SWF within the smoothing framework.

The key idea of the proposed approach is that the linearization points used in computing

the Hessian matrix are selected so as to ensure that the Hessian has a nullspace of the same

dimension as that of the batch-MAP estimator [see (5.25)]. Different approaches for selecting

linearization points are possible to satisfy this observability condition. For example, the prior-

linearization (PL)-SWF proposed in [38] employs a simple linearization scheme to achieve
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this goal based on [70]. Specifically, when computing the Hessian, it uses the prior estimates,

x̂R(ko), instead of the current estimateŝxR(k), for the states inxR that are connected to

marginalized states. By doing so, it is guaranteed that the same estimate is used as the lin-

earization point for each of these states. However, even though the PL-SWF typically performs

substantially better than the standard SWF (see Section 5.5), the prior estimateŝxR(ko) used as

linearization points could be inaccurate, and thus can result in large linearization errors, which

can degrade the estimator’s performance. Therefore, in theproposed OC-SWF, we select the

linearization points for the statesxR andxN (i.e., the states that are still “active” in the mini-

mization), in a way that not only ensures the correct dimension for the nullspace of the Hessian

matrix, but also minimizes their difference from the current best available estimates (see [72]).

This can be formulated as the following constrained minimization problem:2

min
x⋆
R
,x⋆

N

||x⋆R − x̂R(k)||2 + ||x⋆N − x̂N(k)||2 (5.28)

subject to A(k)Nk = 0 (5.29)

In this formulation,Nk is a design choice that defines the desired nullspace with correct

dimension. Ideally, we would like to have the same nullspaceas (5.25). However, this is not

possible, as in the SWF some of the old states have been marginalized, and thus we do not

maintain the up-to-date estimates for them. We next describe our choice of estimates used for

constructingNk, and denote these estimates by the symbol “¯”. Specifically, during the(ℓ+1)-

th Gauss-Newton iteration, we use the following estimates to construct the matrixNk: (i) For

the new states,xN, as well as those states inxR for which no prior exists, we use the estimates

from theℓ-th iteration, i.e.,̄xi = x̂i(k); (ii) For all marginalized states,xM, as well as for states

in xR for which a prior exists, we use the prior estimate, i.e.,x̄i = x̂i(ko). By replacing the

pertinent state estimates in (5.25) by the estimates selected above,̄x0:k =
[
x̄TM x̄TR x̄TN

]T
,

we obtain the desired nullspace,Nk = Nk(x̄0:k).

By construction, the nullspaceNk(x̄0:k) always satisfies the equalityA1(ko)Nk = 0. Thus,

2 For the clarity of presentation, hereafter the superscript(ℓ) is dropped, since, without loss of generality, we
consider the(ℓ+ 1)-th iteration in Gauss-Newton given that the results from the ℓ-th iteration are available.
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the conditionA(k)Nk(x̄0:k) = 0 can be written as [see (5.26)]:

A2(k)Nk = 0

⇒




k−1∑

κ=km

ΦT
κQ

′−1
κ Φκ +

∑

zij∈ZA

HT
ijR

−1
ij Hij


Nk = 0

⇒




ΦκNk = 0 , ∀κ = km, . . . , k − 1

HijNk = 0 , ∀zij ∈ ZA

(5.30)

Using the structure of the JacobiansΦk andHij [see (5.5) and (5.9)] and that of the matrix

Nk (5.25), the above constraints (5.30) can be written as follows:

ΦκNk = 0 ⇒ p⋆Rκ
−p̄Rκ+p̄Rκ+1−p⋆Rκ+1

= 0 (5.31)

HijNk = 0 ⇒ p⋆Rj
− p̄Rj

+ p̄Li
− p⋆Li

= 0 (5.32)

Therefore, the problem (5.28)-(5.29) can be simplified as:

min
x⋆
R
,x⋆

N

||x⋆R − x̂R(k)||2 + ||x⋆N − x̂N(k)||2 (5.33)

subject to




p⋆Rκ

−p̄Rκ+p̄Rκ+1−p⋆Rκ+1
= 0 , ∀κ = km, . . . , k−1

p⋆Rj
−p̄Rj

+p̄Li
−p⋆Li

= 0 , ∀zij ∈ ZA

(5.34)

We now derive an analytical solution to the constrained minimization problem (5.33)-(5.34).

In particular, the approach of Lagrangian multipliers [16]is employed. The Lagrangian function

is constructed as follows:

L = ||x⋆R − x̂R(k)||2 + ||x⋆N − x̂N(k)||2 (5.35)

+
k−1∑

κ=km

µTκ

(
p⋆Rκ

− p̄Rκ + p̄Rκ+1 − p⋆Rκ+1

)
+

∑

(i,j),zij∈ZA

λTij

(
p⋆Rj

− p̄Rj
+ p̄Li

− p⋆Li

)

By setting the derivatives with respect to the state and Lagrangian-multiplier variables equal to

zero, we have:

∂L
∂p⋆Rκ

=





2(p⋆Rκ
−p̂Rκ|k

)+µκ+
∑

i,ziκ∈ZA

λiκ = 0 , if κ = km

2(p⋆Rκ
−p̂Rκ|k

)−µκ−1+
∑

i,ziκ∈ZA

λiκ = 0 , if κ = k

2(p⋆Rκ
−p̂Rκ|k

)+µκ−µκ−1+
∑

i,ziκ∈ZA

λiκ = 0 , else

(5.36)
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∂L
∂p⋆Li

= 2(p⋆Li
−p̂Li|k

)−
∑

j,zij∈ZA

λij = 0 (5.37)

∂L
∂µκ

= p⋆Rκ
− p̄Rκ + p̄Rκ+1 − p⋆Rκ+1

= 0 (5.38)

∂L
∂λij

= p⋆Rj
− p̄Rj

+ p̄Li
− p⋆Li

= 0 (5.39)

∂L
∂x⋆other

= 2(x⋆other − x̂other(k)) = 0 (5.40)

wherexother denotes all the state variables except the ones involved in (5.36)-(5.39). Solv-

ing (5.36), (5.37), and (5.40) yields the following optimalsolutions:

p⋆Rκ
= p̂Rκ|k

− 1

2


δµκ +

∑

i,ziκ∈ZA

λiκ


 (5.41)

p⋆Li
= p̂Li|k

+
1

2



∑

j,zij∈ZA

λij


 (5.42)

x⋆other = x̂other(k) (5.43)

where

δµκ =





µκ , if κ = km

−µκ−1 , if κ = k

µκ − µκ−1 , else

Substituting (5.41)-(5.43) into (5.38) and (5.39) yields the following linear equations in terms

of the Lagrangian multipliers:

∆µκ +
∑

i,ziκ∈ZA

λiκ −
∑

i,zi(κ+1)∈ZA

λi(κ+1)

= 2
(
p̂Rκ|k

− p̄Rκ + p̄Rκ+1 − p̂Rκ+1|k

)
δµκ +

∑

i,ziκ∈ZA

λiκ +
∑

j,zij∈ZA

λij (5.44)

= 2
(
p̂Rκ|k

− p̄Rκ + p̄Li
− p̂Li|k

)
(5.45)
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where

∆µκ =





2µκ − µκ+1 , if κ = km

2µκ − µκ−1 , if κ = k − 1

−µκ−1 , if κ = k

2µκ − µκ−1 − µκ+1 , else

In order to determine the Lagrangian multipliers,µκ andλij , we stack equations (5.44)-(5.45)

for all the measurements (constraints) into matrix-vectorform and solve the resulting linear

system. Once the Lagrangian multipliers are specified, theoptimal linearization points can be

obtained based on (5.41)-(5.43). Subsequently, the Jacobian and Hessian matrices are computed

using the optimal linearization points, and then the standard Gauss-Newton steps are carried out

(see Section 5.2.3). It should be pointed out that, as compared to the standard SWF and the PL-

SWF, the OC-SWF only requires an additional computational overhead of linearly solving for

the Lagrangian multipliers, which in general is cubic in thenumber of active proprioceptive and

exteroceptive measurements.

5.5 Simulation results

A series of Monte-Carlo simulations were conducted under different conditions, in order to

validate the capability of the proposed OC-SWF to improve estimation performance. As be-

fore, the metrics used to evaluate the estimator’s performance were RMSE and NEES [14]. In

simulation tests presented in this section, we conducted 50Monte-Carlo simulations, and com-

pared four different estimators: (1) the batch-MAP estimator, (2) the standard SWF, (3) the

PL-SWF [38], and (4) the proposed OC-SWF. In the simulation setup, a robot with a simple

3-wheel (2 active and 1 caster) kinematic model moves on a planar surface, at a constant ve-

locity of v = 0.5 m/sec. The two active wheels are equipped with encoders, which measure

their revolutions and provide measurements of velocity (i.e., right and left wheel velocities,vr

andvl, respectively), with standard deviation equal toσ = 1%v for each wheel. These mea-

surements are used to obtain linear and rotational velocitymeasurements for the robot, which

are given byv = vr+vl
2 andω = vr−vl

a
, wherea = 0.5 m is the distance between the active

wheels. The standard deviation of the linear and rotationalvelocity measurement noise is thus

equal toσv = σ√
2

andσω =
√
2σ
a

, respectively. We considered a SLAM scenario where a robot
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Figure 5.1: Monte-Carlo simulation results. It is clear that both the PL-SWF and OC-SWF
perform significantly better than the standard SWF, in termsof both consistency (NEES) and
accuracy (RMSE). Note also that the OC-SWF attains better performance than the PL-SWF.

moves along a circular trajectory of total length of about 500 m, and measures bearing angles

to landmarks that lie within its sensing range of 10 m. There are 50 landmarks in total which

are randomly generated along the robot trajectory. This canarise, for example, in the case in

which a robot moves inside corridors and tracks its positionand corners (landmarks) using a

monocular camera. At each time step, approximately 10 landmarks are visible. In the SWFs we

chose to maintain a sliding window comprising 20 robot posesand at most 10 active landmarks.

To ensure a fair comparison among the SWF algorithms, all three of them process the same

data and maintain the same states in their windows. In this simulation, the landmarks to be

marginalized are chosen such that at least two “old” landmarks always remain in the window, to

ensure that the uncertainty does not continuously increase. The batch-MAP estimator processes

all measurements, and is used as the benchmark.

For the results presented here, we considered a case with relatively large measurement noise,

compared to what is typically encountered in practice, since larger noise levels can lead to

larger estimation errors, and thus less accurate linearization, which will make the effects of

inconsistency more apparent. Specifically, the standard deviation of the bearing measurement

noise was set to 10 deg. Fig. 5.1 shows the results for the robot pose based on the compared

estimators, while Table 5.1 depicts the average NEES and RMSE for the landmark positions

(averaged over all the landmarks). First notice that as expected, the batch-MAP estimator attains
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Table 5.1: Landmark position estimation performance

Batch-MAP Std-SWF PL-SWF OC-SWF

RMSE for Landmark Position (m)

0.5184 2.7449 2.6713 2.6235

NEES for Landmark Position

3.7769 42.1306 12.3615 9.5719

the best performance, since it utilizes all the available information, while the SWFs discard the

measurements belonging to the inactive measurement set,ZM, due to marginalization. More

importantly, the two observability-constrained smoothers (i.e., PL-SWF and OC-SWF) perform

substantially better than the standard SWF, in terms of bothconsistency (NEES) and accuracy

(RMSE). This is attributed to the fact that the appropriate parameter observability properties

are preserved in the proposed observability-based smoothing framework. We also note that the

OC-SWF achieves better performance than the PL-SWF. This isdue to the fact that when the

noise is large, the prior estimates used as linearization points in the PL-SWF are inaccurate

(i.e., the linearization errors become significant), whichdegrades the estimator’s performance.

In contrast, the OC-SWF employs, by construction, the optimal linearization points and thus

yields better estimation accuracy.

5.6 Experimental results

To experimentally validate the performance of the OC-SWF, the estimator was tested on the

original Victoria Park dataset courtesy of Nebot and Guivant.3 The experimental platform

was a 4-wheeled vehicle equipped with a kinematic GPS, a laser sensor, and wheel encoders.

The GPS system was used to provide ground truth for the robot position. Wheel encoders were

used to provide odometric measurements, and propagation was carried out using the Ackerman

model. In this particular application, since the most common feature in the environment were

trees, the profiles of trees were extracted from the laser data, the centers of the trunks were then

3 It is available at:http://www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm.
Note that, to ensure the comparison to the batch MAP estimator, we here considered the first half of the dataset.

http://www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm
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Figure 5.2: Experimental results: (a) The robot trajectoryestimates as compared to the GPS
data, and (b) estimation errors of robot position. It is clear that the OC-SWF performs more
accurately than the standard SWF and the PL-SWF.

used as the point landmarks, and distance and bearing measurements to them were used for

estimation [56].

In this test, we compared the same four estimators as in the preceding simulation: (1) the

batch-MAP estimator, (2) the standard SWF, (3) the PL-SWF [38], and (4) the proposed OC-

SWF. Since in this experiment, both true landmark positionsand true robot orientations were

unavailable, we only compared the robot position estimation performance, which is shown in

Fig. 5.2. Specifically, Fig. 5.2(a) depicts the trajectory estimates produced by the four estimators

as compared to the GPS ground truth, while Fig. 5.2(b) shows the estimation errors of the

robot position over time. Note that since the GPS satellite signal was not always available,

we computed the estimation errors only at the times when the GPS was available. As evident

from Fig. 5.2, the OC-SWF performs significantly better thanthe standard SWF and the PL-

SWF [38]. These results, along with those of the simulationspresented in the previous section,

show that it is essential for an estimator to ensure appropriate observability properties in order

to improve its performance.
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5.7 Summary

In this chapter, we addressed the consistency issue of the standard SWF. Even though the SWF

is an appealing smoothing algorithm well-suited for real-time applications where the effects of

nonlinearity of the measurements are significant, it can suffer from inconsistency. In partic-

ular, due to marginalization, the standard SWF uses different estimates for the same states as

linearization points when computing the Hessian matrix, which results in its Hessian having

a nullspace of lower dimension than the batch-MAP estimator. This implies that the standard

SWF acquires spurious information and thus may become inconsistent. To address this issue,

we have introduced an observability-based smoothing framework, which extends the methods

presented in Chapter 2 for EKFs to the case of the SWF. Specifically, we select the linearization

points at which the Hessian is evaluated, so as to ensure thatthe nullspace of the Hessian is

of the same dimension as that of the batch-MAP estimator, while minimizing the linearization

errors. Both simulation and experimental results have shown that the proposed OC-SWF per-

forms better than the standard SWF as well as the PL-SWF [38],in terms of both accuracy and

consistency.



Chapter 6

Towards General Nonlinear Systems

with Partial-State Measurements

In this chapter, we study filter consistency for a broad classof nonlinear systems, i.e., observable

nonlinear systems with partial-state measurements from different sources (sensors). In particu-

lar, we discover that despite the observability of such a general system, the standard EKF often

become inconsistent due to the fact that it acquires spurious information from the measurements

of each source. To address this issue, we adapt the observability-based methodology presented

in the previous chapters, and develop new EKF algorithms to improve consistency by enforcing

the filter to gain information from each source’s measurements only along the correct directions

of the state space. Part of this chapter has been published in[73].

6.1 Introduction

Nonlinear filtering problems arise in numerous science and engineering fields, such as eco-

nomics [34], statistical signal processing [91], radar tracking [17], and navigation and guidance

systems [158]. These problems consist of estimating the state of a nonlinear stochastic system

from noisy measurements. Although the EKF has been successfully applied to many nonlinear

filtering problems, if the nonlinearities are significant, its variants are often used to improve per-

formance. For example, the IEKF [14] iterates the filter update till convergence, by iteratively

relinearizing the measurement function. Alternatively, the UKF [84] deterministically samples

145
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the nonlinear function around the current state estimate, thus improving the linear approxima-

tion by linear regression. Nonlinear filtering problems arechallenging for a number of reasons,

and one particular difficulty is the inconsistency issue. Inparticular, no provably consistent filter

can be constructed for a nonlinear system, and the consistency of every filter has to be evaluated

experimentally. As defined in [14], a state filter is consistent if the estimation errors are zero-

mean and have covariance smaller or equal to the one calculated by the filter. Consistency is

one of the primary criteria for evaluating the performance of any filter; if a filter is inconsistent,

then its estimation accuracy is unknown, which in turn makesthe filter unreliable. In effect,

significant empirical evidence shows that the standard EKF becomes inconsistent in nonlinear

filtering problems such as robot localization [12, 27, 72, 75, 79, 85] (also see Chapters 2 and 3).

The lack of understanding filter consistency and of algorithms for improving consistency is

clearly a significant limitation.

In this chapter, we revisit the problem of filter consistencyfor a broad class of discrete-

time nonlinear systems, by examining the directions of state space along which information is

available from measurements of each source (sensor). Basedon this analysis, we propose a

novel methodology to improve consistency by ensuring that the filter acquires information from

each source’s measurements only along the correct directions of the state space.

In particular, the Fisher information matrix (FIM) [14] forgiven measurements encapsulates

all available information about the entire state of a stochastic system. By marginalizing all but

the initial state, we obtain the corresponding FIM that contains all information available in the

measurements for determining the initial state. Studying the FIM’s structure reveals the direc-

tions along which information is (un)available from the measurements. These can be exploited

in the design of nonlinear estimation algorithms, i.e., enforcing estimators to gain information

from measurements only along correct directions. Moreover, we show that the FIM of the initial

state can be factorized in terms of the observability matrixof the corresponding deterministic

system, and that these two matrices have same rank properties. Based on this key finding,

in order to ensure consistent estimation, we impose the constraint of acquiring information

along the correct directions on a novel decomposition (according to the different measurement

sources) of the observability matrix, instead of the FIM. Tothis end, we introduce two different

EKF algorithms that compute the appropriate filter Jacobians, either directly (i.e., by project-

ing the best-available Jacobians onto the information-available subspace) or indirectly (i.e., by

first finding the optimal linearization points for computingthe Jacobians). As a result, only
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information actually available from each source’s measurements is gained, which substantially

improves the estimation consistency and accuracy, as opposed to the standard EKF.

6.2 Methodology

We consider a general discrete-time nonlinear system of thefollowing form:

xk+1 = f(xk,uk) +wk (6.1)

zi,k = h(xk, si,k) + vi,k , i ∈ {1, . . . , s} (6.2)

wherexk ∈ Rn denotes the state of the system,uk ∈ Rn is the control input, andwk ∈
Rn is zero-mean white Gaussian process noise, i.e.,wk ∼ N (0,Qk). zi,k ∈ Rm is the

measurement taken from thei-th (i ∈ {1, . . . , s}) measurement source (e.g., sensor), and is

generally (although not necessarily) oflower dimension than the state vector, i.e.,m < n,

which is the case of partial-state measurements we considerin this work. The parametersi,k

denotes the known parameters of thei-th measurement source, such as the sensor’s location or

a binary indicator of the availability of thei-th measurement. The random variablevi,k ∈ Rm

is zero-mean white Gaussian measurement noise, i.e.,vi,k ∼ N (0,Ri,k).

We employ the EKF to recursively compute the state estimate and error covariance. Specif-

ically, we linearize the nonlinear system at the linearization points,x⋆
k|k−1 andx⋆

k|k (i.e., the

linearization points before and after the update at time-stepk) [see (6.1), (6.2)] and obtain the

following linearized error-state system:

x̃k+1|k = Φkx̃k|k +wk (6.3)

z̃i,k|k−1 = Hi,kx̃k|k−1 + vi,k , i ∈ {1, . . . , s} (6.4)

where

Φk = ∇xk
f

∣∣∣
{x⋆

k|k
,uk}

, Hi,k = ∇xk
h

∣∣∣
{x⋆

k|k−1
}

(6.5)

The standard choice of linearization point is the current (and thus best) state estimate, which,

however, as will be shown is not necessarily the best choice.Once the propagation and mea-

surement Jacobians are computed, we propagate and update the state estimate and covariance,
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respectively, as follows [14]:

x̂k+1|k = f(x̂k|k,uk) (6.6)

Pk+1|k = ΦkPk|kΦ
T
k +Qk (6.7)

x̂k|k = x̂k|k−1 +Kkrk (6.8)

Pk|k = Pk|k−1 −KkSkK
T
k (6.9)

whereKk = Pk|k−1H
T
i,kS

−1
k is the Kalman gain,rk = zi,k−h(x̂k|k−1, si,k) is the measurement

residual, andSk = Hi,kPk|k−1HT
i,k +Ri,k is the corresponding residual covariance.

6.2.1 Observability and Fisher information

Since the EKF is constructed based on the linearized system [see (6.3) and (6.4)], it is impor-

tant to study the observability properties of the corresponding deterministic system (i.e., noise

free). Observability examines whether the information provided by the available measurements

is sufficient for estimating the initial state without ambiguity. In particular, the observability

matrix [30,112] for the linearized system (6.3)-(6.4) during the time interval[0, k] is defined by

[see (2.22)]:

M =




H0

H1Φ0

...

HkΦk−1 · · ·Φ0




(6.10)

If the system is observable, then the corresponding observability matrix M is full-rank.

The FIM [14] is closely related to the system observability and precisely describes the

information available in the measurements. Thus, by studying its properties, we can also gain

insight about the directions in the state space along which information is actually available. To

this end, we examine the structure of the Hessian (information) matrix of the corresponding

batch-MAP estimation over the time interval[0, k], which is known to be optimal [91]. In what

follows, we show that the FIM of the initial statex0 (obtained by marginalization) has the same

properties as the observability matrix, which motivates usto instead examine the observability

matrix in our analysis.

As discussed in Section 5.2.3, the optimal batch-MAP estimator utilizes all available infor-

mation to estimate theentire state trajectory that is formed by stacking all states in thetime
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interval [0, k]:

x0:k =
[
xT0 xT1 · · · xTk

]T
(6.11)

Specifically, the batch-MAP estimator seeks to determine the entire state-space trajectory esti-

matex̂0:k|k by maximizing the following posterior pdf (assumingnoprior is available):

p(x0:k|z0:k) ∝
k−1∏

κ=0

p(xκ+1|xκ)
k∏

κ=0

p(zi,κ|xκ) (6.12)

wherez0:k denotes all the sensor measurements in the time interval[0, k]. In the above expres-

sion, we have employed the assumption of independent state and measurement noise and the

Markovian property of the system dynamics [see (6.1) and (6.2), respectively]. Moreover, using

the assumption of Gaussian noise, the above posterior pdf (6.12) can be written as:

p(x0:k|z0:k) ∝ (6.13)

k−1∏

κ=0

1√
|2πQκ|

exp

(
−1

2
||xκ+1 − f(xκ,uκ)||2Qκ

)
×

k∏

κ=0

1√
|2πRi,κ|

exp

(
−1

2
||zi,κ − h(xκ, si,κ)||2Ri,κ

)

Due to the monotonicity of the negative logarithm, the maximization of (6.13) is equivalent to

the minimization of the following cost function under mild assumptions:

c(x0:k) =
k−1∑

κ=0

1

2
||xκ+1 − f(xκ,uκ)||2Qκ

+
k∑

κ=0

1

2
||zi,κ − h(xκ, si,κ)||2Ri,κ

(6.14)

The Hessian (information) matrix is computed as [see (5.19)]:

A =
k−1∑

κ=0

FT
κ Q

−1
κ Fκ +

k∑

κ=0

HT
κR

−1
κ Hκ (6.15)

with

Fκ =
[
0 · · · −Φκ In · · · 0

]
(6.16)

Hκ =
[
0 · · · −Hκ · · · 0

]
(6.17)

whereHκ = Hi,κ andRκ = Ri,κ, if the i-th source provides the measurement at time-stepκ,

i.e.,zκ = zi,κ (note that hereafter we will use these notations interchangeably). It is important
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to note that due to the sparse structure ofFκ andHκ [see (6.16) and (6.17)], the FIM (6.15) has

banded structure:

A =




ΦT
0Q

−1
0 Φ0 +HT

0 R
−1
0 H0 −ΦT

0 Q
−1
0 0 · · · 0

−Q−1
0 Φ0 Q−1

0 +ΦT
1 Q

−1
1 Φ1 +HT

1R
−1
1 H1 −ΦT

1Q
−1
1 · · · 0

. .. . . . . . . . .. . . .

0 · · · −Q−1
k−2Φk−2 Q−1

k−2 +ΦT
k−1Q

−1
k−1Φk−1 +HT

k−1R
−1
k−1Hk−1 −ΦT

k−1Q
−1
k−1

0 · · · 0 −Q−1
k−1Φk−1 Q−1

k−1 +HT
kR

−1
k Hk




(6.18)

We now show that the Schur complement of the full FIM with respect to the initial statex0

(i.e., the information matrix ofx0, denoted byA0), has the following relation to the observabil-

ity matrix M:

Lemma 6.2.1. The FIM of the initial statex0, i.e., the corresponding Schur complement of the

full FIM, can be factorized as:

A0 = MTΣM (6.19)

whereM is the observability matrix andΣ is a nonsingular (full-rank) real symmetric block-

diagonal matrix.

Proof. See Appendix D.1.

From this lemma as well as the linear algebra theory [49], studying the FIM of the initial

state is equivalent to examining the observability matrix.Therefore, the FIM essentially can be

seen as the “observability gramian” for the corresponding stochastic system. Note also that the

stochastic system (6.1)-(6.2) is observable if and only if the corresponding deterministic system

is observable. In the following, we will exploit this resultand decompose the observability

matrix in a novel way (i.e., based on the measurement sources), which inspires the proposed

approaches for improving filter consistency.
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6.2.2 Algorithms

Due to the additive property of the measurement information, we decompose the FIM according

to the measurements originated from each of thes sources [see (6.15)]:

A =
k−1∑

κ=0

FT
κ Q

−1
κ Fκ +

s∑

i=1

k∑

κ=0

HT
i,κR

−1
i,κHi,κ

=

s∑

i=1

(
k−1∑

κ=0

FT
κ Q

′
κ
−1Fκ +

k∑

κ=0

HT
i,κR

−1
i,κHi,κ

)

︸ ︷︷ ︸
Ai

(6.20)

whereQ′
κ , sQκ denotes the inflated state-noise covariance for the each of thes sources, used

in order to compensate for the decomposition. Hence,Ai is the full FIM constructed using

measurementsonly from thei-th source. Based on Lemma 6.2.1, the corresponding FIM of the

initial stateA0i can be written as:

A0i = MT
i ΣMi (6.21)

It is important to note that in (6.21),Mi is the “observability matrix” which is constructed using

the measurements only from thei-th source,but padded with zeros for the measurements from

the other sources, in order to match the dimension of the fullobservability matrixM [e.g.,

see (6.23)]. This immediately results inMT
i Mj = 0 for i 6= j. Note also that we directly

useΣ in (6.21), since zeros inMi will cancel out the corresponding submatrices inΣ to the

measurements from thej-th source (j 6= i) [see (D.14)]. Therefore, this result (6.21) leads to

the following decomposition of the observability matrix:

Lemma 6.2.2. The observability matrix is decomposed as:

M =

s∑

i=1

Mi (6.22)

Proof. Using the fact thatMT
i Mj = 0 for i 6= j, we have [see Lemma 6.2.1, (6.20) and (6.21)]:

MTΣM = A0 =
s∑

i=1

A0i =
s∑

i=1

MT
i ΣMi ⇒ M =

s∑

i=1

Mi
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We thus see that based on the decomposition of the FIM of the initial state according to the

measurement sources, the observability matrix can beaccordinglydecomposed. For instance,

if the i-th source provides measurement intermittently at even time steps only, then thei-th

decomposition of the observability matrix,Mi, assumes the following form (by assumingk is

even):

Mi =




Hi,0

0

...

Hi,k−2Φk−3 · · ·Φ0

0

Hi,kΦk−1 · · ·Φ0




(6.23)

It is interesting to note that in many cases (e.g., see Section 6.3) the decomposition of the

observability matrix (6.23),Mi, is rank-deficient, although the observability matrix (6.10),M,

is full-rank, i.e., the linearized system (6.3)-(6.4) is observable. The right nullspace of the

matrix,Mi, and thus the decomposition of the FIM (6.21),A0i , dictates the directions of the

state space along which no information is available from themeasurements of thei-th source.

If these directions are incorrect, the filter acquires spurious information from thei-th source’s

measurement, and hence is expected to become inconsistent.Therefore, to ensure consistent

estimation, the filter should haveMi, and henceA0i , of correct nullspace, fori = 1, . . . , s, so

that no nonexistent information is gained from the measurements available from each source. To

this end, in computing the filter Jacobians at each time step,we explicitly enforce the following

constraint on the decompositions of the observability matrix, i.e., eachMi has correct nullspace

denoted byNi [see (6.23)]:

MiNi = 0 ⇔




Hi,0Ni = 0 , if κ = 0

Hi,κΦκ−1 · · ·Φ0Ni = 0 , if κ > 0
(6.24)

In particular,Ni is a design choice which defines the desired nullspace for thei-th measure-

ment source, and one practical choice will be the nullspace of the first measurement Jacobian

Hi,0, i.e.,Hi,0Ni = 0. OnceNi has been selected, the next design decision is to compute the

filter Jacobians appropriately, so that (6.24) is satisfied.

We first propose to compute the Jacobiansindirectly, i.e. to find optimal linearization points

that minimize the linearization errors of the pointsx⋆
k|k andx⋆

k+1|k used in computing the filter
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Jacobians,Φk andHk+1, at time-stepk + 1, subject to the constraint that ensures eachMi

to have the correct nullspace (6.24). Similarly to the OC-EKF2 in Section 2.5.2, this can be

formulated as the following constrained minimization problem:

min
x⋆
k|k
,x⋆

k+1|k

∫
||x⋆k − xk||2p(xk|z0:k)dxk +

∫
||x⋆k+1|k − xk+1||2p(xk+1|z0:k)dxk+1 (6.25)

subject to Hi,kΦk−1 · · ·Φ0Ni = 0 , ∀i = 1, . . . , s (6.26)

In general it is intractable to solve this problem analytically. However, whenp(xk|z0:k) and

p(xk+1|z0:k) are Gaussian which is the assumption employed in the EKF, this problem can be

simplified based on the following lemma, and then solved analytically by using Lagrangian

multipliers:

Lemma 6.2.3. Whenp(xk|z0:k) andp(xk+1|z0:k) are Gaussian, the constrained minimization

problem(6.25)and (6.26)is equivalent to the following problem:

min
x⋆
k|k
,x⋆

k+1|k

||x⋆k|k − x̂k|k||2 + ||x⋆k+1|k − x̂k+1|k||2 (6.27)

subject to Hi,kΦk−1 · · ·Φ0Ni = 0 , ∀i = 1, . . . , s (6.28)

Proof. Analogous to the proof of Lemma 2.5.3.

Alternatively, we can compute the desired filter Jacobiansdirectly. Similarly to the OC-

EKF3 in Section 2.5.3, we compute the propagation JacobianΦκ (κ = 0, . . . , k−1) in the same

way as in the standard EKF, while enforcing the information constraint (6.24) for computing

the measurement Jacobian:

min
Hi,k

||Hi,k −Ho||2F (6.29)

subject to Hi,kΦk−1 · · ·Φ0Ni = 0 , ∀i = 1, . . . , s (6.30)

In the above expression,Ho ideally is the measurement Jacobian computed using the truestates,

which, however, is not realizable in any practice. Hence, weemploy the latest, and thus the best,

state estimates for computing this Jacobian as in the standard EKF, i.e.,Ho = Ho(x̂k|k−1). The

optimal solution to the above problem (6.29)-(6.30) is obtained inclosed formby application of

the following lemma:
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Figure 6.1: Illustration of the application of the two-radar target tracking: A target (robot)
moves on a plane and two radars,s1 ands2, alternate between measuring distance to the target.
For example, at time-stepk = 1, the first radar,s1, measures distance to the target; at time-step
k = 2, the second radar,s2, measures distance to the target; at time-stepk = 3, s1 measures
distance again; and so on so forth.

Lemma 6.2.4. The optimal solution to the constrained minimization problem(6.29)-(6.30)is:

Hi,k = Ho

(
In −Ui(U

T
i Ui)

−1UT
i

)
(6.31)

whereUi = Φk−1 · · ·Φ0Ni.

Proof. Analogous to the proof of Lemma 2.5.4.

Note thatUi in (6.31) is the propagated nullspace of thei-th source at time-stepk, and
(
In −Ui(U

T
i Ui)

−1UT
i

)
is the subspace orthogonal toUi, i.e., the subspace at time-stepk

where information is available. Hence, as seen from (6.31),Hi,k is theprojectionof the best-

available measurement Jacobian onto the information-available subspace.

6.3 Example: Two-radar target tracking

In order to verify the preceding analysis and validate the proposed methodology, in this section,

we consider a particular application of two radars trackinga target. Consider a target (robot) that

moves on a plane and two radars alternatively provide distance measurements to the target (see

Fig. 6.1). Using such intermittent distance measurements as well as odometry measurements,

we employ the EKF to estimate the target’s pose (position andorientation) in a global frame of

reference, denoted byxk =
[
pTk φk

]T
=
[
xk yk φk

]T
. In what follows, we describe the

motion and measurement models of this system in the context of the standard EKF.
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In the propagation step, the target (robot) is assumed to be equipped with an odometer

that provides measurements processed to obtain an estimateof the pose change between two

consecutive time steps, and then employed in the EKF to propagate the state estimate. The EKF

propagation equations are identical to (2.2)-(2.3), i.e.,

p̂k+1|k = p̂k|k +C(φ̂k|k)
kp̂k+1 (6.32)

φ̂k+1|k = φ̂k|k +
kφ̂k+1 (6.33)

whereC(·) denotes the2× 2 rotation matrix, andkx̂k+1 = [kp̂Tk+1
kφ̂k+1]

T is the odometry-

based estimate of the target’s motion between time-stepsk andk+1. This estimate is corrupted

by zero-mean white Gaussian noisewk = kxk+1 − kx̂k+1, with covariance matrixQk. The

linearized error-state propagation can be derived in analogy to (2.6), i.e.,

x̃k+1|k = Φkx̃k|k +Gkwk (6.34)

where the state and noise Jacobians are given by

Φk =

[
I2 J

(
p̂k+1|k − p̂k|k

)

01×2 1

]
(6.35)

Gk =

[
C(φ̂k|k) 02×1

01×2 1

]
(6.36)

The distance measurement provided by thei-th radar at time-stepk + 1 is given by:

zi,k+1 = ||pk+1 − pSi
||+ vi,k+1 =

√
(xk+1 − xSi

)2 + (yk+1 − ySi
)2 + vi,k+1 , i = 1, 2

(6.37)

wherepSi
, [xSi

ySi
]T is the known position of thei-th radar expressed in the global frame

of reference, andvi,k+1 is zero-mean white Gaussian measurement noise, with varianceσ2i,k+1,

i.e.,vi,k+1 ∼ N (0, σ2i,k+1). Due to the nonlinearity of this measurement function, it islinearized

for the use of EKF, which is given by:

z̃i,k+1 ≃ Hi,k+1x̃k+1|k + vi,k+1 (6.38)

where the measurement Jacobian is computed as:

Hi,k+1 =
[
(p̂k+1|k−pSi

)T

||p̂k+1|k−pSi
|| 0

]
=

(p̂k+1|k − pSi
)T

||p̂k+1|k − pSi
||

︸ ︷︷ ︸
α̂i,k+1

[
I2 J(p̂k+1|k − pSi

)
]

(6.39)
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6.3.1 Observability analysis

We now examine the observability matrix (and thus the information matrix), and show that in

the standard EKF the decompositions of the observability matrix with respect to different radars

have different nullspace than the ideal case where the true states are used in computing filter

Jacobians and which is expected to have correct observability properties.

Ideal EKF linearized system

To facilitate the ensuing analysis, we begin with theideal case of a single radar providing

distance measurements. Proceeding analogously to Section2.4.2, the Jacobians of the ideal

EKF are evaluated using thetrue values of the state variables, i.e.,x⋆
k|k = x⋆

k|k−1 = xk, for all

k. Note that all matrices evaluated using the true state values are denoted by the symbol “˘ ”.

In this case, by noting that [see (6.35) and (6.39)]

H̆κΦ̆κ−1 · · · Φ̆0 = ᾰκ

[
I2 J(p0 − pS)

]
(6.40)

the observability matrix is computed as [see (6.10)]:

M̆ = Diag (ᾰ0, ᾰ1, · · · , ᾰk)




I2 J(p0 − pS)

I2 J(p0 − pS)
...

...

I2 J(p0 − pS)




(6.41)

Using the theorem of the rank of the matrix product [113], we can show thatrank(M̆) = 2 and

null(M̆) =

[
J(p0 − pS)

1

]
(see Lemma 2.4.3). This implies that the distance measurements of

single radar provide information only abouttwod.o.f., which agrees with our intuition.

Now we extend this analysis to the ideal case wheretworadars alternatively provide distance

measurements to the target. Specifically, by proceeding similarly to Section 2.4.2, we can
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compute the observability matrix of the ideal-EKF linearized system in this case as follows:

M̆ = Diag (ᾰ1,0, ᾰ2,1, · · · , ᾰ1,k−1, ᾰ2,k)︸ ︷︷ ︸
D̆




I2 J(p0 − pS1)

I2 J(p1 − pS2)
...

...

I2 J(p0 − pS1)

I2 J(p1 − pS2)




= D̆




I2 J(p0 − pS1)

02×2 02×1

...
...

I2 J(p0 − pS1)

02×2 02×1




︸ ︷︷ ︸
M̆1

+ D̆




02×2 02×1

I2 J(p1 − pS2)
...

...

02×2 02×1

I2 J(p1 − pS2)




︸ ︷︷ ︸
M̆2

(6.42)

whereM̆1 andM̆2 are the decompositions of the observability matrixM̆, with respect to the

first and second radar, respectively. It is not difficult to see thatrank(M̆1) = rank(M̆2) = 2,

which agrees with the preceding result in the single-radar case, even though the observability

matrix is full-rank, i.e.,rank(M̆) = 3, and thus the ideal-EKF linearized system is observable.

Standard EKF linearized system

However, the ideal EKF is not realizable in practice since the true states are generally not

available. Therefore, we now consider the standard EKF which computes the Jacobians using

the current state estimates, and show that the preceding results do not hold for the standard

EKF linearized system. Specifically, the observability matrix for the two-radar scenario under
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consideration can be computed as [see (6.10)]:

M = Diag (α̂1,0, α̂2,1, · · · , α̂1,k−1, α̂2,k)︸ ︷︷ ︸
D̂




I2 J(p̂0|0 − pS1)

I2 J(p̂1|0 − pS2)
...

...

I2 J(p̂k−1|k−1 +
∑k−2

κ=1 ∆p̂κ − pS1)

I2 J(p̂k|k +
∑k−1

κ=1∆p̂κ − pS2)




= D̂




I2 J(p̂0|0 − pS1)

02×2 02×1

...
...

I2 J(p̂k−1|k−1 +
∑k−2

κ=1∆p̂κ − pS1)

02×2 02×1




︸ ︷︷ ︸
M1

+ D̂




02×2 02×1

I2 J(p̂1|0 − pS2)
...

...

02×2 02×1

I2 J(p̂k|k +
∑k−1

κ=1 ∆p̂κ − pS2)




︸ ︷︷ ︸
M2

(6.43)

where∆p̂κ , p̂κ|κ − p̂κ|κ−1 is the correction in the target position due to the EKF updateat

time-stepκ, and in general does not vanish. As a result, the decompositions of the observability

matrix becomes full-rank, i.e.,rank(M1) = rank(M2) = 3, although the observability ma-

trix is still full-rank, rank(M) = 3. This implies that the standard EKF acquires nonexistent

information along one direction of the state space from eachradar’s measurements, which may

lead to inconsistency and thus confirms our preceding analysis. Next, we apply the algorithms

presented in Section 6.2.2 to this system so as to improve EKFconsistency.

6.3.2 Application of the algorithms

In particular, we choose the desired nullspace of the decompositions of the observability matrix

for the two radars as follows (i.e., using the correspondingfirst state estimates when the two

sensors provide their first measurements):

N1 =

[
J(p̂0|0 − pS1)

1

]
(6.44)

N2 =

[
J(p̂1|0 − pS2)

1

]
(6.45)

We first describe theindirect algorithm for computing EKF Jacobians, which finds optimal

linearization points by solving the problem (6.27)-(6.28). In this case, the constraint (6.28) can
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be simplified as [see (6.43)]:

Hi,kΦk−1 · · ·Φ0Ni = 0

⇔ α̂i,k

[
I2 J

(
p⋆0|0 +

∑k
κ=1∆p⋆κ − pSi

)]
Ni = 0

⇔ p⋆k|k = p⋆k|k−1 −
k∑

κ=1

∆p⋆κ (6.46)

where we have employed the definition similar to∆p̂κ, i.e., ∆p⋆κ , p⋆
κ|κ − p⋆

κ|κ−1. Simi-

larly to the OC-EKF2 (see Section 2.5.2), using the method ofLagrangian multipliers, we can

analytically solve for the optimal solution to the problem (6.27)-(6.28):

p⋆k|k = p⋆k|k−1 = p̂k|k−1 , φ
⋆
k|k = φ̂k|k , φ

⋆
k|k−1 = φ̂k|k−1 (6.47)

Alternatively, we can use thedirect algorithm for computing EKF Jacobians. Specifi-

cally, we directly apply the optimal solution of the measurement Jacobian (6.31), i.e., pro-

jecting the best-available measurement Jacobian onto the information-available directions (see

Lemma 6.2.4), while computing the propagation Jacobians inthe same way as the standard EKF

[see (6.35)].

It is important to point out that in the both proposed EKF algorithms, once the filter Ja-

cobians are computed, the state estimates and covariance are propagated and updated in the

same way as in the standard EKF. Note also that the proposed EKFs are causal and realizable

in practice, since they do not use any information about the future or true states.

6.3.3 Numerical results

To demonstrate the capability of the proposed algorithms toimprove filter consistency, we con-

ducted 100 Monte-Carlo simulations under various conditions, and as before, employed the

RMSE and NEES [14] as the metrics to evaluate the filters’ performance. In this numerical

simulation test, a target (robot) with a simple differential drive model moved on a planar sur-

face, at a constant velocity ofv = 0.25 m/sec. The two-drive wheels were equipped with

encoders, which measure their revolutions and provide measurements of velocity (i.e., right and

left wheel velocities,vr andvl, respectively), with standard deviation equal toσ = 1%v for

each wheel. These measurements were used to obtain the linear and rotational velocity mea-

surements for the target, which are given byv = vr+vl
2 andω = vr−vl

a
, wherea = 0.5 m is the
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Figure 6.2: Monte-Carlo results of two-radar tracking. In this simulation, a target moves on a
circular trajectory and two radars with known positions alternate between providing distance
measurements to the target. Note that in these plots, the RMSE values of the ideal EKF and the
two proposed EKFs are very close, which makes the corresponding lines difficult to distinguish.

distance between the active wheels. The standard deviations of the linear and rotational veloc-

ity measurement noise were thus equal toσv = σ√
2

andσω =
√
2σ
a

, respectively. Two radars

with known positions alternatively provide distance measurements to the target. The standard

deviation of the distance-measurement noise was equal to 10% of the radar-to-target distance.

It should be noted that the sensor-noise levels selected forthe simulations are larger than what

is typically encountered in practice. This was done on purpose in order to make the effects of

inconsistency more apparent, since larger noise leads to larger estimation errors, and thus less

accurate linearization.

Fig. 6.2 shows the Monte-Carlo results of the average NEES and RMSE for the robot (target)

pose. It becomes clear that the proposed EKFs (i.e., the indirect and direct EKFs) perform much

better than the standard EKF, and very close to the benchmark, the ideal EKF, in terms of both

consistency (NEES) and accuracy (RMSE). This is attributedto the fact that the proposed EKFs

acquire the information only along the correct directions of the state space fromeachradar’s

measurements.
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6.4 Summary

In this chapter, we have studied the filter inconsistency issue in discrete-time nonlinear systems

where only partial-state measurements are available. We showed that despite the system ob-

servability, the linearized filters such as the EKF still canbecome inconsistent. To understand

the causes of the inconsistency, we examined the FIM of the initial state (by marginalizing all

but the initial state) and showed that it is closely related to the observability matrix. Moreover,

we proposed a novel decomposition of the observability matrix of the linearized system with

respect to different sources of measurements, and proved that when using the standard EKF,

each decomposition of the observability matrix has higher rank than that of the ideal case. This

implies that the filter gain spurious information from the measurements of each source, which

leads to inconsistency. To address this issue, we proposed to compute the filter Jacobians in such

a way that ensures that each decomposition of the observability matrix has nullspace of correct

dimension. We applied the proposed algorithms to the problem of two-radar target tracking,

and demonstrated the superior performance of the proposed filters over the standard approach.



Chapter 7

A Bank of MAP Estimators for Target

Tracking

In this chapter, we study the consistency of nonlinear estimators from a perspective different

than the system observability used in the previous chapters, i.e., finding and tracking multiple

modes of the posterior pdf, and present a general framework to improve consistency for es-

timation problems with polynomial (nonlinear) measurement functions. The key idea of our

approach is to analytically select and track state hypotheses (the modes of the posterior pdf).

We apply our proposed approach to the particular problem of target tracking, i.e., estimating

the kinematic state of a moving target using only range or bearing measurements from a single

mobile sensor (robot) whose position and orientation are known. Parts of this chapter have been

published in [76,77].

7.1 Introduction

Nonlinear estimation problems such as target tracking are often addressed using linearized es-

timators (e.g., the EKF [14, 17]). These estimators suffer from linearization errors and the

inability to track multimodal pdfs, which often arise in nonlinear estimation problems. Several

methods have been proposed to reduce linearization errors.For example, the IEKF [14] iterates

the filter update till convergence, by relinearizing the measurement function at each iteration;

The UKF [84] deterministically samples the nonlinear function around the state estimate, thus

improving the linear approximation. However, any (explicit or implicit) linearization-based
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filtering approach marginalizes all but the current state, and hence is unable to refine past lin-

earization points. In contrast, a batch-MAP estimator [91]computes the estimates for the states

at all time steps using all available measurements. This allows continuous relinearization of

the entire state trajectory, which greatly reduces linearization errors. However, just as the EKF

and its variants, the batch-MAP estimator can only track one, of the potentially many, modes

of the posterior pdf. Only a few estimators, such as the multi-hypothesis EKF (MHEKF) [99]

and the PF [8, 41, 58], are specifically designed to treat multimodal distributions by simultane-

ously tracking a set of different state estimates. However,in most cases these hypotheses are

generated randomly, thus wasting a considerable portion ofthe computational resources.

In this chapter, we present aparametric linearizedestimation framework that provides both

relinearization and multi-hypothesis tracking, togetherwith a highly efficient hypothesis gen-

eration scheme. Ideally, the optimal approach to the batch-MAP estimation problem would be

to compute all modes of the posterior pdf, thus ensuring a globally optimal estimate. However,

as our analysis will show later, this approach is computationally intractable due to the grow-

ing size of the state vector. We therefore relax the problem,and optimize only for the current

state at each time step, treating the state history of each hypothesis as a constant prior. We

first convert the nonlinear cost function of this subprobleminto polynomial or rational form,

and subsequently employ algebraic geometry techniques [33] to analytically compute all local

minima and thus all modes of the pdf. Each mode is used to initialize a new MAP estimator in

the bank, thus allowing to track the most probable hypotheses of the state trajectory, and in turn

greatly improving the accuracy and consistency of the MAP estimate. At the same time, we

achieve low, resource-adaptive computational cost through pruning and marginalization. The

former controls the exponential growth of hypotheses, while the latter limits the size of the

state vector. We successfully apply the proposed bank of MAPapproach to both range-only

and bearing-only target tracking. We stress that apart fromthe particular application of target

tracking treated in this work, the proposed framework is applicable to a broad class of nonlinear

estimation problems in robotics and computer vision that can be expressed in (or converted into)

polynomial form.
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7.2 Related work

The problem of target tracking has been studied for decades and many different estimators of

both batch and recursive types have been proposed in the literature [14, 17]. Among these

algorithms, the EKF is one of the most widely used methods. However, due to the fact that the

EKF is unable to refine the past linearization points when newmeasurements become available

and thus can result in large linearization errors, it gives unsatisfactory performance. This has

given rise to refinements of the EKF developed specifically for bearing-only tracking, e.g., the

modified polar coordinates EKF [1] and the shifted Rayleigh filter [31]. However, these EKF

variants can only track a single mode (more precisely, mean)of the posterior pdf of the target

state and thus suffer from the same problem as the EKF, i.e., they can potentially track an

inaccurate mode of the pdf and hence become inconsistent or even diverge.

To mitigate the aforementioned issue, a MHEKF was proposed specifically for bearing-only

tracking in [99] to track multiple hypotheses of the target state. The MHEKF makes an assump-

tion about the minimum and maximum distances between the sensor and target and partitions

this range interval to a number of subintervals, each representing a hypothesis regarding the true

range of the target. A bank of independently operating range-parameterized EKFs are thus cre-

ated, each designed for one of the hypotheses and receiving the same bearing measurement. The

MHEKF determines a fixed number of EKFs at the first available measurement, and this idea

was extended in [122] so that the filter bank can dynamically change its size at each time step

based on the current measurement likelihood. Since no filterin the MHEKF can guarantee com-

puting the globally optimal estimate (due to the multimodalnature of the distribution as well as

its inability to relinearize the nonlinear measurement function), this approach can also become

inconsistent and diverge. Note that this method assumes prior knowledge about the range inter-

val, while this might not always be available in real applications of bearing-only tracking (e.g.,

using cameras). More importantly, this approach does not provide a measurable criterion about

how many partitions are needed in the assumed range intervaland where to choose them. In

contrast, our proposed bank of MAP estimators selects most probable hypotheses of the target

trajectory based on local optimality at each time step.

Considerable attention has recently been paid to the PF for both bearing-only and range-only

target tracking [8, 28, 50, 57, 58, 134], because of its capability of solving nonlinear estimation
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problems with multimodal pdfs. In the standard (bootstrap)PF, each particle represents a hy-

pothesis of the target state, weighted by its measurement likelihood. If the particles sample the

state space sufficiently, the PF will converge to the true distribution. However, the particles are

usually initialized randomly, and if far from a mode of the pdf, their weights can decay quickly

and lead to particle depletion and thus inconsistency, evenif a resampling scheme is employed.

This is due to the fact that the very few surviving particles may not be sufficient to represent the

underlying multimodal pdf. Therefore, in order to convergeto good estimates, the PF requires

to use a large number of particles, thus exacerbating its computational demands. In contrast, the

proposed estimator analytically computes all modes of the posterior pdf at the current time step

and efficiently focuses the available computational resources on the most probable hypotheses

of the state.

7.3 Problem formulation

Consider a single sensor (robot) moving in a plane and estimating the state (position, velocity,

etc.) of a moving target, by processing the available range or bearing measurements. In this

work, we study the case ofglobal tracking, i.e., the position of the target is expressed with

respect to a fixed (global) frame of reference, instead of a relative sensor-centeredone. We

hereafter assume that the pose (position and orientation) of the tracking sensor is known with

high accuracy in the global frame of reference (e.g., from GPS and compass measurements).

The state vector of the target at time-stepk is defined as a vector of dimension2N , whereN−1

is the highest order of time derivative of the target position described by a known stochastic

target motion model, and can include components such as position, velocity, acceleration, etc.:

xk =
[
xTk yTk ẋTk ẏTk ẍTk ÿTk · · ·

]T
=:
[
pTTk dTTk

]T
(7.1)

wherepTk ,

[
xTk yTk

]T
is the target position, anddTk ,

[
ẋTk ẏTk ẍTk ÿTk · · ·

]T

denotes all the higher-order time derivatives of the targetposition.

In the following, we present the target stochastic motion model and the sensor measurement

model that will be used throughout this chapter. Subsequently, we describe the batch-MAP

formulation of target tracking, which is similar to that of SLAM presented in Section 5.2.3.
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7.3.1 Motion model

We consider the case where the target moves randomly but assume that the stochastic model

describing the motion of the target (e.g., constant acceleration or constant velocity [14]) is

known. In particular, the discrete-time state propagationequation is generically given by the

following linear form:

xk = Φk−1xk−1 +Gk−1wk−1 (7.2)

wherewk−1 is zero-mean white Gaussian noise with covarianceQk−1. The state transition

matrix,Φk−1, and the process noise Jacobian,Gk−1, that appear in the preceding expression

depend on the motion model used [14]. We will make no further assumptions on these matrices

other than that their values are known.

7.3.2 Measurement model

In this work, we are interested in the case in which a single sensor measures its distance or

bearing angle to the target. The corresponding measurementequations are described below.

Range-only measurement The range-only measurement at time-stepk is given by:

zk =
√

(xTk − xSk
)2 + (yTk − ySk

)2 + nρk (7.3)

, hρ(xk) + nρk (7.4)

wherexSk
, [pTSk

φSk
]T , [xSk

ySk
φSk

]T is the known sensor pose expressed in the global

frame of reference, andnρk is zero-mean white Gaussian measurement noise, with variance

σ2ρk , i.e.,nρk ∼ N (0, σ2ρk).

Bearing-only measurement Similarly, the bearing measurement at time-stepk is given by:

zk = atan2 ((yTk − ySk
), (xTk − xSk

))− φSk
+ nθk (7.5)

, hθ(xk) + nθk (7.6)

wherenθk is zero-mean white Gaussian measurement noise, with variance σ2θk , i.e., nθk ∼
N (0, σ2θk).
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7.3.3 Batch-MAP optimization

Similar to the SLAM batch-MAP formulation (see Section 5.2.3), the batch-MAP estimator

utilizes all available information to estimate theentire target trajectory that is given by stacking

all states in the time interval[0, k] [see (7.1)]:

x0:k =
[
xT0 xT1 · · · xTk

]T
(7.7)

Specifically, the batch-MAP estimator seeks to determine the entire state-space trajectory esti-

matex̂0:k|k by maximizing the posterior pdf which is equivalent to minimizing the following

cost function [see (5.14)]:

c(x0:k) =
1

2
||x0 − x̂0|0||2P0|0

+
k∑

κ=1

1

2
||xκ −Φκ−1xκ−1||2Q′

κ−1
+

k∑

κ=1

1

2
||zκ − h(xκ)||2σ2κ (7.8)

whereQ′
κ−1 , Gκ−1Qκ−1G

T
κ−1.

A standard approach for minimizing (7.8) is to employ Newton-Raphson iterative mini-

mization [163], which relies on the Jacobian and Hessian matrices [see (5.15)]. Hence we first

examine their structure that will be useful for the ensuing analysis. Specifically, at theℓ-th

iteration, the Jacobianb(ℓ) can be obtained as:

b(ℓ) = ΠTP−1
0|0

(
x̂
(ℓ)
0|k − x̂0|0

)
+ (7.9)

k∑

κ=1

F (ℓ)T

κ−1Q
′−1

κ−1

(
x̂
(ℓ)
κ|k −Φκ−1x̂

(ℓ)
κ−1|k

)
+

k∑

κ=1

σ−2
κ H(ℓ)T

κ

(
zκ − h(x̂

(ℓ)
κ|k)
)

whereΠ ,

[
I2N 0 · · · 0

]
is used to adjust the dimension of the2N -dimensional prior

estimate to the dimension of the entire statex0:k. In the above expression,F (ℓ)
κ−1 andH(ℓ)

κ , are

the Jacobians of the motion and measurement models [see (7.2), and (7.4) or (7.6), respectively],

with respect to the entire statex0:k, evaluated at̂x(ℓ)
0:k|k. It is important to note that both the target

motion model and the measurement function involve only a fewstates, i.e., the target motion

only depends on two consecutive states, while the measurement only depends on the target

position where it is observed. Thus,Fκ−1 andHκ have the following sparse structure (for

concise notations, the iteration index(ℓ) is dropped here):

Fκ−1 =
[
02N×2N · · · −Φκ−1 I2N · · · 02N×2N

]
(7.10)

Hκ =
[
01×2N · · · −Hκ · · · 01×2N

]
(7.11)
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whereHκ is the measurement Jacobian matrix at time-stepκ, given by [see (7.4) and (7.6)]:

Hκ =





[
(p̂Tκ|k

−pSκ)
T

||p̂Tκ|k
−pSκ ||

01×(2N−2)

]
, if zκ is range−only

[
(p̂Tκ|k

−pSκ)
T JT

||p̂Tκ|k
−pSκ ||2

01×(2N−2)

]
, if zκ is bearing−only

(7.12)

On the other hand, the Hessian matrix,A, is approximated in the Gauss-Newton method by:

A ≃ ΠTP−1
0|0Π+

k∑

κ=1

Fκ−1Q′−1

κ−1Fκ−1 +
k∑

κ=1

σ−2
κ HT

κHκ (7.13)

which is a good approximation for small-residual problems [163].

Note that the HessianA has dimension2N(k + 1) × 2N(k + 1) [see (7.1) and (7.7)].

However, due to the sparse structure of the matricesHκ andFκ−1, the matrixA is also sparse,

and more importantly, it has a banded structure with upper and lower bandwidth of4N (due

to the Markov motion model and the range or bearing measurement only depending on the

target position where it is observed). We can exploit this sparse banded structure to reduce the

computational complexity of solving (5.20) toO(N3k), instead ofO
(
N3k3

)
[49].

7.4 Incrementally solving the batch-MAP optimization problem

We know that iterative algorithms such as Gauss-Newton are only able to converge to one local

minimum, while the nonlinear batch-MAP problem of minimizing (7.8) potentially has multi-

ple local minima. In order to guarantee global optimality, ideally we would like to analytically

compute all the stationary points of the batch-MAP problem.Unfortunately, in general, it is

computationally intractable to do so. In this section, we present an incremental (approximate)

solution to the batch-MAP problem by intelligently generating multiple high-quality estimates

used as initial guesses for an iterative algorithm. Specifically, we relax the problem by fix-

ing the past state estimates and analytically solving a one-step minimization problem for the

current state estimate, at every time step when a new measurement becomes available. This

analytic optimization is carried out by converting the nonlinear cost function into polynomial

or rational form which is then solved using algebraic geometry techniques. We then use the

analytically-computed local minima corresponding to the current state along with the fixed past
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state estimates as highly accurate initial guesses, which are refined through the iterative algo-

rithm used to solve the batch-MAP problem.

7.4.1 Relaxation of the batch-MAP problem

As will become clear, by transforming the nonlinear measurement function into polynomial or

rational form, we can convert the KKT optimality conditionsof the batch-MAP problem into a

polynomial system (see Section 7.4.2). The number of variables increases linearly with respect

to the time horizonk. However, since the complexity of solving multivariate polynomial sys-

tems is exponential in the number of variables [45], it is, ingeneral, computationally intractable

to solve the batch-MAP problem analytically.

For this reason, we relax the batch-MAP problem and solve it incrementally. In particular,

at time-stepk, by fixing the past state estimatesx̂0:k−1|k−1 (i.e., assuming they are optimal), we

approximate the cost function (7.8) as follows:

c(x0:k) ≃ c(x̂0:k−1|k−1) +
1

2
||xk − x̂k|k−1||2Pk|k−1

+
1

2
||zk − h(xk)||2σ2

k
(7.14)

whereN (x̂k|k−1,Pk|k−1) is the prior pdf for the current new statexk, and is computed based

on the linear motion model (7.2) as follows:

x̂k|k−1 = Φk−1x̂k−1|k−1 (7.15)

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 +Q′

k−1 (7.16)

Now the relaxed batch-MAP problem of minimizing (7.14) becomes equivalent to solving the

following one-step minimization problem incrementally for the new state estimate:

min
xk

[
1

2
||xk − x̂k|k−1||2Pk|k−1

+
1

2
||zk − h(xk)||2σ2

k

]
(7.17)

Once we find all the local minima of (7.17), we use them along with the past state estimates as

accurate initial guesses in the proposed bank of MAP estimators (see Section 7.5), while in the

proposed AGS-PF, they are employed to guide sampling particles (see Section 8.2). Therefore,

in what follows we describe the analytic approach to determining all the local minima in detail.

7.4.2 Analytic determination of local minima

Observing that both relative range and bearing measurements depend only on the target position

[see (7.4) and (7.6)], we can decouple the target positionpTk and the remaining statesdTk
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in solving (7.17), so as to simplify the ensuing derivations. Specifically, using the following

partitioning of the information matrix,P−1
k|k−1 ,

[
Σppk|k−1

Σpdk|k−1

Σdpk|k−1
Σddk|k−1

]
, the cost function

of (7.17) can be expanded as:

c(xk) =
1

2
(pTk− p̂Tk|k−1)

TΣppk|k−1
(pTk− p̂Tk|k−1) +

1

2
(dTk−d̂Tk|k−1)

TΣddk|k−1
(dTk−d̂Tk|k−1)

+ (pTk − p̂Tk|k−1
)TΣpdk|k−1

(dTk − d̂Tk|k−1
) +

1

2σ2k
(zk − h(pTk))

2 (7.18)

We note that

min
pTk

,dTk

c(pTk ,dTk) = min
pTk

(
min
dTk

c(pTk ,dTk)

)

Thus, we first solve fordTk based on its optimality condition, i.e., by setting the gradient

of (7.18) with respect todTk to zero, and obtain:

dTk = d̂Tk|k−1−Σ−1
ddk|k−1

Σdpk|k−1
(pTk−p̂Tk|k−1) (7.19)

Substitution of (7.19) into (7.18) yields:

c(pTk ) =
1

2
(pTk − p̂Tk|k−1

)TP−1
ppk|k−1

(pTk − p̂Tk|k−1
) +

1

2σ2k
(zk − h(pTk))

2 (7.20)

wherePppk|k−1
is the covariance matrix corresponding to the target position, obtained by par-

titioning the covariance matrix asPk|k−1 ,

[
Pppk|k−1

Ppdk|k−1

Pdpk|k−1
Pddk|k−1

]
. In the above expres-

sion (7.20), we have employed the following identity:

P−1
ppk|k−1

= Σppk|k−1
−Σpdk|k−1

Σ−1
ddk|k−1

Σdpk|k−1
(7.21)

which follows from the block matrix inversion lemma [49].

We thus see that solving (7.17) becomes equivalent to minimizing (7.20). It is important to

note that the size of the nonlinear problem has dramaticallydecreased from2N for (7.17) to a

constant size of 2 for minimizing (7.20). Moreover, the analytic solution for the target position

is independent of its higher-order time derivatives, regardless of the stochastic target motion

model. In the following we present our algebraic geometry approaches for minimizing (7.20)

analytically, in the cases of range-only tracking and bearing-only tracking, respectively.



171

Range-only tracking

In the case of range-only target tracking, i.e.,h(·) = hρ(·) [see (7.4)], by introducing a new vari-

ableρ = hρ(pTk), the problem of minimizing (7.20) is equivalent to the following constrained

minimization problem:

min
pTk

, ρ

[
1

2
(pTk−p̂Tk|k−1

)TP−1
ppk|k−1

(pTk−p̂Tk|k−1
) +

1

2σ2ρk
(zk − ρ)2

]
(7.22)

subject to ρ2 = (xSk
−xTk)2 + (ySk

−yTk)2 , ρ ≥ 0 (7.23)

which can be solved by employing the method of Lagrange multipliers [16]. Specifically, with-

out loss of generality, by assumingP−1
ppk|k−1

= Diag(s1, s2), the Lagrangian function can be

constructed as follows:1

L(xTk , yTk , ρ, λ) =
s1

2
(xTk−x̂Tk|k−1)2+

s2

2
(yTk−ŷTk|k−1)2

+
(zk − ρ)2

2σ2ρk
+ λ

(
ρ2−(xSk

−xTk)2−(ySk
−yTk)2

)
(7.24)

whereλ is the Lagrangian multiplier. Setting the derivatives ofL(·) with respect to the four

optimization variables to zero, and performing simple algebraic manipulations, we have:

∂L
∂xTk

= 0 ⇒ xTk =
s1x̂Tk|k−1

− 2λxSk

s1 − 2λ
(7.25)

∂L
∂yTk

= 0 ⇒ yTk =
s2ŷTk|k−1

− 2λySk

s2 − 2λ
(7.26)

∂L
∂ρ

= 0 ⇒ ρ =
zk

1 + 2σ2ρkλ
(7.27)

∂L
∂λ

= 0 ⇒ 0 = ρ2−(xSk
−xTk)2−(ySk

−yTk)2 (7.28)

1 We can always diagonalizeP−1
pp by applying a 2D rotational transformation, which does not affect distance

measurements. Moreover, we here temporarily omit the positivity constraint onρ, which will be used later for
determining feasible solutions.
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Therefore, by substituting (7.25)-(7.27) into (7.28) and multiplying both sides of (7.28) with

(1 + 2σ2ρkλ)
2(s1 − 2λ)2(s2 − 2λ)2, we obtain a fourth-order univariate polynomial inλ:2

0 = f(λ) =

4∑

i=0

aiλ
i (7.29)

whereai, i = 0, 1, . . . , 4, are the coefficients expressed in terms of the known quantities s1,

s2, zk, σρk , x̂Tk|k−1
, ŷTk|k−1

, xSk
, andySk

. Sincef(λ) is quartic, its roots can be found in

closed form [76]. Although there exist 4 solutions forλ and thus 4 solutions forxTk , yTk
andρ, as they depend injectively onλ [see (7.25)-(7.27)], we only need to consider the pairs

(xTk , yTk) that correspond to real solutions forλ and to a nonnegativeρ [see (7.23)]. Moreover,

since some of these solutions could be local maxima and/or saddle points, the second-order

derivative test [16] is employed to extract the minima. Finally, once we determine all the local

minima for the target position, we compute the corresponding estimates for the higher-order

position derivatives via (7.19).

Since the maximum number of local minima for the problem (7.17) will significantly impact

the computational complexity of our proposed algorithms, we seek a tighter upper bound for it.

In particular, based on the finite dimensional Mountain PassTheorem (MPT) (see Theorem 5.2

in [81]), we can show the following lemma:

Lemma 7.4.1. There are at most 2 local minima for the problem of minimizing(7.22).

Proof. See Appendix E.1.

Thus, we see from this lemma that the total number of local minima for the one-step MAP

problem (7.17) for range-only target tracking, in worst case, can grow exponentially over time,

in an order of2k, instead of4k. Fig. 7.1(a) shows a typical example where two local minima

for the current state occur while the MAP estimate erroneously converges to a local minimum

with larger error.

2 It is important to note that if any of the denominators of (7.25)-(7.27) becomes zero while the corresponding
numerator is nonzero, the target is at the infinity position,and moreover the cost of (7.23) also becomes infinity and
hence attains the global maximum, which is not interesting to us. On the other hand, there exists the degenerate case
where both the numerator and denominator of (7.25) or (7.26)become zeros (i.e.,0

0
), which can be avoided through

an appropriate coordinate transformation.
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Figure 7.1: Illustrative problem for single time step target tracking: The crosses indicate the
locations of the analytically-computed local minima. It isclear that the MAP estimate initialized
with the prior estimate converges to the local minimum with larger error with respect to ground
truth. Note that in bearing-only tracking, the MAP estimateis computed based on the original
(not inferred) measurements, and the approximation (7.32)used in the inferred measurements
introduces a slight offset in the analytic local minima.

Bearing-only tracking

We now consider the problem of minimizing (7.20) in the case of bearing-only tracking, i.e.,

h(·) = hθ(·) [see (7.6)]. In order to use an algebraic geometry approach,we create an inferred

measurement that hasrational form. Specifically, after moving the sensor orientation term to the

left hand side of (7.5), and applying the tangent function onboth sides, we obtain the following

transformed measurement:

žk , tan(zk + φSk
) = tan (atan2 ((yTk − ySk

), (xTk − xSk
)) + nθk) (7.30)

By denotingξk , atan2 ((yTk − ySk
), (xTk − xSk

)), consideringzk + φSk
∈ (−π, π], and

following the standard formulas to compute the pdf of functions of random variables [148], the
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Figure 7.2: An example of approximating the pdf of transformed measurements by a Gaussian
pdf. In this case,ξ = 0.5 andσθ = 10 deg. In addition, the Kullback-Leibler divergence
(KLD) between these two pdfs is only 0.0447, which indicatesthe difference between the two
distributions is small.

likelihood distribution of the transformed measurement isgiven by:

p(žk|xk) =





N (tan−1(žk);ξk,σ
2
θk

)+N (tan−1(žk)−π;ξk,σ2θk )
1+ž2

k

, if žk ≥ 0

N (tan−1(žk);ξk,σ
2
θk

)+N (tan−1(žk)+π;ξk,σ
2
θk

)

1+ž2
k

, if žk < 0
(7.31)

Clearly,p(žk|xk) is not Gaussian (which results from the tangent of a Gaussianrandom vari-

able), but it can be well approximated by a Gaussian pdf by matching the first- and second-order

moments. This is done by linearizing (7.30) around the expected value of the noise, i.e.,

žk ≃
yTk − ySk

xTk − xSk

+ n̄k , z̄k (7.32)

where n̄k , sec2(zk + φSk
)nθk , is zero-mean white Gaussian noise with varianceσ̄2k ,

sec4(zk + φSk
)σ2θk , i.e., n̄k ∼ N (0, σ̄2k). We term this approximation (7.32) aninferred mea-

surement which is in the desired rational form. As illustrated in Fig. 7.2, this approximation

is reasonably accurate, particularly for scenarios of highsignal-to-noise ratios. Moreover, the

local minimum of (7.20) attained based on the inferred measurement is very close to that using

the corresponding original bearing measurement. This can be seen from Fig. 7.1(b), where one

of the analytic local minima computed using the inferred measurement almost coincides with

the MAP estimate for the current state that instead uses the original bearing measurement. This



175

further confirms that the inferred measurement is a reasonably good approximation to the origi-

nal bearing measurement in solving (7.20).3 Moreover, the inferred measurement is used only

for finding hypotheses of the trajectory, not for estimatingthe state.

In what follows we use the inferred bearing measurement (7.32) [instead of (7.6)] to com-

pute the analytic solutions for minimizing (7.20). In particular, withP−1
ppk|k−1

,

[
s1 s3

s3 s2

]
,

(7.20) can be written as:

c(xTk , yTk) =
1

2

(
s1(xTk−x̂Tk|k−1)2 + s2(yTk−ŷTk|k−1)2 (7.33)

+ 2s3(xTk−x̂Tk|k−1)(yTk−ŷTk|k−1
)
)
+

1

2σ̄2k

(
z̄k−

yTk−ySk

xTk−xSk

)2

Based on the optimality conditions, i.e., setting the derivatives ofc(xTk , yTk) with respect to the

two optimization variables to zero, and performing simple algebraic manipulations, we have:

∂c

∂xTk
= s1(xTk − x̂Tk|k−1

) + s3(yTk − ŷTk|k−1
) +

1

σ̄2k

[
z̄k(yTk − ySk

)

(xTk − xSk
)2

− (yTk − ySk
)2

(xTk − xSk
)3

]
= 0

⇒ s1(xTk − x̂Tk|k−1
)(xTk − xSk

)3 + s3(xTk − xSk
)3(yTk − ŷTk|k−1

)+

1

σ̄2k

[
z̄k(xTk−xSk

)(yTk−ySk
)− (yTk−ySk

)2
]
= 0 (7.34)

∂c

∂yTk
= s2(yTk − ŷTk|k−1

) + s3(xTk − x̂Tk|k−1
)− 1

σ̄2k

[
z̄k

xTk − xSk

− (yTk − ySk
)

(xTk − xSk
)2

]
= 0

⇒ s2(xTk − xSk
)2(yTk − ŷTk|k−1

) + s3(xTk − xSk
)2(xTk − x̂Tk|k−1

)−
1

σ̄2k
[z̄k(xTk − xSk

)− (yTk − ySk
)] = 0 (7.35)

From (7.35), we can computeyTk in terms ofxTk as follows:

yTk =
−σ̄2ks3(xTk−xSk

)2(xTk−x̂Tk|k−1
)+z̄k(xTk−xSk

) + σ̄2ks2(xTk−xSk
)2ŷTk|k−1

+ySk

1 + σ̄2ks2(xTk − xSk
)2

(7.36)

3 The inferred measurement model (7.32) does not consider thespecial case ofxTk
= xSk

, which however has
low probability of occurrence in practice.
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Substitution of (7.36) into (7.34) yields a rational equation, whose denominator is always non-

zero. Thus, we only need to consider the numerator which is aneighth-order univariate polyno-

mial in xTk :

0 = f(xTk) =

8∑

i=0

aix
i
Tk

(7.37)

whereai, i = 0, 1, . . . , 8, are the coefficients expressed in terms of the known quantities, z̄k,

σ̄k, s1, s2, s3, x̂Tk|k−1
, ŷTk|k−1

, xSk
, andySk

[77]. The roots off(xTk) can be found from

the eigenvalues of the corresponding8 × 8 companion matrix [44]. Although there exist 8 so-

lutions forxTk and thus 8 solutions foryTk , as it depends injectively onxTk [see (7.36)], we

only need to consider the pairs(xTk , yTk) that correspond to real eigenvalues of the companion

matrix. Following the same reasoning as in the case of range-only tracking, since some of these

solutions could be local maxima and/or saddle points, the second-order derivative test [16] is

employed to extract the minima. Finally, once we determine all the local minima for the tar-

get position, we compute the corresponding estimates for the higher-order position derivatives

via (7.19). Moreover, the following lemma provides a tighter upper bound for the maximum

number of local minima for the case of bearing-only tracking.

Lemma 7.4.2. There are at most 7 local minima for(7.33).

Proof. According to the MPT (see Appendix E.1 and Theorem 5.2 in [81]), for a coerciveC1

function, there exists a third critical point which is not a local minimum between any two strict

local minima. It can be verified that the cost function (7.33)∈ C1(R2\{xTk =xSk
}) is coercive,

and therefore at least one of the 8 critical points cannot be alocal minimum, leaving a maximum

number of 7 local minima.

Note that due to its rational form, the inferred bearing measurement (7.32) is symmetric

with respect to the sensor, while the original bearing measurement (7.5) is different in different

quadrants. This can result in more local minima of (7.33) than those of (7.20). To discard

the spurious local minima resulting from the symmetry of theinferred measurement, we can

employ the Mahalanobis distance test [14]. As a result, we have never observed more than 4

local minima in practice.
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7.5 A bank of MAP estimators

As discussed in the preceding section, due to the nonlinearity of range and bearing measure-

ments, the incremental one-step MAP problem (7.17), and thus the original batch (multi-step)

MAP problem (7.8), may have multiple local minima that correspond to the modes of the pos-

terior pdf. Any iterative algorithm (e.g., Gauss-Newton) used in the batch-MAP estimator only

converges to the global optimum and hence the true MAP estimate, if the initial estimatêx(0)
0:k|k

is within its region of attraction. However, in general, there exists no systematic method for

determining an initial estimate that can always ensure convergence to the global optimum. As a

result, the standard batch-MAP estimator when used for target tracking can become inconsistent

and even diverge if no good initial estimate is provided. This is confirmed by the simulation

and experimental results presented in Sections 7.6 and 7.7.

To mitigate the aforementioned issue, in this section, we propose a generallinearizedes-

timation framework for tracking multiple local minima (modes). Within this framework, we

develop a bank of MAP estimators for the particular problem of target tracking. The key idea

of this approach is to use the analytically-computed local minima at each time step (see Sec-

tion 7.4.2) as guidance to find and track the most probable hypotheses of the target trajec-

tory, thus improving estimation performance. Specifically, at time-stepk − 1, based on (7.15)

and (7.16), we first propagate the current state estimate corresponding to thei-th solution and its

covariance matrix,̂x[i]
k−1|k−1 andP[i]

k−1|k−1, i = 1, 2, . . . ,m (m is the number of estimators in

the bank at time-stepk−1). Then, once a new measurement becomes available, the propagated

state estimate and covariance,x̂
[i]
k|k−1 andP[i]

k|k−1, are used as the prior in (7.17). Next, we use

the algebraic-geometry methods presented in Section 7.4.2to determine all the local minima

of (7.17) analytically, denoted byx[j]
k , 1 ≤ j ≤ αm (see Lemma 7.4.1 and 7.4.2,α = 2 and 7,

respectively). Finally, for each of these solutions, we employ the Gauss-Newton approach that

uses the latest estimates of the trajectory corresponding to this solution as the initial value and

all the available original measurements, to refine the entire state estimateŝx[j]
0:k|k up to current

time-stepk [see (7.8)].

This procedure incrementally evolves over time, and at every time step, generates at most

αm trajectory estimates. In the end, we will have multiple candidates of the MAP estimate,

among which the one with the least cost is selected as the bestestimate for the global optimum

(and thus for the true state). Algorithm 4 outlines the main steps of the proposed algorithm.
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Algorithm 4 A Bank of MAP Estimators for Target Tracking
1: At each time-stepk:
2: Propagate the current target state estimate and covariancevia (7.15) and (7.16).
3: Analytically determine all the local minima of (7.17).
4: For each of the local minima, refine the corresponding entirestate (trajectory) estimates

and covariance, by employing the Gauss-Newton approach that uses the latest state es-
timates corresponding to this solution as the initial guess, and also compute the MAP
cost (7.8).

5: In the end, select the estimate in the bank with the least costas the resulting MAP estimate.

7.5.1 Computational cost reduction

In the worst case, the total number of analytic solutions, and thus MAP estimators in the bank,

grows exponentially with time. In addition, as the target continuously moves, the size of the

state vectorx[i]
0:k of each MAP estimator increases linearly with time. In orderto make the

algorithm suitable for real-time applications, in what follows, we present an effective pruning

scheme, as well as the process of marginalization of old, matured states, to reduce the compu-

tational cost of the proposed algorithm.

Pruning scheme

In practice, the number of physically different trajectoryhypotheses is significantly lower than

the exponential number of hypotheses generated by the estimator, since many different initial

guesses reside within the same basin of attraction. Additionally, we observe that in general,

if two MAP estimators in the bank have similar costs, the trajectory estimates are also close.

Therefore, we first aggregate the trajectory estimates of which the corresponding costs are equal

within a tolerance, and retain one representative trajectory of each such group while discarding

the others. In addition, we also employ the K-means algorithm [42] to cluster the remaining

estimated trajectories into two groups based on their costsand remove the (outlier) group which

has larger costs. These two steps, aggregation and clustering, are repeated, until the number of

MAP estimators in the bank is within the threshold denoted bymmax.4

4 Simulation results have shown that the aggregation is so effective that most of the time there is no need to
perform the clustering.
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Marginalization of old states

To further reduce the computational complexity, we also employ a marginalization process that

removes the old, matured states from the state vector of eachbatch-MAP estimator in the bank

(see Section 5.3 and [38,163]). In particular, suppose thatmarginalization of old states is carried

out at time-stepko, when all the measurements during the time interval[0, ko] are available.

Then, as the robot keeps moving and collects new measurements in the time interval[ko+1, k],

the MAP estimation takes place at time-stepk. To facilitate our derivations, we first define the

notations that we will be using. The old states that are marginalized out at time-stepko are

denoted byxM , x0:km . The remaining states that stay active in the sliding windowafter

marginalization are denoted byxR , xkm+1:ko . Finally, the new target states that are added

into the state vector during[ko+1, k] are denoted byxN , xko+1:k. At time-stepk, the sliding

window contains the statesxR andxN, and the estimator computes the batch-MAP estimate by

minimizing a cost function similar to (7.8):

c(x0:k) = c(xM,xR,xN) = cM(xM,xR) + cN(xR,xN) (7.38)

where we have decomposed the cost function into two terms:cM(xM,xR) that contains all

quadratic terms that involve states inxM only, as well as terms involving the last state inxM

and the first state inxR; andcN(xR,xN) that contains all quadratic terms that involve states in

xR only, states inxN only, and terms involving the last state inxR and the first state inxN. It

is important to note that there is no quadratic term jointly involving states inxN andxM, since

the target states marginalized at time-stepko do not participate in any measurement after that

time. Thus, we have:

min
xM,xR,xN

c(xM,xR,xN) = min
xR,xN

(
cN(xR,xN) + min

xM

cM(xM,xR)

)
(7.39)

We then solve forx⋆M = argmin
xM

cM(xM,xR) which only depends onxR. This results

in an approximately equivalent cost function of (7.39),c′N(xR,xN), which doesnot depend

on xM and whose minimization can be carried out by the Gauss-Newton method (see Sec-

tion 7.3.3). The approximation in this process is introduced due to the fact thatcM is perma-

nently approximated by its second-order Taylor series expansion, and the marginalized states

xM, as well as all the measurements that directly involve them are discarded. Now it becomes

clear that due to the marginalization, each batch-MAP estimator in the bank has constant com-

putational requirements, which depend only on the size of the sliding window. This, along with
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pruning, results inconstantcomputational complexity for the proposed bank of MAP estima-

tors, compared tolinear for the standard (non-marginalized) batch-MAP estimator (due to the

sparse, banded structure of the Hessian matrix) (see Section 7.3.3).

7.6 Simulation results

A series of Monte-Carlo simulations were conducted under various conditions, in order to

demonstrate the capability of the proposed algorithm to improve tracking performance. We

used RMSE and NEES [14] as the metrics for evaluating estimators’ performance. In the fol-

lowing simulation tests, we adopted a zero-acceleration motion model for the target [14]:

ẋ(t) = Fx(t) +Gw(t) (7.40)

where

F =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



, G =




0 0

0 0

1 0

0 1



, x(t) =




xT (t)

yT (t)

ẋT (t)

ẏT (t)




and w(t) =
[
wx(t) wy(t)

]T
is zero-mean white Gaussian noise with covariance

E
[
w(t)w(τ)T

]
= qI2δ(t − τ), whereq = 1

(
m
sec2

)2 1
Hz , and δ(t − τ) is the Dirac delta

function. In the implementation, we discretize this continuous-time system model (7.40) with

time step∆t = 0.1 sec. The initial true target state isx0 =
[
0 0 −5 5

]T
, while the initial

estimate of the target state is randomly generated from a Gaussian pdf,N (x0,P0|0), where

P0|0 = 103I4 is the initial covariance of the state estimate. Similar to [47], we chose a circular

sensor trajectory with perfectly known poses for this simulation. Fig. 7.3 shows the trajectories

of the target and sensor in one typical realization of Monte-Carlo simulations.

For the results presented in this section, we performed 100 Monte-Carlo simulations, and

compared four different estimators. During each Monte-Carlo run, all the estimators process

the same data, to ensure a fair comparison. The compared estimators are: (1) the standard

EKF, (2) the standard batch-MAP estimator that incrementally uses the EKF estimates (i.e., the

current EKF estimate along with the MAP estimates of the paststates) as the initial value as

well as employs the marginalization process as in (4), (3) the sampling importance resampling
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Figure 7.3: The trajectories of the target and sensor obtained from one typical realization of the
100 Monte-Carlo simulations.

(SIR)-PF with3000 particles [8], and (4) the proposed bank of MAP estimators with pruning

(mmax = 10) and marginalization (sliding window of25 time steps). Note that in both MAP

estimators, the maximum number of Gauss-Newton iterationsallowed was set to20. In this

simulation, we implemented the standard (bootstrap) SIR-PF [50] that uses the prior distribution

as the proposal distribution to draw particles and employs systematic resampling at every time

step. Moreover, to alleviate the particle depletion problem, we also dithered the sensor noise

(i.e., increasing noise covariance). We have examined different resampling schemes such as

Ripley’s and stratified resampling [58], but found negligible performance difference.

In what follows, we present the comparison results for both range-only and bearing-only

target tracking. In the case of range-only tracking, the standard deviation of the distance-

measurement noise was equal to 10% of the sensor-to-target distance, while in the case of

bearing-only tracking, the standard deviation of the bearing-measurement noise was equal to

10 deg. Notice that the sensor-noise levels selected for thesesimulations are larger than what is

typically encountered in practice. This was done purposefully, since higher noise levels lead to

larger estimation errors, which can make the effects of estimator’s inconsistency and divergence

more apparent.

Specifically, Fig. 7.4 shows the Monte-Carlo results of the four estimators. As evident

from this figure, the standard EKF estimates are inaccurate,diverge from the ground truth,

and become inconsistent. The standard batch-MAP estimator, incrementally using the EKF
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(a) Range-only RMSE

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

Time Steps

N
E

E
S

 

 

EKF
PF
MAP
MAP bank

(b) Range-only NEES
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(c) Bearing-only RMSE
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(d) Bearing-only NEES

Figure 7.4: Target tracking Monte-Carlo results. It is clear that the proposed algorithm performs
substantially better than its competitors, in terms of bothaccuracy (RMSE) and consistency
(NEES). Note that for clarity of presentation, only the portions of the NEES lines that are
within certain thresholds are plotted.

estimate as the initial guess, has significantly improved performance compared to the EKF,

mostly due to the continuous relinearization of the past trajectory. As expected, the PF attains

better estimation accuracy than the EKF. This is due to the fact that each particle in the PF

essentially represents a hypothesis of the target state, and thus the PF is more likely to converge

to the optimal solution. However, it does not always work as well as the standard batch-MAP

estimator [see Figs. 7.4(a) and 7.4(c)], in part because it does not allow smoothing the old



183

Table 7.1: Computational cost and estimation accuracy

Runtime (sec) Position Est. Err. (m) Velocity Est. Err. (m/sec)

Range-only tracking

EKF 0.0013 164.5105 20.8169

MAP 0.0764 69.7182 8.7626

PF 0.5036 83.2766 10.6280

Bank of MAP 0.3460 29.8041 5.9631

Bearing-only tracking

EKF 0.0012 254.8551 32.9720

MAP 0.0628 134.4449 18.1967

PF 0.5590 206.6339 24.3979

Bank of MAP 0.5118 41.6355 9.3550

state estimates using newly available measurements.5 Note also that the NEES of the PF

is not necessarily better than that of the EKF, primarily dueto the numerical issue incurred

in the simulation that the covariance matrices of the PF computed from particles become ill-

conditioned. Most importantly, the bank of MAP estimators performs substantially better than

its competitors, in terms of both accuracy (RMSE) and consistency (NEES). This is attributed

to the good initial estimates attained through the algebraic methods (see Section 7.4.2).

Finally, using the same simulation setup as described above, we compared the computa-

tional requirements of the proposed bank of MAP estimators and its competitors. We counted

the CPU running time for a complete update of the EKF, the PF, the standard batch-MAP estima-

tor, and the bank of MAP estimators (including the analytic determination of all local minima,

batch-MAP refinement, pruning, and marginalization). Our Matlab implementation running on

a Core2 Quad CPU required an average execution time for each estimator shown in Table 7.1.

These results were obtained by averaging the CPU running time over all Monte-Carlo runs and

over all time steps. As expected, the EKF and the standard MAPestimator which only track

single hypothesis of the target trajectory, are much more computationally efficient than both

the PF and the proposed bank of MAP estimators which instead track multiple hypotheses of

5 Although particle-based smoothers exist, their computational requirements are significantly higher [58].
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Figure 7.5: Experimental setup: (a) Calibrated image of twoPioneer III robots (one acts as
the target while the other is the sensor) with tracking patterns mounted on top of them. (b)
Trajectories of the two robots (target and sensor) that moveinside a 4 m× 2 m arena during the
indoor experiment.

the target trajectory. However, their tracking performance is substantially worse than the pro-

posed algorithm. Moreover, as compared to the PF, the proposed bank of MAP estimators not

only is less computationally demanding, but also achieves significantly better performance [see

Figs. 7.4(a) and 7.4(c), and Table 7.1]. Specifically, in thecase of range-only tracking, the

bank of MAP estimators achieves on average 60% higher position and 40% higher velocity es-

timation accuracy compared to the PF, at 30% less computational cost; similarly, in the case

of bearing-only tracking, it achieves on average 80% higherposition and 60% higher velocity

estimation accuracy than the PF with comparable (8% less) computational cost.

7.7 Experimental results

In this section, we present a real-world experiment performed to further validate the proposed

algorithm. During the test, two Pioneer-III robots, one acting as the target and the other serving

as the sensor, moved in a rectangular area of 4 m× 2 m, within which the positions of the robots

were being tracked by an overhead camera. For this purpose, rectangular tracking patterns

were mounted on top of the robots and the vision system was calibrated in order to provide

ground-truth measurements of the robots’ poses in a global coordinate frame. The standard
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(a) Range-only RMSE
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(b) Range-only NEES
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(c) Bearing-only RMSE
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(d) Bearing-only NEES

Figure 7.6: Target tracking experimental results. It is clear that the proposed bank of MAP
estimators performs better than its competitors. Note thatfor clarity of presentation, only the
portions of the NEES lines that are within certain thresholds are plotted.

deviation of the noise in these measurements was approximately 0.5 deg for orientation and

0.01 m, along each axis, for position. The target robot was commanded to move along a straight

line at a constant velocity ofv = 0.1 m/sec, and thus a zero-acceleration motion model with

q = 0.01
(

m
sec2

)2 1
Hz was used to describe this motion [see (7.40)], while the sensor robot was

operated to move on a circle. Fig. 7.5(a) shows the experimental setup, and Fig. 7.5(b) depicts

the trajectories of the target and the sensor.

In this experiment, the initial estimate of the target statewas set to bex̂0|0 =
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[
1.2 0.95 0.7 −0.8

]T
with covarianceP0|0 = I4. Relative distance and bearing mea-

surements were produced synthetically using the differences in the positions of the target and

the sensor, as these were recorded by the overhead camera, with the addition of noise. For the

experimental results shown in the following, the distance and bearing measurements were cor-

rupted by zero-mean white Gaussian noise, with standard deviationσρ = 0.1 m andσθ = 5 deg,

respectively.

The same four estimators as in the previous simulation were implemented, and the compar-

ative results are presented in Fig. 7.6. From the experimental results, it becomes clear that the

bank of MAP estimators outperforms the standard EKF, the PF,and the standard MAP estima-

tor, in terms of both accuracy (RMSE) and consistency (NEES). This agrees with the simulation

results presented in the preceding section. Most importantly, both the experimental and simu-

lation results confirm the significance of correctly finding and tracking multiple modes of the

posterior pdf as well as reduced linearization errors in nonlinear estimation problems.

7.8 Summary

In order to improve consistency, nonlinear estimators should be able to track multimodal pdfs

which often occur in nonlinear problems. However, this is not the case for many existing es-

timators (e.g., the EKF, and the MAP estimator). In this work, we have introduced a general

estimation framework, a bank of MAP estimators, that simultaneously allows tracking multiple

modes of the posterior pdf, and reduces linearization errors through relinearization of past mea-

surements. We have applied it to the problems of both range-only and bearing-only target track-

ing. Due to the computational intractability of analytically solving the batch-MAP problem,

we have employed a relaxation scheme that keeps past state estimates temporarily constant and

incrementally solves a one-step minimization problem for the current state at every time step.

This minimization is solved analytically using algebraic geometry methods. The analytically-

computed local minima are then used to find accurate initial values for the bank of MAP esti-

mators, thus focusing the available resources on tracking the most probable hypotheses of the

target trajectory. Additionally, to reduce the computational cost of the proposed algorithm, we

have employed hypothesis pruning along with marginalization of old states. Simulation and ex-

perimental results have shown that the proposed algorithm significantly outperforms the EKF,

the batch-MAP estimator, as well as the PF, in terms of both accuracy and consistency.



Chapter 8

Analytically-Guided Sampling-Based

PF for Target Tracking

In this chapter, we adapt the idea of analytically selectinghypotheses presented in the previous

chapter to PFs. Within the PF framework, one critical designchoice that greatly affects the

filter’s performance is the selection of the proposal distribution from which particles are drawn.

We hence advocate the proposal distribution to be a Gaussian-mixture-based approximation of

the posterior pdf after taking into account the most recent measurement. The novelty of our

approach is that each Gaussian in the mixture is determinedanalytically to match the modes

of the underlying unknown posterior pdf. As a result, particles are sampled along themost

probableregions of the state space, hence reducing the probability of particle depletion. Part of

this chapter has been published in [69].

8.1 Introduction

Particle filtering has become an increasingly popularnonparametricnonlinear estimation ap-

proach used in a wide range of applications such as target tracking [8, 39, 41, 58, 134]. A par-

ticle filter (PF) seeks to approximate the posterior pdf by a set of random samples (particles)

and updates its estimate recursively in time. Within the sequential importance sampling (SIS)

framework, one critical step is to design an appropriateproposal distribution(or importance

density), which is used to draw particles for the next time step. Clearly, from the Bayesian fil-

tering perspective, the best choice of the proposal distribution is the posterior pdf itself, which,
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however, in general is intractable to evaluate analytically. In this chapter, we focus on formally

designing a proposal distribution that better approximates the posterior pdf so as to improve the

PF’s performance.

Since, in general, it is also difficult to sample from theoptimalproposal distribution, which

minimizes the variances of the particles’ weights conditioned on the trajectory and all available

measurements [40], many, oftenad hoc, choices of the proposal distribution are described in the

literature. Typically, the prior pdf is used, which resultsin the standard (bootstrap) PF weighted

by the measurement likelihood [50]. If, however, the prior is uninformative, the generated par-

ticles may not be able to sample the state space sufficiently.Specifically, when far from a mode

of the posterior pdf, the weights of the particles decay quickly and lead to particle depletion

(i.e., only a few particles have significant weights) [8]. Asa result, the very few surviving par-

ticles are unable to appropriately represent the underlying posterior pdf, which may cause filter

inconsistency.1 In general, in order to converge to meaningful estimates, the standard PF

requires using a large number of particles, and thus has highprocessing requirements. In cases

where the posterior pdf is closer than the prior to the measurement likelihood, then using the

likelihood, instead of the prior, as the proposal distribution often improves performance [8]. Al-

ternatively, a Gaussian proposal distribution can be obtained by local linearization [40], based

on which the unscented PF (UPF) [166] was introduced. The UPFemploys the UKF or the

EKF to generate the proposal distribution that takes into account the latest measurements and

thus better approximates the posterior pdf. Similar ideas were also exploited in [115,139,168].

However, often due to the multimodal nature of the posteriorpdf, the particles sampled from

the UKF/EKF posterior pdf do not necessarily capture all thetrue posterior modes, which may

degrade the UPF’s performance.

The closest to the work presented in this chapter is the Gaussian sum PF (GSPF) [98] –

which essentially is a bank of Gaussian PFs (GPFs) [97] – has been derived based on the con-

cept of the Gaussian sum filter (GSF) [3]. Specifically, by assuming that the prior pdf can be

represented as the sum of Gaussian distributions, the GSPF updates each distribution using the

particles that are sampled, for example, from the corresponding prior pdf and weighted by the

measurement likelihood. However, the GSPF does not providea measurable criterion about how

many Gaussian distributions are needed and most importantly, where to choose them. These

1 Consistency is one of the primary criteria for evaluating the performance of an estimator. As defined in [14],
an estimator isconsistentif the estimation errors are zero-mean and have covariance smaller or equal to the one
calculated by the estimator.
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critical issues are addressed in the Analytically-Guided-Sampling (AGS)-PF introduced in this

chapter.

In particular, the proposed AGS-PF efficiently utilizes theavailable computational resources

by employing a small number of particles drawn from themost probablehypotheses about the

estimated state, i.e., the AGS-PF samples the most likely regions of the state space. The key

idea behind our approach is to employ a Gaussian mixture to approximate the posterior pdf,

where each Gaussian is determinedanalyticallyand corresponds to a mode of the posterior pdf.

Specifically, we first formulate and convert the nonlinear cost function of the MAP optimization

problem for the current state intopolynomialform, and then employ algebraic-geometry tech-

niques [33] to analytically compute all the modes of the posterior pdf. Subsequently, we use a

Gaussian mixture as the proposal distribution to approximate the posterior distribution. Each

Gaussian component matches one mode of the posterior pdf, and its covariance is computed as

the inverse of the Hessian matrix of the MAP problem. This analytically-determined proposal

distribution provides a better approximation to the posterior pdf, because it not only takes into

account the current measurement but also matches all the modes of the posterior pdf. Therefore,

the particles drawn from this proposal distribution samplethe most probable regions of the state

space. Simulation and experimental results demonstrate that the AGS-PF significantly improves

the performance in the cases of range-only and bearing-onlytarget tracking. We stress that apart

from the particular application of target tracking treatedhere, the proposed analytically-guided

sampling scheme is applicable to a broad class of nonlinear estimation problems in robotics and

computer vision that can be expressed in (or converted into)polynomial form.

8.2 Analytically-guided sampling-based particle filtering

In this section, we present a novel analytically-guided sampling scheme that consists of a

Gaussian-mixture-based proposal distribution whose modes are determined analytically to

match those of the posterior pdf. As a result, the new AGS-PF effectively focuses the avail-

able computational resources on the most probable regions of the state space. In what follows,

we begin with a brief overview of the generic PF, and then describe our novel sampling scheme

which can readily be integrated into the PF framework.
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8.2.1 Particle filtering

A PF seeks to approximate the posterior distribution of the entire state trajectory,p(x0:k|z0:k),
sequentially in time, using a set ofM weighted samples (particles),{x[j]

0:k}Mj=1, wherexT0:k ,[
xT0 · · · xTk

]
denotes all the states up to time-stepk, andz0:k denotes all the measurements in

the time interval[0, k]. To this end, relying on sequential importance resampling (SIR), the PF

generally requires three sequential steps to update its estimate (see [8,41,58], and Algorithm 5):

Firstly, it draws particles for the next time step from a proposal distribution,π(x0:k|z0:k), which

is a critical design choice. Secondly, it assigns a weight toeach particle in order to account for

the fact that the proposal distribution is usually different from the true posterior pdf. Lastly, it

performs resampling to multiply (or discard) particles with high (or low) weights.

As mentioned before, one of the main challenges in PFs is designing an appropriate proposal

distribution. Even though numerous choices can be made, onetypically requires that the pro-

posal distribution has the following form in order to be amenable to recursive computation [41]:

π(x0:k|z0:k) = π(xk|x0:k−1, z0:k)π(x0:k−1|z0:k−1) (8.1)

It is well known that the curse of dimensionality can quicklymake the particles too sparse to

represent the posterior pdf (i.e., particle depletion). Inpractice, it is common to approximate

the proposal distributionπ(x0:k|z0:k), by fixing the past trajectoryx0:k−1 and only sampling

the current statexk, i.e., usingπ(xk|x0:k−1, z0:k). It has been proven in [40] that theoptimal

proposal distribution for the current state, with respect to minimizing the variance of the parti-

cles’ weights, is in the form of a conditional pdf conditioned on the past trajectory and all the

measurements:

πopt(xk|x0:k−1, z0:k) = p(xk|x0:k−1, z0:k) (8.2)

Based on (8.1) as well as the common assumptions that the motion model is a Markov

process and that the measurements are conditionally independent given the states, the (unnor-

malized) importance weight of thej-th particle is computed recursively as follows [41]:

w
[j]
k =

p(x
[j]
0:k|z0:k)

π(x
[j]
0:k|z0:k)

∝ w
[j]
k−1

p(x
[j]
k |x[j]

k−1)p(zk|x
[j]
k )

π(x
[j]
k |x[j]

0:k−1, z0:k)
(8.3)

To summarize, a generic PF is outlined in Algorithm 5.
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Algorithm 5 A generic particle filtering algorithm
1: loop
2: Draw particles{x[j]

k }Mj=1 ∼ π(xk|x0:k−1, z0:k)
3: Compute weights via (8.3), and normalize weights
4: Resample particles based on weights
5: end loop

In general, the optimal proposal distribution (8.2) is not available analytically or in a suitable

form for efficient sampling, and one may choose (infinitely many) other possible distributions

to approximate it. As mentioned before, a common choice is tosample from the state-transition

prior distribution (motion model), i.e.,π(xk|x0:k−1, z0:k) = p(xk|xk−1). In this case the weight

is simply proportional to the measurement likelihood,p(zk|xk) [see (8.3)]. However, such a

choice may easily lead to filter inconsistency (see Sections8.4 and 8.5). To address this issue, in

the following, we design an analytically-determined proposal distribution by taking the current

measurement into account as well as matching all the modes ofthe posterior pdf.

8.2.2 Analytically-guided sampling scheme

Our choice of Gaussian-mixture-based proposal distribution is motivated by the following Gaus-

sian sum theorem (see Theorem 4.1 of [3], p.214):

Theorem 8.2.1. For a measurement model with additive Gaussian noise [e.g.,see (7.4)],

i.e., zk = h(xk) + vk, wherevk ∼ N (0, σ2k), and a prior pdf given byp(xk|z0:k−1) =
∑m

i=1 αiN
(
xk; x̂

(i)
k|k−1,P

(i)
k|k−1

)
, the posterior pdfp(xk|z0:k) approaches the Gaussian sum

∑m
i=1 α

′
iN
(
xk; x̂

(i)
k|k,P

(i)
k|k

)
uniformly inxk and zk asP(i)

k|k−1 → 0 for i = 1, . . . ,m, where
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Figure 8.1: Illustration of the proposed analytically-determined proposal distribution that uses
a Gaussian mixture to approximate the posterior distribution. The modes of the posterior pdf,
which are analytically computed, are also used as the modes of the proposal distribution. Note
that for visualization the plotted Gaussians of the mixtureare scaled so that their modes also
coincide along y-axis with those of the posterior pdf.

the mean, covariance and weight are computed as follows:

x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k

(
zk − h(x̂

(i)
k|k−1)

)
(8.4)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k H

(i)
k P

(i)
k|k−1 (8.5)

K
(i)
k = P

(i)
k|k−1H

(i)T

k

(
H

(i)
k P

(i)
k|k−1H

(i)T

k + σ2k

)−1
(8.6)

H
(i)
k = ∇xk

h
∣∣∣
xk=x̂

(i)
k|k−1

(8.7)

α′
i =

αiβi∑m
i=1 αiβi

(8.8)

βi = N
(
zk;h(x̂

(i)
k|k−1),H

(i)
k P

(i)
k|k−1H

(i)T

k + σ2k

)
(8.9)

Based on this theorem, under mild assumptions, the Gaussianmixture can provide a good

approximation to the posterior pdf. Hence, we propose to usea Gaussian mixture as the pro-

posal distribution in the AGS-PF, while the novelty here is that we employ tools from algebraic

geometry to analytically determine the modes of the posterior pdf, which are then used as the

modes of the proposal distribution (see Fig. 8.1).
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In particular, given that the prior pdf in the PF is approximated by a set of particles

[see (8.10)],{x[j]
k⊖, w

[j]
k⊖}Mj=1, we find a Gaussian mixture to approximate this distribution, which

can be achieved, e.g., by clustering theM particles intom groups and then fitting a Gaussian

to each group.

p(xk|z0:k−1) ≃
M∑

j=1

w
[j]
k⊖δ(xk − x

[j]
k⊖) (8.10)

≃
m∑

i=1

αiN
(
xk; x̂

(i)
k|k−1,P

(i)
k|k−1

)

︸ ︷︷ ︸
p(i)(xk|z0:k−1)

(8.11)

whereαi =
∑

x
[j]
k⊖∈group i

w
[j]
k⊖, andδ(·) is the Dirac delta function. Using Bayes’ rule and the above

Gaussian mixture approximation of the prior pdf (8.11), theposterior pdf can be approximated

as follows:

p(xk|z0:k) ∝ p(zk|xk)p(xk|z0:k−1)

≃
m∑

i=1

αi p(zk|xk)p(i)(xk|z0:k−1)︸ ︷︷ ︸
∝ p(i)(xk |z0:k)

≃
m∑

i=1

ni∑

ℓ=1

α′
iℓ
N
(
xk; x̂

(iℓ)
k|k ,P

(iℓ)
k|k

)
(8.12)

It is important to point out that due to the nonlinearity of the measurement model, for each

Gaussian distribution in the prior mixture,p(i)(xk|z0:k−1), the corresponding posterior pdf,

p(i)(xk|z0:k), very often is a multi-modal, rather than a unimodal, distribution. To take this fact

into account, in (8.12) we useni Gaussian distributions to approximate thei-th posterior pdf,

p(i)(xk|z0:k), whose weights,α′
iℓ

, are computed based on (8.8) but with appropriate normaliza-

tion, i.e.,α′
iℓ

= αiβi∑m
i=1 niαiβi

. Note thatni is analytically determinedas the number of modes

of the i-th posterior pdf, rather than arbitrarily chosen as in mostGaussian sum filters such as

the GSPF [98]. Here the indexiℓ denotes theℓ-th Gaussian of thei-th posterior pdf. Thus, a

mixture ofn =
∑m

i=1 ni Gaussian distributions is used to approximate the posterior pdf, which

is then used as the proposal distribution in the proposed AGS-PF.

We now aim to analytically compute all the modes,x̂
(iℓ)
k|k , (∀i = 1, . . . ,m and ∀ℓ =

1, . . . , ni), of the i-th posterior pdf,p(i)(xk|z0:k), i.e., to solve the following one-time-step
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MAP problem analytically:

max
xk

p(i)(xk|z0:k) ∝ p(i)(xk|z0:k−1)p(zk|xk) (8.13)

Exploiting the Gaussianity of the measurement noise along with the Gaussian approximation of

the i-th element,p(i)(xk|z0:k−1), of the approximate prior (8.11), the MAP problem (8.13) is

equivalent to the following nonlinear least-squares problem [76]:

min
xk

1

2
||xk − x̂

(i)
k|k−1||2P(i)

k|k−1

+
1

2
||zk − h(xk)||2σ2

k
(8.14)

where we have employed the notation||a||2M , aTM−1a. Note that for a broad class of

nonlinear estimation problems arising in robotics and computer vision, we can transform or

convert (8.14) into polynomial form and then solve for all the local minima (corresponding to

all the modes) analytically using algebraic geometry techniques [33].

Once we analytically find all the modes,̂x(iℓ)
k|k , of the iℓ-th Gaussian component of the

posterior pdf (proposal distribution), we compute the corresponding covariance,P(iℓ)
k|k , from

the inversion of the Hessian matrix of (8.14) as follows:

P
(iℓ)
k|k =

(
P

(i)−1

k|k−1
+ σ−2

k H
(iℓ)

T

k H
(iℓ)
k

)−1
(8.15)

where the measurement Jacobian,H
(iℓ)
k , is evaluated at theiℓ-th analytically-computed mode,

x̂
(iℓ)
k|k [see (8.7)]. Based on the matrix inversion lemma [49], it is not difficult to see that (8.15)

is precisely the standard EKF covariance update equation [14] [also see (8.5)].

8.3 AGS-PF for target tracking

We now apply the AGS-PF presented in the previous section to the particular problem of target

tracking, to illustrate in detail the key idea ofanalytically determining the proposal distribu-

tion for sampling particles. In particular, in order to find the proposal distribution (Gaussian

mixture), we first determine all the modes of the posterior pdf (proposal distribution),̂x(iℓ)
k|k , by

employing our analytic approaches presented in the previous chapter (see Section 7.4.2) to ana-

lytically solve the problem (8.14). On the other hand, in order to obtain the covariance,P(iℓ)
k|k , of

theiℓ-th Gaussian component of the proposal distribution (8.15), we compute the measurement

Jacobian,H(iℓ)
k , as in (7.12), using the found modes,x̂

(iℓ)
k|k .
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Since the analytically-determined proposal distributionderived in the previous section not

only takes into account the current measurement but also matches all the modes of the posterior

pdf, it provides a better approximation to the posterior pdf, and thus the AGS-PF is expected

to perform better than the standard PF as well as the GSPF. Specifically, at time-stepk − 1,

we cluster the particles intom groups, e.g., using the K-means algorithm [42]. Here,m is a

design choice selected based on the available computational resources. We compute the sam-

ple mean and covariance of thei-th group (i = 1, . . . ,m), and approximate this group by a

Gaussian,N (i) , N (xk−1; x̂
(i)
k−1|k−1,P

(i)
k−1|k−1), i = 1, . . . ,m. Then, based on thelinear

motion model (7.2), we propagate each Gaussian to obtain theprior, N (xk; x̂
(i)
k|k−1

,P
(i)
k|k−1

)

[see (7.15) and (7.16)]. When a new measurement becomes available, we analytically com-

pute all the modes of the posterior pdf for each of them GaussiansN (i), by solving (8.14)

(see Section 7.4.2). Once all the modes of the posterior pdf (and thus the proposal distri-

bution) are determined, we compute the corresponding covariance based on (8.15) for each

Gaussian component of the proposal distribution. Finally,after all the Gaussian components

(modes and covariances) are specified, we use them as a proposal distribution to draw particles,

{x[j]
k }Miℓ

j=1 ∼ N (xk; x̂
(iℓ)
k|k ,P

(iℓ)
k|k ), whereMiℓ is the number of particles drawn from theiℓ-th

Gaussian. For simplicity,Miℓ is set equal to the number of the particles originating from the

i-th group after clustering, i.e.,Miℓ = Mi, though a more adaptive scheme (e.g., based on the

particles’ weights) may be used. In summary, the main steps of the AGS-PF target tracking are

outlined in Algorithm 6.

Algorithm 6 Analytically-Guided-Sampling (AGS)-PF for Target Tracking
Require: Initialize particles by sampling fromp(x0)

1: loop
2: Cluster particles intom groups using K-means, and fit a Gaussian to each group
3: Propagate each of them Gaussians (means and covariances) to obtain the priors

via (7.15) and (7.16)
4: For each group, given a new measurement, analytically determine the proposal distribu-

tion as a Gaussian mixture [see Sections 7.4.2 and (8.15)]
5: Draw particles from the analytically-determined proposaldistribution (Gaussian mix-

ture)
6: Compute weights via (8.3), prune particles, and normalize weights
7: Resample particles based on weights
8: end loop
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Note that as seen from Section 7.4.2, we may find multiple modes of the posterior pdf for

each group at each time step. Hence, the number of Gaussian components of the proposal

distribution may be larger than the original number of clusters. This can result in an unbounded

growth of particles over time in the worst case, since more and more particles may be generated

for each group in the subsequent time steps. In order to keep the number of particles constant

and reduce the computational cost of the AGS-PF, at every time step wepruneout particles with

low weights (see Algorithm 6). As a result, the AGS-PF can usesubstantiallyfewerparticles

while achieving significantlybetterperformance than the standard PF (see Sections 8.4 and 8.5).

This is attributed to the fact that the particles drawn from the analytically-determined proposal

distribution that captures all the modes of the posterior pdf, are effectivelysampled from the

most probableregions of the state space.

8.4 Simulation results

A series of Monte-Carlo simulations were conducted under various conditions, in order to val-

idate the capability of the proposed AGS-PF to improve tracking performance, using the per-

formance evaluation metrics of NEES and RMSE [14]. In this simulation, we performed 100

Monte-Carlo simulations and compared three different PFs:(1) the standard (bootstrap) PF

with 1000 particles, which uses the prior as the proposal distribution to draw particles from

and employs the systematic resampling strategy [50]; (2) the GSPF [98] using the same number

of particles as the standard PF andm = 10 Gaussians to represent the underlying distributions,

which are initialized by clustering the initial particles intom groups and then fitting a Gaussian

to each group; and (3) the proposed AGS-PF with500 particles, which uses the analytically-

determined proposal distribution as well as systematic resampling. In the AGS-PF, at each time

step, we clustered the particles intom = 10 groups, equal to the number of Gaussians used in

the GSPF. Note that in order to validate the effectiveness ofthe analytically-determined proposal

distribution employed by the AGS-PF, significantly fewer particles were used in the AGS-PF,

as compared to the standard PF and the GSPF. Despite this fact, as shown below, the AGS-PF

attains substantially better performance than both the standard PF and the GSPF.

For the results presented in this section, we adopted a zero-acceleration motion model for
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the target [14] [also see (7.40)]:

ẋ(t) = Fx(t) +Gw(t) (8.16)

where

x(t) =




xT (t)

yT (t)

ẋT (t)

ẏT (t)



, F =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



, G =




0 0

0 0

1 0

0 1




and w(t) =
[
wx(t) wy(t)

]T
is zero-mean, white Gaussian noise with covariance

E
[
w(t)w(τ)T

]
= qI2δ(t−τ), whereq = 1

(
m
sec2

)2 1
Hz , andδ(t−τ) is the Dirac-delta function.

In our implementation, we discretize this continuous-timesystem model (8.16) with time step

∆t = 0.1 sec. The initial true target state isx0 =
[
0 0 −5 5

]T
, while the initial estimate of

the target state is randomly generated from a Gaussian pdf,N (x0,P0|0), whereP0|0 = 100I4

is the initial covariance of the state estimate. Similarly to [47], we chose a circular sensor trajec-

tory with perfectly known sensor positions for the simulations. Fig. 7.3 shows the trajectories

of the target and sensor in one typical realization of the Monte-Carlo simulations. The stan-

dard deviation of the distance-measurement noise was equalto σρ = 0.5 m, while the standard

deviation of the bearing-measurement noise was set toσθ = 3 deg.

Fig. 8.2 shows the Monte-Carlo results of the three PFs. It isclear that the standard PF

provides inaccurate estimates which are diverging from theground truth and become incon-

sistent. As explained before, the poor NEES performance of the standard PF is primarily due

to the ill conditioning of the covariances computed from particles whose weights are small or

particles that do not span all directions of the state space.As expected, the GSPF performs

more accurately than the standard PF. Most importantly, theAGS-PF performs better than both

the standard PF and the GSPF, in terms of accuracy (RMSE) and consistency (NEES). This is

attributed to the analytically-determined proposal distribution which matches all the modes of

the posterior pdf while taking into account the most recent measurements. It is interesting to

note that the superior performance of the AGS-PF over the GSPF in bearing-only tracking, is

not as pronounced as that in range-only tracking [see Figs. 8.2(a) and 8.2(c)]. This is due to the

approximation incurred in the AGS-PF using the inferred, instead of original, bearing measure-

ments (7.32) to determine the Gaussian-mixture-based proposal distribution, which, however,

is not the case in range-only tracking.
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(a) Range-only RMSE
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(b) Range-only NEES
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(c) Bearing-only RMSE
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Figure 8.2: Target tracking Monte-Carlo results: The proposed AGS-PF algorithm performs
substantially better than its competitors, in terms of bothaccuracy (RMSE) and consistency
(NEES). Note that for clarity of presentation, only the portions of the NEES lines that are
within a certain threshold are plotted.

Finally, using the same simulation setup as described above, we compared the computa-

tional requirements of the proposed AGS-PF and its competitors by measuring the CPU run-

time for a complete update of all filters. Our Matlab implementations running on a Core i7

CPU of 2.67 GHz required an average execution time for each filter shown in Table 8.1. These

results were obtained by averaging the CPU running time overall Monte-Carlo simulations and

over all time steps. As compared to the standard PF and the GSPF, the proposed AGS-PF is

not only computationally more efficient by using fewer particles but also achieves significantly
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Table 8.1: Computational cost and estimation accuracy

Runtime (sec) Pos. Est. Err. (m) Vel. Est. Err. (m/sec)

Range-only tracking

Std-PF 0.2273 92.3522 9.1060

GSPF 0.1801 51.4123 6.5045

AGS-PF 0.1813 10.3799 2.5885

Bearing-only tracking

Std-PF 0.2757 51.5319 6.3499

GSPF 0.2283 23.2511 4.4451

AGS-PF 0.1956 20.7163 4.4377

better tracking performance [see Figs. 8.2(a) and 8.2(c), and Table 8.1]. Specifically, in the

case of range-only tracking, as compared to the standard PF and the GSPF, the AGS-PF at-

tains on average 89% and 80% reduction in position estimation error, 71% and 60% reduction

in velocity estimation error, while at 20% lower and same order of computational cost, respec-

tively. Similarly, for bearing-only tracking, it achieveson average 60% higher position and 30%

higher velocity estimation accuracy than the standard PF at30% less computational cost; while

attaining compatible estimation accuracy as the GSPF at 15%less computational cost.

8.5 Experimental results

In this section, we conducted the same real-world experiment as in Section 7.7 to further val-

idate the proposed AGS-PF. Specifically, during the test, two Pioneer-III robots, one acting

as the target and the other serving as the sensor, moved in a rectangular area of 4 m× 2 m,

within which the positions of the robots were tracked by an overhead camera. For this purpose,

rectangular tracking patterns were mounted on top of the robots and the vision system was cali-

brated in order to provide ground-truth measurements of therobots’ poses in a global coordinate

frame. The standard deviation of the noise in these measurements was approximately 0.5 deg

for orientation and 0.01 m, along each axis, for position. The target robot drove along a straight

line at a constant velocity ofv = 0.1 m/sec, and thus a zero-acceleration motion model with

q = 0.05
(

m
sec2

)2 1
Hz was used to describe this motion [see (8.16)], while the sensor robot moved
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on a circle. Fig. 7.5(a) shows the experimental setup, and Fig. 7.5(b) depicts the trajectories

of the target and the sensor. In this experiment, the initialestimate of the target state was set

to x̂0|0 =
[
2.5940 1.7374 0.0003 −0.0001

]T
with covarianceP0|0 = I4. Relative dis-

tance and bearing measurements were produced synthetically using the differences in the true

positions of the target and the sensor, as these were recorded by the overhead camera, with the

addition of noise. For the results shown in this section, thedistance and bearing measurements

were corrupted by zero-mean white Gaussian noise, with standard deviationσρ = 0.1 m and

σθ = 2 deg, respectively.

The same three PFs (i.e., the standard PF, the GSPF, and the proposed AGS-PF) as in the

preceding simulation were implemented, and the comparative results obtained from this single-

run experiment are presented in Fig. 8.3. From the experimental results, it becomes clear that

the proposed AGS-PF outperforms the standard PF and the GSPF, in terms of both accuracy

(RMSE) and consistency (NEES), which agrees with the simulation results presented in the

previous section.

8.6 Summary

In this chapter, we have introduced a new AGS-PF, which uses aGaussian mixture as the pro-

posal distribution, each Gaussian corresponding to one of the analytically-computed modes of

the posterior pdf. Using such proposal distribution, the AGS-PF draws its particles within the

most probable regions of the state space. As a result, as compared to the standard PF and the

GSPF, the AGS-PF attains better performance while requiring fewer computational resources.

We applied this algorithm to the particular problems of range-only and bearing-only target

tracking. Simulation and experimental results have demonstrated that the proposed approach

outperforms the standard PF and the GSPF, in terms of accuracy, consistency and efficiency.
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(a) Range-only RMSE

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

N
E

E
S

 

 
Std−PF
GSPF
AGS−PF

(b) Range-only NEES
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(c) Bearing-only RMSE

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

N
E

E
S

 

 
Std−PF
GSPF
AGS−PF

(d) Bearing-only NEES

Figure 8.3: Target tracking experimental results: The proposed AGS-PF algorithm performs
better than its competitors, in terms of both accuracy (RMSE) and consistency (NEES). Note
that for clarity of presentation, only the portions of the NEES lines that are within a certain
threshold are plotted.



Chapter 9

Concluding Remarks

9.1 Summary of contributions

The work presented in the preceding chapters has focused on investigating the fundamental

causes of estimation inconsistency in the applications of robot localization and target tracking,

and providing methodologies for improving estimator consistency. The main contributions of

this work can be summarized as follows:

• Observability-constrained estimators for robot localization

In Chapters 2 and 3, we studied in depth the EKF inconsistencyof robot localization in-

cluding SLAM and CL and proved for the first time ever that the standard linearized EKF

system has an observable subspace ofhigherdimension than the corresponding nonlinear

system. This indicates that the standard EKF gainsspuriousinformation from the avail-

able measurements and erroneously reduces the uncertaintyof its estimates, which leads

to inconsistency. Based on this key insight, in order to address this problem, we proposed

an observability-based methodology. The underlying idea of this approach is computing

the EKF propagation and measurement Jacobians so as to ensure that the linearized EKF

system model has an observable subspace ofcorrectdimension. To achieve this goal, we

developed three different Observability-Constrained (OC)-EKFs, which compute the ap-

propriate Jacobians either indirectly (i.e., by first finding appropriate linearization points

used for computing Jacobians) or directly (i.e., by projecting the best-available measure-

ment Jacobian onto the observable directions).
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Proceeding similarly, we showed in Chapter 4 that the linear-regression-based SLAM sys-

tem model used by the UKF has the same observability issue, i.e., the linear-regression-

based system has observable subspace of higher dimension than the actual nonlinear sys-

tem. Hence, we adapted the previous observability-based methodology and introduced

a novel Observability-Constrained (OC)-UKF for SLAM. In particular, the observabil-

ity constraints are enforced when constructing the optimallinear regression matrices in

the LRKF framework. Moreover, in Chapter 5, we generalized the observability-based

methodology from the filtering framework to the smoothing framework and developed

an Observability-Constrained (OC)-SWF for SLAM. In this case, due to the marginal-

ization used in the SWF, the standard SWF possesses different parameter observability

properties from the optimal batch-MAP estimator. To address this issue, we impose the

observability constraint in computing the Jacobian and thus the Hessian matrices, when

employing Gauss-Newton to iteratively solve the nonlinearoptimization problem.

Besides theunobservablesystems such as SLAM and CL considered in Chapters 2-5, in

Chapter 6, we generalized the observability-based methodology to a broad class of ob-

servable systems, i.e., discrete-time nonlinear systems with partial-state measurements.

In particular, a novel decomposition of the observability matrix according to the measure-

ment sources (sensors) reveals that the standard EKF acquires nonexistent information

from each source’s measurements, which degrades the performance (in terms of consis-

tency and accuracy). Therefore, we adapted the observability-based idea and computed

the EKF Jacobians so that the filter only acquires information of correct d.o.f. from the

measurements ofeachsource.

• Analytically-selected multi-hypothesis target tracking

In Chapter 7, we studied the inconsistency issue of range-only and bearing-only target

tracking, which are highly nonlinear estimation problems with non-convex cost functions

and often withmultiple local minima (corresponding to the modes of the posterior pdf).

In such cases, we found that a standard linearized estimator(e.g., the EKF) becomes in-

consistent primarily because it is able to find and track onlyonelocal minimum, without

guarantee of global optimum. To address this issue, we provided a formal methodology

for designing linearized estimators that analytically findand track multiple local minima.

Within the category of linearized estimators, a bank of MAP estimators was developed.
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By converting the nonlinear cost function into polynomial form, the bank of MAP al-

gorithm analytically computes all the modes of the posterior pdf for the current state at

each time step, and then uses these modes as high-quality initial estimates for the batch-

MAP estimators in the bank to refine the entire trajectory. Furthermore, in Chapter 8 we

adapted this analytic idea to nonparametric estimation anddeveloped the Analytically-

Guided-Sampling (AGS)-PF. The key idea of the AGS-PF is to employ an analytically-

determined Gaussian mixture as proposal distribution which not only takes into account

the most recent measurement but also matches all the modes ofthe posterior (optimal

proposal) distribution. As a result, the AGS-PF can efficiently focus its particles on the

most probable region in the state space.

With this work, we provide a solid theoretical framework forimproving consistency of

nonlinear estimators that will enable long-term consistent autonomous navigation even in GPS-

denied environments, and will offer significant benefits forrobots employed in various practical

application domains.

9.2 Future research directions

Building upon the theoretical foundations developed in this work, in the future we will focus

on developing efficient state estimation algorithms to enable long-term consistent autonomous

navigation under various practical constraints, as well asexpanding the same theoretical frame-

work to distributed teams of reconfigurable arrays of networked (mobile) sensors or intelligent

embedded systems. Although there are many open interestingquestions along these lines, the

following two research directions are particularly of importance and interest:

• Resource-aware consistent vision-aided inertial navigation

In Chapters 2, 3, 4 and 5, we have primarily focused on robots navigating in 2D. Even

though this assumption is satisfied when robots operate in most man-made environments

(e.g., indoors, and on paved roads), an increasing number ofapplications require robots

moving in 3D and thus estimating their 6 d.o.f. poses (positions and orientations). For

example, the full 3D pose estimation is necessary for spacecraft [159], unmanned aerial

vehicles [103], autonomous underwater vehicles [107], robots operating on rugged out-

door terrain [156], and in some cases, robots moving indoors[119]. Therefore, it will be
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of practical importance to extend this work to 3D.

Over the past few decades, inertial navigation systems (INS) have been extensively used

for estimating 3D robot pose in GPS-denied areas (e.g., underwater, indoor, in the urban

canyon, and on other planets). Most INS rely on an inertial measurement unit (IMU) that

measures the 3 d.o.f. rotational velocity and 3 d.o.f. linear acceleration of the robot on

which it is rigidly attached. Unfortunately, simple integration of IMU measurements that

are corrupted by noise and bias, often results in pose estimates unreliable for navigation

purposes. Although high-accuracy IMUs do exist, they remain prohibitively expensive for

widespread deployment. For this reason, it is common to aid an INS with an alternative

sensor, such as a laser scanner, sonar, radar, or camera, whose measurements can be used

to determine the robot motion with respect to the surrounding environments. Of these

possible aiding sources, camera is an appealing choice since it is small, light-weight,

inexpensive, and passive (energy efficient), while providing rich information. Hence,

vision-aided INS (V-INS) is emerging as an important application [120].

Even though state-of-the-art V-INS algorithms can provideaccurate pose estimates over

short periods of time, they are not ready for long-term deployment in critical scenar-

ios. This is due to certain limitations, includinginconsistentstate estimates andresource

(sensing and processing) constraints that are not appropriately addressed and often result

in short mission duration. Therefore, to address these issues, our future research efforts

will focus on: (i) investigation of the fundamental causes of 3D pose estimation incon-

sistency and approaches to mitigate these problems; and (ii) development of new state

estimation algorithms to optimally allocate often limitedsystem resources. An immedi-

ate impact of this research will be to advance the current state of the art, by improving

the cost efficiency as well as the estimation consistency andaccuracy.

• Estimation and control in mobile sensor (robot) networks

Sensor networks – a typical cyber-physical system – are becoming increasingly popular,

since they can measure and estimate quantities of interest at spatially distributed locations.

Static sensor networks are useful for applications such as habitat monitoring [131] or

terrain surveillance [2], while the additional mobility offers a sensor network an even

broader spectrum of applications. Teams of mobile sensors (robots), for example, have

been used for inspection of nuclear power plants [35], aerial surveillance [15], search
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and rescue [152], and underwater or space exploration [23].Although these application

domains are quite dissimilar, a common requirement is to solve a statistical inference

problem. For instance, we may seek to determine the poses of sensors (localization),

estimate the trajectory of a moving target (tracking), build a map of the area where robots

operate (mapping), or find the spatio-temporal parameters of a natural process (learning).

Within the expansive list of inference problems, two large categories are interesting:

model-basedestimation such as EKF, where an analytical model of the process being

tracked is available, andnonparametricestimation such as PF, where such a model does

not exista priori. The latter has become increasingly popular, but its inconsistency is

not sufficiently studied, which hence will be one of our future research efforts. In both

classes, an important distinction can be made betweencentralizedapproaches, which as-

sume the presence of a fusion center in the network where most(or all) of the processing

takes place; anddecentralizedones, where no such special node exists, and all the pro-

cessing takes place in the sensor platforms. The latter is more appealing and will be

within our research focus, since requiring a fusion center is not desirable in many cases

due to reliability and/or scalability concerns. Furthermore, mobile sensor networks often

need to operate under stringent constraints on their available sensing, processing, com-

munication, and power resources. These, however, are not appropriately addressed by

most existing inference algorithms and hence make them impracticable. For this reason,

our future research efforts will also focus on: (i) performing optimal inference under re-

alistic resource constraints; (ii) studying the effects ofthe key properties of the sensor

system – such as the size of the sensor network, the type and precision of the sensors,

the frequency of the observations, and the availability of communication and process-

ing resources – on the attainable estimation accuracy; and (iii) learning optimal motion

strategies for each robot in the team so as to aid estimation tasks, and vice versa. This

research will promote robot (sensor) coordination for information acquisition, communi-

cation, and management, by providing adaptability to changing conditions and increasing

the reliability of networks.

As we finish this work, we are excited to find robot systems standing at the brink of

widespread field deployment in real-world applications. Wehope that our work, which enables

consistent autonomous navigation, serves as a solid first step towards this goal.
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Appendix A

Appendices for Chapter 2

A.1 Unicycle model

If the unicycle model is used, and we employ the approximation that the velocity and heading

are constant during each propagation interval, we obtainRk x̂Rk+1
= [vmk

δt 0 ωmk
δt]T , where

umk
= [vmk

ωmk
]T are the linear and rotational velocity measurements, respectively, andδt

is the sampling period. Substitution in (2.2)-(2.3) yieldsthe familiar robot pose propagation

equations:

p̂Rk+1|k
= p̂Rk|k

+

[
vmk

δtc(φ̂Rk|k
)

vmk
δts(φ̂Rk|k

)

]
(A.1)

φ̂Rk+1|k
= φ̂Rk|k

+ ωmk
δt (A.2)

Similarly, the commonly used expressions for the Jacobian matricesΦRk
andGRk

can be de-

rived from (2.6), (2.8) and (2.9). Specifically, by substituting the robot displacementRk p̂Rk+1
=[

vmk
δt 0

]T
into (2.8), we have:

ΦRk
=




1 0 −vmk
δts(φ̂Rk|k

)

0 1 vmk
δtc(φ̂Rk|k

)

0 0 1


 (A.3)
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To derive the Jacobian matrixGo
Rk

with respect to the odometry vectoruk, instead ofRk x̂Rk+1
,

we apply the chain rule of differentiation as follows:

Go
Rk

=
∂(xRk+1

)

∂(RkxRk+1
)

∣∣∣
Rk x̂Rk+1

× ∂(RkxRk+1
)

∂uk

∣∣∣
umk

(A.4)

The first term is the Jacobian with respect to the robot pose change (displacement and orienta-

tion change), evaluated at the estimateRk x̂Rk+1
, and is given in (2.9). The second term is the

Jacobian of the robot pose change with respect touk. SinceRkxRk+1
=
[
vkδt 0 ωkδt

]T
,

this Jacobian is simply given by:

∂(RkxRk+1
)

∂uk

∣∣∣
umk

=




δt 0

0 0

0 δt


 (A.5)

Therefore, substitution of (A.5) and (2.9) into (A.4) yields:

Go
Rk

=




δtc(φ̂Rk|k
) 0

δts(φ̂Rk|k
) 0

0 δt


 (A.6)

We thus showed how the commonly used expressions for (2.2)-(2.4), as well as the state and

noise Jacobians can be derived.

A.2 Proof of Lemma 2.4.1

The proof is based on mathematical induction, by verifying the structure of thekth order Lie

derivatives. We define the Lie derivative of aC∞ functionh on an open subsetS ⊂ R
dim(x)

along an analytic vector fieldf onS, as:

Lfh = (dh)f (A.7)
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wheredh is the gradient ofh with respect to the state vectorx. We start by noting the following

identities, which will be useful in the ensuing derivations.

dρ

dx
=
[
− δx

ρ
− δy

ρ
0 δx

ρ
δy
ρ

]

=
[
−cθ −sθ 0 cθ sθ

]
(A.8)

dψ

dx
=

1

ρ

[
δy
ρ

− δx
ρ

−ρ − δy
ρ

δx
ρ

]

=
1

ρ

[
sθ −cθ −ρ −sθ cθ

]
(A.9)

whereδx , xL − xR, δy , yL − yR, andθ , ψ + φR.

We first prove that ifh has the special structure shown in (2.15), then the zeroth- and first-

order Lie derivatives are functions ofρ andψ only.

By applying the chain rule of differentiation, the zeroth-order (i.e.,k = 0) Lie derivative is

computed as follows:

L0h ,
dh

dx
=
[
∂h
∂ρ

∂h
∂ψ

]

︸ ︷︷ ︸
A0

[
dρ
dx
dψ
dx

]
(A.10)

It is important to note that sinceh is a function ofρ andψ only, the terms∂h
∂ρ

and ∂h
∂ψ

are also

functions ofρ andψ only. As a result, the matrixA0 is a function ofρ andψ, whose exact

structure depends on the particular measurement functionh.

The first-order (i.e.,k = 1) Lie derivatives are calculated according to the definition(A.7),

and employing the results of (A.8) and (A.9), as:

L1
f1
h =

[
∂h
∂ρ

∂h
∂ψ

] [ dρ
dx
dψ
dx

]
f1

= A0

[
−cθcφR − sθsφR
1
ρ
(sθcφR − cθsφR)

]
= A0

[
−cψ
sψ
ρ

]
(A.11)

L1
f2
h =

[
∂h
∂ρ

∂h
∂ψ

] [ dρ
dx
dψ
dx

]
f2 = A0

[
0

−1

]
(A.12)

We thus see that both the zeroth- and the first-order Lie derivatives are functions ofρ andψ

only. This is the base case for the proof by induction.

Now assume thek-th order Lie derivativesLkfih, i = 1, 2, are functions ofρ andψ only.1

1 Extension of this analysis to the case of mixedk-th order Lie derivatives is straightforward, though more
involved in terms of notation; thus, it is omitted to preserve presentation clarity.



228

Then their gradients can be computed by:

d(Lkfih)

dx
=
[
∂
∂ρ
(Lkfih)

∂
∂ψ

(Lkfih)
]

︸ ︷︷ ︸
Aki

[
dρ
dx
dψ
dx

]
(A.13)

whereAki is a function ofρ andψ only. Thus, the(k+1)-th order Lie derivatives are computed

as follows:

Lk+1
f1

h =
[
∂
∂ρ
(Lkf1h)

∂
∂ψ

(Lkf1h)
] [ dρ

dx
dψ
dx

]
f1

= Ak1

[
−cθcφR − sθsφR
1
ρ
(sθcφR − cθsφR)

]
= Ak1

[
−cψ
sψ
ρ

]
(A.14)

Lk+1
f2

h =
[
∂
∂ρ
(Lkf2h)

∂
∂ψ

(Lkf2h)
] [ dρ

dx
dψ
dx

]
f2 = Ak2

[
0

−1

]
(A.15)

Clearly, the(k+1)-th order Lie derivatives are also functions ofρ andψ only, and the proof by

induction is complete.
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A.3 Proof of Lemma 2.4.2

Employing the expressions for the Lie derivatives derived in Appendix A.2, we have:

dG = span





d(L0h1)
dx

, ...,
d(L0hn)
dx

,
d(L1

f1
h1)

dx
,
d(L1

f2
h1)

dx
, ...,

d(L1
f1
hn)

dx
,
d(L1

f2
hn)

dx
,

· · · · · · · · ·
d(Lk

f1
h1)

dx
,
d(Lk

f2
h1)

dx
, ...,

d(Lk
f1
hn)

dx
,
d(Lk

f2
hn)

dx





= span





A1
0



(
dρ
dx

)
(
dψ
dx

)

 , ..., An

0



(
dρ
dx

)
(
dψ
dx

)

 ,

A1
11



(
dρ
dx

)
(
dψ
dx

)

 ,A1

12



(
dρ
dx

)
(
dψ
dx

)

 , ..., An

11



(
dρ
dx

)
(
dψ
dx

)

 ,An

12



(
dρ
dx

)
(
dψ
dx

)

 ,

· · · · · · · · ·

A1
k1



(
dρ
dx

)
(
dψ
dx

)

 ,A1

k2



(
dρ
dx

)
(
dψ
dx

)

 , ..., An

k1



(
dρ
dx

)
(
dψ
dx

)

 ,An

k2



(
dρ
dx

)
(
dψ
dx

)







= span








A1
0

...

An
0

A1
11

A1
12
...

An
11

An
12
...

A1
k1

A1
k2
...

An
k1

An
k2




︸ ︷︷ ︸
AK



(
dρ
dx

)
(
dψ
dx

)



︸ ︷︷ ︸
M





=: span (AKM) (A.16)
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where the superscripti in Ai refers to the measurement functionhi (i.e., i = 1, 2, ..., n). We

will now show thatAK is of full column rank for any type of measurements (i.e., distance-and-

bearing, distance-only, and bearing-only measurements).

Distance-and-bearing measurements We first consider the distance-and-bearing measure-

ments which are given by:

h1(x) = ρ = ||pL − pR|| (A.17)

h2(x) = ψ = atan2(yL − yR, xL − xR)− φR (A.18)

In this case, we have

A1
0 =

[
∂h1
∂ρ

∂h1
∂ψ

]
=
[
1 0

]
(A.19)

A2
0 =

[
∂h2
∂ρ

∂h2
∂ψ

]
=
[
0 1

]
(A.20)

Hence,AK =




A1
0

A2
0

...


 =


I2...


 is full-rank.

Distance-only measurements We now consider the case of distance-only measurement

which is given by:

h(x) = ρ = ||pL − pR|| (A.21)

In this case, we have

A0 =
[
∂h
∂ρ

∂h
∂ψ

]
=
[
1 0

]
(A.22)

The first-order Lie derivatives are computed as:

L1
f1
h = A0

[
−cψ
sψ
ρ

]
=
[
1 0

] [−cψ
sψ
ρ

]
= −cψ (A.23)

L1
f2
h = A0

[
0

1

]
= 0 (A.24)
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Then, we computeA11 andA12 as:

A11 =
[
∂
∂ρ
(L1

f1
h) ∂

∂ψ
(L1

f1
h)
]
=
[
∂
∂ρ
(−cψ) ∂

∂ψ
(−cψ)

]
=
[
0 sψ

]
(A.25)

A12 =
[
∂
∂ρ
(L1

f2
h) ∂

∂ψ
(L1

f2
h)
]
= 0 (A.26)

Now we haveAK =




A0

A11
...


 =




1 0

0 sψ
...

...


 which, in general, is full-rank.

Bearing-only measurements We finally consider the bearing-only measurement which is

given by:

h(x) = ψ = atan2(yL − yR, xL − xR)− φR (A.27)

In this case, we have

A0 =
[
∂h
∂ρ

∂h
∂ψ

]
=
[
0 1

]
(A.28)

And the first-order Lie derivatives are computed as:

L1
f1
h = A0

[
−cψ
sψ
ρ

]
=
[
0 1

] [−cψ
sψ
ρ

]
=
sψ

ρ
(A.29)

L1
f2
h = A0

[
0

1

]
= 1 (A.30)

Then, we computeA11 andA12 as:

A11 =
[
∂
∂ρ
(L1

f1
h) ∂

∂ψ
(L1

f1
h)
]
=
[
∂
∂ρ

(
sψ
ρ

)
∂
∂ψ

(
sψ
ρ

)]
=
[
− sψ
ρ2

cψ
ρ

]
(A.31)

A12 =
[
∂
∂ρ
(L1

f2
h) ∂

∂ψ
(L1

f2
h)
]
= 0 (A.32)

It is clear thatAK =




A0

A11
...


 =




0 1

− sψ
ρ2

cψ
ρ

...
...


 is, in general, full-rank.

Thus far, we have shown that for all three casesAK is full-rank. Note that the rank of the

product ofAK andM is given by [see (2.28)]:

rank(AKM) = rank(M)− dim(null(AK)
⋂

rng(M)) (A.33)
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Since we have shown above that in general matrixAK is full column rank, i.e.,null(AK) = ∅,

we haverank(AKM) = rank(M). Therefore, the row-span ofAKM is identical to the row-

span ofM, i.e., dρ
dx

and dψ
dx

.

dG = span
row

[
−cθ −sθ 0 cθ sθ

sθ
ρ

− cθ
ρ

−1 − sθ
ρ

cθ
ρ

]

= span
row

{
J Diag

(
1

ρ
, 1

)
CT (ψ)

[
sφR −cφR −cφRδx− sφRδy −sφR cφR

cφR sφR sφRδx− cφRδy −cφR −sφR

]}

= span
row

[
sφR −cφR −cφRδx− sφRδy −sφR cφR

cφR sφR sφRδx− cφRδy −cφR −sφR

]
(A.34)

A.4 Proof of Lemma 2.5.3

Under the Gaussianity assumption, it isp(xRk
|z0:k) = N (x̂Rk|k

,PRRk|k
), wherePRRk|k

is the

covariance matrix corresponding to the robot pose, obtained by partitioning the state covariance

matrix asPk|k =


PRRk|k

PRLk|k

PT
RLk|k

PLLk|k


, andp(xk+1|z0:k) = N (x̂k+1|k,Pk+1|k).

The first term of the cost function (2.47) is computed as:
∫ ∣∣∣∣xRk

− x⋆Rk|k

∣∣∣∣2p(xRk
|z0:k)dxRk

=

∫ (
xTRk

xRk
− 2xTRk

x⋆Rk|k
+ x⋆TRk|k

x⋆Rk|k

)
p(xRk

|z0:k)dxRk

= E
(
xTRk

xRk

)
− 2E

(
xTRk

)
x⋆Rk|k

+ x⋆TRk|k
x⋆Rk|k

= tr
(
PRRk|k

+ x̂Rk|k
x̂TRk|k

)
− 2x̂TRk|k

x⋆Rk|k
+ x⋆TRk|k

x⋆Rk|k

= tr
(
PRRk|k

)
+ x̂TRk|k

x̂Rk|k
− 2x̂TRk|k

x⋆Rk|k
+ x⋆TRk|k

x⋆Rk|k

= tr
(
PRRk|k

)
+
∣∣∣∣x̂Rk|k

−x⋆Rk|k

∣∣∣∣2 (A.35)

whereE(·) denotes expectation andtr(·) the matrix trace. Proceeding similarly, the second

term of the cost function (2.47) can be derived as:
∫ ∣∣∣∣xk+1 − x⋆k+1|k

∣∣∣∣2p(xk+1|z0:k)dxk+1 = tr
(
Pk+1|k

)
+
∣∣∣∣x̂k+1|k − x⋆k+1|k

∣∣∣∣2 (A.36)

Using (A.35) and (A.36), as well as the fact that the truePRRk|k
andPk+1|k are independent of
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the linearization points, the following equivalence is immediate:

min
x⋆
Rk|k

, x⋆
k+1|k

tr
(
PRRk|k

)
+ tr

(
Pk+1|k

)
+
∣∣∣∣x̂Rk|k

−x⋆Rk|k

∣∣∣∣2 +
∣∣∣∣x̂k+1|k−x⋆k+1|k

∣∣∣∣2

⇔ min
x⋆
Rk|k

, x⋆
k+1|k

∣∣∣∣x̂Rk|k
−x⋆Rk|k

∣∣∣∣2 +
∣∣∣∣x̂k+1|k−x⋆k+1|k

∣∣∣∣2

We now derive the following identities for the observability constraint (2.48) [see (2.35)

and (2.42)]:

Hk+1Φk · · ·ΦkoN = 0

⇔ HLk+1

[
−I2 −J

(
p⋆Lk+1|k

−p⋆Rko|ko
−

k∑
j=ko+1

∆p⋆Rj

)
I2

]
N= 0

⇔ p⋆Lk+1|k
− p⋆Rk|k

= p̂Lko|ko
− p⋆Rk|k−1

+

k−1∑

j=ko

∆p⋆Rj

This completes the proof.

A.5 Proof of Lemma 2.5.4

The constraint equation (2.55) states that the rows ofHk+1 lie in the left nullspace of the matrix

V. Therefore, ifL is a matrix whose rows span this nullspace,Hk+1 can be written as:

Hk+1 = AL (A.37)

whereA is an unknown matrix which we seek to compute. We note that there are several

possible ways of computing an appropriate matrixL, whose rows lie in the nullspace ofV. For

instance, such a matrix is given, in closed form, by the expression:

L =
[
Idim(z) 0

] (
Idim(x) −V(VTV)−1VT

)
=: ΓΠ (A.38)

It is not difficult to see thatΠ := Idim(x) −V(VTV)−1VT is an orthogonal projection matrix

(i.e.,Π2 = Π andΠT = Π) and hence has the eigenvalues of either 1 or 0, whosereduced

SVD can be written asΠ = QQT . Using this result,LT immediately becomes:

LT = QQTΓT (A.39)
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By substituting (A.39) into the cost function (2.54), we have:

min ||Ho −Hk+1||2F = ||QQTΓTAT −HT
o ||2F = ||QTΓTAT −QTHo

T ||2F (A.40)

⇒ A = HoQ (ΓQ)−1 (A.41)

Therefore, substitution of the above equation in (A.37) yields:

Hk+1 =HoQ (ΓQ)−1
ΓQQT = HoQQT = HoΠ

=Ho

(
Idim(x) −V(VTV)−1VT

)
(A.42)

This completes the proof.

A.6 Observability analysis for robocentric mapping

The robocentric mapping filter [26, 27] consists of three steps: prediction, update and com-

position. In order to construct the system equations to perform observability analysis, we

combine the composition and prediction steps into one model. The state vector isRkxk ,[
RkxTGk

RkpTLk

]T
, whereRkxGk

denotes the pose of the origin of the global frame with re-

spect to the robot local frame at time-stepk, andRkpLk
is the landmark position with respect

to the robot local frame at time-stepk. The propagation equations are given by:

Rk+1pGk+1
= CT (RkφRk+1

)(RkpGk
− RkpRk+1

) (A.43)

Rk+1φGk+1
= RkφGk

− RkφRk+1
(A.44)

Rk+1pLk+1
= CT (RkφRk+1

)(RkpLk
− RkpRk+1

) (A.45)

whereRkxRk+1
=
[
RkpTRk+1

RkφRk+1

]T
is the robot pose change between time-stepsk and

k + 1. This can be obtained from the odometry measurements{vmk
, ωmk

}, which is corrupted

by zero-mean white Gaussian noisewk, i.e.,

RkxRk+1
= Rk x̂Rk+1|k

−Rk x̃Rk+1|k
=




vmk
δt

0

ωmk
δt


−




δt 0

0 0

0 δt


wk
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By linearizing the above equations (A.43)-(A.45) at the current estimates,Rk x̂k|k and
Rk x̂Rk+1|k

, we obtain the error-state propagation equations as follows:

Rk+1x̃Gk+1|k
= ΦGk

Rk x̃Gk|k
+ J1k

Rk x̃Rk+1|k
(A.46)

Rk+1p̃Lk+1|k
= ΦLk

Rk p̃Lk|k
+ J2k

Rk x̃Rk+1|k
(A.47)

where

ΦGk
=

[
CT (Rk φ̂Rk+1|k

) 02×1

01×2 1

]
(A.48)

J1k =

[
−CT (Rk φ̂Rk+1|k

) JTCT (Rk φ̂Rk+1|k
)(Rk p̂Gk|k

− Rk p̂Rk+1|k
)

01×2 −1

]
(A.49)

ΦLk
=CT (Rk φ̂Rk+1|k

) (A.50)

J2k =
[
−CT (Rk φ̂Rk+1|k

) JTCT (Rk φ̂Rk+1|k
)(Rk p̂Lk|k

− Rk p̂Rk+1|k
)
]

(A.51)

Stacking (A.46) and (A.47) into a matrix form, we have:

Rk+1 x̃k+1|k = Φk
Rk x̃k|k +Gk

Rk x̃Rk+1|k
(A.52)

where

Φk =

[
ΦGk

0

0 ΦLk

]
(A.53)

Gk =

[
J1k

J2k

]
(A.54)

Due to the robot-relative formulation, the relative-position measurement at time-stepk + 1

becomes linear, i.e.,

zk+1 =
Rk+1pLk+1

+ vk+1 (A.55)

wherevk+1 is zero-mean white Gaussian measurement noise. The measurement error equation

is given by:

z̃k+1 = Hk+1
Rk+1 x̃k+1|k + vk+1

=
[
HGk+1

HLk+1

] [Rk+1x̃Gk+1|k

Rk+1p̃Lk+1|k

]
+ vk+1

=
[
02×3 I2

] [Rk+1x̃Gk+1|k

Rk+1p̃Lk+1|k

]
+ vk+1 (A.56)
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Proceeding similarly as before, we employ the local observability matrix to investigate the

observability properties of robocentric mapping. Substituting the matricesΦk [see (A.53)] and

Hk+1 [see (A.56)] into (2.22), we obtain the local observabilitymatrix of this particular system

as follows:

M =




02×3 I2

02×3 ΦLko

...
...

02×3 ΦLko+m−1
· · ·ΦLko




(A.57)

=




02×3 I2

02×3 CT (Rko φ̂Rko+1|ko
)

...
...

02×3 CT (Rko+m−1φ̂Rko+m|ko+m−1
) · · ·CT (Rko φ̂Rko+1|ko

)




(A.58)

It is not difficult to see that in general,rank(M) = 2, and hence the robocentric mapping is

unobservable. Moreover, the right nullspace can be found asfollows:

N (M) = span
col.




1 0 0

0 1 0

0 0 1

0 0 0

0 0 0




(A.59)

From the structure of this nullspace, the unobservable states are the ones associated to the origin

of the global frame in the robot’s local frame, while the position of the landmark in the robot’s

local frame (i.e., the robot-to-landmark relative position) is observable. This agrees with what

we found for the ideal EKF, and thus the robocentric mapping filter employs a system model

that has the correct observability properties.



Appendix B

Appendices for Chapter 3

B.1 Proof of Lemma 3.4.4

In the general case whereN > 2 robots comprise the team, proceeding similarly to the analysis

of the ideal EKF-CL, the observability matrixM can be obtained as follows:

237
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M = −Diag
(
(∇h

(12)
ko

)A(φ̂1ko |ko−1
), · · · , (∇h

(NN−1)
ko+m )A(φ̂Nko+m|ko+m−1

)
)

︸ ︷︷ ︸
D

× (B.1)




I2 Jδp̂21(ko, ko) −I2 02×1 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδp̂31(ko, ko) 02×2 02×1 −I2 02×1 · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
. ..

...
...

I2 Jδp̂N1(ko, ko) 02×2 02×1 02×2 02×1 · · · −I2 02×1

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδp̂1N (ko, ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 02×1 02×2 02×1 · · · I2 Jδp̂2N (ko, ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
. ..

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδp̂N−1N (ko, ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1

I2 J∆p̂21(ko+1, ko) −I2 −J∆p̂22(ko+1, ko) 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 J∆p̂31(ko+1, ko) 02×2 02×1 −I2 −J∆p̂33(ko+1, ko) · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
. ..

...
...

I2 J∆p̂N1(ko+1, ko) 02×2 02×1 02×2 02×1 · · · −I2 −J∆p̂NN (ko+1, ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −J∆p̂11(ko+1, ko) 02×2 02×1 02×2 02×1 · · · I2 J∆p̂1N (ko+1, ko)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 −J∆p̂22(ko+1, ko) 02×2 02×1 · · · I2 J∆p̂2N (ko+1, ko)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
. ..

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 J∆p̂N−1N (ko+1, ko)

01×2 0 01×2 0 01×2 0 · · · 01×2 1

...
...

...
...

...
...

...
...

...

I2 J∆p̂21(ko+m,ko+m−1) −I2 −J∆p̂22(ko+m,ko+m−1) 02×2 02×1 · · · 02×2 02×1

01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 J∆p̂31(ko+m,ko+m−1) 02×2 02×1 −I2 −J∆p̂33(ko+m,ko+m−1) · · · 02×2 02×1

01×2 1 01×2 0 01×2 −1 · · · 01×2 0
...

...
...

...
...

...
. ..

...
...

I2 J∆p̂N1(ko+m,ko+m−1) 02×2 02×1 02×2 02×1 · · · −I2 −J∆p̂NN (ko+m,ko+m−1)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −J∆p̂11(ko+m,ko+m−1) 02×2 02×1 02×2 02×1 · · · I2 J∆p̂1N (ko+m,ko+m−1)

01×2 −1 01×2 0 01×2 0 · · · 01×2 1

02×2 02×1 −I2 −J∆p̂22(ko+m,ko+m−1) 02×2 02×1 · · · I2 J∆p̂2N (ko+m,ko+m−1)

01×2 0 01×2 −1 01×2 0 · · · 01×2 1
...

...
...

...
...

...
. ..

...
...

02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 J∆p̂N−1N (ko+m,ko+m−1)

01×2 0 01×2 0 01×2 0 · · · 01×2 1




︸ ︷︷ ︸
U
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Analogously to the proof of Lemma 3.4.2, we denoteU ,

[
u1 · · · u3N

]
, and observe

that

u1 = −
N∑

i=2

u3i−2 , u2 = −
N∑

i=2

u3i−1

while

N∑

i=1

u3i 6=
N∑

i=2

α2i−1u3i−2 +

N∑

i=2

α2iu3i−1

where

[
α2i−1

α2i

]
, −Jδp̂i1(ko, ko), ∀i = 2, . . . , N . This is due to that fact thatu3i, i =

1, . . . , N , become general vectors and hence are no longer linear combinations of any other

columns. This is in contrast to the case of the ideal EKF-CL (see Lemma 3.4.2). As a result,

one possible basis of the range of matrixU is its column vectors{ui}3Ni=3, i.e., rng(U) =

span
col.

[
u3 · · · u3N

]
. Thus,rank(U) = 3N − 2. Analogously, we observe that in general

Dui 6= 0, for i = 3, . . . , 3N . Moreover, note that any vectorx ∈ rng(U) \ 0 can be written as

x =
∑3N−2

i=1 βiui+2 for someβi ∈ R, whereβi’s are not simultaneously equal to zero. Thus,

we see that in generalDx =
∑3N−2

i=1 βiDui+2 6= 0, which implies thatx does not belong to

the null space,null(D), of D. Therefore,dim(null(D)
⋂

rng(U)) = 0, and, finally, based on

theorem (4.5.1) in [113] [also see (2.28)],rank(M) = rank(U)− dim(null(D)
⋂

rng(U)) =

rank(U) = 3N − 2.
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B.2 Proof of Lemma 3.5.2

Under the Gaussianity assumption, it isp(xk|z0:k) = N (x̂k|k,Pk|k), and p(xk+1|z0:k) =

N (x̂k+1|k,Pk+1|k). The first term of the cost function (3.49) is computed as
∫ ∣∣∣∣xk − x⋆k|k

∣∣∣∣2p(xk|z0:k)dxk

=

∫ (
xTk xk − 2xTk x

⋆
k|k + x⋆Tk|kx

⋆
k|k
)
p(xk|z0:k)dxk

= E
(
xTk xk|z0:k

)
− 2E

(
xTk |z0:k

)
x⋆k|k + x⋆Tk|kx

⋆
k|k

= tr
(
Pk|k + x̂k|kx̂

T
k|k
)
− 2x̂Tk|kx

⋆
k|k + x⋆Tk|kx

⋆
k|k

= tr
(
Pk|k

)
+ x̂Tk|kx̂k|k − 2x̂Tk|kx

⋆
k|k + x⋆Tk|kx

⋆
k|k

= tr
(
Pk|k

)
+
∣∣∣∣x̂k|k−x⋆k|k

∣∣∣∣2 (B.2)

Proceeding similarly, the second term of the cost function (3.49) can be derived as
∫ ∣∣∣∣xk+1 − x⋆k+1|k

∣∣∣∣2p(xk+1|z0:k)dxk+1 = tr
(
Pk+1|k

)
+
∣∣∣∣x̂k+1|k − x⋆k+1|k

∣∣∣∣2 (B.3)

Using (B.2) and (B.3), as well as the fact that the truePk|k andPk+1|k are independent of the

linearization points, the following equivalence holds:

min
x⋆
k|k
, x⋆

k+1|k

tr
(
Pk|k

)
+ tr

(
Pk+1|k

)
+
∣∣∣∣x̂k|k−x⋆k|k

∣∣∣∣2 +
∣∣∣∣x̂k+1|k−x⋆k+1|k

∣∣∣∣2

⇔ min
x⋆
k|k
, x⋆

k+1|k

∣∣∣∣x̂k|k−x⋆k|k
∣∣∣∣2 +

∣∣∣∣x̂k+1|k−x⋆k+1|k
∣∣∣∣2 (B.4)

We now derive the following identities for the observability constraint (3.50) [see (3.39)

and (3.43)]:

Hk+1Φk · · ·ΦkoN = 0

⇔
k∑

τ=ko

(p⋆2τ |τ − p⋆2τ |τ−1
)−

k∑

τ=ko

(p⋆1τ |τ − p⋆1τ |τ−1
) +

(
p⋆2ko|ko−1

− p⋆1ko|ko−1

)
−
(
p̂2ko|ko−1

− p̂1ko|ko−1

)
= 0 (B.5)

⇔ p⋆2k|k − p⋆1k|k =
(
p⋆2k|k−1

− p⋆1k|k−1

)
−

k−1∑

τ=ko

(p⋆2τ |τ − p⋆2τ |τ−1
) +

k−1∑

τ=ko

(p⋆1τ |τ − p⋆1τ |τ−1
) (B.6)
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where we have used the fact that the linearization points, during propagation at time-stepko

are the propagated filter estimates, i.e.,p⋆1ko|ko−1
= p̂1ko|ko−1

andp⋆2ko|ko−1
= p̂2ko|ko−1

. This

completes the proof.

B.3 Proof of Lemma 3.5.3

We first introduce the following definition similar to (3.34), which will be useful for the ensuring

derivations:

∆p⋆ij(k, ℓ) , p⋆ik|k−1 − p⋆jko|ko−1
−

ℓ∑

τ=ko

(
p⋆jτ |τ − p⋆jτ |τ−1

)
(B.7)

Using this definition as well as (3.8), (3.11), and (3.43), wehave the following identity [also

see (3.39)]:

H
(ij)
k+1Φk · · ·ΦkoN = 0

⇔ ∆p⋆ji(k + 1, k) −∆p⋆jj(k + 1, k) + p̂iko|ko−1
− p̂jko|ko−1

= 0

⇔
k∑

τ=ko

(p⋆jτ |τ− p⋆jτ |τ−1
)−

k∑

τ=ko

(p⋆iτ |τ− p⋆iτ |τ−1
) +

(
p⋆jko|ko−1

− p⋆iko|ko−1

)
−
(
p̂jko|ko−1

− p̂iko|ko−1

)
= 0

⇔ p⋆jk|k − p⋆ik|k =
(
p⋆jk|k−1

− p⋆ik|k−1

)
−

k−1∑

τ=ko

(p⋆jτ |τ − p⋆jτ |τ−1
) +

k−1∑

τ=ko

(p⋆iτ |τ − p⋆iτ |τ−1
)

⇔
k∑

τ=ko

(p⋆iτ |τ− p⋆iτ |τ−1
)−

k∑

τ=ko

(p⋆jτ |τ− p⋆jτ |τ−1
) +

(
p⋆iko|ko−1

− p⋆jko|ko−1

)
−
(
p̂iko|ko−1

− p̂jko|ko−1

)
= 0

⇔ ∆p⋆ij(k + 1, k) −∆p⋆ii(k + 1, k) + p̂jko|ko−1
− p̂iko|ko−1

= 0

⇔ H
(ji)
k+1Φk · · ·ΦkoN = 0 (B.8)
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This equivalence implies that the measurementsz
(ij)
k+1 andz(ji)k+1 produce the same observability

constraint. Moreover, from the above results, we have:

H
(ij)
k+1Φk · · ·ΦkoN = 0

⇔ p⋆jk|k − p⋆ik|k =
(
p⋆jk|k−1

− p⋆ik|k−1

)
−

k−1∑

τ=ko

(p⋆jτ |τ − p⋆jτ |τ−1
) +

k−1∑

τ=ko

(p⋆iτ |τ − p⋆iτ |τ−1
)

(B.9)

H
(jm)
k+1 Φk · · ·ΦkoN = 0

⇔ p⋆mk|k
− p⋆jk|k =

(
p⋆mk|k−1

− p⋆jk|k−1

)
−

k−1∑

τ=ko

(p⋆mτ |τ
− p⋆mτ |τ−1

) +

k−1∑

τ=ko

(p⋆jτ |τ− p⋆jτ |τ−1
)

(B.10)

By subtracting (B.9) from (B.10), we have the following equivalence:

(
p⋆mk|k

− p⋆jk|k

)
−
(
p⋆jk|k − p⋆ik|k

)
=

p⋆mk|k
− p⋆ik|k =

(
p⋆mk|k−1

− p⋆ik|k−1

)
−

k−1∑

τ=ko

(p⋆mτ |τ
− p⋆mτ |τ−1

) +

k−1∑

τ=ko

(p⋆iτ |τ− p⋆iτ |τ−1
)

⇔ H
(im)
k+1Φk · · ·ΦkoN = 0 (B.11)

This result implies that for the three connected measurements, z(ij)k+1, z(jm)
k+1 andz(im)

k+1 , the ob-

servability constraint imposed by one measurement (e.g.,z
(im)
k+1 ) can be equivalently inferred

from those imposed by the other two measurements (e.g.,z
(ij)
k+1 andz(jm)

k+1 ). Therefore, from the

above results (B.8)-(B.11), given the connected RMG, the observability constraint imposed by

any measurementz(ij)k+1 can be equivalently inferred from those imposed by the measurements

z
(1i)
k+1 andz(1j)k+1. We thus have [see (B.1)]:

Hk+1Φk · · ·ΦkoN = 0

⇔
k∑

τ=ko

(p⋆iτ |τ− p⋆iτ |τ−1
)−

k∑

τ=ko

(p⋆1τ |τ− p⋆1τ |τ−1
)−

(
p⋆iko|ko−1

− p⋆1ko|ko−1

)
+
(
p̂iko|ko−1

− p̂1ko|ko−1

)
= 0

⇔ p⋆ik|k − p⋆1k|k =
(
p⋆ik|k−1

− p⋆1k|k−1

)
−

k−1∑

τ=ko

(p⋆iτ |τ − p⋆iτ |τ−1
) +

k−1∑

τ=ko

(p⋆1τ |τ − p⋆1τ |τ−1
) , ∀i = 2, . . . , N

Note that the equivalence of the cost function can be proved in the same way as in Lemma 3.5.2.

This completes the proof.
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Table B.1: Different state estimates used in computing the state-propagation Jacobian matrix of
robot i (i = 1, 2) at time-stepk for the four estimators (i.e., the standard EKF, the OC-EKFs)

Std-EKF/OC-EKF3 Φik =

[
I2 J

(
p̂ik+1|k

− p̂ik|k

)

01×2 1

]
=



1 0 −vmi,k

sφ̂ik|kδt

0 1 vmi,k
cφ̂ik|kδt

0 0 1




OC-EKF1 Φ′
ik

=

[
I2 J

(
p̂ik+1|k

− p̂ik|k−1

)

01×2 1

]

OC-EKF2 Φ′′
ik

=

[
I2 J

(
p̂ik+1|k

− p̂ik|k + (−1)i λk

2

)

01×2 1

]

B.4 An example of OC-EKF CL

In the following, we provide a specific CL example to illustrate the implementation of the

proposed OC-EKF estimators, in which a team of two robots using the unicycle motion model

measure relative distance and bearing to each other. Note that the same models were used in

our simulations (see Section 3.6).

Suppose that at the first time-step,k = 0, the robot poses are initialized bŷxi0|0 and

Pi0|0 , for i = 1, 2. Following the standard practice, we employ the approximation that the

velocity and heading are constant during each propagation interval and thus obtainkx̂ik+1
=

[vmi,k
0 ωmi,k

]T δt, whereumi,k
= [vmi,k

ωmi,k
]T are the linear and rotational velocity mea-

surements, fori = 1, 2, respectively, andδt is the sampling period. Substitution into (3.2)-(3.3)

yields the following common equations for robot pose propagation:

p̂ik+1|k
= p̂ik|k +

[
vmi,k

cφ̂ik|k

vmi,k
sφ̂ik|k

]
δt (B.12)

φ̂ik+1|k
= φ̂ik|k + ωmi,k

δt (B.13)

Once the propagated states are computed, we now calculate the state-propagation Jacobian ma-

trix in order to propagate the covariance. It is important tonote that this calculation depends

on the particular filter used, and is one main difference between the four filters (i.e., the stan-

dard EKF, the OC-EKF1, the OC-EKF2, and the OC-EKF3) under consideration in this work.

Table B.1 summarizes how the state-propagation Jacobian matrix is computed for each estima-

tor. Specifically, in contrast to the standard EKF, the OC-EKF1 requires additional storage
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of the last propagated state estimatex̂k|k−1, and the OC-EKF2 requires an additional variable

λk, containing a running sum of all previous state corrections[see (3.53)], while the OC-EKF3

computes the state-propagation Jacobian in the same way as for the standard EKF. The noise

JacobianGik with respect to the odometry vectoruik for both robots is computed according

to (3.7) for all four estimators (by noting thatkxik+1
= [vik 0 ωik ]

T δt). The measurement

equations and the corresponding Jacobians for the distanceand bearing measurement model are

given by [see (3.11)-(3.13)]:

z
(ij)
k+1 =




√
(xjk+1

− xik+1
)2 + (yjk+1

− yik+1
)2

atan2
(
(yjk+1

− yik+1
), (xjk+1

− xik+1
)
)
− φik+1


+ v

(ij)
k+1 (B.14)

H
(ij)
k+1 =

[
H

(ij)
1k+1

H
(ij)
2k+1

]

= − (∇h
(ij)
k+1)A(φ̂ik+1|k

)

[
I2 J(p̂jk+1|k

− p̂ik+1|k
) − I2 0

01×2 1 0 −1

]

= −




(

p̂T
jk+1|k

−p̂T
ik+1|k

)

C(φ̂ik+1|k
)

||p̂jk+1|k
−p̂ik+1|k

|| 0
(

p̂T
jk+1|k

−p̂T
ik+1|k

)

C(φ̂ik+1|k
)JT

||p̂jk+1|k
−p̂ik+1|k

||2 0




[
CT (φ̂ik+1|k

) 0

0 1

]
×

[
I2 J(p̂jk+1|k

− p̂ik+1|k
) − I2 0

01×2 1 0 −1

]

=




−
p̂T
jk+1|k

−p̂T
ik+1|k

||p̂jk+1|k
−p̂ik+1|k

|| 0
p̂T
jk+1|k

−p̂T
ik+1|k

||p̂jk+1|k
−p̂ik+1|k

|| 0
(

p̂T
jk+1|k

−p̂T
ik+1|k

)

J

||p̂jk+1|k
−p̂ik+1|k

||2 − 1 −

(

p̂T
jk+1|k

−p̂T
ik+1|k

)

J

||p̂jk+1|k
−p̂ik+1|k

||2 0


 (B.15)

which hold fori, j = 1, 2 andi 6= j, and are identical for the standard EKF and the OC-EKF1

and the OC-EKF2. In contrast, the OC-EKF3 obtains the corresponding measurement Jacobian

by projecting (B.15) onto the observable subspace [see (3.68)]. Given these expressions, we

proceed to use the standard EKF propagation and update equations.



Appendix C

Appendices for Chapter 4

C.1 Proof of Lemma 4.4.1

We start with the linearization error in the linear regression:

e(x) = y − (Ax+ b) = y −A1x1 −A2x2 − b (C.1)

Substituting (C.1) in the expression of the expected value of the squared linearization error (4.1),

the cost function we seek to minimize becomes:
∫ +∞

−∞
||y −A1x1 −A2x2 − b||2p(x)dx =

∫∫ +∞

−∞
||y−A1x1−A2x2−b||2p(x2|x1)p(x1)dx1dx2 (C.2)

where we have employed the notation||α||2 , αTα, and the propertyp(x) = p(x1,x2) =

p(x2|x1)p(x1). Now using the standard sample-based approximation,p(x1) ≃
∑r

i=0wiδ(x1−
X1i), where the samples are selected to match the mean and covariance ofp(x1) [see (4.2)

245
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and (4.3)], we rewrite the cost function (C.2) as follows:

c :=
r∑

i=0

wi

∫ +∞

−∞
||Yi−A1X1i−A2x2−b||2p(x2|x1=X1i)dx2

=

r∑

i=0

wiE
(
||Yi −A1X1i −A2x2 − b||2

)

=

r∑

i=0

wi

[
(Yi−A1X1i−b)T (Yi−A1X1i−b) − (C.3)

2 (Yi−A1X1i−b)T A2E(x2)
]
+ tr

[
A2E(x2x

T
2 )A

T
2

]

where have used the following identity:

E(xT2 A
T
2 A2x2) = tr

[
A2E(x2x

T
2 )A

T
2

]
(C.4)

Note that the expectation operatorE(·) is with respect to the pdfp(x2|x1 = X1i). For the

Gaussian case, this pdf can be expressed analytically as follows:

p(x2|x1 = X1i) = N
(
X̂2i , P̄x̂2x̂2

)
= (C.5)

N


x̂2+Px2x1P

−1
x1x1

(X1i−x̂1)︸ ︷︷ ︸
X̂2i

,Px2x2−Px2x1P
−1
x1x1

Px1x2︸ ︷︷ ︸
P̄x̂2 x̂2




Based on (C.5), we have:

E
(
x2x

T
2

)
= E (x2)E (x2)

T + P̄x̂2x̂2
= X̂2iX̂ T

2i + P̄x̂2x̂2
(C.6)

SubstitutingE(x2) , X̂2i from (C.5) andE(x2x
T
2 ) from (C.6) in (C.3) and performing alge-

braic manipulations, we obtain:

c =

r∑

i=0

wi||Yi−A1X1i−A2X̂2i−b||2 + tr
(
A2P̄x̂2x̂2

AT
2

)
(C.7)

Our goal is to minimize the cost function in (C.7) with respect to b andA ,

[
A1 A2

]
.

To do so, we first compute the optimal solution forb, by setting the derivative of (C.7) with
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respect tob to zero. This yields:

∂c

∂b
=− 2

r∑

i=0

wi

(
Yi −A1X1i −A2X̂2i − b

)
= 0 ⇒

b =

r∑

i=0

wiYi −A1

r∑

i=0

wiX1i −A2

r∑

i=0

wiX̂2i

= ȳ −A1x̂1 −A2x̂2 (C.8)

where for the last step, we have used (4.6), the equalityx̂1 =
∑r

i=0 wiX1i , and the identity

x̂2 =
∑r

i=0wiX̂2i , which stems from (C.5).

Substituting (C.8) in (C.7), we have:

c′ =
r∑

i=0

wi||Ỹi −A1X̃1i −A2X̃2i ||2 + tr
(
A2P̄x̂2x̂2

AT
2

)
(C.9)

where

X̃1i , X1i − x̂1 (C.10)

Ỹi , Yi − ȳ (C.11)

X̃2i , X̂2i − x̂2 = Px2x1P
−1
x1x1

X̃1i (C.12)

Note that (C.5) was used in (C.12). Taking derivatives of thecost function in (C.9) with respect

toA1 andA2, and setting them equal to zero, we obtain:

∂c′

∂A1
=−2

r∑

i=0

wi

(
Ỹi−A1X̃1i−A2X̃2i

)
X̃ T
1i = 0 (C.13)

∂c′

∂A2
=−2

r∑

i=0

wi

(
Ỹi−A1X̃1i−A2X̃2i

)
X̃ T
2i+2A2P̄x̂2x̂2

= 0 (C.14)
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At this point, we use the fact that, due to the selection of thesigma points, we have:

r∑

i=0

wiỸiX̃ T
1i = P̄yx1 (C.15)

r∑

i=0

wiX̃1iX̃ T
1i = Px1x1 (C.16)

r∑

i=0

wiX̃2iX̃ T
1i = Px2x1P

−1
x1x1

r∑

i=0

wiX̃1iX̃ T
1i = Px2x1 (C.17)

r∑

i=0

wiỸiX̃ T
2i =

r∑

i=0

wiỸiX̃ T
1iP

−1
x1x1

Px1x2

= P̄yx1P
−1
x1x1

Px1x2 (C.18)
r∑

i=0

wiX̃2iX̃ T
2i = Px2x1P

−1
x1x1

(
r∑

i=0

wiX̃1iX̃ T
1i

)
P−1

x1x1
Px1x2

= Px2x1P
−1
x1x1

Px1x2 (C.19)

where (C.12) was used for deriving these relations. Substituting the above results in (C.13)

and (C.14) yields:

P̄yx1
−A1Px1x1 −A2Px2x1 = 0 (C.20)

P̄yx1
P−1

x1x1
Px1x2 −A1Px1x2−

A2Px2x1P
−1
x1x1

Px1x2 −A2P̄x̂2x̂2
= 0 (C.21)

It is easy to verify (e.g., by substitution) that the solution to the above system of equa-

tions (C.20)-(C.21) isA1 = P̄yx1
P−1

x1x1
andA2 = 0. This completes the proof.

C.2 Proof of Lemma 4.6.1

Using (4.67), we write the equality constraint onA1 (4.64) asA1U = 0. This equation states

that the rows ofA1 lie in the left nullspace of the5 × 3 matrixU. Therefore, ifL is a2 × 5

matrix whose rows span this nullspace, we can writeA1 as:

A1 = BL (C.22)

whereB is anm× 2 unknown matrix that we seek to compute. We note that there areseveral

possible ways of computing an appropriate matrixL, whose rows lie in the nullspace ofU. For
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instance, such a matrix is given, in closed form, by the expression (4.66). Substituting (C.22) in

the original problem formulation [see (4.4) and (4.63)], weobtain:

min
B,b

10∑
i=0
wi [Zi − (BX ′

i + b)]T [Zi − (BX ′
i + b)] (C.23)

where we have definedX ′
i , LXi, i = 0, . . . , 10. This becomes an unconstrained minimization

problem with respect to the design variablesB andb, and has exactly the same structure as that

in (4.4). Thus, by analogy, the optimal solution ofB is computed by [see (4.5)]:

B = P̄zℓP
−1
ℓℓ (C.24)

where

P̄zℓ =

10∑

i=0

wi(Zi − z̄)(LXi − Lx̄)T = P̄zxL
T

Pℓℓ =

10∑

i=0

wi(LXi − Lx̄)(LXi − Lx̄)T = LP̄xxL
T

By combining these two identities with those of (C.24) and (C.22), we obtain the optimal solu-

tion of A1 [see (4.65)].



Appendix D

Appendices for Chapter 6

D.1 Proof of Lemma 6.2.1

We prove this result by mathematical induction. Specifically, we start by the base case of

k = 0, in which since no marginalization is involved and the observability matrix is simply the

first measurement Jacobian, i.e.,M = H0 [see (6.10)], the information matrix can be directly

written in the desired form:

A = A0 = HT
0 R

−1
0 H0 =: MTΣM (D.1)

We now consider the case ofk = 1, in which the state vector isx0:1 =

[
x0

x1

]
and hence the

full information matrix is given by [see (6.18)]:

A = FT
0 Q

−1
0 F0 +HT

0 R
−1
0 H0 +HT

1 R
−1
1 H1 (D.2)

=

[
ΦT

0 Q
−1
0 Φ0 +HT

0R
−1
0 H0 −ΦT

0Q
−1
0

−Q−1
0 Φ0 Q−1

0 +HT
1 R

−1
1 H1

]

In order to obtain the information matrix ofx0, we marginalize outx1 by employing the Schur

250
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complement:

A0 = ΦT
0 Q

−1
0 Φ0 +HT

0 R
−1
0 H0 −

(
ΦT

0 Q
−1
0

) (
Q−1

0 +HT
1 R

−1
1 H1

)−1

︸ ︷︷ ︸
Ξ1

(
Q−1

0 Φ0

)

= ΦT
0 Q

−1
0 Φ0 +HT

0 R
−1
0 H0 −

(
ΦT

0 Q
−1
0

) [
Q0 −Q0H

T
1 (H1Q0H

T
1 +R1)

−1H1Q0

] (
Q−1

0 Φ0

)

= HT
0 R

−1
0 H0 + (H1Φ0)

T (H1Q0H
T
1 +R1)

−1 (H1Φ0)

=

[
H0

H1Φ0

]T [
R−1

0 0

0 (H1Q0H
T
1 +R1)

−1

][
H0

H1Φ0

]
=: MTΣM (D.3)

where we have used the Woodbury matrix identity [49] for computingΞ1. It becomes clear that

in this case the information matrix ofx0 is factorized into the desired form.

To better understand the structure, we consider one more base case ofk = 2, where the full

information matrix of the entire statex0:2 is given by [see (6.18)]:

A =

1∑

κ=0

FT
κ Q

−1
κ Fκ +

2∑

κ=0

HT
κR

−1
κ Hκ

=




ΦT
0 Q

−1
0 Φ0 +HT

0 R
−1
0 H0 −ΦT

0Q
−1
0 0

−Q−1
0 Φ0 Q−1

0 +ΦT
1Q

−1
1 Φ1 +HT

1 R
−1
1 H1 −ΦT

1 Q
−1
1

0 −Q−1
1 Φ1 Q−1

1 +HT
2 R

−1
2 H2




(D.4)

Similarly, by marginalizing outx1 andx2 using the Schur complement, we obtain the informa-

tion matrix of the initial statex0:

A0 = ΦT
0 Q

−1
0 Φ0 +HT

0R
−1
0 H0 (D.5)

−
[
Q−1

0 Φ0

0

]T [
Q−1

0 +ΦT
1 Q

−1
1 Φ1 +HT

1R
−1
1 H1 −ΦT

1Q
−1
1

−Q−1
1 Φ1 Q−1

1 +HT
2 R

−1
2 H2

]−1

︸ ︷︷ ︸
Ξ2

[
Q−1

0 Φ0

0

]

It is clear that due to the structure of the above equation, weonly need to compute the top-

leftmost submatrixΞ2(1, 1), obtained by partitioningΞ2 =

[
Ξ2(1, 1) Ξ2(1, 2)

Ξ2(2, 1) Ξ2(2, 2)

]
, correspond-

ing to the nonzero block of

[
Q−1

0 Φ0

0

]
. Hence, using the block matrix inversion lemma [49],
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we have:

Ξ2(1, 1) =
[
Q−1

0 +ΦT
1 Q

−1
1 Φ1 +HT

1 R
−1
1 H1 −ΦT

1Q
−1
1

(
Q−1

1 +HT
2 R

−1
2 H2

)−1
Q−1

1 ΦT
1

]−1

=
[
Q−1

0 +HT
1 R

−1
1 H1 +ΦT

1 H
T
2 (H2Q2H

T
2 +R2)

−1H2Φ1

]−1

=



Q−1

0 +

[
H1

H2Φ1

]T [
R−1

1 0

0 (H2Q2H
T
2 +R2)

−1

] [
H1

H2Φ1

]


−1

=:
[
Q−1

0 +HT
1:2R

−1
1:2H1:2

]−1

= Q0 −Q0H
T
1:2(H1:2Q0H

T
1:2 +R1:2)

−1H1:2Q0 (D.6)

where we have definedH1:2 ,

[
H1

H2Φ1

]
andR1:2 , Diag

(
R1,H2Q2H

T
2 +R2

)
. It is im-

portant to notice that, from the first equality of the above equations,Ξ−1
2 (1, 1) is the Schur

complement ofΞ−1
2 with respect tox1 (i.e., marginalizing outx2 from x1:2). In the second

equality, we have also employed the Woodbury matrix identity. Substitution of (D.6) in (D.5)

yields (by noting again that it is not necessary to compute the other submatrices ofΞ2):

A0 = ΦT
0Q

−1
0 Φ0 +HT

0 R
−1
0 H0 −ΦT

0 Q
−1
0

[
Q0 −Q0H

T
1:2(H1:2Q0H

T
1:2 +R1:2)

−1H1:2Q0

]
Q−1

0 Φ0

= HT
0R

−1
0 H0 +ΦT

0H
T
1:2(H1:2Q0H

T
1:2 +R1:2)

−1H1:2Φ0

=

[
H0

H1:2Φ0

]T [
R−1

0 0

0 (H1:2Q0H
T
1:2 +R1:2)

−1

][
H0

H1:2Φ0

]
=: MTΣM (D.7)

It is clear that in this case we can also factorize the information matrix ofx0 into the desired

form.

We now consider the general case ofk = κ. Suppose in the case ofk = κ − 1, the in-

formation matrix of the initial statex0 can be factorized into the desired form and in particular

Ξκ−1(1, 1) whose inversion is the Schur complement ofΞ−1
κ−1 with respect tox1 by marginal-

izing outx2:κ−1 from x1:κ−1, assumes the following form [see (D.6)]:

Ξκ−1(1, 1) =
(
Q−1

0 +HT
1:κ−1R

−1
1:κ−1H1:κ−1

)−1
(D.8)

= Q0 −Q0H
T
1:κ−1

(
H1:κ−1Q0H

T
1:κ−1 +R1:κ−1

)−1
R1:κ−1Q0
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whereH1:κ−1 andR1:κ−1 are defined similarly as in (D.6):

H1:κ−1 ,




H1

...

Hκ−1Φκ−2 · · ·Φ1


 (D.9)

R1:κ−1 , Diag
(
R1, · · · ,Hκ−1Qκ−1H

T
κ−1 +Rκ−1

)
(D.10)

Note that by considering the full statex2:κ (instead ofx1:κ−1) and marginalizingx3:κ from the

full state, we will have a similar matrix as (D.8) whose time index is shifted by one and which

is useful for the ensuing derivations.

Ξ′
κ(1, 1) =

(
Q−1

1 +HT
2:κR

−1
2:κH2:κ

)−1
(D.11)

= Q1 −Q1H
T
2:κ

(
H2:κQ1H

T
2:κ +R2:κ

)−1
R2:κQ1

Due to the spare banded structure of the full information matrix (6.18), marginalization ofx1:κ

from the full statex0:κ using the Schur complement yields:

A0 = ΦT
0 Q

−1
0 Φ0 +HT

0 R
−1
0 H0 −




Q−1
0 Φ0

0

...

0




T

Ξκ




Q−1
0 Φ0

0

...

0




(D.12)

As evident, to computeA0, we only need to calculate the top leftmost submatrix,Ξκ(1, 1),

corresponding toQ−1
0 Φ0. Note that in analogy to (D.8),Ξ−1

κ (1, 1) is the Schur complement

of Ξ−1
κ with respect tox1 by marginalizing outx2:κ from x1:κ. Using (6.18) and (D.11), we

computeΞκ(1, 1) as:

Ξκ(1, 1) =
[
Q−1

0 +ΦT
1 Q

−1
1 Φ1 +HT

1 R
−1
1 H1 −ΦT

1Q
−1
1 Ξ′

κ(1, 1)Q
−1
1 Φ1

]−1

=
[
Q−1

0 +HT
1 R

−1
1 H1 +ΦT

1 H
T
2:κ

(
H2:κQ1H

T
2:κ +R2:κ

)−1
H2:κΦ1

]−1

=



Q−1

0 +

[
H1

H2:κΦ1

]T [
R−1

1 0

0 R−1
2:κ

][
H1

H2:κΦ1

]


−1

=:
(
Q−1

0 +H1:κR
−1
1:κH1:κ

)−1

= Q0 −Q0H
T
1:κ

(
H1:κQ0H

T
1:κ +R1:κ

)−1
R1:κQ0 (D.13)
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Substituting (D.13) in (D.12), we obtain the the information matrix ofx0 in the desired form:

A0 = ΦT
0Q

−1
0 Φ0 +HT

0 R
−1
0 H0

−ΦT
0Q

−1
0

[
Q0 −Q0H

T
1:κ

(
H1:κQ0H

T
1:κ +R1:κ

)−1
R1:κQ0

]
Q−1

0 Φ0

= HT
0 R

−1
0 H0 +ΦT

0H
T
1:κ

(
H1:κQ0H

T
1:κ +R1:κ

)−1
H1:κΦ0

=

[
H0

H1:κΦ0

]T [
R−1

0 0

0
(
H1:κQ0H

T
1:κ +R1:κ

)−1

][
H0

H1:κΦ0

]

=: MTΣM (D.14)

This completes the proof.



Appendix E

Appendices for Chapter 7

E.1 Proof of Lemma 7.4.1

We first note that the following finite dimensional Mountain Pass Theorem (MPT) will be useful

for the ensuing analysis.

Theorem E.1.1. [Theorem 5.2, [81]]Suppose that a continuous functionf ∈ C1(RN ;R) is

coercive and possesses two distinct strict relative minimax1 andx2.1 Thenf possesses a

third critical point x3, which is distinct fromx1 andx2, and characterized by:

f(x3) = inf
Σ∈Γ

max
x∈Σ

f(x) (E.1)

whereΓ = {Σ ⊂ R
N ; Σ is compact and connected, andx1,x2 ∈ Σ}. Moreover,x3 is not

a relative minimizer; that is, in every neighborhood ofx3, there exists a pointx such that

f(x) < f(x3).2

To preserve the clarity of presentation, without loss of generality, we hereafter translate the

global frame of reference to the sensor’s local frame (i.e.,pS = 0), and also drop the time

indices as well as the subscript “T ” denoting target. Thus, the minimization of (7.20) can be

1 A functionf : RN → R is coercive iff it is bounded from below and is proper in the sense thatf(x) →
∞ for ||x|| → ∞.

2 Γ is the class of paths (or curves) connectingx1 andx2 (see Theorem 1.1, Ch. II, [151]). Note that, based
on the proof of this theorem (see [81]), such a critical pointx3 (E.1)also exists forf ∈ C0(RN ;R), though, in this
case,x3 is not necessary to be a non-minimum point. It is also important to notice that, an isolated inf-max critical
point (i.e., mountain pass point),x3, is necessarily a saddle point (see Ch. 12, [81]).
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written as:

min
p

c(p) =
1

2
(p− p̂)TP−1

pp(p− p̂) +
1

2σ2ρ

(
z −

√
x2 + y2

)2

, c1(p) + c2(p) (E.2)

Recall thatp =
[
x y

]T
denotes the target position. In (E.2), given a function value c(x, y) ,

α, c1(x, y) , β is an ellipse centered at̂p =
[
x̂ ŷ

]T
, while depending on the available

measurement value,c2(x, y) = α− β , γ represents one or two circles centered at the origin,

i.e., x2 + y2 = (z ± σρ
√
2γ)2. For simplicity of analysis, in the following, we assume only

one circle is associated withc2(x, y), while the analysis readily holds for two circles. Notice

that the cost functionc(p) (E.2) is coercive butnotC1 since it is not differentiable at the origin.

Hence Theorem E.1.1 is not applicable directly.

Nevertheless, in what follows, we will first show that the inf-max point cannot be the origin.

Based on that, we will use the MPT to show that there are at most3 local minima, sincec(p) is

coerciveandC1 in R
2\{0}. Subsequently, we will prove that there are at most 2 local minima.

E.1.1 Proof that there are at most 3 local minima

Remember that there are up to 4 distinct critical (stationary) points in R
2\{0} (see Sec-

tion 7.4.2). Suppose that they are all strict local minima, denoted bypi, i = 1, . . . , 4. By

the MPT (Theorem E.1.1) inR2\{0}, we have an inf-max pointp for any pair ofpi. If this p

is different from anypi, we will have (at least) 5 critical points, which contradicts the fact that

there are at most 4 critical points inR2\{0}. Therefore, any pair ofpi must share a common

inf-max point at the origin which is a non-differential critical point. However, we now show by

contradiction that this is not the case.

Specifically, suppose that the origin,p = 0, is the desired common inf-max point.

From (E.1), we know thatc(pi) < c(0) , α, i = 1, . . . , 4. By continuity of c(·), we de-

fine the following level set:

S = c−1(α) = {p ∈ R
2 : c(p) = c(0)}

We now show some important properties of this level setS that will be useful for our proof.

First of all, from the implicit function theorem (see Lemma 4of Ch. 2 in [114]),S\(0, 0) is a

smooth 1-dimensional manifold. A smooth connected 1-dimensional manifold is diffeomorphic
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either to a circle or to some interval of real numbers (see Appendix of [114]).3 Thus, from

differential topology [114], a 1-dimensional manifold andthusS\(0, 0) is a union of disjoint

smooth curves (lines and circles). This also implies thatS\(0, 0) has no isolated points.

Secondly,S\(0, 0) hasno closedcurves. To see this, by contradiction, suppose that one

curve component ofS\(0, 0) is closed, denoted byS1. By continuity ofc(·) and compactness

of S1, and based on the Weierstrass theorem [138], there will exist (at least) one local minimum

insideS1, which has to be one of the pointspi since no other critical point exists. Note that

such a local minimum cannot be on the boundary ofS1 sincec(pi) < α. Without loss of

generality, we assumep1 is the only local minimum insideS1. Note that there cannot be more

than one local minima insideS1 (see the next paragraph below). Based on continuity ofc(·) and

compactness ofS1, we can find a sufficiently smallǫ > 0 so thatS1 is contained in one closed

component ofc−1(α + ǫ), which is disjoint fromS\S1 as they have different function values

(α + ǫ andα, respectively). Clearly, in this case, the inf-max value betweenp1 andpi (i 6= 1)

will be larger thanα and is attained at a point other than(0, 0), which gives the contradiction.

Therefore, all curves ofS\(0, 0) are open-ended. Moreover, by continuity,c(·) attainsα at

any limit point (i.e., the open-end point) of the curves ofS\(0, 0). However,(0, 0) is the only

point wherec(·) attainsα except the curves ofS\(0, 0), and thus theonly common limit of all

open-ended curves ofS\(0, 0).
Lastly, let us consider the properties of the interior ofS. We first define the following setΘ

whose boundary isS, i.e.,Θ = {p ∈ R
2 : c(p) < α} = ∪jΘj , whereΘj is j-th component

of Θ. It is clear thatpi (i = 1, . . . , 4) is contained inΘj for somej, sincec(pi) < α. Note

that,Θj cannot contain (more than) twopi, since, otherwise, the inf-max point of these two

pi will be different from(0, 0) and will have a function value less thanα. On the other hand,

if Θj does not contain anypi, similarly, based on the Weierstrass theorem [138], there will

exist a new local minimum in the corresponding closure,Θ̄j = Θj ∪ ∂Θj . This contradicts

the fact that we have only 4 critical points different from(0, 0). Therefore, there are exactly

4 connected componentsΘi, each of which contains onepi. Furthermore, by continuity of

c(·), thei-th boundary,∂Θi ⊂ S, contains at least one curve of the connected components of

S\(0, 0). Since(0, 0) is a limit point of all curves,(0, 0) ∈ ∂Θi for everyi, and thus,

∂Θi = ∪ni

j=1Sj ∪ {(0, 0)}
3 A mapf : x → y is called adiffeomorphismif f carriesx homeomorphically ontoy and if bothf andf−1

are smooth.
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Figure E.1: Illustration of the topological configuration of four local minima,pi (i = 1, . . . , 4),
and the level setS. In this plot, the dashed curves represent the level setS, and the solid lines
are the paths which connects the local minimapi andpj and attains its maximum at the origin.
Note that each of the paths is contained exactly in one interior of the connected components of
S. It is clear that the circlec2(p) intersectsS at 8 different points.

whereSj is one curve ofS\(0, 0) andni is the number ofSj contained in∂Θi. Note that any

two ∂Θi do not share a common curve, since if they do, by definition, the shared curve will

consist of (infinitely many) critical points. As a result, there are at least 4 distinct open curves

in S\(0, 0) having(0, 0) as a common limit point (see Fig. E.1).

As seen from Fig. E.1, for a given measurementz, the circlec2(p) intersects the level set

S at (at least) 8 intersection points denoted byqi, i = 1, . . . , 8. We can show that all these 8

points belong to the same ellipsec1(p), by noting that

c(qi) =c1(qi) + c2(qi)

⇒ c1(qi) =c(qi)− c2(qi) , α− γ , β (E.3)

This indicates that the 8 intersection points,qi, belong to the same ellipsec1(p) = β. This re-

sults in 8 intersection points between the ellipsec1 and the circlec2. However, it is known from

geometry that there are at most 4 intersection points between any ellipse and circle. Therefore,

we conclude that(0, 0) cannot be an inf-max point.

By the MPT, there must exist an inf-max point between any two local minima among the 4

stationary points. Therefore, there are at most 3 local minima (by sharing one stationary point
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as the common inf-max point).

E.1.2 Proof that there are at most 2 local minima

We now prove that there are at most 2 local minima by showing that the assumption of 3 local

minima (i.e.,pi, i = 1, 2, 3) leads to a contradiction. Denote the inf-max point,mi, corre-

sponding to the two local minima,pi andpj (i, j = 1, 2, 3 andi 6= j),

c(mi) = inf
Σij∈Γ

max
p∈Σij

c(p)

Recall that we have at most 5 critical points in total (i.e., 1non-differentiable point at the origin

and 4 stationary points). So, it is clear that there are only four possible cases that we need to

examine in terms ofmi (i = 1, 2, 3):

• Case I: m1 = m2 6= m3 = 0

• Case II: m1 6= m2 = m3 = 0

• Case III: m1 = m2 = m3 = 0

• Case IV: m1 = m2 = m3 6= 0

Our goal is to prove that all these four cases are impossible to occur and thus there are at most 2

local minima. In what follows, we first show that the first three cases with a zero inf-max point

(i.e., Cases I, II and III) cannot occur, and then disprove Case IV.

We start by considering a special case where the prior estimate coincides with the sensor

position (i.e.,p̂ = 0). By denotingP−1
pp =

[
s1 s3

s3 s2

]
, we expand the cost function (E.2) in a
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neighborhood of the origin as follows:

c(x, y) =
1

2

[
x

y

]T [
s1 s3

s3 s2

][
x

y

]
+

1

2σ2ρ

(
z −

√
x2 + y2

)2

=

(
s1σ

2
ρ+1

2σ2ρ

)
x2+

(
s2σ

2
ρ+1

2σ2ρ

)
y2+s3xy−

z

σ2ρ

√
x2+y2+

z2

2σ2ρ

, Ax2 +By2 + Cxy − E
√
x2 + y2 +D (E.4)

=
√
x2 + y2

(
Ax2 +By2 + Cxy√

x2 + y2
−E

)
+D

≤
√
x2 + y2 (A|x|+B|y|+ |C||x| − E) +D (E.5)

whereE , z
σ2ρ
> 0, due to the positive distance measurementz. In the above expressions, we

have employed the inequalities|x| ≤
√
x2 + y2 and |y| ≤

√
x2 + y2. Clearly, there exists a

neighborhood of(0, 0) such thatA|x|+B|y|+|C||x|−E < 0 and hencec(x, y) < D = c(0, 0),

if (x, y) 6= (0, 0). By definition,(0, 0) becomes a local maximum and thus cannot be an inf-max

point.4 This is the contradiction, and therefore Cases I, II, and IIIcannot happen when̂p = 0.

Now consider the general case wherep̂ 6= 0. First, in Case I (m1 = m2 6= m3 = 0),

as in the previous proof of at most 3 local minima (see SectionE.1.1), we can show that there

are at least 4 intersection points between the circlec2(p) for a givenz and the level setS (see

Fig. E.2). If the circlec2 collapses to a single point (i.e., with zero radius), clearly there is only

1 intersection point between the circlec2 and the level setS, and hence 1 intersection point

between the circlec2 and the ellipsec1.5 Importantly, by continuity ofc2 and compactness

of S, if perturbingc2 by an arbitrarily small number in the neighborhood of origin, there are

always at least 4 intersection points between the circlec2 and the level setS, and thus at least 4

intersection points between the circlec2 and the ellipsec1 [see (E.3)]. This perturbation results

in the dynamics of the number of intersection points betweenthe circle and the ellipse, changing

from 1 to 4. However, this is not the case, since we know from geometry that by continuity of

the circle and ellipse, if applying a small perturbation on the circle, 1 intersection point between

the circle and ellipse can only dynamically change 0, 1 or 2 (instead of 4) intersection points.

4 Note that ifz = 0, then (E.4) becomes quadratic and has a unique global minimum at the origin (by noting
thatA > 0), which clearly contradicts the assumption of three local minima.

5 Although depending on the measurementz, another circle possibly exists and thus may result in more inter-
section points between the circlec2 and the ellipsec1, we here consider the dynamics of the intersection point in a
neighborhoodof the origin.
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Figure E.2: Illustration of the circlec2(p) = α intersecting the level setS as well as the ellipse
c1 by a small perturbation onc2. In this plot, the dashed curves represent the level set, thesolid
lines are the path which connects the local minimap1 andp2 and attains its maximum at the
origin, and the solid circle representsc2 after perturbation.

Moreover, as compared to Case I, in Case II there will be at least 6 (instead of 4) intersection

points between the circlec2(p) for a givenz and the level setS, and thus we can show in a

similar way that this case is also impossible.

In Case III (m1 = m2 = m3 = 0), interestingly, no matter whether̂p = 0 or p̂ 6= 0,

proceeding similarly as in Cases I and II and as in Section E.1.1, we can derive the contradiction

that there will be 6 intersection points between the circlec2 and the level setS (and thus the

ellipsec1), and hence show that this case is also impossible to occur.

At this point, we have ruled out Cases I-III. We will now disprove Case IV. Specifically, to

simplify notations, we denote the common inf-max point bym , m1 = m2 = m3. Then,

we first consider a special case where the prior estimate coincides with the inf-max point, i.e.,

p̂ = m. In this case, we know that∇c(p) |p=m= 0, sincep = m is a critical (inf-max) point.

Therefore, we have:

0 =∇c(p) |p=m = ∇c1(p) |p=m +∇c2(p) |p=m

=
1

σ2ρ
(z − ||m||) m

||m|| ⇒ z = ||m|| ⇒ c(m) = 0

which clearly shows thatp = m is a global minimum (by noting the quadratic and nonnegative

cost function (E.2)). This contradicts the assumption thatp = m is an inf-max point.
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Figure E.3: Illustration of the circlec2(p) = α′ intersecting the level setS ′ by a small pertur-
bation onc2. In this plot, the dashed curves represent the level set, thesolid lines are the path
which connects the local minimapi andpj and attains its maximum atp = m, the dash-dotted
arcs (of the circles) representc2 before and after perturbation, and the solid circle denotesthe
neighborhood ofp = m.

We finally consider the general scenario of Case IV wherep̂ 6= m. We define the following

level set:

S ′ = {p ∈ R
2 : c(p) = c(m) , α′}

Similar to Case III and Section E.1.1 (where instead the level setS is considered), the corre-

sponding interior,Θ′ = {p ∈ R
2 : c(p) < α′}, has three curve components, each of which

contains exactly onepi (see Fig. E.3). Consider the scenario wherep = m is an intersection

point between the circle and the ellipse (by notingc(m) = c1(m)+ c2(m)). In a neighborhood

of p = m, if perturbing the circlec2(p) = c2(m) , γ′ by an arbitrarily small (positive or

negative) value, the circle will either shrink or expand. Since there are 6 branches belonging to

the level setS ′, by continuity and compactness ofc2 andS ′, in theneighborhoodof p = m,

there will exist at least 3 intersection points between the circle and the level set, and thus at least

3 intersection points between the circle and the ellipse [see (E.3)], either when the circle shrinks

or expands. Thus, there exists an (arbitrarily) small perturbation onc2 so that the number of

intersection points between the circle and the ellipse, in the neighborhood ofp = m, dynam-

ically changes from 1 to (more than) 3. However, we know from geometry that this is not the

case since 1 intersection point between a circle and an ellipse, by perturbation, can change to at

most 2 in itsneighborhood.

Thus far, we have proven that all four cases are impossible tooccur if there are 3 local

minima. As a result, there are at most 2 local minima. This completes the proof.
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