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Abstract

Autonomous robots are emerging as candidates for perfgrinareasingly complex tasks,
such as surveillance and environment monitoring, seardhiestue, and planetary exploration.
Nonlinear estimation (i.e., estimating the state of a madr system from noisy measurements)
arises in all these applications. For instance, robot inatibn — which is considered as one of
the fundamental problems in robotics — seeks to determimedhot’s pose (position and ori-
entation) using measurements from onboard sensors (e.gdaneter and a camera). Another
closely-related and important example is target trackiviggre the objective is to estimate the
target’s state using remote sensor observations. Eveglthoany different algorithms, such as
the extended Kalman filter (EKF) and the batch maximum a postéMAP) estimator, have
been developed for solving these problems, substantiairieapevidence shows that most ex-
isting nonlinear estimators tend to becomeonsisten(i.e., the state estimates are biased and
the error covariance estimates are smaller than the trug).oMoreover, a significant limita-
tion is that the causes of inconsistency have not been suffigistudied in the literature; if an
estimator is inconsistent, the accuracy of its estimateslisown, which makes the estimator
unreliable. The objective of this dissertation is to inigetie the main causes of inconsistency
of nonlinear estimation and develop new algorithms for iowprg consistency.

As one of the main research thrusts, we study in depth thegisiency problem in robot
localization, including simultaneous localization andppiag (SLAM) and multi-robot coop-
erative localization (CL). In particular, we shdiar the first time evethat one fundamental
cause of inconsistency is the mismatch between the obskvgoperties of the underlying
nonlinear system and the linearized system used by theastinBy performing observability
analysis, we prove that the linearized error-state systeed by standard filtering/smoothing
algorithms — the EKF, the unscented Kalman filter (UKF), draliding-window filter (SWF)

— has an observable subspacéhigher dimension than that of the underlying nonlinear sys-
tem. This implies that these estimators gsjiuriousinformation (more specifically, about the
global orientation) from the measurements, which unjadiifi reduces the uncertainty of the
state estimates and causes inconsistency. Based on thisskglyt, for unobservable nonlin-
ear systems, we propose a novel methodology for designingigtent linearized estimators.
Specifically, we develop a family of Observability-Congtiead (OC)-estimators — including the



OC-EKF, the OC-UKF, and the OC-SWF — whose Jacobians are withfin a way to ensure
that the estimator’s linearized system model has an obislergabspace of theamedimension
as that of the underlying nonlinear system.

Furthermore, we investigate the inconsistency of estimdtr observable nonlinear sys-
tems, such as target tracking using distance or bearingurezaents, whose cost functions are
non-convex and often haveultiplelocal minima. In such cases, we discover that the inconsis-
tency of a standard linearized estimator, such as the EKf¥jrigarily due to the fact that the
estimator is able to find and track ontyielocal minimum. To address this issue, we convert
the estimator's nonlinear cost function into polynomiatnfioand employ algebraic geometry
techniques t@nalytically compute all its local minima. These local minima are usedgisi
estimates by a bank of MAP estimators to efficiently track rin@st probable hypotheses for
the entire state trajectory. Moreover, we adapt this idgzatticle filters (PFs) and develop an
Analytically-Guided-Sampling (AGS)-PF. SpecificallyethGS-PF employs aanalytically-
determinedGaussian mixture as proposal distribution which not onkesainto account the
most recent measurement but also matches all the modes pb#terior (optimal proposal)
distribution. As a result, the AGS-PF samples the most falebaegions of the state space and
hence significantly reduces the number of particles reduire

As precise long-term localization and tracking are esakftr a variety of robotic applica-
tions, by introducing a solid theoretical framework for iraping the consistency of nonlinear
estimators, this work offers significant benefits for robertsployed in these tasks. Moreover,
the proposed solutions constitute novel paradigms fomemgs to follow when designing con-
sistent estimators for other nonlinear systems, and heae the potential to benefit applica-
tions beyond robotics.
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Nomenclature and Abbreviations

1 3P (x—p) A i : 3
N(p,P) = S multivariate Gaussian pdf with mea), ; and co

variance matrix?,,«n,
C(¢) 2 x 2 rotation matrix with rotation angle
Wr vectorr expressed with respect to frarid’ }

Wp7 origin of frame{Z} expressed with respect to frarig’ }

BA Bundle Adjustment

CL Cooperative localization

d.o.f. degrees of freedom

EKF Extended Kalman Filter

FLS Fixed-Lag Smoother

GPS Global Positioning System

GSF Gaussian Sum Filter

GSPF Gaussian Sum Particle Filter

IEKF Iterated Extended Kalman Filter

IMU Inertial Measurement Unit

iISAM incremental Smoothing and Mapping
LRKF Linear Regression Kalman Filter
MAP Maximum A Posteriori

MHEKF Multi-Hypothesis Extended Kalman Filter

MLE Maximum Likelihood Estimator



NEES Normalized Estimation Error Squared
OC Observability Constrained

pdf probability density function

PF Particle Filter

RMSE Root Mean Squared Error

SAM Smoothing and Mapping

SLAM Simultaneous Localization and Mapping
SRUKF Square-Root Unscented Kalman Filter
SWF Sliding Window Filter

UKF Unscented Kalman Filter

UPF Unscented Particle Filter

V-INS Vision-aided Inertial Navigation System



Chapter 1

Introduction

1.1 Nonlinear estimation in robotics

Autonomous mobile robots have the potential to assist ge(@l., during search and rescue
operations [25]) and to augment human capabilities (e.grkiwg in dangerous or inaccessible
environments [46]). To achieve this, however, a fundamesgamation problem that must be
first solved islocalization— that is, determining the position and orientation (poseg mbot
using measurements from its onboard sensors. Another tergaronlinear estimation problem
arising in robotics idarget tracking in which one or more, possibly mobile, sensors observe
and track a target in order to estimate its position, veypeitc. Localization and target tracking
appear in many practical applications, such as transpmntft9, 156], construction [128, 141],
planetary exploration [46], guidance for the visually irimpd [61, 164], surveillance and envi-
ronment monitoring [24, 129], as well as search and resceeatipns in disaster zones [25].
In this work, we primarily focus on these two key robotic dehs and use them to illustrate
our methodologies of improving the consistency of nonlinestimation algorithms. In what
follows, we first provide a brief overview of robot localikat and target tracking in order to
better understand the ensuing discussion on estimatoistemsy.

1.1.1 Robot localization

The objective of robot localization is to fuse proprioceet{e.g., from an odometer) and extero-
ceptive (e.g., from a laser) sensor measurements in oradentpute an estimate of the robot’s
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pose. There exist many variants of this problem, dependmtip® number of robots involved
and the prior knowledge they may have about the environmeitién which they operate. In
this thesis, we particularly focus on the following two innfant cases:

e Simultaneous Localization and Mapping (SLAM): When exjpigran unknown environ-
ment, a robot seeks to estimate both its own pose and thaegnssdf the landmarks it ob-
serves (e.g., corner points detected from images, or ligmeets extracted from the laser
scanner data) [11,43,121,145,157]. This process offeeyaibenefits: By observing static
landmarks over multiple time instants, or when the roboisitssan area (i.e., loop closing),
the estimation errors over long time periods remain bourjd&é]. Thus, a SLAM solu-
tion permits accurate, long-term localization in unknowmieonments, and is considered an
enabling technology for robot autonomy [155].

e Cooperative Localization (CL): A team of robots can looali®/ sharing robot-to-robot mea-
surements and jointly estimating their poses [102]. A Clusoh provides the means for
implicit sensor sharing, as localization information isgipated over a (wireless) network
to all the members of the group, and results in considerahiesgn terms of localization
accuracy for all robots [117]. Moreover, when at least on¢hefrobots is capable of ob-
taining measurements to static landmarks, then the posais rabots and the positions of
all landmarks can be simultaneously estimated, throughi+moldot cooperative SLAM (C-
SLAM) [118]. C-SLAM enjoys the advantages of both SLAM and &hd attains bounded
localization errors for all robots within the team [118].

1.1.2 Target tracking

Target tracking is the problem of estimating the kinematitesof a moving target using range
and/or bearing measurements provided by a (mobile) serfsasevpose is often assumed to be
known. This is a classical nonlinear estimation problent Has attracted significant interest
over the past decades [14,17]. Examples of recent reseateinget tracking include designing
new estimation algorithms and adaptively controlling taes®r’'s motion [7, 31,99, 170-172].
Depending on the type of measurements used, it includes+amiy tracking [28, 135] and
bearing-only tracking [47, 122], which are the two cases atadied in this work.



1.2 Consistency of nonlinear estimation

Nonlinear estimation problems, such as mobile robot laaéibtn and target tracking, are chal-
lenging for a number of reasons. In contrast to the lineadehGaussian-noise case, a nonlinear
estimator is generally intractable without imposing siifiyfig assumptions. Specifically, it is
not feasible to propagate and update either an entire pitipalensity function (pdf) for the
state conditioned on the available measurements or anteéfinmber of parameters describing
that density. One particular difficulty arising in the desigf nonlinear estimators is tlewnsis-
tencyissue, since no provably consistent estimator can be embstt for a nonlinear system.
As defined in [14], a state estimatordgnsistentf the estimation errors are zero-mean and have
covariance matrix smaller than or equal to the one caladilbiethe estimator. Consistency is
one of the primary criteria for evaluating the performan€amny estimator; if an estimator is
inconsistent, then the accuracy of the produced state &tstins unknown, which in turn makes
the estimator unreliable.

Despite these challenges, the problems of robot locadizatnd target tracking have been
studied for decades [17,155], and various estimators hese émployed for solving them, such
as the extended Kalman filter (EKF) [14, 43], the maximumliile@od estimator (MLE) [64],
the maximum a posteriori (MAP) estimator [124], and the ipkatfilter (PF) [8, 48]. Among
these algorithms, the EKF remains a popular choice prignalile to its relatively low pro-
cessing requirements and its ease of implementation. Hawésg performance depends on
the magnitude of the linearization errors. To reduce thesliization errors, the iterated EKF
(IEKF) [82] is often used, which iteratively relinearizdsetnonlinear measurement model till
convergence. Alternatively, the unscented Kalman filtekFY[84] deterministically samples
the nonlinear model around the current state estimate amdogslinear regression to im-
prove the accuracy of the linear approximation. Never8gl¢he EKF, as well as any (ex-
plicit or implicit) linearization-based filtering apprdacmarginalizes all but the current state
and hence is unable to correct linearization errors inmgiyprevious states. For this reason,
smoothing algorithms, either in batch or incremental fashhave become popular, especially
for SLAM [36, 38, 53-55, 67, 87, 88, 95, 100, 142, 150]. In jgaitar, a sliding-window filter
(SWF) [142] (or fixed-lag smoother (FLS) [38, 111, 132]) esttes the states over a sliding
time window, by concurrently processing all the measurdmawolving these states, hence



6
reducing the effect of the linearization errors. Moreowhatch-MAP estimator [91] com-
putes the estimates for the states at all time steps usiagailable measurements. This allows
continuous relinearization around all the states, whiaghgr@atly reduce the linearization er-
rors. However, most filters and smoothers typically carktady one, of the potentially many,
modes of the posterior pdf, which can degrade the performa@uly a few estimators, such
as the multi-hypothesis EKF (MHEKF) [99] (i.e., the Gausssum filter (GSF) [3]) and the
PF [8,41, 58], are specifically designed to handle multinhdiributions by simultaneously
tracking a set of different hypotheses for the state estimadtlost of the time, however, these
hypotheses are generated randomly, thus wasting a coalsidgrortion of the computational
resources.

Due to the aforementioned reasons (i.e., large lineaoizagirors and multiple local min-
ima), most estimators (either filters or smoothers) tendelmomeinconsistentwhen applied
to robot localization and target tracking. The lack of uistkending of the fundamental causes
of estimator inconsistency in these applications cleagla isignificant limitation, which we
seek to address in this dissertation. In particular, weetbat the observability of the system
model based on which an estimator is built, profoundly aff¢be estimator’'s performance,
and plays a significant role in determining consistencytiarmmore, we show that the inability
of an estimator to track all modes of the multimodal postepidf can cause inconsistency or
even divergence. Once the root causes of estimator intensysare identified, we design new
estimation algorithms that explicitly address these caas®l improve consistency. In what
follows, we discuss the research objectives of this diadert in more detail.

1.3 Research objectives

The primary objectives of this research effort are to deteenthe fundamental causes of esti-
mator inconsistency and design new estimation algorithmasimprove consistency. While the

proposed analysis and algorithms can be generalized tcea lotass of nonlinear systems, we
hereafter focus on the problems of mobile robot localizaind target tracking. Specifically,

the goals of this research are the following:



1.3.1 Investigate the fundamental causes of estimator innsistency

We first study the problem of estimation inconsistency frowa perspective of system observ-
ability. Observability examines the feasibility of estiting the state given all available mea-
surements. A dynamical system is observable if its stateattain time instant can be uniquely
determined based on a finite sequence of its outputs (measnots) [18]. By performing ob-
servability analysis, we are able to determine the obsé\dikections in the state space along
which an estimator should acquire information from the lavd¢ measurements. We conjec-
ture thatif the observable directions are erroneous, the estimatay become inconsisterfor
instance, for the robot localization systems [i.e., SLAMgsSection 2.4) and CL (see Sec-
tion 3.4)], we analytically prove that the standard EKF emgpla linearized error-state system
model that has an unobservable subspadeweér dimension than that of the underlying non-
linear system. As a result, the estimator gains spuriousrimdtion from the measurements
and hence incorrectly reduces the estimated covariands.isTshown to be the main cause of
inconsistency in this case.

Although system observability has been identified as an itapb cause of estimator in-
consistency, there certainly exist other issues affedtiegconsistency of nonlinear estimators.
For example, the observability properties of systems sachrage-only and bearing-only target
tracking, have less impact since both systems are obseribdh, 147], and the corresponding
linearized system models are also observable. Howeverval be shown, most estimators,
such as the EKF, can still become inconsistent. In this casealiscover that the fundamental
cause of inconsistency ike inability of the estimator to track a multimodal posterpdf (see
Section 7.4). In particular, if the estimator erroneousicks a mode different from the global
optimum, its estimates may become inconsistent.

The PF can ideally track multiple modes of the pdf and doesregtiire linearization.
However, it can also become inconsistent when applied totralcalization and target track-
ing [13, 165]. We conjecture that this is primarily dueptarticle depletior[8], where the very
few surviving particles (i.e., particles with significaneights) cannot sufficiently represent the
underlying posterior pdf (see Chapter 8).



1.3.2 Improve the consistency of nonlinear estimators

Our objective is to design new nonlinear estimation alpong that improve consistency,
by explicitly addressing the primary causes of inconsistenFirstly, we propose a novel
observability-based methodology for improving estimatonsistency in robot localization in-
cluding SLAM and CL. The key idea behind our approach is to pot@ the filter Jacobians
in such a way that the resulting linearized system model byetthe estimator has an unob-
servable subspace of appropriate dimensions. Within thimdéwork, we develop a family of
Observability-Constrained (OC)-estimators, includirgghbfilters and smoothers [i.e., the OC-
EKFs (see Chapters 2 and 3), the OC-UKF (see Chapter 4), artd@RSWF (see Chapter 5)].
Moreover, we study filter consistency for a certain classliffervablenonlinear systems, and
employ the same observability-based methodology to dpved estimation algorithms for
improving their consistency (see Chapter 6).

Secondly, we introduce a general framework for finding aadking the modes of multi-
modal posterior pdfs for a broad class of nonlinear estinapiroblems in robotics and com-
puter vision that can be expressed in (or converted into)raohial form. The key idea of this
approach is to convert the estimator’s nonlinear cost fandnto polynomial form, and then
employ algebraic-geometry techniques [33] to analytycabmpute all the stationary points,
and thus the local minima, which correspond to the multiptales of the posterior pdf. Fur-
thermore, we employ a bank of MAP estimators, which allownegrization of the entire state
history as well as multi-hypothesis tracking, and intraglam efficient hypothesis generation
scheme (see Chapter 7). Moreover, we adapt this idea oftaradlly selecting hypotheses to
PFs, and develop an Analytically-Guided-Sampling (AGE)&$te Chapter 8). Specifically, the
AGS-PF employs aanalytically-determinedsaussian mixture as proposal distribution which
not only takes into account the most recent measurementdnutreatches all the modes of the
posterior (optimal proposal) distribution. As a resule &GS-PF samples along the most prob-
able regions of the state space and hence dramaticallyesdioe number of particles required.

Persistent long-term localization and tracking are egsefor various robotic applications,
ranging from planetary and underwater exploration to serwbbots for businesses and homes.
By introducing a solid theoretical framework for designiognsistency-improved nonlinear
estimators, this dissertation will offer significant beteefo robots employed in a wide range of
tasks such as surveillance. Moreover, the proposed sodutimvide novel paradigms for other
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engineers to follow when designing consistent estimatorsnbnlinear systems. Thus, the
proposed methodologies have the potential to be extendmudwen broader class of nonlinear
estimation problems and hence to benefit the correspongipigcations.

1.4 Organization of the manuscript

In the following chapters, the estimator inconsistencydhat localization is first addressed
from the perspective of system observability. In partiguzhapters 2 and 3 focus on the EKF
inconsistency in SLAM and CL, respectively, and the obdgititg-based methodology for im-
proving EKF consistency is presented. The UKF-SLAM incstesicy is studied in Chapter 4,
where the UKF computational complexity is also reduced. hagier 5, the observability-
based methodology is extended to the smoothing framewatkttas OC-SWF for SLAM is
introduced. Furthermore, in Chapter 6, this methodologgeiseralized to a special class of
observable nonlinear systems, i.e., discrete-time neatisystems with partial-state measure-
ments. In Chapters 7 and 8, the estimator inconsistencwudkest from a different perspective
for the case of posterior pdfs with multiple modes. In pafdc, a bank of MAP estimators
and the AGS-PF are developed for tracking the most probajietheses of the target'’s state.
Finally, Chapter 9 provides concluding remarks and an olttn future research directions.



Chapter 2

Observability-Constrained EKFs for
SLAM

In this chapter, we study the EKF consistency of SLAM from plegspective of system ob-
servability. We analytically show that the linearized systemployed by the EKF has different
observability properties than the underlying nonlineaASLsystem, which is one fundamental
cause of inconsistency. To address this problem, we dewlagbservability-based methodol-
ogy to ensure that the EKF linearized system has the samearuwhbinobservable directions
as the nonlinear SLAM system. Parts of this chapter have peblished in [66, 70, 72].

2.1 Introduction

Simultaneous localization and mapping (SLAM) is the prscefsbuilding a map of an envi-
ronment and concurrently generating an estimate of thet'sopose (position and orientation)
using sensor readings. For autonomous vehicles explornikgawn environments, the ability
to perform SLAM is essential. Since [144] first introducedt@ckastic-mapping solution to
the SLAM problem, rapid and exciting progress has been ma&dejting in several compet-
ing solutions. Recent interest in SLAM has focused on thegdesf estimation algorithms
(e.g., [115, 130]), data association techniques [123],faatlire extraction [140]. Among the
numerous algorithms developed thus far for SLAM, the EKFaigs one of the most popular
approaches, and has been used in several applications[92,d.25, 169]). However, in spite
of its widespread adoption, the fundamental issueonfsistencyf the EKF-SLAM algorithm

10
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has not yet been sufficiently investigated.

As discussed in the preceding chapter (see Section 1. 3teaesttimator isonsistentf the
estimation errors are zero-mean and have covariance siieleor equal to the one calculated
by the estimator [14]. Consistency is one of the primaryedit for evaluating the performance
of any estimator. If an estimator is inconsistent, then tt&ieacy of the produced state esti-
mates is unknown, which in turn makes the estimator unreliaBince SLAM is a nonlinear
estimation problem, no provably consistent estimator @odnstructed for it. The consistency
of every estimator has to be evaluated experimentally. ftiqodar for thestandardEKF-SLAM
algorithm, there exists significant empirical evidencenghg that the computed state estimates
tend to beinconsistent(see Section 2.2). Clearly, the lack of understanding thises of the
filter inconsistency is a significant limitation, which négaly affects long-term autonomous
navigation.

In this chapter, we investigate in depth one fundamentadear the inconsistency of the
standard EKF-SLAM algorithm. In particular, we revisitgtproblem from a new perspective,
i.e., by analyzing the observability properties of the fitesystem model. Our key conjecture
in this work is that the observability properties of the EKitebrized system model profoundly
affect the performance of the filter, and are a significantofaim determining its consistency.
Specifically, the major contributions of this work are thédwing:

e Through an observability analysis, we prove that the stah&KF-SLAM employs a
linearized error-state system model that has an unobdersabspace of dimension two,
even though the underlying nonlinear system model has tmebservable degrees of
freedom (d.o.f.), corresponding to the position and oaton of the global reference
frame. As a result, the filter gains spurious informatiomgldirections of the state space
where no information is actually available. This leads taajustified reduction of the
estimated covariance, and is a primary cause of filter iristargcy.

e Motivated by the observability analysis, we propose a neseplability-based method-
ology for improving the EKF consistency. The key idea of thgproach is to compute
the EKF Jacobians in such a way that ensures that the unabsesubspace of the EKF
system model is of correct dimensions. This can be achievéittée different ways, re-
sulting in three different Observability-Constrained (GEKF algorithms: i) OC-EKF1
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computes the Jacobians using fhist-everavailable estimates for each of the state vari-
ables and hence is also called First-Estimates-JacobBh)-EKF. i) OC-EKF2 selects
the linearization points that not only guarantee the ddsifeservability properties but
also minimize the expected linearization errors (i.e. difference between the lineariza-
tion point and the true state). This is formulated as a caim&d minimization problem,
which we solve to determine the linearization points usedctimputing the filter Ja-
cobians. iii) OC-EKF3directly computes theneasuremeniacobian at each time step
in such a way that ensures the information acquired from Hadladle measurements
is only along the observable directions in the state spadds i§ achieved by project-
ing the best-available measurement Jacobian (which is gmdpusing the latest state
estimates as in the standard EKF) onto the observable idinectThis is in contrast to
the OC-EKFs 1 and 2 which compute the Jacobiadgectly by first finding appropri-
ate linearization points that ensure correct observgilplibperties for the corresponding
linearized systems.

e Through extensive Monte-Carlo simulations and real-wexgeriments, we verify that
the proposed OC-EKFs substantially outperform the stahB&F, even though they use
less accurate filter Jacobians (since the Jacobians of thEKKS, in general, are dif-
ferent from those computed using the latest, and thus basg, estimates). This result
supports our conjecture that the observability propedfdbe EKF system model play a
fundamental role in determining consistency.

2.2 Related work

The EKF is one of the most widely used algorithms for SLAM. Hweer, its inconsistency issue
has only recently begun to attract research interest [12,2266,70,72,78,79, 85].
Specifically, the work of [85] first reported the issue of EKI€dnsistency by observing
that when a stationary robot measures the relative positianlandmark multiple times, the
estimated variance of the robot’s orientation error becosraaller. Since the observation of
a previously unseen feature does not provide any informatimut the robot state, this reduc-
tion is incorrect and leads to inconsistency. In additioogrdition was described that the filter
Jacobians need to satisfy in order to permit consistemhatibtn. Recently, the work of [79] ex-
tended the analysis of [85] to the case in which a robot olesemMandmark from two positions



13

(i.e., the robot observes a landmark, moves and then ren@ssehe landmark). A constraint
was provided that the filter Jacobians need to fulfill in trasec so as to allow for consistent
estimation. It was also shown that this condition is gemerablated, due to the fact that the
filter Jacobians at different time instants are evaluatédgugifferent estimates for the same
state variables. Interestingly, we will show that theseditions, i.e., for a stationary robot [85]
and a one-step motion [79], are special cases of an obskty4aised condition derived for the
general case of a moving robot (see Section 2.5.4).

The authors of [12] examined several symptoms of the instersty of the standard EKF-
SLAM algorithm, and based on Monte-Carlo simulations, atjthat the uncertainty in the
robot orientation is the main cause of the EKF inconsistetgwever, no theoretical results
were provided. The work of [78] further confirmed the emgitifindings in [12], and argued
by example that the inconsistency of the standard EKF-SLAMIvays in the form of over-
confident estimates (i.e., the computed covariance is snththn the actual one).

The first attempt to improve filter consistency was reportef26, 27] where the robocen-
tric mapping algorithm was proposed by expressing the lamkisin a robot-relative (instead
of world-centric) frame of reference. In this formulatiodiiring each propagation steall
landmark position estimates need to be recalculated, $imyeare expressed with respect to
the moving robot frame. As a result, during propagation|atmark estimates and their co-
variances are affected by the linearization errors of tleegss model, which degrades perfor-
mance. Note that this issue does not exist in the world-efoirmmulation of SLAM. Moreover,
in comparison to our proposed OC-EKFs, the computationsi abthe robocentric mapping
filter is significantly higher. Specifically, the OC-EKFs leagomputational cost identical to
the standard world-centric EKF-SLAM algorithrtinear, in the number of landmarks, during
propagation, anduadraticduring update. In contrast, in the robocentric mappingfitieth the
propagation and update steps have computationalc@straticin the number of landmarks.

Most previous work has only empirically examined severahgtoms of the SLAM incon-
sistency, except for a few special cases (e.g., a stationbhot [85], and one-step motion [79])
where analytical studies were performed. However, no tt@a analysis of the cause of
filter inconsistency was conducted. In this thesis, we stadyproblem from the system ob-
servability perspective, and identify as a fundamentakeanf inconsistency the mismatch in
the dimensions of the observable subspaces between thiastaBKF linearized system and
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the underlying nonlinear system. Relying on this key finding propose an observability-
constrained framework for improving filter consistency,aemdthe filter Jacobians are computed
S0 as to ensure that the observable subspace of the EKRzimgalystem has the correct dimen-
sions. Specifically, the OC-EKF1 (i.e., FEJ-EKF) [66, 70Ests the first-ever state estimates
as the linearization points used in computing the filter Baots. The OC-EKF2 [72] finds the
optimal linearization points that not only ensure that theasvable subspace of the EKF lin-
earized system model has correct dimensions, but also rzimithe linearization errors. The
OC-EKF3, instead of first finding appropriate linearizatjpoints as is the case for the OC-
EKFs 1 and 2, directly computes the necessary measurenwitida, by projecting the most
accurate measurement Jacobian onto the observable airecii the system model.

2.3 Standard EKF-SLAM formulation

In this section, we present the equations of the standard&KA&M formulation withgeneral-
izedsystem and measurement models. To preserve the claritgsépration, we first focus on
the case wheresginglelandmark is included in the state vector, while the case dfiphe land-
marks is addressed later on. In the standard formulatiorL&Ng the state vector comprises
the robot pose and the landmark position in the global frafmeference. Thus, at time-stép
the state vector is given by:

xi=[ph on, pi] =[xh bl] @)

wherexp, = [pgk ¢r,|T denotes the robot pose (position and orientation), pnds the
landmark position. EKF-SLAM recursively evolves in twogse propagation and update, based
on the discrete-time process and measurement modelsctieshe

2.3.1 EKEF propagation

In the propagation step, the robot’s odometry measurenagatsrocessed to obtain an estimate
of the pose change between two consecutive time steps, endethployed in the EKF to
propagate the robot state estimate. On the other hand, $iadandmark is static, its state
estimate does not change with the incorporation of a new etignmeasurement. The EKF
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propagation equations are given by:

Prpsie = Pru + COr,) ™ PRy (2.2)
(ZngJrl\k = quk\k + RkéRkH (2.3)

whereC(-) denotes the x 2 rotation matrix, and®xp,,, = [pf, =~ frop, ] is the
odometry-based estimate of the robot’s motion between-sitepsk andk + 1. This estimate
is corrupted by zero-mean, white Gaussian neige= “*xp, ., — f*xp,,,, with covariance
matrix Q. This process model is nonlinear, and can be described biollog/ing generic
nonlinear function:

X1 = £(xp, T Rp,,, + W) (2.5)

In addition to the state propagation equations, the ligzedrerror-state propagation equation
is necessary for the EKF. This is given by:

Pr, O3x2| |XRy, n Gg, w
- k
0213 I PL, 022

£ ®pxp), + Grwy, (2.6)

Xp4+1|k =

where®r, andGp, are obtained from the state propagation equations (2.3):(2

[ I, JC(¢r, )Frp
@Rk _ 2 (¢Rk\k) PR;4, (2.7)
1012 1
_01><2 1
[C(4 0
G, = (PRy) O2x1 2.9)
01><2 1

0 -1
with J £ [ ]
1 0

' Throughout this dissertation, the subscript refers to the estimate of a quantity at time-stegfter all
measurements up to time-stgpave been processetlis used to denote the estimate of a random variabighile
Z = x — & is the error in this estimaté,, », and1,,x, denotem x n matrices of zeros and ones, ahgis the
n x n identity matrix. Finally, we use the concatenated formpisandc¢ to denote thain ¢ andcos ¢ functions.
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It is important to point out that the form of the propagatiauations presented above is
general, and holds for any robot kinematic model (e.g.,yahé; bicycle, or Ackerman model).
In Appendix A.1, we derive the expressions for (2.2)-(2a®) well as the state and noise Jaco-
bians, for the common case where the unicycle model is used.

2.3.2 EKF update

During SLAM, the measurement used for updates in the EKF isetion of the relative posi-
tion of the landmark with respect to the robot:

z;, = h(xg) + v, = h (FpL) + vy (2.10)

wherefxp;, = CT(¢r, )(pL — Pr,) is the position of the landmark with respect to the robot
at time-stepk, andvy, is zero-mean Gaussian measurement noise with covarlapceén this
work, we allowh to beanymeasurement function. For instaneg.can be a direct measurement
of relative position, a pair of range and bearing measuréndaearing-only measurements
from monocular cameras, etc. Generally, the measuremaectidn is nonlinear, and hence it is
linearized for use in the EKF. The linearized measuremeant equation is given by:

- X Ry o
Zp =~ [HRk HLk] _ klk—1
PLyjk—s

+ Vi

2 HyXpo—1 + Vi (2.11)

whereHpr, andH;, are the Jacobians &f with respect to the robot pose and the landmark
position, respectively, evaluated at the state estimgje ;. Using the chain rule of differenti-
ation, these are computed as:

Hp, = (Vhe)C (b, ) [T —I(pry,, — Pryis)| (2.12)
H;, = (Vh,)CT (dr,,_,) (2.13)

whereVh; denotes the Jacobian hfwith respect to the robot-relative landmark position (i.e.
with respect to the vectdf+p;), evaluated at the state estimadg;, ;.

2.4 SLAM observability analysis

In this section, we perform an observability analysis fa teneralized EKF-SLAM formu-
lation derived in the previous section, and compare its gntigs with those of the underlying
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nonlinear system. Based on this analysis, we draw concissibout the filter consistency.

It should be pointed out that the observability propertieSbAM have been studied in
only a few cases in the literature. In particular, the workdob] investigated the observability
of a simple linear time-invariant (LTI) SLAM system, and sfeml that it is unobservable. The
work of [167] approximated the SLAM system by a piecewisestant linear (PWCL) sys-
tem, applied the technique of [51] to study the observahiibperties of bearing-only SLAM,
and showed that it is also unobservable. On the other harfdDijrY2, 105] the observability
properties of the nonlinear SLAM system were studied udirgrionlinear observability rank
condition introduced by [60]. It was proved that the nordin§LAM system is unobservable,
with threeunobservable d.o.f., corresponding to global transladiad rotation of the state vec-
tor.

All the aforementioned approaches examine the obsertyabpiloperties of the nonlinear
SLAM system, or of linear approximations to it. However, e toest of our knowledge, an
analysis of the observability properties of the Elftearized error-statesystem model had not
been carried out prior to our work [66, 70, 72]. Since this eiad the one used in any actual
EKF implementation, a lack of understanding of its obseititglproperties appears to be a
significant limitation. In fact, as shown in this chapteggshk properties play a significant role
in determining the consistency of the filter, and form tha@$atour approaches for improving
estimation performance.

2.4.1 Nonlinear SLAM observability analysis

We start by carrying out the observability analysis for tleatsuous-time nonlinear SLAM
system. This analysis is based on the observability rantlition introduced in [60]: If a non-
linear system is locally weakly observable, the obseritgliiink condition is satisfied generi-
cally”. We show that the SLAM system does not satisfy the obselitsalbank condition, and
thus is neither locally weakly observable nor locally olvabte. Note that we here conduct the
analysis for ageneralmeasurement model, instead of only relative-position etadice-and-
bearing measurement as in [70, 105].

We employ a unicycle kinematic model for the robot, while iEimconclusions can be
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drawn if different models are used [105]. The process madebntinuous-time form is:

ir@®)]  [eor@®)] 0

yr(t) soR(t) 0

o) =1 0 |v@)+ |1|w®)

xr(t) 0 0
o] [ 0 ] 0]

= (1) = fu(t) + faw(t) (2.14)

T

where [U w] =: u is the control input, consisting of the linear and rotationelocities.
Since any type of measurement in SLAM is a function of thetiradgosition of the landmark
with respect to the robot, we can write the measurement niodleé¢ following generic form:

z(t) = h(p, ) (2.15)
p=llpL —Prll (2.16)
Y = atan2(yL — Yr, 2L — TR) — OR (2.17)

wherep and+ are the robot-to-landmark distance and bearing anglegctéisply. Note that
parameterizing the measurement with respegtdaad+ is equivalent to parameterizing it with

respect to the landmark position expressed in the robotefr&my;,. The relation between these

c

quantities is®py, = p [ 1/1] . To facilitate the ensuing nonlinear observability analys/e first

S
prove that:

Lemma 2.4.1. All the Lie derivatives of the nonlinear SLAM system [&2&4)and (2.15) are
functions ofp and only.

Proof. See Appendix A.2 O

We will now employ this result for the nonlinear observabgilanalysis. In particular, as-
sume that a number of different measurements are available, h;(p,v), i = 1,2,....n.
Then, since all the Lie derivatives for all measurementdametions ofp and) only, we can
prove that:

Lemma 2.4.2. The space spanned by all tiheth order Lie derivativesL’i?j hi (Vk € N,j =
1,2,5=1,2,...,n) is denoted by, and the spacdg spanned by the gradients of the elements
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of G is given by:

4G = span S¢r —CPr —COROT — SPROY —SOR  CPR (2.18)

row |cor  SPr  SOROT —chrdYy —cpr —SéR
wheredz £ z;, — xg anddy £ yr, — yg.
Proof. See Appendix A.3 O

The matrix shown above is the “observability matrix” for thenlinear SLAM system under
consideration. Clearly, this is not a full-rank matrix, aneince the system is unobservable.
Intuitively, this is a consequence of the fact that we caiga@tabsolute but rather onlyelative
state information from the available measurements. Evaungihthe notion of an “unobservable
subspace” cannot be strictly defined for this system, theiphlinterpretation of the basis of
dG=+ will give us useful insight for our following analysis in S@m 2.4.2. By inspection, we
see that one possible basis for the sp#ge is given by:

1 0 —yr
0 TR
dG- = span |0 0 1 | £ span [nl no ng] (2.19)
col. 1 L
_0 T, ]

From the structure of the vectors andns we see that a change in the state/by = an; +
Bno, o, B € R, corresponds to a “shifting” of the — y plane by« units alongz, and by
units alongy. Thus, if the robot and landmark positions are shifted dgutile statesx and
x + Ax will be indistinguishable given the measurements. To wstded the physical meaning
of ng, we consider the case where the- y plane is rotated by a small angie. Rotating the
coordinate system transforms any paint= [z |7 to a pointp’ = [/ /], i.e.,

(-eoo =L L1 C1-< L]

where we have employed the small angle approximatigig) ~ 1 ands(d¢) ~ d¢. Using
this result, we see that if the plane containing the robotlandmarks is rotated by, the

xT

Y

09
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SLAM state vector will change to:

/

T TR —YRr
Y YR TR
x = Pl = |or| T | 1 | =x+0d¢ns (2.20)
' rr —yL
_y’L_ LYL | L TL |

which indicates that the vectar; corresponds to a rotation of the— y plane. Sincenz €
dG™, this result shows that any such rotation is unobservabie vall cause no change to the
measurements. The preceding analysis for the meaning basis vectors ofG agrees with
intuition, which dictates that thglobal coordinatesof the state vector in SLAM (rotation and
translation) are unobservable.

2.4.2 Linearized SLAM observability analysis

Since the standard EKF employs the linearized system madiledi by (2.6) and (2.11) for
propagating and updating the state and covariance estinth&eobservability properties of this
model significantly affect the performance of the estima®srshown below. It is important
to note that, in general, the Jacobian matrides G;, and H; used in the EKF linearized
error-state model [see (2.6) and (2.11)] are defined as:

B = Vs, f . G =V, f , Hy=Vy,h (2.21)

{XZ\k’XZH\k’O {XZWO} {XZ\kﬂ}

wherexz| o1 andxz| .. denote thdinearization pointsfor the statex,, used for evaluating the
Jacobians before and after the EKF update at time{stapspectively, while a linearization
point equal to the zero vector is chosen for the zero-meagendsince the linearized error-
state model is time-varying, we employ tleeal observability matri¥30, 112] to perform the

observability analysis. Specifically, the local obseriigbmatrix for the time interval between
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time-steps:, andk, + m is defined by:

H,,
Hy, 1Py,
M 2 " (2.22)
| Hiptm Phgtm—1- - Pr, |
Hp, H,,
_ HR’““*_l@R’““ HL’f”“ (2.23)
_HRkOer(I)RkOerﬂ T (I)Rko HLko+m_
— M(Xzo‘k()—l’xz’olku" .. ’X;;u‘f'"n‘ko‘i‘m_l) (224)

The last expression (2.24) makes explicit the fact that theeosability matrix is a func-
tion of the linearization points used for computing all tleedbians within the time interval
[ko, ko +m]. In turn, this implies thathe choice of linearization points affects the observapbili
propertiesof the linearized error-state system of the EKF. This key tiady is the basis of our
ensuing analysis, where we discuss different possiblecebaf linearization points, and the
observability properties of the corresponding lineariggstems.

Ideal EKF-SLAM

Before considering the rank of the mati, which is constructed using thestimatedvalues
of the state in the filter Jacobians, it is interesting to gttiek observability properties of the
“oracle”, or “ideal” EKF (i.e., the filter whose Jacobian® avaluated using theue values of
the state variables, in other word§{;|k_1 = xz“f = xy, for all k). In the following, all matrices
evaluated using the true state values are denoted by theosymb

We start by noting that [see (2.8)]:

(2.25)

o o | J —
q)RkoJrl q)Rko - ? (kao+2 kao )
O1x2 1

Based on this property, it is easy to show by induction that:

4 s . s [ 12 J (kao+é - kao)]
O1x2 1
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which holds for all¢ > 0. Using this result, and substituting for the measuremecwkians
from (2.12) and (2.13), we can prove the following usefuhity:

Iv_IRko+g(i,Rko+(71 e iRko = (Vﬁko+Z)CT(¢Rko+l) |:_:[2 _J(pL - kaU)

=y, [-T, ~J(os-pr,)| (2.26)

which holds for all¢ > 0. The observability matri®VI can now be written as:

-I, —J(pr —Ppr,) I

—I —J(pL —Pr,) I

M = Diag (ﬁLko>ﬁLko+17 s ,IV‘ILkO+m) (227)

D

-, —J(pL —Ppr,,) L]

U
Lemma 2.4.3. The rank of the observability matrik?[, of the ideal EKF-SLAM is 2.

Proof. The rank of the product of the matricEBsand U is given by (see (4.5.1) in [113]):
rank(DU) = rank(U) — dim (null(f)) m rng(fj)) (2.28)

wherenull(-) denotes the right null space of a matnixig(-) represents the matrix range, and
dim(-) the dimension of a subspace. SidGecomprisesn + 1 repetitions of the sam2 x 5
block row, it is clear thatank(U) = 2, and the range dJ, rng(U), is spanned by the vectors
u; andus, defined as follows:

o w = | (2.29)

We now observe that in generBlu; # 0, for i = 1,2. Moreover, note that any vector
y € rmg(U) \ 0 can be written ay = aju; + asu, for somea;,as € R, wherea;
and s, are not simultaneously equal to zero. Thus, we see that iargeDy = oy Duy +
asDuy # 0, which implies thaty does not belong to the nullspaceldf null(D). Therefore,
dim(null(D) N rng(U)) = 0, and, finallyrank(M) = rank(U)—dim(null(D) N rng(U)) =
rank(U) = 2. O
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Most importantly, it can be easily verified that a basis fa tight nullspace otJ (and thus
for the right nullspace oM) is given by the vectors shown in (2.19). Thus, the unobgdeva
subspace of the ideal EKF system modeldentical to the spacelG", which contains the
unobservable directions of the nonlinear SLAM system. \dedfore see that if it was possible
to evaluate the Jacobians using the true state valuesntemilied error-state model employed
in the EKF would have observability properties similar togh of the nonlinear SLAM system.

The preceding analysis was carried out for the case whergkedandmark is included in
the state vector. We now examine the more general case Whesel landmarks are included
in the state. Suppose the landmarks are observed at time-step+ ¢ (¢ > 0), then the
measurement matrikl;, , is given by?

e (1) e (1)
HRko+l HLko+[ e 0
Hy, 10 = : : : (2.30)
o (M) (M)
HRku+e 0 HL/cUH
whereﬁgiw and}vIS-fZUH (i = 1,2,..., M), are obtained by (2.12) and (2.13) using the true

values of the states, respectively. The observability imatt now becomes:

_ (1 (1 -
i) 0o
(M (M
i 0 i
u (GO (1)
HRkoH(I)Rko HLko+1 0
M = aM 0 (M) (2.31)
o Rig41 - Tko Lo+t )
(1 2 (1
H5‘%120+m Rigim-1 """ PRy, H(L;c)o+m 0
s (M 2 s (M
—H—(Rko)er Rigim-1" " PRy, 0 (Lko)+m i

2 We here assume that alf landmarks are observed at every time step in the time irltétya k, + m]. This
is done only to simplify the notation, and is not a necessasyi@ption in the analysis.
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Using the identity (2.26), substitution of the Jacobiannas in (2.31) yields:

[-I, —J(pr, —Pr,) Lo - 02 |

—Iy —J(PLy —Pr,,) O2x2 -+ I

-I, —J(pr, = Pr,,) Lo - O2x

M = Diag (ﬁ(LlZ . ,ﬁg‘gm) ~I, —J(pry, —Pr,) Oss -+ Iy (2.32)
D
I —J(pr, —Pr,,) Lo - 022
|-Io —J(Pry —Pr.,) O2x2 -+ TIn |
U

Clearly, the matriXJ now consists ofn + 1 repetitions of thel/ block rows:

-, —J(pr, —Pr,,) O2x2 -+ I <+ O2x2
—~—
ith landmark

fori =1,2,..., M. Thereforexank(M) = 2M. Furthermore, by inspection, a possible basis
for the right nullspace oM is given by:

12 Jkao
01x2 1
null(M) =span | Io  Jpr, (2.33)
col. . .
L 12 JPLM ]

By noting the similarity of this result with that of (2.19hd physical interpretation of this result
is analogous to that of the single-landmark case: the gltvhaklation and orientation of the
state vector are unobservable.
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Standard EKF-SLAM

We now study the observability properties of the standar@+3KAM, in which the Jacobians
are evaluated at the latest state estimates:@i;%,_l = Rp|h-1 andx;“‘C = Xy |k, for all k). Sim-
ilarly, we begin by examining the single-landmark case. Byiving an expression analogous
to that of (2.25), we obtain (see Section 2.4.2):

L J (kao+2U€o+1 ~ PR, Akaoﬂ)]

bp bp =
Fottt = ko 0152 1

whereApr, ., = PRy, 1,11 — PRi,.i, 1S the correction in the robot position due to the
EKF update at time-stef, + 1. Using induction, we can show that:

. . kot0—1
L J <kao+ako+Z—1 = PRy, ~ 2jlkotl APRJ')
01x2 1
(2.34)

wherel > 0. Therefore [see (2.11), (2.12), and (2.13)]

- R . kotl—1
Hr,, . ®Rry ey Pr,, = Hiy [_12 —J (kaou\kﬁH ~ PRy, T zjikoﬂ APRJ)]

(2.35)
Using this result, we can writ®1 as [see (2.22)]:
_12 —J (f)Lko\kofl - 1f)RkoUCofl) 12
Iz —J (f’Lko+uko ~ PRy, i, I
M = Diag (HLkD Hp, e ,HLkD+m> I —-J (f’Lko+2\ko+1 — PRy, Akao+1> I

D .
. . ko+m—1
I -J (kao+m\ko+m—1 PRy, ~ 25 k1 ApRj) I

U
(2.36)

Lemma 2.4.4. The rank of the observability matrid, of the standard EKF-SLAM is 3.

Proof. First, we note that the estimates of any given state variablgifferent time instants
are generally different. Hence, in contrast to the case midbal EKF-SLAM, the following
inequalities generally holdr, | ..o+ # PRy, ijiors @ADL, g iioy 7 PLigojpgse—rr FOF

i # L. Therefore, the third column d will be, in general, a vector with unequal elements,
and thusrank(U) = 3. Proceeding similarly to the proof of Lemma 2.4.3, we firstifone



26
possible basis for the range spaceldfrng(U). By inspection, we see that such a basis is
given simply by the first 3 columns df, which we denote bw; (i = 1,2,3). Moreover, it
can be verified that generallpu; # 0. Therefore dim(null(D) () rng(U)) = 0, and finally
rank(M) = rank(U) — dim(null(D) (" rng(U)) = rank(U) = 3. O

We thus see that the linearized error-state model emplayedbe standard EKF-SLAM
has different observability properties than that of thealdeKF-SLAM (see Lemma 2.4.3)
and that of the underlying nonlinear system (see Lemma .42particular, by processing
the measurements collected in the interMal k, + m|, the filter acquires information in 3
dimensions of the state space (along the directions camelpg to the observable subspace
of the EKF). However, the measurements actually providermétion in only 2 directions
of the state space (i.e., the robot-to-landmark relativetiopm). As a result, the EKF gains
“spurious information” along the unobservable directiafishe underlying nonlinear SLAM
system, which leads to inconsistency.

To probe further, we note that the basis of the right nullspafdV is given by:

I
null(M) = span |0y, | = span[ n; np } (2.37)

col.
I

Note that these two vectors correspond to a shifting okthe plane, which implies that such a
shifting is unobservable. On the other hand, the directaresponding to the global orientation
is “missing” from the unobservable subspace of the EKF systeodel [see (2.19) and (2.20)].
Therefore, we see that the filter will gain “nonexistent”drrhation about the robot’s global
orientation. This will lead to an unjustified reduction iretbrientation uncertainty, which will,
in turn, further reduce the uncertainty in all the stateafaslgs. This agrees in some respects
with [12,79], where it was argued that the orientation utaiety is the main cause of the filter’s
inconsistency in SLAM. However, we point out that it causeof the problem is that the
linearization points used for computing the Jacobianserstndard EKF-SLAM (i.e., the latest
state estimates) change the dimension of the observaldpatdy and thus fundamentally alter
the properties of the estimation process.

Similar conclusions can be drawn whéh > 1 landmarks are included in the state vector.
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In particular, in this case the observability matrix can tenid as follows:

M =Diag ((Vh{)C (dr,,;,, )s (VL) CT (Bry i 1)) X

D
1 - (b)) —p | R
’ PLygikom1 ~ PRrolko—1 2 %2
(M) .
ok -J (kamm,fl - kazo\k-yr)fl) O2x2 - Iy
~ (1 R
—Is —J (pik)o+l\k’o - kao\ko) L, - 09y
~ (M N
k2 —J (piko)mko n prm) O2xo -+ Iy
712 -J (f)(lzlkl#»ﬂkoﬁ»l - ﬁRko\ko - Akao+1) 12 e 02><2
: : (2.38)
(M .
712 —-J (p(Lko)+2\lco+1 - kao\ko - Aka()+1) 02><2 . 12
. (1) ) kot
L —J <kau+m\ko+m4 ~ PRepr, — Z]‘Jc:,’h APRJ> I, -+ 0O2x2
p(M) 5 kotm—1
_—Iz —J (kaﬁm‘kﬁmf] — PRy, — Zj:k:il ApRJ> O3s2 - I |
U
The nullspace of the observability matrix (2.38) can be shtmbe equal to:
I
O1x2
null(M) = span | Ip (2.39)
col. .
I

We thus see that the global orientation is erroneously @bbér in this case as well, which
leads to inconsistent estimates.

An interesting remark is that the covariance matrices oststem and measurement noise
do not appear in the observability analysis of the filter'stegn model. Therefore, even if these
covariance matrices are artificially inflated, the filterlwdtain the same observability proper-
ties (i.e., the same observable and unobservable sub¥pabés shows that no amount of co-
variance inflation can result in correct observability md@s. Similarly, even if the IEKF [14]
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is employed for state estimation, the same, erroneousn@iskity properties will arise, since
the landmark position estimates will generally differ dfatient time steps.

2.5 Observability-Constrained (OC)-EKF SLAM algorithms

We have seen from the preceding section that when the EKbidexsoare evaluated using the
latest state estimates, the EKF error-state model has anvalide subspace of higher dimension
than the actual nonlinear SLAM system. This will always l¢acn unjustified reduction of
the estimated covariance, and thus inconsistency. We nopope a general framework for
addressing this problem.

Our key conjecture is that, by ensuring an unobservablepsgesof appropriate dimension,
we can avoid the influx of spurious information in the erram&p observable direction of the
state space, and thus improve the consistency of the esinikd do so, we propose computing
the EKF Jacobians in such a way that guarantees the lindagizer-state system model has
an unobservable subspace of dimension three. This comdspto satisfying conditions (2.40)-
(2.41) of the following lemma:

Lemma 2.5.1. If the EKF Jacobiangp;, and H;; at every time step, are computed so as to
fulfill the following conditions:

H, N=0, for =0 (2.40)
Hk:(,-i-é(I’ko—i—Z—l ce (I’koN =0, V{>0 (2.41)

whereN is a full-rank matrix whose 3 column vectors define the ddsirmbservable subspace,
then the corresponding observability matrix is of correamkdim(x) — 3.

Proof. When (2.40)-(2.41) hold, then all the block rows of the oleability matrix [see (2.22)]
will have the same nullspace, spanned by the columis.of O

Essentially, the selection @ is a design choice, which allows us to control the unobserv-
able subspace of the resulting EKF system model. Ideallyvaudd like the column vectors
of N to be identical to those in (2.19), which define the unobd#evdirections of the actual
nonlinear systems. However, this cannot be achieved irtipeasince these directions depend
on thetrue values of the states, which are unavailable during anyweald implementation. A



29
natural selection, which is realizable in practice, is téirdethe unobservable subspace using
thefirst-availablestate estimates, i.e., for the single-landmark case tosehoo

I Jf’Rko\ku—l
N= |09 1 (2.42)
I, Jpr,,,

Note that the matrixN in (2.42) satisfies condition (2.40), sinEE,, is the first block row
of the observability matrix in (2.22). It is also importamt note that advanced initialization
techniques, such as delayed-state initialization [1Caf},lme used to improve the first estimates’
accuracy and thus yield an unobservable subspace as clogssilgle to the true one. Ondeis
selected, the next step is to appropriately compute the Jéteobians so as to ensure that (2.41)
holds. Clearly, several options exist, each of which leada different algorithm within the
general framework described here. In what follows, we pregeee different Observability-
Constrained (OC)-EKF algorithms to achieve this goal.

25.1 OC-EKF1

We start by describing the first version of our OC-EKF aldoris, the OC-EKF1, which was
originally proposed in [70]. The key idea of this approackoighoose thdirst-ever-available
state estimates as the linearization points [and hence atsis termed as First-Estimates-
Jacobian (FEJ)-EKF] so as to guarantee the appropriatevelsigy properties of the EKF
linearized system. The procedure of the OC-EKF1 SLAM is &ixigd in detail by the follow-
ing lemma:

Lemma 2.5.2. If the linearization points, at which the filter Jacobian®r, =
* * _ * * .
PRy (X )00 XRyy) @NAH = Hk(ka‘kﬂ’mefl) are evaluated, are selected as:
* 3 * 3 * 3 * _ =~
KRy = XBirae 0 XRppp = XRipp—1 0 XRppy = XRip—1 0 PLypy = PlLigk, (2.43)

then it is guaranteed that the unobservable subspace ofahating EKF linearized SLAM
error-state model is of dimension 3.

Proof. Using the linearization points (2.43), as compared to theddrd EKF, we have the
following two changes in computing the filter Jacobians:

% In the case where multipléel{ > 1) landmarks are included in the state veci§rcan be chosen analogously,
augmented by a new block rO\[\Ig J;‘)Li,ko‘ko] , corresponding to each landmaik, (: = 1,2, ..., M) [72].
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1. Instead of computing the state-propagation Jacobiarixvtz, as in (2.8), we employ
the expression:

I J <f)Rk+1‘k - f)Rk\kq)

(I’Rk —
O1x2 1

(2.44)
The difference compared to (2.8) is that the prior robotipmsiestimatep Ryt is used
in place of the posterior estimatgg, -

2. In the evaluation of the measurement Jacobian m&fijx, [see (2.11), (2.12), and
(2.13)], we always utilize the landmark estimditem the first timethe landmark was
detected and initialized. Thus, if a landmark was first sedmree-stepk,, we compute
the measurement Jacobian as:

’
Hk—l—l: HRk+1 HLk+1:|

:(th—l-l)CT(QngH‘k)[—IQ —J(PLy, e, — PRy L2 (2.45)

As a result of the above maodifications, only thist estimates of all landmark positions and
all robot poses appear in the filter Jacobians. It is easy tifyvinat the above Jacobians
satisfy (2.40) and (2.41) for the choice Nfin (2.42). Thus, the OC-EKF1 SLAM is based on
an error-state system model whose unobservable subspaifodiisension 3. O

2.5.2 OC-EKF2

We now describe the second version of our OC-EKF algoritthes OC-EKF2. We first note
that, when linearizing a generic scalar nonlinear functién) around a point:*, the lineariza-
tion error depends on the accuracy of the linearizationtpginif =* is inaccurate, the lineariza-
tion error will be large. To see this, using Taylor’s theoreme have:

f(€)

5 (- z*)? (2.46)

fl@) = f(@*) + f'(@)(@ - 2%) +

where the last quadratic terrﬁl,;(—g) (x — z*)?, defines the linearization error, agds a point
that lies between andx*. It is clear that the linearization error is approximatetpgmrtional
to the error square of the linearization poifat,— 2*)2. This result will be useful for the ensuing
derivations.
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Even though the OC-EKF1 typically performs substantiakiyjtér than the standard EKF
(see Sections 2.6 and 2.7), it relies heavily on the initialesestimates; if these estimates are
inaccurate, the linearization errors become large andttireiperformance of the estimator may
degrade. This could be the case when the first estimates tdrideark positions are of poor
quality (e.g., in bearing-only SLAM). We note that the séi@t of the linearization points
employed in the OC-EKF1 is not the only one that ensures thdtl] is satisfied. However,
all linearization points chosen in a way that only fulfills42), can result in large linearization
errors, and thus improved performance cannot always beagiged. On the other hand, we
also know that, in the standard EKF, the latest, and thus b&dt estimates are used as the
linearization points, which, in general, have the smallastirization errors. However, as shown
in Section 2.4.2, since the linearization points (i.e., ltkst state estimates) do not satisfy the
observability condition (2.41), filter inconsistency ocxuvhich degrades performance.

Therefore, we propose selecting the linearization poifith@® EKF so as to minimize the
linearization errors while satisfying the observabilignditions (2.40)-(2.41). This can be for-
mulated as a constrained minimization problem where thetcaints express the observability
requirements. Specifically, at time-stept 1, we aim at minimizing the linearization error of
the pointmj%k“c andsz'k, which appear in the filter Jacobiads, andHj 1, subject to the
observability constraint (2.41). Mathematically, thigigressed as:
min /HXR;C_XERkuzp(ka’ZO:k)dek +/ka+1—XZ+1|kH2P(Xk+1\zo:k)dxk+1 (2.47)

Xﬁk‘kvxkﬂ\k
subject to Hy11®y-- - ®,, N=0, Vk >k, (2.48)

wherez.; denotes all the measurements available during the timevait®, k]. Note that
during EKF propagation, since the landmarks are statig, tihd robot pose participates in the
linearization process [see (2.6)], while during EKF updht#h the robot pose and the landmark
positions are involved in the linearization of measurenesqtation [see (2.11)]. This justifies
the choice of above optimization variables. In general, dbastrained minimization prob-
lem (2.47)-(2.48) is intractable. However, when the twospgtxg, |zo.x) andp(xx+1|zo:x),
are Gaussian distributions (which is the assumption engplay the EKF), we can solve the
problemanalytically.

We now show how the closed-form solution can be computedhi®icase where only one
landmark is included in the state vector. We note that theviahg lemma will be helpful for
the ensuing derivations:



32
Lemma 2.5.3. The constrained optimization problef2.47)(2.48)is equivalent to:

. N 2 - 2
L omin [y =y [ (R X (2.49)
KRy ket |k
k-1
subject to pzkﬂ‘k —p}}k‘k =PrLy, 1, —pﬁk‘kid— Z Ap‘jzj (2.50)
Jj=ko
* Ak _n*
WhereApRj =Pk, ~ Pk, .-
Proof. See Appendix A.4. O

Using the technique of Lagrangian multipliers, the optis@ltion to the problem (2.49)-
(2.50) can be obtained as:

. Ak R
p}(%k\k = PRy + 7 ) Qﬁ%,ﬁ‘k = ¢Rk\k >
A . AL
X%k«fl\k = XRpt1jk Pikﬂ‘k =PLyye — > (2.51)
with
k—1
Ak = <f)Lk+1\k - f)Lko\ko> — | PRy — p}(%k\kfl + Z AP,

j:ku

Note that in the case where multiple landmarks are includgte state vector, each landmark
imposes a constraint analogous to (2.50), and thus thetansdyution of the optimal lineariza-
tion points can be obtained similarly [72]. Using the lingation points in (2.51), the filter
Jacobians in the OC-EKF2 SLAM are now computed as follows:

1. The state-propagation Jacobian matrix is calculated as:

N ~ A
12 J (ka+1\k - ka\k - Tk)

P = (2.52)
01x2 1

2. The measurement Jacobian matrix is calculated as:

1"
Hk+1: HRkJrl HLk+1]

= (Vb )CT (brg ) [“Te =3 (Broye —Brous = %) 1| (259)
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2.5.3 OC-EKF3

We now present our OC-EKF3 algorithm, an alternative to tli&EXF2. In particular, in
contrast to the OC-EKF2 whichndirectly computes both the propagation and measurement
Jacobians by first finding the optimal linearization poitiie OC-EKF3directly computes the
measurement Jacobian by projecting the most accurate neezesot Jacobian onto the observ-
able subspace, while the propagation Jacobian is calduldéatically as in the standard EKF
[see (2.8)]. As a result, the observable subspace of tharlresl EKF system model is guaran-
teed to have the correct dimensions.

Specifically, we aim to find the measurement Jacobian clasdbe ideal one that has the
best accuracy, while satisfying the observability coristré2.41), i.e.,

min |[H, — Hy1]|% (2.54)
Hyq
subject to Hyy 1@ --- @, N =0 (2.55)

where||Z||» denotes the Frobenius norm of matex andH,, is the ideal measurement Jaco-
bian evaluated at the true states. However, since in redtvapplications the true states are
generally unavailable, we instead evaluate it at the cuitvest state estimates as in the stan-
dard EKF, i.e.H, = H,(%;1%) [see (2.11)]. Therefore, the optimal closed-form solui®n
obtained by application of the following lemma:

Lemma 2.5.4. The optimal solution to the constrained minimization pesb(2.54)(2.55)is:

"

H; | = H, (Ljjnx) — V(VIV)TIVT) (2.56)
whereV £ &, --- &, N.
Proof. See Appendix A.5. O

Note thatV in the above equation is the propagated unobservable stébspdime-step
k+ 1, and (Lgimx) — V(VTV)~1VT) is the subspace orthogonal 16, i.e., the observable
subspace. Hence, as seen from (2.56), the measuremenadeaabihe OC—EKFBHZ'H, is the
projection of the best-available measurement Jacobiamtbetobservable subspace. It is also
important to observe that in the case of multiple landmasish measurement only depends on
the robot pose and the measured landmark, and hence thegmrding measurement Jacobian

has sparse structure [see (2.11)]. Based on this obsanaatibby exploiting the sparse structure
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of the Jacobian matrix, we only need to consider the nonadomatrices of the measurement
Jacobian and solve a reduced-size problem similar to (Z258%). Once the optimal solution
is attained, we can easily construct the full measuremestahian by padding it with zeros
[see (2.11)].

Remarks It is important to note that, as compared to the standard Et€lgnly change in the
three OC-EKF algorithms is the way in which the Jacobiancamputed. The state estimates
and covariance in the OC-EKFs are propagated and updatkd satne way as in the standard
EKF. Moreover, we stress that the OC-EKFs are causal andaibld “in the real world,” since
they do not utilize any knowledge of the future or true stabesummary, the main steps of the
proposed OC-EKFs for SLAM are outlined in Algorithm 1.

2.5.4 Relation to prior work

At this point, it is interesting to examine the relation of anmalysis, which addresses the general
case of a moving robot, to the previous work that has focusespecial cases [79, 85]. We first
note that the “correct” observability properties of the @RFs are attributed to the fact that
conditions (2.40)-(2.41) hold, which is not the case for stkendard EKF. Thus, (2.40)-(2.41)
can be seen as sufficient conditions that, when satisfied dyilter Jacobians, ensure that
the observability matrix has a nullspace of appropriateetisions. Note also that, due to the
identity (2.26), the conditions (2.40)-(2.41) are trilyabatisfied by the ideal EKF with null
spaceN = [nl ny 1’13i| [see (2.19)]. In what follows, we show that the conditiont(@-
(2.41) encompass the ones derived in [85] and [79] as speasals.

Stationary robot

We first examine the special case studied in [85], where thetrcemains stationary, while
observing the relative position of a single landmark. In][88e following Jacobian constraint
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Algorithm 1 Observability-Constrained (OC)-EKFs for SLAM

Require: Initial state estimates and covariance

1: loop
2. Propagati on: If proprioceptive (e.g., odometry) measurements are avis]
3: propagate the state estimates [see (2.2), (2.3) and (2.4)]
4: compute the propagation Jacobian [see (2.44) for OC-EKEB2] for OC-EKF2,
and (2.8) for OC-EKF3]
5. propagate the state covariance:
Py = 24Py ®f + G QG (2.57)
6: Updat e: If exteroceptive measurements are available,
7. compute the measurement residual:
Ti+1 = Zg+1 — B(Xpppe) (2.58)
8: compute the measurement Jacobian [see (2.45) for OC-EKF33)(for OC-EKF2,
and (2.56) for OC-EKF3]
9: compute the residual covariance and Kalman gain:
Skt1 = Hip1PrpypHiy + Riga (2.59)
K1 = P Hi S (2.60)
10:  update the state estimate and covariance:

Xt 1lk+1 = Xpr1)k + Kpp1Tr41 (2.61)

P11 = Proyipe — Kip1Sen1 Ki (2.62)

11: end loop
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for consistent estimation was derived (see Theorem 1 tierei

Vh* — VhPVg* — 0
<:>HRk+HLngx =0
I3
<:>|:HRk HLK:| Vgx = 0
S H;N, = 0 (2.63)

where, using our notatiorVh* = Hpg, and —VhP = Hj, are the measurement Jacobian
matrices with respect to the robot pose and landmark pasitespectively, and’g* is the
landmark initialization Jacobian with respect to the ropose at time-stef,. Note that the
condition (2.63) is identical to the one in (2.40) for thedpkcase of a stationary robot.
Remarkably, the space spanned by the columns of the nitrifor this special case, is the

same as the one spanned by the column¥ af (2.42). To see that, we first need to derive an
expression fok/g*. In [85], a relative-position measurement model is emploiy combining

a distance and a bearing measurement), and thus the matiah functiong(-) is given by:

PL., = &(XR,,sZk, Vk,) = C(ér, ) (Zt, — Vk,) + Pr,, (2.64)

wherezy,_ is the first measurement of the landmark’s relative postiodv;, denotes the noise
in this measurement. Evaluating the derivative of this fismcwith respect to the robot pose at
the current state estimate we have:

ve* = [L IC(n,,, )m,|
= |:I2 J (f)Lko\ko - f)Rko\kofl)] (265)
where this last equation results from taking conditiongleztations on both sides of (2.64) and

solving forzy, .
Substituting (2.65) in the expression fist, [see (2.63)], yields:

I, 0251
NS = 01><2 1
:[2 J (IA)L]CO‘/CO - IA)Rko\ko*l)

One can easily verify thafN;, and N span the same column space by noting that

N, | T2 PRk | _
O1x2 1



37
Moving robot with one-step motion

We now consider the special case studied in [79], where & mitgerves a landmark, moves
once and then re-observes the landmark. In [79], the keybiEtoelationship that needs to be
satisfied in order for consistent estimation in this case {deorem 4.2 therein) is given by:

Ac = BV i (2.66)
Using our notation, the above matrices are written as:

Vfd?Xr = (I)Rko

_ -1

A, = —Hp Hp,
_ —1

B, = -H;' Hp,

Substituting in (2.66) and rearranging terms yields:

-1 -1
H;! Hp,  ®p —H] Hg =0
Pr, 03x2 I3
= [HRko+1 HLko+1] o —1 =0
3Tx2 I _HLkO Hg,,

=4 Hk:(,-i-l(I’koNl =0

which is the same as the condition in (2.41) for the specis¢ @d/ = 1 (i.e., the robot moves
only once). Additionally, it is easy to verify thd;, N; = 0, which corresponds to con-
dition (2.40). Moreover, it is fairly straightforward to @lv that for the case of distance and
bearing measurements considered in [79], the ma&frixspans the same column spaceMNas
in (2.42). This analysis demonstrates that the Jacobiasti@ints (2.40)-(2.41) derived based
on the observability criterion are general, and encomgessdndition of [79] as a special case.

2.6 Simulation results

A series of Monte-Carlo simulations were conducted undeoua conditions, in order to val-

idate the preceding theoretical analysis and demonstnatedpability of the proposed OC-
EKFs to improve consistency. The metrics used to evaluaés fierformance are: (i) the root
mean square error (RMSE), and (ii) the average normalizedejsestimation error squared
(NEES) [14]. Specifically, for the landmarks we compute therage RMSE and average NEES
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by averaging the estimation errors and the NEES, respéctveer all Monte-Carlo runs, all
landmarks, and all time steps. On the other hand, for eadbt pse we compute these error
metrics by averaging over all Monte-Carlo runs for each tstep. The RMSE provides us
with a concise metric of the accuracy of a given estimator.tt@nother hand, the NEES is a
standard criterion for evaluating filter consistency. $feadly, it is known that the NEES of an
N-dimensional Gaussian random variable followg?adistribution with N d.o.f. Therefore, if
a certain filter is consistent, we expect that the averageNBEthe robot pose will be close to
3 for all time steps, and that the average landmark NEES wiltlbse to 2. The larger the de-
viations of the NEES from these values are, the worse thengistency of the estimator is. By
studying both the RMSE and NEES of all the filters consideerg hwe obtain a comprehensive
picture of the estimators’ performance.

In all the simulation tests, a robot with a simple differahtirive model moves on a planar
surface, at a constant linear velocity of= 0.25 m/sec. The two drive wheels are equipped
with encoders that measure revolutions and provide measunts of velocity (i.e., right and
left wheel velocitiesy,. andv;, respectively) with standard deviation equabte- 2%wv for each
wheel. These measurements are used to obtain linear atidmatavelocity measurements for
the robot, which are given by = ”T*”l andw = % wherea = 0.5 m is the distance
between the drive wheels. Thus, the standard deviationgeofiiear and rotational velocity
measurements arg, = @a ando,, = ?a, respectively.

In this SLAM simulation, a robot moves on a circular trajegtand sequentially observes
20 landmarks in total. The robot records distance and bgan@asurements to the landmarks
that lie within its sensing range of 5 m. The standard demiatf the distance measurement
noise is equal to 10% of the true distance, while the standiewdhtion of the bearing measure-
ment noise is set t@0 deg. Note that the sensor-noise levels selected for thislation are
larger than what is typically encountered in practice. Vs done purposefully, since higher
noise levels lead to larger estimation errors, which makeeffects of inconsistency more ap-
parent. We performed 50 Monte-Carlo simulations and coetpaix filters: (1) the ideal EKF,
(2) the standard EKF, (3) the OC-EKF1, (4) the OC-EKF2, (8)@C-EKF3, and (6) the robo-
centric mapping filter [27], which aims at improving the cistasncy of SLAM by expressing
the landmarks in a robot-relative frame. During each rukfiledrs process the same data, to
ensure a fair comparison.

Fig. 2.1 shows the results for the robot orientation esiimnaerrors, obtained from one
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Figure 2.1: Orientation estimation errors vsr Bounds obtained from one typical realization
of the SLAM Monte-Carlo simulations. The values are computed as the square-root of the
corresponding diagonal element of the estimated coveriamatrix. Note that the estimation
errors and the @bounds of the ideal EKF, the OC-EKFs, and the robocentricpimgfilter are
almost identical, which makes the corresponding linesatliffito distinguish.

typical simulation of the 50 Monte-Carlo runs. As evidehg errors of the standard EKF grow
significantly faster than those of all other filters, whicklicates that the standard EKF tends
to diverge. Note also that although the orientation errdith® ideal EKF, OC-EKFs, as well
as the robocentric mapping filter remain well within theirresponding 3 bounds (computed
from the square-root of the corresponding diagonal elewfdhe estimated covariance matrix),
those of the standard EKF exceed them. Most importantly3éhieounds of the standard EKF
continuouslydecreaseover time, as if the robot’s orientation was observable. Eelmv, the
robot has no access to any absolute orientation informagiot thus its orientation covariance
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Figure 2.2: Monte-Carlo simulation results for a SLAM sagmavith multiple loop closures.
In these plots, the dotted lines correspond to the ideal Eid-solid lines with circles to the
standard EKF, the dash-dotted lines to the OC-EKF1, theatdbbhes to the OC-EKF2, the
solid lines to the OC-EKF3, and the solid lines with crossethe robocentric mapping filter.
Note that the RMSE of the ideal EKF, and the OC-EKFs are alidesitical, which makes the
corresponding lines difficult to distinguish.

should not continuously decrease. The results of Fig. 2.1 furthemgtieen our claim that
the incorrect observability properties of the standard EE&se an unjustified reduction in the
orientation uncertainty.

The comparative Monte-Carlo results for all filters are présd in Fig. 2.2. Specifically,
Fig. 2.2(a) and Fig. 2.2(b) show the average NEES and RMS#éorobot pose, respectively,
versus time. On the other hand, Table 2.1 presents the aveahges of all relevant performance
metrics for both the landmarks and the robot. As evidentptréormance of the OC-EKFs is
very closeo that of the ideal EKF, and substantially better than thét@standard EKF, both in
terms of RMSE and NEES. This occurs even though the Jacobsmukin the OC-EKFs are less
accurate than those used in the standard EKF, as explairibd preceding section. This fact
indicates that the errors introduced by the use of inaceuratobians have a less detrimental
effect on consistency and accuracy than the use of an dat@r-system model with incorrect
observability properties. Moreover, it is important toethat the performance of the OC-EKF
2 and 3 is superior to that of the OC-EKF1, by a small marginis Thattributed to the fact
that the OC-EKF1 has larger linearization errors than theEKE 2 and 3, since the OC-EKF
2 and 3 are optimal by construction, in terms of linearizagorors and hence filter Jacobians,
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Table 2.1: SLAM simulation results for robot and landmartireation performance

ldeal-EKF Std-EKF OC-EKF1 OC-EKF2 OC-EKF3 Robocentric
Robot Position RMSE (m)

0.6556 1.1416 0.6440 0.6853 0.6465 1.0315
Robot Heading RMSE (rad)
0.0627 0.0964 0.0639 0.0657 0.0636 0.0895
Robot Pose NEES
3.1926 14.9305 3.8802 3.6282 3.6386 9.5894
Landmark Position RMSE (m)
0.6558 1.1895 0.7041 0.6791 0.6563 1.0532
Landmark Position NEES
2.2420 18.8000 5.6793 3.0222 2.8011 10.6310

under the observability constraints. We also observe tiatQC-EKFs perform better than
the robocentric mapping filter [26, 27], both in terms of aacy and consistency, which is
explained in detail in the next.

2.6.1 Comparison to the robocentric mapping filter

From the plots of Fig. 2.2, we clearly see that the OC-EKFs p&rform better than the robo-
centric mapping filter [26, 27], both in terms of accuracy aondsistency. This result cannot
be justified based on the observability properties of ther§ltin [26, 27], the landmarks are
represented in the robot frame, which can be shown to resaltsystem model with 3 unob-
servable degrees of freedom (see Appendix A.6). Howevehdmobocentric mapping filter,
during each propagation stap) landmark position estimates need to be changed, since they a
expressed with respect to the moving robot frame. As a reduting each propagation step
(termedcompositionin [26, 27]), all landmark estimates and their covariance affected by
the linearization errors of the process model. This prokdiems not exist in the world-centric
formulation of SLAM, and it could offer an explanation fortlobserved behavior.

To test this argument, we first examine the Kullback-Leibligergence (KLD), between the
pdf estimated by each filter, and the pdf estimated by itsdlideounterpart. Specifically, we
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compute the KLD (i) between the pdf computed by the OC-EKFRnd that of the ideal EKF,
and (ii) between the pdf computed by the robocentric mapfiltay and that produced by an
“ideal” robocentric mapping filter, which employs the truates in computing all the Jacobian
matrices. The KLD is a standard measure for the different@d®n probability distributions.
It is nonnegative, and equals zero only if the two distribogi are identical [32]. By computing
the KLD between the estimated pdf and that of the “ideal” filteeach case, we can evaluate
how close each filter is to its respective “golden standaftiese results pertain to the same
simulation setup presented in the previous section.

Since the four filters considered here (i.e., the OC-EKF,itlel EKF, the robocentric
mapping filter, and the ideal robocentric mapping filter) eap@ Gaussian approximation of
the pdf, we can compute the KLD in closed form. Specificalig KLD from an approximation
distribution, p, (x) = N (ta, P,), to the ideal distributionp, (x) = N (o, P,), is given by:

dxi =1 (m (jﬁg;) (PSP + (o — ha) TP Mo — ) — dim<x>) (2.67)

Fig. 2.3 presents the KLD over time, between the Gaussiarildisons computed by the robo-
centric mapping filter, the OC-EKF, and those computed by tiespective ideal filters (note
that the vertical axis scale is logarithmic). It is eviddmttthe KLD in the case of the robocen-
tric mapping filter is orders of magnitude larger than in tasecof the OC-EKF. This indicates
that the linearization errors in the robocentric mappingifitesult in a worse approximation of
the ideal pdf.

We attribute this fact to the structure of the filter Jacobiaduring the update step, the
structure of the Jacobians in both the robocentric and thédveentric formulations is quite
similar [72]. In both cases, the terms appearing in the nreasent Jacobians are either rotation
matrices, or the robot-to-landmark position vector. Hogrethe Jacobians employed during the
composition step in the robocentric mapping filter are sri&lly more complex than those
appearing in the world-centric EKF propagation [see (2.@pecifically, in the robocentric
mapping filter, the state vector is given by (assuming a sifegidmark for simplicity):

T
R’“Xk:[R’“ng Rigg, Fepl (2.68)

4 Due to the similar performance of the three OC-EKFs (seeFE®jand Table 2.1), we here only compare the
OC-EKF2 to the robcentric mapping filter.
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Figure 2.3: Comparison results of the KLD in the SLAM scenavith multiple loop closures.
In this plot, the solid line with crosses corresponds to ti@-EXF, and the solid line with
squares to the robocentric mapping filter [27]. Note thawintical axis scale is logarithmic.

The composition step is described by the following equation

Ry A T(Rp_1 1 Rr_14 Ri_14

kka\kfl =C ( * 1¢Rk\kfl)( * 1ka71\k—l - 1ka\k71) (2-69)
Rk(ZgGk\k—l = RkingGk—l\k—l — T quk\k—l (2.70)
RkIA)Lk\k—l = CT(Rk71(ZSRk\k—l)(Rkilf)Lk—l\k—l - Rkilf)Rk\kq) (2.71)

whereRff)mel is the estimated landmark position with respect to the rdkzohe at time-
stepl (¢ = k — 1,k), {R’“’lf)Rk‘kmR’HQBRWH} is the estimate of the robot-pose change
between time-steps — 1 andk, expressed with respect to the robot frame at time-gtepl,
and {le)gmfl,mq@gmfl} is the estimated transformation between the robot frametizad
global frame at time-stefs The linearized error propagation equation is given by:

R ~
kka\kﬂ
~ B Ry
Rkﬁka‘k,l =Jr, " 1ka—1\k—1 +Ja,

R ~
kak\kﬂ

R I Beg
¥ 1ka\k—1

R~
o Ryjre—1

] (2.72)
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where

0
I, = 2 (2.73)

_CT(Rk71 QBRk\k—l)

CT(Rkilquk‘k71) 02><1

Ja, = 012 1 (2.74)
i 0252 02x1
_CT(Rkilquk\kfl) _JRkIA)Gk\kfl

Ip, = 01us 1 (2.75)

_CT(Rk71¢Rk\kfl) _Jka)Lk\kfl

We note that the state estimates appear in the Jacobiarcesakyi, andJ¢, only through
the rotation matrim(kaléRk‘kil). As a result, the difference between the ideal and actual
JacobiansJ, — J, andJg, — Jg, will only contain terms of the forna(«-1¢p, ) —
c(Br-1¢p,), ands(kalqAﬁRMkil) — s(fs-19p, ). The magnitude of these terms is in the same
order as'-1¢g, , which is typically a very small quantity. Thus, the disaapy between the
actual and ideal Jacobians is expected to be very smallfoandJ¢, .

On the other hand, id g, the estimates for the landmark position and for the origithef
global frame with respect to the robot appear as well. Asaltidbe differencel r, — J r,, Wil
also contain the term8:p¢, , _, and®py, ,  , whose magnitude can be significantly larger,
e.g., in the order of meters (see Fig. 2.2). Thus, the Jagcdhia can be very inaccurate. In
contrast, the propagation Jacobians in the world-centrimfilation contain terms depending
on (i) the robot’s displacement between consecutive tirepsstand (ii) the rotation matrix of
the robot's orientation [see (2.8) and (2.9)]. Since botthete quantities can be estimated with
small errors, the world-centric EKF Jacobians are sigmfigamore accurate than those of the
robocentric formulation.

To further test this argument, we ran a simulation of a “n8hiAM” scenario, where both
the robot trajectory and the landmarks are confined withimallsarea of 1 nx1 m (while
all other settings are identical to the preceding simufgtidn this setup, the estimation errors
®pg,,_, andfrpy, , | remain small, and thus the Jacobians of the robocentric imgpp
filter become more accurate. The plots of Fig. 2.4 show theageeNEES and RMSE for the
robot pose in this scenario. Interestingly, we observe ithttis case the performance of the
OC-EKF, and the robocentric mapping filter alenost identical This validates the preceding
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Figure 2.4: Monte-Carlo results for a “mini-SLAM” scenarigth multiple loop closures where
the robot trajectory and all landmarks are confined withireg/\small area of 1 nx 1 m. In
these plots, the solid lines correspond to the ideal EKFsdltid lines with circles to the standard
EKF, the dashed lines to the OC-EKF, and the dash-dottes fingne robocentric mapping filter
of [27]. Note that in this case both the NEES and the RMSE ofideal EKF, the OC-EKF,
and the robocentric mapping filter are almost identical,clvhinakes the corresponding lines
difficult to distinguish.

discussion, and indicates that the representation usée imbocentric mapping filter results in
performance loss in the case of large environments. Thisjosdiy the fact that the OC-EKF
outperforms the robocentric mapping algorithm [27], edesugh both filters employ a system
model with three unobservable d.o.f.

As a final remark, we note that, in comparison to the OC-EKé-cthmputational cost of the
robocentric mapping filter is significantly higher. Spedifig, the OC-EKF has computational
cost identical to the standard world-centric SLAM algamitHinear in the number of landmarks
during propagation, anquadraticduring updates. On the other hand, both the update and the
composition steps in the robocentric mapping filter have matational costjuadraticin the
number of features, which results in approximately doubterall computational burden.

2.7 Experimental results

We also performed a real-world experiment to further testpgtoposed OC-EKF algorithms.
This experiment was conducted in an indoor office envirortmdihe robot was commanded
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: — Estimated Trajectory
| O Corner Features =

Figure 2.5: The batch maximum-a-posteriori (MAP) estimafiehe robot trajectory in the
indoor SLAM experiment (solid line), overlaid on the bluigprof the building. The boxedXY)
denote the corners whose exact location is known from tHdibgis blueprint. The batch-MAP
estimates of the robot poses and the known corners were ssgaband truth for computing
the NEES and RMSE values.

to perform 11 loops around a square with sides approximaebal to 20 m (see Fig. 4.3).
This special trajectory was selected since repeated reradigon of the same landmarks tends
to make the effects of inconsistency more apparent, antitées discerning the performance
of the various filters. A Pioneer robot equipped with a SICK &R00 laser range-finder and
wheel encoders was used in this experiment. From the lasge rdata, corner features were
extracted and used as landmarks, while the wheel encodev&led the linear and rotational
velocity measurements. Propagation was carried out ubaddihematic model described in
Appendix A.1.

Because the ground truth of the robot pose could not be @atailsing external sensors
(e.g., overhead cameras), in this experiment, we obtaimeteeence trajectory by utilizing the
known map of the area where the experiment took place. Sgalbjfithe exact location of
20 corners was known from the blueprints of the building. Meaments to these corners, as
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Table 2.2: SLAM experimental results for robot and landmestimation performance

Std-EKF OC-EKF1 OC-EKF2 OC-EKF3 Robocentric
Robot Position RMSE (m)

0.8209 0.5748 0.5754 0.5214 0.7160
Robot Heading RMSE (rad)

0.0604 0.0397 0.0397 0.0356 0.0391

Robot Pose NEES
11.0706 3.5681 3.5282 4.6127 7.2949
Landmark Position RMSE (m)

1.1041 0.8675 0.8680 0.8474 1.0957
Landmark Position NEES

8.5033 5.9821 5.9836 6.8402 9.6691
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Figure 2.6: SLAM experimental results. In these plots, th&ldines correspond to the standard
EKF, the dash-dotted lines to the OC-EKF1, the dashed Im#®tOC-EKF2, the solid lines to

the OC-EKF3, and the solid lines with crosses to the roboiwemiapping filter. Note that some

portions of the NEES and the estimation errors of the OC-E#Esvery close, which makes
the corresponding lines difficult to distinguish.
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well as all other measurements obtained by the robot (iimedui corners whose location was
not knowna priori), were processed using a batch-MAP estimator [91], to ot#aiaccurate
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estimate of the entire trajectory. This estimate, as wethadocations of the known corners,
are shown in Fig. 4.3. This constitutes the ground truthreggaivhich the performance of the
following filters was compared: (1) the standard EKF, (2)@®@-EKF1, (3) the OC-EKF2, (4)
the OC-EKF3, and (4) the robocentric mapping filter [27]. &kg due to the way the ground
truth is computed, the filter errors are expected to have swmnelation to the errors in the
ground truth. However, since these correlations are theedamall four filters, we can still
have a fair comparison of their relative performance.

The results of NEES and estimation errors (RMSE) for allrfiltere presented in Fig. 2.6
and Table 2.2. We point out that during the experiment thetrdbtected a number of features
that were not included in the set of 20 known corners (e.gvahle objects such as furniture).
Since no ground truth was available for the position of tlagects, we only used the 20 known
corners for computing the landmarks’ error statistics.nfrtbe experimental results it becomes
clear that in this particular experiment the OC-EKFs outpen the standard EKF and the
robocentric mapping filter, and perform almost identicaiyeach other. This agrees with the
simulation results presented in the preceding section.

2.8 Summary

In this chapter, we have presented an observability-basety ®f the inconsistency problem
in EKF-based SLAM. By comparing the observability propestof the nonlinear SLAM sys-
tem with those of the linearized error-state model emplayethe EKF, we proved that the
observable subspace of the standard EKF is always of highmndion than that of the un-
derlying nonlinear system. As a result, the covariancenedgds of the EKF undergo reduction
in directions of the state space where no information islavls, which is a primary cause of
inconsistency. Based on this analysis, we have proposedvanahodology for the design
of EKF-based estimators for SLAM. Our approach dictatesmaing the EKF Jacobians, ei-
ther indirectly or directly, so as to ensure that the resgltinearized system model has three
unobservable directions.

We have introduced three OC-EKF algorithms, which adhetbé@bove design method-
ology. Specifically, the OC-EKF1 computes the Jacobiansguisie first-available estimate for
each state variable, while in the OC-EKF2 the linearizagiomts used for computing the Jaco-
bians are obtained in closed form by solving an observghifinstrained minimization problem
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(i.e., minimizing the expected linearization errors sabje the observability constraints). Al-
ternatively, the OC-EKF3 directly computes the measurdriacobian by projecting the most
accurate measurement Jacobian onto the observable sapsgale the propagation Jacobian
is calculated in the same way as in the standard EKF. As atréisellinearized system mod-
els employed in these filters have the desirable obseriyapiloperties. Extensive simulation
and experimental tests verify that the OC-EKFs performiSiggmtly better, in terms of both
accuracy and consistency, than the standard EKF and theeoti mapping filter [27]. This
occurs despite the fact that the Jacobians used in the OG-Bi€Hess accurate. These results
indicate that ensuring the correct observability propertf the linearized system model is a

crucial requirement.



Chapter 3

Observability-Constrained EKFs for
CL

In this chapter, we extend the observability-based metloggdor SLAM presented in the pre-
vious chapter to the case of CL. In particular, we analyijicsthow that the error-state system
model employed in the standard EKF-based CL always has amalide subspace of higher di-
mension than that of the actual nonlinear CL system. Thidtses unjustified reduction of the
EKF’s estimated covariance in directions of the state spdwre no information is available,
and thus leads to inconsistency. To address this problemgdapt the previously presented
observability-constrained methodology for designingsistent estimators to compute the fil-
ter Jacobians and ensure that the linearized CL system rhadebbservable subspace of the
correct dimensions. Parts of this chapter have been peblish[74, 75].

3.1 Introduction

In order for multi-robot teams to navigate autonomously amccessfully perform tasks such
as exploration [80], surveillance [154], and search andu$83], they must be able to deter-
mine their positions and orientations (poses) precisal{sPS-denied areas and in the absence
of robust landmarks, a team of robots can still localize bgrisly relative robot-to-robot mea-
surements and jointly estimating their poses [101, 133, 186rrent approaches to solving the
cooperative localization (CL) problem, in either centzadi or distributed fashion, are based on
the EKF [136], MLE [64], MAP estimator [124], or PF [48]. Amgrihese algorithms, the EKF

50
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arguably remains a popular choice primarily due to its negft low computational cost and its
ease of implementation.

While recent research efforts have primarily focused omicedy the computational com-
plexity of EKF-based CL [90,108,117,127], the fundameigsilie ofconsistencyas received
little attention. As we know, a state estimator is consistethe estimation errors are zero-
mean, and have covariance smaller than or equal to the ooelateld by the estimator [14].
Consistency is one of the primary criteria for evaluating performance of any estimator; if an
estimator is inconsistent, then the accuracy of the pratdigtate estimates is unknown, which
renders the estimator unreliable. Clearly the lack of ustdading consistency in CL is a sig-
nificant limitation, and hence in this chapter, we study iptethe consistency of EKF-CL.
Specifically, based on the system observability analyséjdentify a major cause of the in-
consistency of standard EKF-CL and introduce new OC-EKF [gbrithms that significantly
improve consistency as well as accuracy. In particularntagr contributions of this work are
the following:

e We investigate the observability properties of the ertatessystem model employed by
the EKF, and show that its observable subspacehigtser dimensiorthan that of the
underlying nonlinear CL system. As a result, the estimate@udance of the EKF under-
goes reduction in directions of the state space where nonation is available, hence
leading toinconsistency To the best of our knowledge, we are the first to identify and
report this inconsistency of standard EKF-CL.

e Based on the observability analysis, we introduce three@E@AEKFs. These estimators
judiciously compute the EKF Jacobians to ensure that theatimed CL system has an
observable subspace of tsame dimensionas that of the nonlinear CL system, thus
improving consistency. Specifically, in the OC-EKF1, thatetpropagation Jacobians
are evaluated at tharior state estimates (i.ebeforeinstead of after each update), while
the measurement Jacobians are computed in the same waythe &iandard EKF. In
the OC-EKF2, the linearization points are selected so asmigtto guarantee the desired
observability properties, but also to minimize the expedieearization errors (i.e., the
difference between the linearization point and the trugektaThis is formulated as a
constrained minimization problem, whose solution prosittee linearization points used
for computing the filter Jacobians. In the OC-EKF3, the memsent Jacobians are
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directly computed by projecting the best-available meament Jacobians (calculated
using the latest, and thus best, state estimates as in ttaastitEKF) onto the observable
directions, while the state-propagation Jacobians argoated in the same way as for the
standard EKF.

e Through extensive Monte-Carlo simulations and real-westgeriments with botlno-
mogeneousnd heterogeneousobot teams, we verify that the OC-EKFs substantially
outperform the standard EKF in terms of consistency andracgueven though they use
less accurate state estimates to compute the filter Jasofsiace the OC-EKF Jacobians
are, in general, different from those computed using thestatand thus best, state esti-
mates). This result in turn indicates that the observghilibperties of the system model
employed by the filer play a key role in determining the fikarbnsistency.

3.2 Related work

To date, theoretical studies on the properties of CL haveded on issues such as initial-
ization [160-162, 173], system observability [109, 1613]17accuracy bounds [117, 137],
and the complexity of deterministic (static) robot netwdokalization [37]. However, to
the best of our knowledge, prior to our work [74, 75], no workskanalytically examined
the consistency of CL. In contrast, recent research hasséacon the consistency of EKF-
SLAM[12,27,66,70,72,78,79,85] showing that the compwtiade estimates tend to be incon-
sistent (also see Section 2.2).

In the previous chapter, we conducted a theoretical asabfsihe EKF-SLAM inconsis-
tency, and identified as a fundamental cause the mismatatebatthe dimensions of the ob-
servable subspaces of the linearized system employed isktReand the underlying nonlinear
system. Furthermore, we introduced the OC-EKFs which igmitly outperform the standard
EKF and the robocentric mapping algorithm [27], in terms oftbaccuracy and consistency.
The proposed estimators were derived by imposing the @nsrinferred from the system ob-
servability analysis. In this work, we extend this obseititghbased methodology for designing
consistent estimators for nonlinear systems to addresacdhasistency of EKF-CL.

We note that the work of [9] addresses a related but diffgpesitlem, namely the consis-
tency of a distributed CL algorithm due to reuse of inforratiln the decentralized estimation
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scheme of [9], the cross-correlations between the stateasts of different robots are not es-
timated. However, it is well-known that if cross-corretaits between robots are not properly
taken into account during filter updates, inconsistency arése [48, 65, 136]. The algorithm
in [9] avoids inconsistency by maintaining a careful recofg@ast robot-to-robot measurement
updates. In contrast to the above fully decentralized sa&ria our work the cross-correlation
terms are maintained in the filter, and the EKF employed fomedion is optimal, except for
the inaccuracies introduced by linearization. Our workufiEs on identifying and addressing
the cause of inconsistency of the EKF-CL estimator.

3.3 Standard EKF-CL formulation

In this section, we present the equations of the 2D EKF-Cinfdation with generalsystem

and measurement modéls. In the standard formulation of CL, the state vector compribe

N robots’ poses expressed in the global frame of references, &t time-steg the state vector
is given by:

T

xi =[x .. <k GED

L

wherex;, £ [p] ¢i,]" £ [xi, i, ¢:,]" denotes théth robot pose (position and orientation).
In general, EKF-CL recursively evolves in two steps: praiimn and update, based on the
discrete-time process and measurement models, respgctive

3.3.1 EKEF propagation

During propagation, each robot integrates its odometrysur@aments to obtain an estimate of
its pose change between two consecutive time steps, whitteisemployed in the EKF to
propagate the robot state estimate. The EKF propagatioatieqa are given by:

A~ ~ n k N

Pi e = Pige + C(¢ik\k) Pij 1 (3.2)

qgikJrl\k = Qgik\k + kéikﬂ (3.3)
foralli = 1,...,N. In the above expression€}(-) denotes th& x 2 rotation matrix, and

FRipr = [’ff);ﬂﬂ F¢;,.,]7 is the odometry-based estimate of tife robot's motion between

1 For the purpose of the consistency study and in order to giythe derivations, in this work we focus on the
centralized EKF-CL. Note that a distributed implementa{ib36] does not alter the system properties.
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time-stepst andk + 1, expressed with respect to the robot frame of referencenat itnstant
k. This estimate is corrupted by zero-mean white Gaussiasemaj, = *x;,,, — *%;,,,, with
covariance matrixQ. Clearly the process model is nonlinear, and can be deskchigehe
following generic nonlinear function:

Xip g = f(xikykf(ik+1 + Wzk) (34)

Linearization of (3.4) yields the error-state propagatopuation:

Kikt1|k

where®;, andG;, are the system state and noise Jacobians, respectivedy, iy

(I)ik _ :[2 JC((ZSZMI@) kf)ik+l _ 12 J (IA)ikJrl‘k - f)lk\k) (36)
_01><2 1 01><2 1
[C(di,,.) 0O
Gy, = (Gicy) 021 (3.7)
| O1x2 1
By stacking all/V robots’ error states to create the error state vector foettige system, we
have:
q’lk 0 ilk\k le 0 Wlk
Xyl e = | 0 s
0 e By, iNm 0 o Gp, W,
2 &%y + Grwy, (3.8)

Note that the form of the propagation equations presentedeais general, and holds for
any robot kinematic model (e.g., unicycle, bicycle, or Atkan model). The specialization to
the common case of a unicycle model can be found in AppendboBA.1.

3.3.2 EKF update

The measurements used for updates in CL are always a furndtibe relative pose (i.e., relative
position and orientation) of the observed rokatith respect to the observing robigtand are

given by:

z,(jj) = h(x;,,x;,) + V](jj) =h (ixjk) + V](jj) (3.9)
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where

e, = rpjk C"(¢i,)(pj, — Pik)] (3.10)

* i¢jk (bjk - (blk

is the relative pose of the observed robatith respect to the observing roboat time-stepk,

andv,(jj ) is zero-mean Gaussian noise with covariaﬁé@). In this work, we allowh to beany
measurement function. For instanfzéi,j) can be a direct measurement of relative pose, a pair
of distance and bearing measurements, bearing-only mezasuats from monocular cameras,
etc. In general, the measurement function is nonlinearhande it is linearized for use in the
EKF. The linearized measurement-error equation is given by

Zl(jj)g[(] o HY g Oik‘k_1+vl(€ij)

1k Ik

(1>

H %1 + v\ (3.11)

whereHgfj ) andHEfj ) are the Jacobians afwith respect to théth and;jth robot poses, respec-
tively, evaluated at the state estim&t,gk_l. Using the chain rule of differentiation, these are
computed as:

y y . I J(o. -y
H(" = — (Vh{")A (s, ,) [o ’ (p””“l p‘“’“)] (3.12)
1x2
H,” = (Vb)) A(6y,,, ) (3.13)

CT(élk‘kfl) 02><1
01x2 1
to the relative pose between tik andjth robots (i.e., with respect to the vectar;, ), evaluated

whereA($;,,_,) &

] , anth,(fj ) denotes the Jacobian hfwith respect

at the state estimatg, ;. Appendix B.4 illustrates the specific form of the above egpions
in the case of distance and bearing measurements.

3.4 CL observability analysis

In this section, we perform an observability analysis fa EKF-CL system derived in the
previous section, and compare its observability propewtigh those of the underlying nonlinear
system. Based on this analysis, we draw conclusions abeutitisistency of the filter.

By applying theobservability rank conditiorfor nonlinear systems [60], Martinelli and
Siegwart [109] have shown that the nonlinear system of Cleinegal has three unobservable
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d.o.f., corresponding to the global position and orientatiHowever, as we show in this section,
the unobservable subspace of the linearized error-statielnobthe standard EKF is generally
only of dimension two, which leads to inconsisteRcy.
Recall that, in analogy to (2.21), the Jacobian matriegsG,,, andH,, used in the EKF-CL
linearized error-state model [see (3.8) and (3.11)], iregalnare defined as:

B = Vy, f . G =V, f , Hy=Vy,h (3.14)

{XZ\k’XZH\k’O {XZWO} {XZ\kﬂ}

In these expressions;z'k_1 and lek denote thdinearization pointsfor the statex;, used
for evaluating the Jacobians before and after the EKF upatatine-stepk, respectively. A
linearization point equal to the zero vector is chosen fer tibise. The EKF employs the
linearized system model defined by (3.8), (3.11), and (3fddpropagating and updating the
state and covariance estimates, and thus the observahitiperties of this model affect the
performance of the estimator.

Since the linearized error-state model of EKF-CL is timeyiray, similarly to the case of
EKF-SLAM, we employ thdocal observability matri{30, 112] to perform the observability
analysis. Specifically, the local observability matrix fbe time interval between time-steps
andk, + m is defined by [see (2.22)]:

H;,
Hy,+1Pk,
M 2 " (3.15)
| Hiotm Photm—1- - Pr, |
= M(qulku_17 Xzo‘ko, N ’qu+m|ko+"n_1) (316)

The last expression (3.16), makes explicit the fact thabtiservability matrix is a function of
the linearization points used in computing all the Jacabiaithin the time intervalk,, k, +m).

In turn, this implies thathe choice of linearization points affects the observabjiropertiesof
the linearized error-state system of the EKF. This key fathé basis of our analysis. In what

2 For simplicity, in our analysis we assume that the relatieasurements guarantee observability of the relative
poses between all robots. For instance, we exclude spesiesavhere the robots’ trajectories give rise to additional
unobservable modes (e.g., robots moving exactly in paallie a straight line [173]). Another case not considered
here is that of the robots measuring relative orientatign:«¢;), only. In this case the nonlinear system Rag+ 1
unobservable d.o.f. [109]. Moreover, since the relativiergation measurement modellisear in the system state,
the problems caused by linearization, described in Se@ti#2, do not appear in this case.
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follows, we discuss different possible choices for lingation, and the observability properties
of the corresponding linearized systems.

3.4.1 Ideal EKF-CL

Before considering the rank of the mati, which is constructed using thestimatedvalues
of the state in the filter Jacobians, it is interesting to wtilee observability properties of the
“oracle”, or “ideal” EKF (i.e., the filter whose Jacobian® avaluated using theue values of
the state variables, so thel, ; = x}, = xy, for all k).

To make the notation more compact, we define

opij(k,0) = pi, — Py, (3.17)

which is the difference between two robots’ positions atetistepst and /. Using the above
definition, we note that [see (3.6)]

y v I, Jopii(ko +2, k)
Piy, 1 Piy, = (3.18)
01x2 1
Based on this identity, it is easy to show by induction that
y y y I, Jopii(ko + 4, ko)
irotrt1 Pingre—a Py, = (3.19)
01x2 1

which holds for all¢ > 0.

In the ensuing derivations, it is assumed that every robotimoously observes all other
robots in the team during the time intenval,, &, + m], i.e., the relative-measurement graph
(RMG) is complete. Note that this assumption is made onlyrtpbfy the notation, and is not
necessary in the analysis. We hereafter first study the chseevtwo robots comprise the team,
and then extend the analysis to the general case in whichrél@ gonsists ofV > 2 robots.

Two-robot case

(21)
ko+e?

at time-stepk, + ¢. Thus, the measurement JacobﬁmoM in this case can be written as

Based on the assumption of a complete RMG, two measurenéﬁﬁ@andz are available
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(3.20)
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1

whereDiag(-) denotes a block diagonal matrix. On the other hand, theviilig identity is

immediate [see (3.8) and (3.19)]:

DPr 1 1Propi—2 Py, =

Diag <¢1k0+lfl T (I)lko ) ¢2ko+l—1 T

I,  Jopui(kot+t, ko) O2x2
01x2 1 O1x2
02x2 0251 I

| O1x2 0 01x2

From (3.20) and (3.21) we obtain
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Thus, the observability matrifyI, can be written as [see (3.15)]:

M =-Diag ((Vh{.")A(d1,,), -+, (VREY,)A(2,, ) (3.23)
D

L Jopai(ko ko)  —1Io 01 |
01x2 1 Oix2 -1
I 02x1 I Jopi2(ko, ko)
O1x2 =1 O1x2 1
I, Jopai(ko+1,ky) —Ip  —Jdpaa(ko+1,k,)
O1x2 1 Opx2 -1
—I  —Jopu(kot1,k,) Lo Jopra(kot1,ko)
O1x2 =1 O1x2 1
I,  Jopai(kot+m, ko) —Io —Jdpaa(kot+m, ko)
01x2 I O1x2 -1
—I, —Jopi1(ko+m, ko) I,  Jopia(kot+m, ko)

| O1x2 —1 O1x2 1]

U

Lemma 3.4.1. The rank of the observability matri®, of the ideal EKF-CL in the two-robot
case, is equal to 3.

Proof. The rank of the product of the matricEsand U is given by (see (4.5.1) in [113])
rank(DU) = rank(U) — dim(null(D) ﬂ rmg(U)) (3.24)
1

Denotingfj = [ﬁl .-+ g/, it is evident thattiy, = —1uy4, Uy = —1s5, While i3 + tig =

a1

aiiiy + aglis, whereJépoi (ko, ko) = — [ ] We also note thafi;}%_, are linearly in-

o3
dependent. Therefore, the range of the matiiis spanned by the vectols,, ii;, and i,
i.e.,

rng(U) = span [1“14 s 1“16} (3.25)

col.
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Thus, rank(U) = 3. We now observe that in generBlii; # 0, for i = 4,5,6. More-
over, note that any vectat € rng(fj) \ 0 can be written ax = [iu4 + fols5 + [3Us
for someps; € R, wherepg;, i = 1,2,3, are not simultaneously equal to zero. Thus, in
general,Dx = S Dy + BDiis + 83Diig # 0, which implies thatx does not belong
to the nullspacenull(D), of D. Therefore,dim(null(D) (N rmg(U)) = 0, and, finally,
rank(M) = rank(U) — dim(null(D) (rng(U)) = rank(U) = 3. O

The above lemma shows that three directions of the state sgpacinobservable. To identify
these directions, we examine the nullspace of the mBifiXt can be easily verified that a basis
for the right nullspace ofJ (and thus ofM) is given by:

I, Jpy,
9 01><2 1 A
null(M) = span = span [nl ny ng] (3.26)
col. I Jpgko col.
[O1x2 1|

From the structure of the vectors andns we see that a change in the stateoy = an; +
Bno, o, B € R corresponds to a “shifting” of the — y plane by« units alongz, and by
units alongy. Thus, if the two robots are shifted equally, the statemdx’ = x + Ax will
be indistinguishable given the odometry and relative measants. To understand the physical
meaning ofns, we consider the case where the- y plane is rotated by a small angle.
Rotating the coordinate system transforms any ppiat [z y]” to a pointp’ = [z’ /], given

by:
x’ T 1 —d¢| |z —y
=C(o ~ =
R A A MR

where we have employed the small-angle approximatiogs~ 1 andsd¢ ~ §¢. Using this

X

Y

09

result, we see that if the plane containing the two robotstisted byd¢, the CL state vector
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will change to

1 T o
yﬁ Y1 T

x = ¢>:1 ~ |2 160 ! = x + déns (3.27)
D) 2 —Y2
yé Y2 T2
) |92 1

which indicates that the vectar corresponds to a rotation of the-y plane. This result implies
that any such global rotation is unobservable, and will eaus change to the measurements.
The preceding analysis for the meaning of the basis vecfang @nobservable subspace agrees
with [109] as well as with intuition, which dictates that thiebal coordinate®f the state vector
(rotation and translation) are unobservable, since tladivelmeasurements only depend on the
relative robot configurations.

N-robot case

We now examine the general case wh&re- 2 robots are included in the group. For a complete
RMG, the measurement Jacobian matrix at time-&tep ¢ can be written as:

', 1 [Ey?, 'Y, 0 0 0]
e |l 0 e 0 my,

Hy, 40 = : =| A : : (3.28)
f YY), o 0 -0 HGY,
Rl I T S T e

Similarly to (3.21), the following identity holds:

(iko+£_1(iko+z—2 T (iko = Diag (‘i)lkoﬂﬂ T (i)lko T i)NkoJerl T (i)Nk(,) (3.29)
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Therefore, by using the results of (3.28) and (3.29)/fer 1, - - - , m, and proceeding similarly

as in the two-robot case [see (3.22)], we obtain the obsgityamatrix, M, as follows:

o

M

~Diag ((Vh{")A(é1,,) .- (VBLD AN, ) *

D

I, Jopoi (Ko, ko) —To 0251 0252 021 0252 01
012 1 01x2 =1 O1x2 0 012 0
I Jop3i(ko, ko) O2x2 021 I 021 0252 0251
012 1 01x2 0 O1x2 -1 012 0
I Jopni(koy ko) 02x2 0251 O2x2 0251 -I 021
012 1 012 0 01x2 0 012 -1
-1 0251 02x2 0251 O2x2 0251 I Jopin (Ko, ko)
012 —1 O1x2 0 Oix2 0 O1x2 1
022 021 —I 0251 O2x2 0251 I Jopan (Ko, ko)
012 0 01x2 =1 Oix2 0 O1x2 1
022 021 O2x2 021 O2x2 0251 I Jopn-an (Ko, ko)
012 0 O1x2 0 Oix2 0 O1x2 1
I Jopai(kot+1,k)  —Io —Jdpaa(ko+1,k,) O2x2 02x1 02x2 021
012 1 O1x2 =1 O1x2 0 012 0
I Jop3i(ko+1,k) Oaxa 021 —Io  —Jdpss(ko+1,k,) 02x2 0251
01x2 1 01x2 0 O1x2 -1 O1x2 0
L Jopni(kot+1,ks) Ozxo 0251 O2x2 0251 —I, —Jopyn(kot1, ko)
012 1 01k 0 01x2 0 012 -1
—I,  —Jopii(ko+1,ko) Oax2 02x1 O2x2 0251 I Jopin (ko +1, ko)
012 =1 O1x2 0 01x2 0 012 1
022 0251 —Ip  —Jdpoa(ko+1,k,) O2xo 0251 I Jopan (ko+1, ko)
012 0 O1x2 =1 O1x2 0 O1x2 1
0252 0251 O2x2 0251 O2x2 0251 I, Jopnan(ko+1, ko)
012 0 O1x2 0 01x2 0 012 1
I, Jopai(kot+m,k,) —Iy —J0paa(kotm,k,) Ozxa 0251 0252 0251
012 1 O1x2 =1 01x2 0 012 0
L Jopsi(ko+m,k,) Ozxa 0251 —Iy —Jdpss(ko+m, ko) 02x2 021
012 1 01x2 0 01x2 -1 012 0
I, Jopni(kot+m, ko) Oaxo 0211 0252 021 —Iy —Jopnn(kotm, ko)
012 1 01x2 0 01x2 0 012 -1
—I, —Jopui(ko+m, ko) 02y 02,1 02x2 0251 I Jopin (ko+m, ko)
012 =1 O1x2 0 01x2 0 012 1
0252 0251 —Ip —J0paz(ko+m,k,) O2xo 0251 I, Jopon(kot+m, ko)
012 0 O1x2 =1 O1x2 0 012 1
022 0251 02x2 0251 O2x2 0251 I, Jopnan(ko+m, ko)
| Oix2 0 01x2 0 O1x2 0 012 1

(3.30)
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Lemma 3.4.2. The rank of the observability matriVI, of the ideal EKF-CL in the general
N-robot case, iISN — 3.

L

Proof. Proceeding similarly to the proof of Lemma 3.4.1, by derg)!fh a; --- U3N|>

we first note that

Our next goal is to show thdit; can also be expressed as a linear combination of other calumn
of U. We observe that the summation of every third column of toelbtow of U correspond-
ing to robotj measuring robot at timek, + ¢ is given by:

Jopij(ko + £, ko) — J0Pii(ko + ¢, k’o)] B [J(spij(k?o, k’o)]
0 0

We can further decompose the teddip;; (%, k,) as:
J(spij (km ko) = J5Pz’1 (km ko) - J5Pj1 (km ko)

Using these results, we have

N N N N

o 9 o o o Q2i—1
E us; — E Q2;—1U3;—2 + E Qoiu3i—1 = E Ug;_o U3;_1
i=1 i=2 i=2 i=2 Q2;

where [a%_ll £ —J6pi1(ko, ko), Vi =2,..., N. Now we obtain the desired result
24

N N N
3 = — E ug; + E Qupi_1U3j—2 + E QU3 1
=2 =2 =2

Moreover, we notice thafii; }3%, are linearly independent. Therefore, the range of the matri
U is spanned by its column vectoiis, i = 4, ...,3N, i.e.,

rmg(U) = span [1“14 ﬁgN] (3.31)

col.

Thus, rank(U) = 3N — 3. Analogously, we observe that in genefii; # 0, for
i = 4,...,3N. Moreover, we note that any vectar ¢ rng(U) \ 0 can be written as =
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Zfivl_?’ G143 for somes; € R, where thes;’s are not simultaneously equal to zero. Thus, in
generalDx = S22V 73 3D, 3 # 0, which implies thatx does not belong to the nullspace,
null(D), of D. Therefore,dim(null(D) (N rng(U)) = 0, and, finally, based on the matrix-
product rank theorem (see (4.5.1) in [1138nk(M) = rank(U)—dim(null(D) N rng(U)) =

rank(U) = 3N — 3. O

Furthermore, by inspection, a basis for the right nullspafd®l is given by:

I, Jpy,,
012 1
I, Jpg,
null(M) = Sp&lm 01x2 1 (3.32)
I. Jpn,,
1012 L

By noting the similarity of this result with that of (3.26)he physical interpretation of this
nullspace is analogous to that of the two-robot case: tHeafjloanslation and orientation of the

state vector are unobservable.

3.4.2 Standard EKF-CL

We now study the observability properties of the standard-&X., in which the Jacobians
are evaluated at the latest state estimates (&%,_1 = Xp|p—1 and lek = Xy, for all k).
Similarly, we begin with the case of a two-robot team, anahtpeneralize to the case where an
arbitrary number of robots comprise the group.

We first introduce the following definitions, which will beefsil for the ensuing derivations:

)4
ADij(k,0) = Biygyy = Py, 0 — D, AB;(7) (3.34)
T=ko
5f)lj(k7 e) = IA)ik\k—l - ﬁja@,l (335)

wherek, is the first time instant of interest, arid? > k,. In the above expressiondp;
is the correction in théth robot position estimate due to the EKF update, whilg; is the
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estimated difference between two robot positions [see7|Bdvaluated using the estimates
after the respective propagation steps.

Two-robot case

We start by deriving an expression analogous to that of }3uk8ng (3.6) and the definition of

1 JAD; (ko + 2, ko + 1
@, = | 2 APz (3.:36)
012 1
Using induction, we can show that
I, JADi(ko+L, ko+L—1)
q)ik0+l71q)iko+l72 T (I)iko =
01x2 1
for £ > 0. As a result, the following identity is immediate:
I JAf)H(ko+£,ko+£—1) 0949 0941
01 2 1 01 2 0
Bp o1 Phy o2 P, = | ) )
0252 021 I, JADoy(kottkott-1)
O1x2 0 012 1
(3.37)
The measurement Jacobian now is given by [see (3.20)]:
B . (12) “ (21) "
Hk(,-i-é - _Dlag ((tho+Z)A(¢1ko+[\ko+l—1)’ (tho+€)A(¢2ko+l“€o+l*1)>
I, Jopai(kotthott) —Io 021
0 1 0 -1
% 1x2 1x2 ) (3.38)
—Ip 0251 I,  JopP12(kottkott)
_01><2 -1 01x2 1 |
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Multiplication of (3.38) and (3.37) yields:

. 12 n 2 n
Hko+€q)ko+€—1 e (I)ko = —Diag <(Vhl(€0—i)-é)A(¢1ku+l\ko+éfl)’ (Vhl(fo—l?Z)A((bzkqul\ko+é—l)>

[ I JADy (kottkott—1)  —Ip —JAﬁZQ(kO+Z,kU+Z—1)_
" 012 1 01x2 -1
—Is —JAD (kotlkote—1) I JAD o (kott,ko+E-1)
O1x2 -1 O1x2 1
) (3.39)

Thus, the observability matri¥I (see (2.22)) can be written as:

M =—Diag ((Vhl(i, ))A(leku\krl% B (Vh]gzl—zm)A($2k0+m\ku+mf1)) X
D
L JoDP21 (koko) I 021 |
012 1 Oixe2 -1
-1y 0251 I JD12(ko ko)
01x2 -1 O1x2 1
I JADg (kot1,ko) I ~JADos (kot1,ko)
0 1 0 -1
iXIz ~JAD | (kot1,ko) 1XIz JAD 5 (kot1,k0) (3.40)
01x2 -1 O1x2 1
L, JADg (kotmbotm—1)  —Io —JAPg(kotm,kotm—1)
O1x2 I Opx2 -1
~Is —JAD | (kotmkot+m—1) Io  JAD |y (kotmkotm—1)
| O1x2 -1 Oix2 L]
U

Lemma 3.4.3. The rank of the observability matri®vI, of the standard EKF-CL in the two-
robot case, is equal to 4.

Proof. We first observe that the EKF update corrections in the robeitipn estimatesdp,
[see (3.33)], are in general different at different timepsteAs a consequencAp,; [see (3.34)]
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are also different at different time steps, which means todtmns 3 and 6 of matribU
are general column vectors and thus not linearly dependeming other columns. Denoting
U & [ul u6}, it is evident thatu; = —uy4, us = —uj, and moreovem, andus
are linearly independent. Therefore, one possible bastheofange of the matrifU is its
columns vectorgu;}%_,, i.e.,rng(U) = span [ug u()}. Thereforerank(U) = 4. By
proceeding similarly to the proof of Lenﬂia 3.4.1, we obsehat in generaDu; # 0, for
i = 3,...,6, and moreover any vector € rng(U) \ 0 can be written ax = Z?‘Zl Biljto
for somep; € R, where thes;’s are not simultaneously equal to zero. As a result, in gener
Dx = Y1, f;Duy,9 # 0. Therefore dim(null(D) (rng(U)) = 0, and finally, using theo-
rem (4.5.1) in [113]yank(M) = rank(U) — dim(null(D) rng(U)) = rank(U) =4. O

We thus see that the linearized error-state model emplayedel standard EKF-CL has
different observability properties than that of the ideF=CL. In particular, by processing the
measurements collected in the time interVal k, + m/|, the EKF acquires information along
the 4 directions of the state space corresponding to theaide subspace of the linearized
system. However, the measurements actually provide irgtiom in only 3 directions of the
state space (i.e., the robot-to-robot relative pose), and eesult, the EKF gains “spurious
information” along the unobservable directions of the ulyileg nonlinear CL system, which
leads to inconsistency.

To probe further, we note that the basis of the right nullepafdVI is given by:

I
01x2
null(M) = span = span {nl 1’12} (3.41)
col. 12 col.
012

Note that these two vectors correspond to a shifting ofithey plane, which implies that such
a shifting is unobservable. On the other hand, the direatmmesponding to the rotation is
“missing” from the unobservable subspace of the EKF systerdein[see (3.26) and (3.27)].
Therefore, the filter gains “nonexistent” information abthe robots’ global orientation. This
leads to an unjustified reduction in the orientation unaggawhich, in turn, further reduces
the uncertainty in all state variables.
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N-robot case

Similar results can be derived in the general case wherebots comprise the team, i.e.,

Lemma 3.4.4. The rank of the observability matri®/, of the standard EKF-CL in the general
N-robot case, iISN — 2.

Proof. See Appendix B.1. O

We can draw identical conclusions as in the two-robot caseatticular, the dimension of
the nullspace of the observability matrixI, erroneously becomes 2. Furthermore, one possible
basis for the nullspace can be shown to be:

null(M) = span | : (3.42)

col.
I

01x2

Thus, the global orientation is erroneously observablaisxdase as well, which leads to incon-
sistent estimates.

3.5 Observability-Constrained (OC)-EKF CL algorithms

In the preceding section, it was shown that when the filteolJians are evaluated using the
latest state estimates, the error-state system model getploy the EKF has an observable
subspace of dimension higher than that of the actual CLsysthis will always lead to unjus-
tified reduction of the covariance estimates, and thus tonsistency. To address this problem,
we propose computing the EKF Jacobians in such a way thaagigss an unobservable sub-
space of dimension three for the linearized error-stateemathich precisely corresponds to
Lemma 2.5.1, instead using the CL Jacobians.

Similarly, the selection oIN [see (2.40)-(2.41)] is a design choice, which allows us to
control the unobservable subspace of the EKF-CL system imddieally, we would like the
column vectors ofN to be identical to those in (3.32), which define the unobd®evdirec-
tions of the ideal EKF-CL system. However, this cannot bdeagd in practice, since these
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directions depend on theue values of the state, which are unavailable during any rexslev
implementation. A natural selection, which is realizaligoiactice, is to define the unobserv-
able subspace of the observability matrix based on the fiasiadle state estimates, i.e., for the
two-robot case to choode

L by,
0 1
N = span 1 . (3.43)
col. IQ Jpgko‘k07l
| O1x2 L]

OnceN has been selected, the next design decision to be made isnfmut® appropriate
filter Jacobians at each time step. For the particular setecf N in (3.43), this amounts to
choosing the propagation and measurement Jacobians for-all, to ensure that (2.41) holds
(note that (2.40) is satisfied by construction in this cagaparly, several options exist, each
of which leads to a different algorithm within the generanfrework described here. In what
follows, we present three OC-EKF algorithms to achieve gloial.

3.5.1 OC-EKF1

We start by describing the first version of the OC-EKF that wiaginally proposed [74]. The
key idea of this approach is to choose the prior state estrad the linearization points, so as
to guarantee the appropriate observability propertieb@BKF linearized system model. This
procedure is explained in detail by the following lemma:

Lemma 3.5.1. If the linearization points, at which the filter Jacobian megs ®; =

. * * (ZJ) _ * * .
D;, (xik+1\k7xik\k) andH, " = Hk(xik\k—17xjk\k—1) are evaluated, are selected as:

*

% *
Utk Kipt1)k 2

X’ik‘k = Xik\kfl
* *

xik\kﬂ = Xigjp—1 s xjk\kﬂ = Xjkk-1 (3'44)

then it is guaranteed that the unobservable subspace o&thédting EKF linearized error-state
model is of dimension 3.

¥ When more than two robots (i.eN > 2) are included in the state vectdy can be chosen analogously,

augmented by a submatr{>6I2 in’“ol““o*l corresponding to each robat£ 1,2, ..., N) [75].

1x2
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Proof. Using the linearization points (3.44), the state-propagafacobian®;, [see (3.6)] is
now computed as:

I2 J (f)ik+1\k - f)ik\k71>

<I>§k =
012 1

(3.45)
The difference compared to (3.6), which is the Jacobian irséite standard EKF, is that the
prior estimate of robot positiorp;,, ,, is used in place of the posterior estimage, . In
contrast, the measurement Jacob fj), is computed in the same way as for the standard
EKF [see (3.11)]. As a result, using the definitiondg;; (3.35), the observability matrivi’

in the OC-EKF1 algorithm for the two-robot case assumesdhewing form:

M’ = Diag (V") A1, ) =+ (VAL )AL, 0)) ¥
e
1 JoPai(koko) —Ip 01 |
012 1 Oix2 -1
—Iy 02x1 I JDP12(ko.ko)
01x2 =1 O1x2 1

I JOP21(kot1ko)  —Io  —J0P22(kot1,k0)

01x2 ) I O1x2 ) -1 (3.46)
—12 —J6p11(k0+1,k0) 12 J(Splg(ko+1,ko)

012 —1 O1x2 1

I, JoD2i(kotmik,) —Io —J6P2a(kotm.ko)

012 1 Oix2 -1
—Iy —JoPri(kotmiko) Lo JOP12(kotmiko)
| O1x2 —1 O1x2 L]
e

It becomes evident that compared to the observability mafrihe ideal EKF-CL [see (3.23)],
the only difference arising i)’ is thatdp;; is replaced by its estimatép;;, for i, j = 1,2.
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Moreover, by inspection, the right null spaceMf is

L by,
0 1
null(M’) = span . X (3.47)
col. IQ Jpgko‘k07l
| O1x2 L]

Thus, matrixM’ has rank 3, which shows that the OC-EKF1 is based on an aatar-system
model whose unobservable subspace is of dimension 3.

Similarly, in the case wher®” > 2 robots comprise the team, it can be easily shown that the
corresponding observability matrd’ follows the same structure as that of the ideal EKF-CL
but wheredp;; is replaced by its estimatép;;, foralli,j =1,..., N, i.e,,
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M’ =—Diag ((Vh{’?)A(b1,,,,, ). - (VB )AGN, ) X (3:48)

ko+m
D’
I, J0po1(koy ko) —To 0251 0252 0251 0252 01
012 1 01x2 =1 O1x2 0 012 0
I J0p31(kos ko) O2x2 021 I 0251 02x2 0251
012 1 012 0 01x2 -1 012 0
I Jopn1(koy ko) 02x2 0251 O2x2 0251 -I 021
012 1 O1x2 0 O1x2 0 O1x2 -1
-I 021 O2x2 0251 O2x2 021 I Jopn (o, ko
012 —1 O1x2 0 O1x2 0 O1x2 1
0252 [ O] 0251 0252 0251 I, Jopon (Ko, ko)
012 0 O1x2 =1 O1x2 0 012 1
022 021 O2x2 021 O2x2 02x1 I JopN-an (Ko, ko)
012 0 Opx2 0 Opx2 0 O1x2 1
I Jopoi(ko+1,ko)  —To —JdPoa(ko+1,ky) O2x2 0251 (0 0251
012 1 012 =1 O1x2 0 012 0
I Jopsi(kot+1,k0) O2x2 0251 —Io  —Jdpss(ko+1,k0) 02x2 021
012 1 01k 0 O1x2 -1 012 0
I, Jopni(ko+1,ko) Ooxo 021 O2x2 021 —I,  —Jopnn(kot1,ko)
012 1 012 0 01x2 0 012 -1
—Ip  —Jpii(ko+1,ko) 0oy 02,1 02x2 0251 I Jopin (ko+1, ko)
012 =1 O1x2 0 01x2 0 012 1
022 021 —Io —JP2(ko+1,k) O2x2 02x1 I Jopan (ko+1, ko)
012 0 O1x2 =1 O1x2 0 012 1
022 0251 O2x2 0251 O2x2 0251 I, Jopn-an(ko+1 ko)
012 0 O1x2 0 01x2 0 012 1
L Jopoi(kot+m,k,) —Io —J0Paa(kotm,k,) Ozxa 0251 0252 0251
012 012 =1 01x2 0 012 0
I, Jopsi(ko+m ko) Oaxo 0251 —Ip —JoPss(ko+m,k,) 022 0251
012 1 01x2 0 01x2 -1 012 0
I, Jopni(kotm ko) Ooxo 0251 0252 021 —Io —Jopnn (kotm, ko)
012 1 O1x2 0 O1x2 0 012 -1
—Iy —J0p1i(ko+m, ko) 02y 02x1 02x2 0251 I Jopin (kot+m, k,)
012 =1 O1x2 0 O1x2 0 012 1
0252 0251 —Io —JPoa(kotm, ko) Oaxo 0251 I, Jopan(kotm, ko)
012 0 O1x2 =1 O1x2 0 012 1
0252 021 Ooxo 0251 0252 0251 I, JoDN-an (kotm, ko)
| O1x2 0 O1x2 0 01x2 0 012 1
Vv

U/
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It is not difficult to show that the observability matrixI’ is of rank 3N — 3, and thus the
unobservable subspace is of dimension 3. O

3.5.2 OC-EKF2

In the design of consistent estimators for CL, there are tampeting goals that should be
reconciled: (i) reduced linearization errors at each titep,sand (ii) correct observability prop-

erties of the linearized system model. In OC-EKF1, the gtat@agation Jacobian is computed
using the predicted estimage

.1 jor the robot position instead of the updated, and thus more

accurate, estimatp;, ,. These two estimates can differ substantially after a léiftge correc-
tion, which may introduce significant linearization errofi® formally address this limitation,
we propose an alternative, termed OC-EKF2, which seleetéirirarization points of the EKF
so as to minimize the expected squared error of the lingazgoints while satisfying the
observability conditions [see (2.40) and (2.41)]. This barformulated as a constrained mini-
mization problem where the constraints express the obsiéityaequirements.

Specifically, at time-steg + 1, we aim at minimizing the linearization error of the points
lek andxzﬂ‘k, which appear in the filter Jacobiads, andHy ., [see (3.8) and (3.11), re-
spectively], subject to the observability constraint (3.4Mathematically, this is expressed as:

_ min /HXk—XZkHQP(XHZo:k)ka +/HX/<:+1—XZ+1|k||2P(Xk+1|Zo:k)dxk+1 (3.49)
Xk Xkt |k

subject to Hy11®y--- P, N=0, Vk >k, (3.50)

In general, the constrained minimization problem (3.42%Q) is intractable. However,
when the two pdfsp(xi|zo.x) and p(xx+1|zo.x), are Gaussian distributions (which is the as-
sumption employed in the EKF), we can solve the probteralytically and find a closed-form
solution. In the following, we first show how the closed-fosmlution can be computed for the
simple case where only two robots are included in the stat®iyend the case df > 2 robots
is presented afterwards.

Two-robot case

We note that the following lemma will be helpful for the ensyiderivations:
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Lemma 3.5.2. Whenp(x|zo.,.) and p(xx+1|zo.x) are Gaussian, the constrained optimization
problem(3.49)(3.50)is equivalent to:

. - 2 - 2
o ka\k—xzmu + ka+1\k_xz+1|ku (3.51)
Xk Xrt |k
subject to pgm - p{k‘k = ay (3.52)
where
k—1 k—1
ar = pgk\kfl - p‘{k\kfl - Z (pgT‘T - pgr\rfl) + Z (pIT\T o p‘{-r\-rfl)

T=ko T=ko

Proof. See Appendix B.2. O

Using the technique of Lagrangian multipliers [16], theimatl solution to the prob-
lem (3.51)-(3.52) can be obtained as:

. A ?
. Ak 2
pgk\k = p2k\k - 7 ) (b;k\k = (ZSZM;C
X1k = Ktk (3.53)

with
Ak = f)Qk‘k - f)lk‘k — ag

We see thal\; and thus the linearization point for the position of eachotpp depends on

*
Tg|k?
all robots’ estimates. This increases the complexity oflenmenting the algorithm, but yields
the optimal linearization errors under the desired obd®lityaconstraints.

Using the linearization points in (3.53), the state-praen Jacobians in the OC-EKF2

are now computed as:

Lo 3 (Pupyy — iy — %)
/llk _ k+1|k k|k 2 (354)
012 1 |
s B 3 (Ba o+ )]
y = (3.55)
012 1 |

while the measurement Jacobians are calculated in the saypeasvin the standard EKF
[see (3.11)].
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N-robot case

We now consider the case where more than two robots {V.e 2) are included in the state
vector. Analogous to Lemma 3.5.2, we start by proving thiefghg lemma:

Lemma 3.5.3. Whenp(x|zo.,.) and p(xx+1|zo.x) are Gaussian, the constrained optimization
problem(3.49)(3.50)in the general N-robot case, is equivalent to:

. - 2 N 2
B e [ Bl SIS s T (3.56)
Xk Xht |k
subject to p;-‘k‘k - p{k‘k =a;, ,Vi=2,...,N (3.57)
where
k—1 k—1
ailk = p;(k\kfl - p’l(k\kfl - Z( ;‘r\‘r o p;:—h—fl) + Z (pi(‘l"‘r - p){T‘Tfl)

T=ko T=ko

Proof. See Appendix B.3. O

It should be pointed out that we here assume that all the sadret connected in the RMG
(otherwise, the isolated robots, which neither have measents nor are observed by any other
robots, will not impose any constraint). Now we employ thehteque of Lagrangian mul-
tipliers [16] to solve the problem (3.56)-(3.57). Speciligathe Lagrangian function can be
constructed as:

‘C(XZ\k’XZ-i-l\k?)‘?k?"' 7AN1€) = (358)

N
H)‘ck‘k—mez + Hikﬂ\k_x;;i,-l\kHZ + Z Ag; <Pz*k‘,€ - PTW — am)
=2

By setting the derivatives of the Lagrange function withpess to the optimization variables to
zero, we have:

oL N
op} - 2(f)1k\k o pi(k\k) - Z Ai, =0 (3.59)
klk i=2
a£ N\ * .
op* - 2(pik\k o pik\k) +A,=0,Vi=2,...,N (3.60)
k|k
oL N ‘
Ty, P Pl —ain, =0, ¥i=2,... N (3.61)
ot = 2(&0ther - X;ther) =0 (362)

*
axother
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wherex*., denotes all the optimization variables except the ones.BB§3.61). From the

other
above equations, we obtain the optimal solution in closeah fas follows:

N
Zi:2 ’\ik x A }‘ik
2 ’ pik\k - plk\k 9

where the Lagrangian multipliers are attained by solvinghear system. In particular, sub-

pi(k‘k = ﬁlk‘k + ) Xéthcr = &othor (363)

stituting the above optimal linearization points (3.63pif3.61), we have the following set of
equations with respect ty;, (i =2,...,N):

N
1 L |
Netg 2 An= (Ba —Pug) —am =ib; Yi=2.. N (3.64)
i=2,i#]

By stacking the above equations into a matrix form, we have

I i ST | Ay, b,
1 1
i1 1 1| [ A3, b
y L™ =] 77 = a=A"D (3.65)
31 3T - 21| |An, | |bw)
S—— =
A Ak b

Using the optimal linearization points (3.63), we comptuite state-propagation Jacobians in
the similar form as in the two-robot case [see (3.54)-(3,58hile the measurement Jacobians
are calculated in the same way as in the standard EKF [seB]3.1

3.5.3 OC-EKF3

We now describe our OC-EKF3 algorithm. In particular, the-BICF3 directly computes the
measurement Jacobian by projecting the most accurate neezesot Jacobian onto the observ-
able subspace, while it calculates the propagation Jatabentically as the standard EKF
[see (3.6)]. By doing so, it ensures that the EKF-CL systerdehbas an observable subspace
of correct dimensions.

Specifically, in analogy to the OC-EKF3 for SLAM (see Sectib.3), we aim to find
the measurement Jacobian closest to the ideal one whilsfysadi the observability con-
straint (2.41), i.e.,

min |[H, — Hy1]|% (3.66)
Hjyq

subject to Hy4 1@y -- - ®,, N =0 (3.67)
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whereH, ideally is the measurement Jacobian evaluated at the &tesstHowever, since in
practice the true states are generally not available, weddscompute it using the current best
state estimates as in the standard EKF (3.11),Hg.= H,(X;11x). The optimal solution is
obtained by application of the following lemma:

Lemma 3.5.4. The optimal solution to the constrained minimization peb(3.66)(3.67)is:

"

H; | = H, (Ljjmx) — V(VIV)TIVT) (3.68)
whereV £ & --- &, N.
Proof. Analogous to the proof of Lemma 2.5.4. O

Note thatV in the above lemma is the propagated unobservable subspaoeatepk + 1,
and (Tgimx) — V(VTV)71VT) is the subspace orthogonaltq i.e., the observable subspace.
Hence, as seen from (3.68), the measurement Jacobian ofGHEKDB 3 is the projection of
the best-available measurement Jacobian onto the obgesuatspace. It is also important to
observe that in the case &f > 2 robots, each measurement only depends on the poses of the
observing robot and the observed robot and hence the merwulre}acobiam{;;:rl typically has
sparse structure [see (3.11)]. Based on this observatidriarexploiting the sparse structure
of the Jacobian matrix, we only need to consider the nonadomatrices of the measurement
Jacobian and solve a reduced-size problem similar to (36Y). Once the optimal solution
is attained, we can easily construct the full measuremeardbian by padding it with zeros
[see (3.11)].

Remarks It is important to point out that, as compared to the stan&a¢#, theonly change

in the OC-EKFs is the way in which the state-propagation apdsarement Jacobians are com-
puted [see (3.45), (3.54), (3.55), and (3.68)], while tlateséstimates and covariance are propa-
gated and updated in the same way as in the standard EKF.&fity,dhe steps of the OC-EKF
CL algorithms are outlined in Algorithms 2, and a simple Claewle with two robots using
the unicycle motion model and relative distance and beariegsurements is provided in Ap-
pendix B.4. We stress that even though a complete RMG (aeh mbot can observe all others)
is assumed at every time step in the preceding analysisisthist a necessary assumption for
the OC-EKFs, as the analysis can easily be extended to teeo€éimited sensor range, where
multiple propagation steps occur between updates (se®B8&c7). We also point out that the
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Algorithm 2 Observability-Constrained (OC)-EKFs for CL

Require: Initial state estimates and covariance

1: loop
2:  Propagati on: If proprioceptive (e.g., odometric) measurements ardaivia,
3: propagate the state estimates [see (3.2) and (3.3)]
4:  compute the propagation Jacobian [see (3.45) for OC-EKF4]-(3.55) for OC-EKF2,
and (3.6) for OC-EKF3]
5. propagate the state covariance:
Pii = @pPyp®i + GrQuGi (3.69)
6: Updat e: If exteroceptive measurements are available,
7. compute the measurement residual:
iyl = Zgs1 — h(Xpp)e) (3.70)
8: compute the measurement Jacobian [see (3.11) for OC-EKR (3.68) for OC-
EKF3]
9: compute the residual covariance and the Kalman gain:
Skt1 = Hip1PrpypHiy + Riga (3.71)
K1 = PropHi, S (3.72)
10:  update the state estimate and covariance:

Xpt1)k+1 = X1k T Krp1Te41 (3.73)

P11 = Proyipe — Kip1Sen1 Ki (3.74)

11: end loop
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new OC-EKFs areausalandrealizablein practice, since they do not utilize any knowledge
of the future and true state. Interestingly, even thouglptiposed filters do not use the latest
state estimates for computing the Jacobians (and thus¢bbidas are less accurate than those
of the standard EKF), they exhibit better consistency tharstandard EKF. As a final remark,
it is straightforward to extend the proposed OC-EKFs to @Q\8LIn particular, by performing
observability analysis, we can show that the unobservalilspace of the ideal-EKF linearized
system (as well as the underlying nonlinear system) has thief. corresponding to the global
translation and rotation, while the system model employethb standard EKF has unobserv-
able subspace of dimension two. As is the case for SLAM andl@i4 js the primary cause of
filter inconsistency. Thus, we can adapt the same obseityatdlsed methodology and develop
OC-EKFs for C-SLAM.

3.6 Simulation results

A series of Monte-Carlo comparison studies were conduatei@iuvarious conditions, in order
to validate the preceding theoretical analysis and to detnate the capability of the OC-EKF
estimators to improve the consistency of EKF-CL. The mettised to evaluate filter perfor-
mance are RMSE and NEES [14]. It is known that the NEES of&dimensional Gaussian
random variable follows g2 distribution with A/ d.o.f. Therefore, if a certain filter is consis-
tent, we expect that the average NEES for each robot poséevidlose to 3 for all time steps.
The larger the deviation of the NEES from these values iswhisse the inconsistency of the
filter is. By studying both the RMSE and NEES of all the filteamsidered here, we obtain a
comprehensive picture of the filters’ performance.

In the simulation tests, we consider a CL scenario in whiehr fobots move randomly in
an area of size 20 mx 20 m. 50 Monte-Carlo simulations were performed, and dueacgh
run, all filters process the same data, to ensure a fair casgparT he five estimators compared
are: (1) the ideal EKF, (2) the standard EKF, (3) the OC-EKELthe OC-EKF2, and (5) the
OC-EKF3.

For the results presented in this section, four identidabt®with a simple differential drive
model move on a planar surface, at a constant linear velo€ity = 0.25 m/sec, while the
rotational velocity is drawn from the uniform distributiaver [—-0.5,0.5] rad/sec. The two
drive wheels are equipped with encoders, which measure riéaalutions and provide noisy
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Figure 3.1: Orientation estimation errors vss Bounds for one robot of the 4-robot team,
obtained from one typical realization of the CL Monte-Caslmulations. The results for the
other robots are similar to the ones presented here.clWaues are computed as the square-
root of the corresponding element of the estimated covegiamatrix. Note that the estimation
errors as well as thes3bounds of the ideal and the OC-EKFs are almost identicalghvimakes
the corresponding lines difficult to distinguish.

measurements of velocity (i.e., right and left wheel vdlesj v, andv;, respectively), with
standard deviation equal to = 5%w for each wheel. These measurements are used to obtain
linear and rotational velocity measurements for each rokbich are given by = ”T*”l and

w = =, wherea = 0.5 m is the distance between the drive wheels. Thus, the stndar
deviations of the linear and rotational velocity measunaimares, = @o— ando,, = ?a,
respectively.

Each robot records distance and bearing measurementsdthetl robots. Note that for
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Figure 3.2: CL Monte-Carlo simulation results for the agerdNEES of the robot poses. In
these plots, the dotted lines correspond to the ideal EKd=stiid lines with circles to the
standard EKF, the dash-dotted lines to the OC-EKFL1, theathlstes to the OC-EKF2, and the
solid lines to the OC-EKF3. Note that the NEES of the ideal EKE the OC-EKFs are almost
identical, which makes the corresponding lines difficultlistinguish.

simplicity we assume that all measurements occur at everg $tep in our simulations (but
this is not the case in our real-world experiments in Se@idi. The standard deviation of the
distance and bearing measurement noise was sgt400.1 m andoy = 5 deg, respectively.
Fig. 3.1 shows the orientation estimation errors for on@efbbots, obtained from a typical
simulation (the results for the other three robots are vamjlar and thus omitted for clarity).
Clearly, the standard-EKF errors grow significantly faskem those of the ideal EKF and the
OC-EKFs, which indicates that the standard EKF tends targizeNote also that although the
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Figure 3.3: CL Monte-Carlo simulation results for the ager&kRMSE of the robot poses. In
these plots, the dotted lines correspond to the ideal EKdstiid lines with circles to the
standard EKF, the dash-dotted lines to the OC-EKF1, theadblghes to the OC-EKF2, and the
solid lines to the OC-EKF3. Note that the RMSE of the ideal Eifid the OC-EKFs are very
close, which makes the corresponding lines difficult toikiggtish.

orientation errors of the ideal EKF and the OC-EKFs remaiil wighin their corresponding
30 bounds, those of the standard EKF exceed them. Most implyrtém contrast to those
of the OC-EKFs, the 8 bounds of the standard EKF (computed from the square-rotteof
corresponding element of the estimated covariance magiwain almostonstantas if the ori-
entation of the robot was observable. However, as discuss@dction 3.4, the robots have no
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Table 3.1: CL simulation results for robot pose estimatierfgrmance

Ideal-EKF Std-EKF OC-EKF1 OC-EKF2 OC-EKF3

Robot Position RMSE (m)
Robot1:  0.9378 2.5069 1.0331 1.0432 0.9388
Robot2:  0.8807 2.2965 0.9575 0.9667 0.8861
Robot3:  0.9533 2.4369 1.0286 1.0378 0.9594
Robot4:  0.8950 2.3567 0.9728 0.9824 0.9013

Robot Heading RMSE (rad)
Robot1:  0.1356 0.3751 0.1495 0.1511 0.1358
Robot2:  0.1358 0.3751 0.1498 0.1514 0.1362
Robot3:  0.1357 0.3744 0.1493 0.1509 0.1356
Robot4:  0.1355 0.3742 0.1490 0.1506 0.1362

Robot Pose NEES
Robot 1: 3.7566 52.4160 4.1204 4.1440 3.9173
Robot2:  3.7004 48.3953 4.0329 4.0559 3.8379
Robot3:  3.7691 49.6612 4.0607 4.0759 3.9933
Robot4:  3.7878 55.5077 4.2080 4.2341 3.9783

access to absolute orientation information and thus thentaiion covariance should continu-
ously grow (as is the case for the ideal EKF and the OC-EKHs&. résults of Fig. 3.1 clearly
demonstrate that the incorrect observability propertféabestandard EKF cause an unjustified
reduction of the orientation uncertainty.

Figs. 3.2 and 3.3 show the average NEES and RMSE, respgctieelall four robots.
These plots show the average errors over all Monte-Carls, rpiotted over time, while Ta-
ble 3.1 presents the average error values over all time.s#ép®vident, the performance of
both the OC-EKFs islmost identicato that of the ideal EKF, and substantially better than the
standard EKF, both in terms of RMSE and NEES. This occurs thangh the Jacobians used
in the OC-EKFs are less accurate than those used in the stiaBl&, as explained in the pre-
ceding section. This fact indicates that the errors intceduby the use of inaccurate Jacobians
have a less detrimental effect on consistency than the uae efror-state system model with



Figure 3.4: CL experimental setup: (a) Calibrated imageoaf fioneer | robots with targets
mounted on top of them. (b) Trajectories of four Pioneer lotskthat move inside a 2.5 m
x 4.5 m arena during the indoor experiment. For presentatiarty; only the parts of the
trajectories corresponding to the first 200 sec are plogalting positions are marked by

observable subspace of dimension higher than that of tlhialaCt. system.

3.7 Experimental results

In what follows, we describe one real-world experiment geried to further validate the OC-
EKF algorithms. During the test, a team of four Pioneer | tebmove in a rectangular area of
2.5 mx 4.5 m, within which the positions of the robots are beingkeatby an overhead cam-
era. For this purpose, rectangular targets are mountecpaof the robots and the vision system
is calibrated in order to provide ground-truth measureseftthe robots’ poses in a global
coordinate frame. The standard deviation of the noise isetimeeasurements is approximately
0.5 deg for orientation and 0.01 m, along each axis, for osifThe robots were commanded
to move at a constant velocity of= 0.1 m/sec while avoiding collision with the boundaries of
the arena as well as with their teammates. Fig. 3.4(a) sHmwwsxperimental setup. The trajec-
tories of the four robots are shown in Fig. 3.4(b), where qudytial trajectories are plotted in
order to keep the figure clear.

Although four identical robots were used, calibration ofithodometric sensors showed
that the accuracy of the wheel-encoders’ measurementg iderttical for all robots. Specifi-
cally, the measurement errors are well-modeled as Gaugsraamean white noise processes



Robot pose NEES

Robot pose NEES

70

IS
S

w
S

20

10

60

50

40

30

20

10

—6— Std-EKF
= = OC-EKF1
= = = OC-EKF2
| = OC-EKF3

—6— Std-EKF

= = OC-EKF1
= = = OC-EKF2
——— OC-EKF3

. .
500 600
Time (sec)

(a) Robot 1

L
400

L
800

L
900

)
1000

L
300

. .
500 600
Time (sec)

(c) Robot 3

L
400

I
700

L
800

L
900

)
1000

Robot pose NEES

Robot pose NEES

[| —— oc-EkF3

—6— Std-EKF
= = OC-EKF1
= = = OC-EKF2

. . . . . )
500 600 700 800 900 1000
Time (sec)

L
400

(b) Robot 2

—6— Std-EKF

= = OC-EKF1
= = = OC-EKF2
= OC-EKF3

. . . . . )
500 600 700 800 900 1000
Time (sec)

(d) Robot 4

% h
200 300 400

Figure 3.5: CL experimental results for the NEES of the rqlmdes. In these plots, the solid
lines with circles correspond to the standard EKF, the dhkted lines to the OC-EKF1, the
dashed lines to the OC-EKF2, and the solid lines to the OCEK¥ote that the NEES of the
two OC-EKFs are almost identical, which makes the corredimgnlines difficult to distinguish.

and the standard deviation of the velocity measurementgesafromo, . = 3.8%v for the

most accurate odometer &g,

max

= 6.9%w for the robot with the highest noise levels. Sim-

ilarly, the standard deviations of the rotational veloaigasurements have values between

Ouwn = 0.0078 rad/sec ands

Wmax

= 0.02 rad/sec for the four robots. We observe that as

a result of the variability of sensor characteristics,ilated to manufacturing imperfections,

the experiment involves laeterogeneousobot team, despite all robots being the same model,

equipped with the same sensors. This gives us the oppartintest the performance of the
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Figure 3.6: CL experimental results for the estimation msraf the robot poses. In these plots,
the solid lines with circles correspond to the standard BKE&,dash-dotted lines to the OC-
EKF1, the dashed lines to the OC-EKF2, and the solid lineheoQC-EKF3. Note that the
estimation errors of the OC-EKFs are almost identical, Whitakes the corresponding lines
difficult to distinguish.

OC-EKF algorithms in a realistic scenario. We stress thatdérivations of the OC-EKFs in
Section 3.5 require neither the homogeneity of robot teamsa complete RMG at every time
step. Besides the previous simulations in which a homogeneabot team was used, this ex-
periment demonstrates the superior performance of the RisEersus the standard EKF also
for heterogeneous robot teams.

Relative distance-and-bearing measurements are prodyeehdetically using the differ-
ences in the positions of the robots, as these are recordéidebyverhead camera, with the



87

Table 3.2: CL experimental results for robot pose estimgpierformance

Std-EKF OC-EKF1 OC-EKF2 OC-EKF3
Robot Position RMSE (m)
Robot 1:  0.2132 0.1070 0.1066 0.1121
Robot2:  0.2127 0.1083 0.1080 0.1060
Robot3:  0.2104 0.1076 0.1073 0.1105
Robot 4:  0.2699 0.1317 0.1313 0.1301
Robot Heading RMSE (rad)
Robot1:  0.1721 0.0785 0.0782 0.0800
Robot2:  0.1694 0.0760 0.0757 0.0776
Robot3:  0.1732 0.0794 0.0791 0.0808
Robot4: 0.1749 0.0810 0.0807 0.0827
Robot Pose NEES
Robot 1:  24.2458 4.4080 4.4289 5.0305
Robot 2: 26.4881 4.5423 4.5801 4.5385
Robot 3:  25.3439 4.6060 4.6270 5.2248
Robot 4. 27.6313 4.9182 4.9501 57714

addition of noise. For the experimental results shown ia #action, the distance and bear-
ing measurements are corrupted by zero-mean white Gaussis@ processes, with standard
deviationo; = 0.05 m andoy = 2 deg, respectively.

Four filters were implemented: (1) the standard EKF, (2) tiieEXF1, (3) the OC-EKF2,
and (4) the OC-EKF3. Comparative results for the three §iltee presented in Figs. 3.5 and 3.6,
while Table 3.2 shows the averaged NEES and RMSE of the rals®, pespectively. From the
experimental results it becomes clear that the three OCsEKiperform the standard EKF, in
terms of both accuracy and consistency, while both perfdmmost identically. This agrees with
the simulation results presented in the preceding secBmih the real-world and simulation
results thus support our conjecture that the mismatch idithension of the unobservable sub-
space between the linearized CL system and the underlyintinear system is a fundamental
cause of filter inconsistency.
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3.8 Summary

In this chapter, we have studied in depth the consistenag is§EKF-CL from an observabil-
ity perspective. By comparing the observability propertx the linearized error-state model
employed in the EKF with those of the underlying nonlinear §istem, we proved that the
observable subspace of the standard EKF system model igsabfaigher dimension than that
of the actual CL system. As a result, the estimated covagianthe EKF undergoes reduction
in directions of the state space where no information islalvls, thus leading to inconsistency.
Moreover, based on the analysis, we proposed three new CEaigorithms, which signif-
icantly improve the consistency of EKF-CL. The design mdtiogy followed is based on
appropriately computing the EKF Jacobians to ensure tleabliservable subspace of the lin-
earized error-state system model is of the same dimens@tigmbaof the underlying nonlinear
system. Extensive simulation tests and real-world expamishave verified that the proposed
OC-EKFs perform better, in terms of both accuracy and ctersly, than the standard EKF.



Chapter 4

Quadratic-Complexity
Observability-Constrained UKF for
SLAM

In this chapter, we adapt the observability-based metloggobresented in the previous chap-
ters to the UKF, and develop an Observability-Constraine@)(UKF to improve the UKF
consistency. Moreover, we introduce a new sampling schemeduce the UKF computa-
tional complexity, which samples only a small (constamg}kisubset of the states involved in
the process and measurement models at each time step. Astawbgn applied to the SLAM
problem, the proposed UKF with the new sampling strategjregtquadratic complexity. Parts
of this chapter have been published in [68, 71].

4.1 Introduction

For autonomous vehicles exploring unknown environmetis,ability to perform simultane-
ous localization and mapping (SLAM) is essential. Amongadlgorithms developed thus far
to solve the SLAM problem, the EKF remains a popular choicg lass been used in many
applications [92, 125, 169], primarily due to its relatiogvlcomputational complexity and ease
of implementation. However, EKF-based SLAM is vulneralmdibearization errors, which

89



90
can cause poor performance or even divergence, and itsestiiteates are typicallinconsis-
tent[12,66,70,72,78,79,85]. As defined in [14], a state estimiatconsistentf the estimation
errors are zero-mean, and have covariance smaller or extied bne calculated by the estima-
tor. Consistency is one of the primary criteria for evalugtihe performance of any estimator;
if an estimator is inconsistent, then the accuracy of themdead state estimates is unknown,
which in turn makes the estimator unreliable. In order tauoedthe estimation errors due to
linearization, the UKF [84] was introduced. The UKF has bshawn to generally perform
better than the EKF in nonlinear estimation problems, arelwould expect similar gains in
the case of SLAM.

However, one of the main limitations of the standard (i.eiginal) UKF algorithm [84]
is its computational complexity, which subicin the size of the state vector. In the case of
SLAM, where hundreds of landmarks are typically includedhia state vector, this increased
computational burden can preclude real-time operatiorrelier, when applied to SLAM, the
performance gains of the UKF over the EKF are generally netwkielming (see [62,63,110]).
Most importantly, empirical evidence suggests [62, 6311D] that the UKF also results in
inconsistent estimates in SLAM, even though its performeaiscbetter than the EKF in this
respect.

Our objective in this chapter is to address the aforemeatidimitations of UKF-based
SLAM. In particular, the main contributions of this work ate following:

e We introduce a new sampling strategy for UKF-based SLAM tesconstantcompu-
tational cost, regardless of the number of landmarks ireguid the state vector. This
sampling scheme is provably optimal, in the sense that iimines the expected squared
error between the nonlinear function and its linear appnaion employed by the UKF.
Using this strategy, the computational cost of UKF-based8lbecomedinear during
propagation anquadraticduring update, which is of the same order as that of EKF-based
SLAM. We stress that this new UKF sampling strategy is ajaplie to a large class of
nonlinear estimation problems (not only the SLAM problentene the measurements at
each time step are of dimension lower than the state.

e We analytically examine the consistency of UKF-based SLAM,studying the ob-
servability properties of the statistically-linearizace(, linear-regression-based) system
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model employed by the UKF. This analysis identifies a misinb&tween the observabil-
ity properties of this model and those of the underlying im@a@r system, which is a fun-
damental cause of inconsistency. Based on this theoretizdysis, we propose a novel
UKF-based SLAM algorithm, termed Observability-Constead (OC)-UKF SLAM. By
imposing the appropriate observability constraints orlitiear regression carried out by
the UKF, the proposed OC-UKF ensures that its system modebbservability proper-
ties similar to those of the underlying nonlinear SLAM systeAs a result, the OC-UKF
outperforms the standard UKF as well as other state-okthe@lgorithms, in terms of
accuracy and consistency, as validated by both simulatidregperimental tests.

4.2 Related work

The SLAM problem has received considerable attention dwvepast two decades. Since [144]
first introduced a stochastic-mapping solution to this fab rapid and exciting progress has
been made, resulting in many competing solutions, inclydioth filtering and smoothing ap-
proaches. In particular, filtering methods such as the EKI-tha UKF recursively estimate a
state vector consisting of the current robot pose and thereed landmarks [11,43, 155, 157].
Due to the fact that any (implicit or explicit) linearizatidbased filter marginalizes out the previ-
ous robot poses, it cannot relinearize the nonlinear syateirmeasurement models at the past
states, which may result in large linearization errors &g degrade the filter's performance.

To better deal with nonlinearity, batch iterative optintiaa methods can be applied to
the SLAM problem [36, 53-55, 95, 100, 150]. These methodloviing the paradigm of
bundle-adjustment (BA) algorithms originally developedhotogrammetry and computer vi-
sion [20-22,52,59, 153, 163], iteratively minimize a castdtion involving the residuals of all
the measurements, with respect to the entire robot trajeetod all landmarks (i.e., with no
marginalization). These BA-based approaches exploitghesgty of the measurement graph so
as to speed up computation. However, for large-scale SLAMIpms, a batch solution may be
too computationally expensive to obtain in real time [87].

In order to reduce the computational complexity of BA, diffiet approximate methods have
been developed that either use a subset of the data to optowér only few variables, or solve
the BA problem only intermittently. Specifically, slidingindow filters (e.g., [67, 142]), com-
pute a solution for a constant-size, sliding window of stdtebot poses and landmark positions)
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using only the measurements corresponding to that timevadteSimilarly, keyframe-based ap-
proaches (e.g., [93, 94, 96]), perform batch optimizatieer@nly a subset of views/keyframes.
On the other hand, incremental approaches to BA such asAi é&yorithm [88] reduce com-
putation by employing factorization-updating methods ahhallow reusing the information-
matrix factorization available from previous time stepson@putationally demanding proce-
dures, such as relinearization and batch factorizatiapaly performed intermittently. Alter-
natively, the iISAM2 algorithm [87] uses the Bayes tree datacture [86], which allows for
fluid or just-in-time relinearization (i.e., relinearigironly when the linearization point signifi-
cantly deviates from the current estimate), as well asglardriable reordering at every update
(instead of only periodic batch reordering as in iISAM [88]evertheless, incremental methods
can also suffer from increased computational cost. For pi@rdue to the accumulation of fill-
in between periodic batch steps, iISAM'’s efficiency degraaigis frequent loop closures (e.qg.,
if the number of constraints is more than five times the nunabgroses as reported in [87]);
while in iISAM2, since typically many variables are affectegevery fluid relinearization, the
complexity of the algorithm can be negatively impacted [87]

Even though both filtering and smoothing approaches have wakely used, to this date,
very little is known about which conditions favor the use okwver the other. In particular,
Strasdat et al. [149, 150] recently argued that BA is, in ganéetter than filtering in terms of
accuracy and efficiency. However, their analysis focus@tlsively on the restrictive scenario
of “small-scale” visual SLAM where overlapping views of thkame scene are assumed over
a short trajectory (less than 16 camera poses in total) atitbwtiany loop closure. Clearly,
based on this limiting case study, one cannot make infeseabeut the relative accuracy and
efficiency of filtering and smoothing algorithms in more isi&d SLAM scenarios (i.e., lengthy
paths with varying number of visible landmarks and loop atesevents).

Although such a general study is beyond the scope of this worthis chapter we have
compared the proposed OC-UKF and the state-of-the-art i8Kytithm [88] in various SLAM
scenarios, both in simulations and in real-world datasetparticular, as shown in Sections 4.7
and 4.8, iISAM doesiot necessarily perform better than the proposed OC-UKF (def esti-
mation accuracy/consistency and computational cost)cifsgaly, while BA methods are cer-
tainly preferable in problems involving thousands of lamdks and few loop closures, filtering-
based methods are still competitive in the case of spars@oements (e.g., tens to a few hun-
dreds of landmarks), long-term operation, and frequenp ldosures. This is due to the fact
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that, in the latter scenario, the computational cost of g¢hing methods will continuously in-
crease with the length of the robot’s path, while the runtohéltering algorithms will remain
bounded. It is worth noting that many applications of ins¢r@.g., a service robot operating
inside a home for an extended time period) fall under thersgtcategory.

Since in this work, we primarily focus on the computationanplexity and consistency of
UKF-based SLAM, in what follows, we discuss in more detad tthosely related work within
this category.

4.2.1 UKF computational complexity

A number of researchers have applied the standard UKF toltA®ISroblem (e.g., [29, 104,
110]). However, this requires computing the square roohefstate covariance matrix at each
time step, which has computational complexitybicin the number of landmarks, and thus is
not suitable for real-time operation in larger environnsento address this problem, Holmes
et al. [62,63] proposed the square-root UKF (SRUKF) for ntatar visual SLAM, which has
computational complexitguadratic both in the propagation and in the update phases. This
approach offers a significant improvement in terms of comipartal complexity, at the cost
of a considerably more complicated implementation. Addiily, as shown in [62, 63], the
algorithm is an order of magnitude slower than the stand##, Bue to the need to carry out
expensive numerical computations.

Andrade-Cetto et al. [6] presented a “hybrid” EKF/UKF aligom, where the EKF is em-
ployed in the update phase, while the UKF is used during matian for computingonly the
robot pose estimate and its covariance. The cross-caorl&rms during propagation are
handled in a fashion identical to the EKF. Even though thi®ithm achieves computational
complexity linear during propagation and quadratic dutipgates, the positive definiteness of
the state covariance matrix cannot be guaranteed duringpgation. Moreover, the use of the
EKF for updates makes the approach vulnerable to largerizagin errors.

In contrast to the aforementioned approaches, the propalgedithm described in Sec-
tion 4.4 employs the unscented transformatimth in the propagation and update phases, is
simple to implement, and attains computational complehitgar during propagation, and
guadraticduring update.
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4.2.2 UKF consistency

Theconsistencyf UKF-based SLAM has received limited attention in therterre. In [62,63,
110], the consistency of the UKF was empirically examined, to the best of our knowledge,
no theoretical analysis exists to date. On the other haed;dhsistency of EKF-based SLAM
has been studied in a number of publications [12, 66, 70,&2,9, 85]. In particular, in our
recent work [66, 70, 72] (also see Chapter 2), we have predemt analytical study of this issue
from the perspective of the observability properties oftid- linearized system model.

In this chapter, we extend this analysis to the case of UKdeth&&LAM. We analytically
show that the implicit (statistical) linearization pernfoed by the UKF results in a system model
with “incorrect” observability properties, which is a fumthental cause of inconsistency. More-
over, we introduce the OC-UKF, which attains better perfmoe than the standard UKF, by
ensuring that the observability requirements on the fitsy'stem model are satisfied. It is im-
portant to point out that, as compared to our previoushettmed OC-EKF [72], the OC-UKF
proposed in this chapter introduces a new paradigm for ctimgpfilter Jacobians. Specifically,
the OC-EKF employs a derivative-based approach to find tiee filcobians, and subsequently
optimizes the selection of linearization points. In costrahe OC-UKF uses statistical lin-
earization andlirectly calculates the optimal (inferred) Jacobians by solving laseovability-
constrained optimization (linear-regression) problem.

4.3 LRKF and UKF

In this section, we present the UKF in the context of the LRK&.shown in [106], the UKF
is closely related to the LRKF (with its sample points chodeterministically, instead of ran-
domly in the LRKF) and it can be viewed as performing an inmiplatatistical linearization
of the nonlinear propagation and update models. In whaba] we present the details of
this linearization mechanism, which will be instrumentakhe development of the quadratic-
complexity UKF in Section 4.4.

4.3.1 Linear regression

The LRKF seeks to approximate a nonlinear function= g(x) with a linear modely ~
Ax + b, where A andb are the regression matrix and vector, respectively, anél y —
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(Ax + b) denotes the linearization error. Once this linear appration is computed, the
LRKF proceeds by applying the regular Kalman filter equatidn particular, in computing the
linear approximation of(x), it aims to minimize the expected value of the linearizagoror
square:

. Feo T
i / v = (Ax b))y — (Ax -+ ) plx)dx (4.1)

where p(x) is the probability density function (pdf) of the state Due to the nonlinearity
of y = g(x), it is generally intractable to compute the optimal solutad this minimization
problem in closed form. To solve this problem, the LRKF iastdirst selects + 1 weighted
sample points{X;, w; }/_, so that their sample mean and covariance are equal to theanea
covariance ok:*

Pax =Y w; (X—%) (X;—%)" =E [(x—%)(x—%)"] (4.3)
=0
whereE(-) denotes the expectation operator. Then, using the stasdangle-based approx-
imationp(x) ~ > w;d(x — &;), whered(-) is the Dirac delta function, the linear regression

i=0
problem (4.1) becomes:

T

min w; [V — (AX; +b)]7 [V — (AX; + b)] (4.4)
’ =0

Y

where); = g(&;) are the regression points. We denote the linearizatiom eormesponding to
the sample poin&; by e; = ); — (AX; + b). Note that the above cost function is identical to
the one in [106], and hence the optimal solutionsAoandb are given by [106]:

A=P,Pl, b=y-Ax (4.5)

XX

1 Throughout this chapteg apdf’xx denote the sample mean and covariance of sample pintiawn from
the pdf of the random variable. P, denotes the sample cross-correlation between the setmpfesst; and);,
drawn from the pdfs of the random variablesndy, respectively.
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where
y = ; wiY; (4.6)
Pyx = z;; wi (Vi = 9) (X —x)" (4.7)
Pyy = ; wi (Vi —3) (Vi —9)" (4.8)

In addition, using (4.5), (4.7) and (4.8), the sample carare of the linearization errors is
computed by:

Pee =) wieje] =Pyy — AP AT (4.9)
=0

During recursive estimation, the LRKF employs the abovissieal linearization procedure
to approximate the nonlinear process and measurement snolés important to note that,
in this case, the regression mate serves as amferred Jacobianmatrix, analogous to the
Jacobian matrices in the EKF. The details are explained next

4.3.2 LRKF propagation

During propagation, the LRKF approximates the nonlineacess model by a linear function:

Xpt1 = £(x, 0f) (4.10)
= i’kxk + ékok + by + e (4.12)
9 o X}
= [‘I’k Gk} + by + e (4.12)
———— | Ok
A

wherex, is the state vector at time-stéps {k,k + 1}, o, = o,,, — Wy, is the control input
(e.g., odometry)p,,, is the corresponding measurement, angdis the process noise vector,
assumed to be zero-mean white Gaussian, with covariana@xn@t. The matricesp; and
G, can be viewed as inferred Jacobians, in an analogy to thespmnding Jacobians in the
EKF. We hereafter use the symbol *to denote the inferred Jacobians.

In the LRKF propagation step+1 sample pointd X;(k|k)}!_, are selected based on the
augmentedrector that comprises the filter state and the control inpeg [(4.12)]. The sample
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mean and sample covariance{d¥;(k|k)};_, are thus chosen as:

_ Xk |k =

my

(4.13)

Pk 0]
0 Qi

Subsequently, the LRKF produces the regression pofdisk + 1|k) = £(X;(k|k))}_,, by
passing the sample points through the nonlinear procesdidan(4.10). The sample mean,

Y41k and sample covarianc® of the regression pointy; are used as the mean,

YYk+1|k?
Xj+1|k» @nd covarianceP, |, of the propagated state estimates, respectively, i.e.,

Rer1k = Yit1jk s Praip = Pyyp (4.14)

Moreover, the inferred Jacobian matricévrs;g andék, which will be needed later on, are given
by [see (4.5) and (4.12)]:

A= [«ik Gk] = Py, P, (4.15)

wheref’yxk‘k is computed as in (4.7). Substituting (4.5) in (4.11) andh@gig¥.13), (4.14)
and (4.15), we have:

X1 = PrpxXp + Grog + Frp1jp — ARy + €

Xie|k

= <i>kxk + ékok + &k+1|k — {‘i’k ék} + e

O,

= Xppp = PuXp + Gpwy + ey, (4.16)
This last equation describes the linearized (based ongsigre error-state propagation model
used by the LRKF.
4.3.3 LRKF update

During update, the LRKF employs statistical linearizattorapproximate the nonlinear mea-
surement function:

Zpy1 = h(Xpq1) + Viqr (4.17)

= Hj1Xps1 + by + €y + Vit (4.18)
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wherez,. 1 is the measurement ang ; is the zero-mean white Gaussian measurement noise,
with covariance matriR; ;. A set ofr + 1 sample points{X;(k + 1|k)}]_,, are selected,
whose sample mean and sample covariance are equal {g. andP,. |, respectively, i.e.,

itk = Xkt 1)k » - Py = Praajk (4.19)
We pass these sample points through the nonlinear measuré&metion in (4.17), to obtain
the regression point$ Z;(k + 1|k) = h(X;(k+ 1|k))}i_,. The regression matrix (i.e., inferred
measurement JacobiaI;l)kHis computed by [see (4.5)]:

I\:Ik_l,_l - pZXk+1‘kP;ik+1‘k (4'20)
wheref’zxk 1l is computed as in (4.7). Subsequently, the state and cocariare updated

using the EKF update equations:

Sk+1=Poz ), + Ritr (4.21)
K1 =Py HE S (4.22)
Xt 11 = X1k + K1 (Zer1 — Zrg)i) (4.23)
P11 = Prayipr — Ki1Se1 Kiy (4.24)

wherez; andP are computed from (4.6) and (4.8), respectively.

ZZp 41|k

4.3.4 UKF sampling

In contrast to the LRKF [106], where the sample points arevdrandomly, in the UKFy+1 =
2n + 1 so-called sigma pointg’; are deterministicallychosen along with their weights;,

i1 =1,...,n, according to the following equations [84]:
Xo(L|k) = Ry » wo = % (4.25)
XUE) = T+ [y 0 0Py ] 0= s
XoinOF) =% — [0+ W) Py ] wim = ﬁ

wheren is the dimension ok, ;. [see (4.13) and (4.19){, (n+ R)Pxxm } _is thei-th column

of the matrix, /(n + £)Pxx,,, £ € {k,k + 1}, andx is a design parameter in the selection of
the sigma points, usually chosen so that- k = 3. This set of sigma points captures the
moments of the underlying distribution up to the third-aorfler the Gaussian case [84].
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4.4 Quadratic-Complexity UKF SLAM

In this section, we show how the computational cost of the UMiren applied to the SLAM
problem, can be reduced. In particular, in this chapter wasmn 2D SLAM, in which the state
vector consists of the robot pose (position and orientatmil the positions of/ landmarks:

X = [x%k pz]T (4.26)

T
_ [Xﬁk pl ... ng} (4.27)

wherexp, = [pgk quk]T denotes the robot pose (position and orientation), mnd(i =
1... M) is the position of the-th landmark.

In the UKF algorithm presented in the preceding sectionriba bottleneck is the compu-
tation of the square root of the covariance matrix [see (4. 2&hich has complexityO(M?).
Clearly, in a scenario where a large number of landmarksrataded in the state vector, car-
rying out this operation during each propagation and updatéd incur an unacceptable com-
putational burden. To address this problem, we here proposav sampling scheme for the
UKF, which has computational coét(1), and hence reduces the complexity of the propagation
and update steps to linear and quadratic, respectively.d&€heation of this sampling scheme
is based on the observation that, during SLAM, onbnaall subsebf the state vector appears
in the nonlinear propagation and measurement models. ticylar, during propagation only
the robot state changes, while at each update, every measnirinvolves only the robot pose
and one observed landmatk. To take advantage of this important property, we employ the
following lemma:

Lemma 4.4.1. Consider a nonlinear functiog = g(x) = g(x1), where only the state entries

. X
x; of the vectorx partitioned asx = [ !
X2

] appear ing(x). Moreover, consider the regression

matrix A of the linear regression problei#.4) accordingly partitioned asA = [Al A2},

i.e.,

y=Ax+b+e=A1x; +Axxo+b+e (4.28)

2 When more than one landmarks are detected concurrentiynieasurements can be processed sequentially,
given that the measurement noise in different observat®imlependent.
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Then, the optimal solution t@.4)is:

A, =Py, P! Ay =0, b=y—Ax; (4.29)

X1X1?

Proof. See Appendix C.1. O

This lemma shows that, in order to minimize the expected reguarror of the statistical
linearization (4.4), it suffices to draw sample points frdma pdf ofx;. As mentioned before,
in SLAM the number of states participating in the nonlinesygess and measurement models
is constant. Thus, we can reduce the cost of UKF samplirf@(i0 by applying the unscented
transformation only to the pertinent state entries, irdstdasampling over the whole state. Com-
pared to the EKF-SLAM, the proposed UKF-SLAM only incurs afrnomputational overhead
(for computing the square roots of constant-size matrj@s) has computational complexity
of the same order. In the following, we present in detail tiéss sampling strategy used in the
UKF-SLAM. We stress again that apart from the particularbfgo of SLAM treated in this
chapter, this new UKF sampling scheme is applicablenypproblem where the measurements
are of lower dimension than the state.

4.4.1 Propagation

During propagation, only the robot pose and the control ir{fpdometry) participate in the
process model [see (4.10)]. Therefore, we are able to rettheceomputational complexity by
applying the unscented transformation only to the part ef¢tate comprising the robot pose
and the control input, instead of the full state vector. Témulting Jacobians are then used for
efficiently propagating the covariance matrix correspogdb the entire state.

We start by drawing the sigma point$(k|k) based on the vector with the following mean
and covariance [see (4.13)]:

= X Ry
|k = [ |

Omy,

(4.30)

) Pxxk‘k =

Prr,, O ]
0 Qr

wherePRRMk is the covariance matrix corresponding to the robot posjrdd by partitioning
the state covariance matrix as follows [see (4.26)]:

Py = ' ' (4.31)
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Note that the vectaky,;, in (4.30) is of dimensiom = 5 (assuming that the odometry measure-
mento,,, is two-dimensional), and thus the computational cost offmatmg the sigma points
is very low.
Subsequently, we transform the sigma poififs;(k|k)} 12, using the process model (4.10),
to obtain the regression points of the propagated robot, §0§ék + 1|k) = £(X;(k|k))} 2.
This enables us to compute the me&p, ., , = Yx.41/x, and covarianceP rr, , ., = Pyy, ., .»

of the propagated robot pose, in the same way as in the sthhB#&F/UKF [see (4.14)]. More-
over, we can evaluate tleferredrobot state and odometry Jacobians as [see (4.29) and](4.15)

_ =1 o o
A1 = Pyxk\kPxxk\k = [@Rk GRk:| (432)

while A; = 0.
Next, using (4.16), we compute the propagated cross-eioal between the robot and the
landmarks as follows:

. ~ ~T
PRy = E [XRk+1\kak\k]

= ‘iRkPRLW (4.33)

Thus, the propagated state covariance matrix is given by:

v

P}'Yk+l\k q)RkPRLk\k

1 (4.34)

Prik =
which is evaluated with cost onlinear in the size of the state vector, similarly to the EKF.
The matrix® g, derived in (4.32) is the inferred propagation Jacobian fierrbbot state.
To compute the inferred Jacobian matrix for the entire SLAMesvector, which will be useful
for our ensuing analysis, we use (4.9), (4.30) and (4.32)riew

P :AlPxxk‘kA{ + Peek

ziRkPRRMiEk +Gg, QiG%, + Pee, (4.35)

YYk41|k

and therefore, (4.34) can equivalently be written as:

Pk+1\k = ‘i)kPk“f(i’g + QZ (4.36)
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where

Qi = ] (4.37)

(4.38)

. [®p o
| 0 Doy

In the above expressio®;, is the inferred propagation Jacobian matrix for the SLAMesta
vector comprising the robot pose and the landmark positions

4.4.2 Update

Any measurement used for updating involves only the robsepmnd the position of the ob-
served landmark. Therefore, we can apply the unscentesfdramation only to this subset of
states so as to reduce the computational cost. In parti@daume that thgth landmark,L,

is observed at time-step+ 1. Then, the set of sigma poinfst; (k + 1|k)}12, are drawn from
a distribution with the following mean and covariance:

PRRkJrl\k PRLj,k+l\k

_ XR =
xk‘-i—l‘k: = [A k+1k] s Pxxk+1\k = (439)

PLjkik

Prr.

PLJ'R G k+1|k

k+1lk

wherePrp, ,,, andPp; are the covariance matrices of the robot and the landmark,

jok+1lk

respectively, whilePp, ., = P:LF], Ryoiie is the corresponding cross-correlation matrix, ob-

\
tained from the following partitioning of the state covaita matrix:

PRRk+1\k T PRLj,kH\k T PRLJVI,k+1\k
Pk’-l-l\k = PLij+1\k o PLij,k+1\k o PLJLJVI,k+1\k
_PLJVIRk+1\k T PLJVILj,k+1\k e PLAILAI,k+1\k_

Note that the matrix used for generating the sigma pointschastant size [see (4.39)],
regardless of the number of landmarks in the state vector.

Once the set of sigma points are generated, the linear signesf the LRKF update
(see Section 4.3.3) is applied to obtain fhéerred measurement Jacobian for the pertinent
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states [see (4.20) and (4.29)]:

At =Po Pt = [Hn, Hi, (4.40)

XXE41|k j

where the submatriflp, ,, corresponds to the robot pose, whilk,,, ,, corresponds to the

k1
j-th landmark. To construct the inferred measurement Jandbi the entire state vector, we
note that according to the new sampling scheme the unsceateformation is not applied to
the landmarks that are not currently observed (their regresmatrices are zero according to
Lemma 4.4.1). Therefore, theferred measurement Jacobian for the entire SLAM state vector
is:

Hy = ﬁRk+1 0 --- 0 Hp

Jik+1

0 -~ 0 (4.41)

Once this matrix is available, (4.21)-(4.24) are appliedupalate the state estimate and
covariance in the UKF. It is important to point out that thengmtational cost of the proposed
UKF update equations is dominated by the covariance updad)( and hence is quadratic in
the number of landmarks, similarly to the EKF.

4.4.3 Landmark initialization

Suppose that thg-th landmark,L;, is first observed at time-stéfy. The corresponding mea-
surement is given by:

z, = h(xg,, ,PL;) + Vk, = Zp, + Vi, (4.42)

By solvingz; = h(xg, ,pr,;) for p.;, we can express the landmark position as a (generally
nonlinear) function of the robot pose and the noiseless uneasnt:

pr; = g(kao > ZZO) (4.43)

% To preserve the clarity of presentation, we consider the adeere a single measurement suffices to initialize
the landmark. This includes the distance-bearing measmemodel, commonly used in practice. However, this is
not a necessary assumption and our analysis can be extenttexildase where multiple measurements at different
time steps are needed to initialize the new landmark (eegwibg-only or distance-only measurements).
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In order to carry out the landmark initialization in the LRKFKF framework, we approximate
this nonlinear initialization function by a linear funatio

PL; = AxXpy, + Agzj, + b, +ef, (4.44)
X Ry, 7 7
= [Ax Az] [ L0 by, e, (4.45)
—— | %,
Ay

where A, and A, are the regression matrices corresponding to the robot u$ehe mea-
surement, respectively. These matrices are computed tigtistd linearization, similarly to the
cases of propagation and update.

Specifically, it becomes clear from (4.43) that only the tgbase and the measurement of
the newly detected landmark are involved in the initial@atprocess. Therefore, we can apply
the result of Lemma 4.4.1 to draw the sigma points based oveitter with the following mean
and covariance:

X Ry ko1 P _
’ XXkolkol —

0 Ry

Suppose the measurement vector is of dimensioifhen, the UKF will choose+1 = 2x (34

Zi,,

_ Prr, .. O
Xk’u“i’u—l = [ kolko—1 ] (446)

m)~+1 sigma points{ X; (k,|k,—1)};_,, and transform them through the nonlinear initialization
model (4.43) to obtain the regression points of the new larérposition{);(k,|k, — 1) =
g(Xi(kolko — 1))}i_,. The sample mean of the regression points is used to ingidlie new
landmark position:

PL; kol = Yholko—1 (4.47)

In order to compute the covariance matrix of the augmentat stector comprising the
robot pose, the previously initialized landmarks, and tee tandmark, we first note that the
regression matrix in (4.45) is [see (4.29)]:

A, = [Ax AZ} = Pyx, P (4.48)

XXkolko—1
Subsequently, using (4.44), (4.46), (4.47), and (4.5), ampute the error in the posterior
estimate for the position of theth landmark:

PLjkoike = PLj = PLj, ko
E3 1/ ! A 1
— AXXRkO+AZZkO+ k?o—I_ek‘o_AxXRko\kofl_Azzko_bk‘o

= AxXp,, ., + Avi, e, (4.49)
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Based on (4.49), the cross-correlation terms between thdar@lmark and the robot and the
old landmarks are given by:

PriRyu, =E [f)Lj,ko\koigko\krl} = AxPRRy, 1, (4.50)
- T
PLiLypow, =B [pLJaku\kopL]",ko\ko—l] = AxPRLy ko (4.51)
for j/ = 1,...,M andj’ # j. Hence, the covariance matrix of the augmented state vector
becomes:
P P Az
kolko—1 ko|ko—1
Pko|ko = 2M x2 (452)
|:Ax 02><2M] P lko—1 PrLiL; otk
wherePy 1, = Pyy, .., is the sample covariance of the set of the regression points

{YVi(kolko—1)}_,. Note that the computational complexity of the UKF landmiaialization
is linear in the number of landmarks, which is of the same adan the EKF.

For our derivations in the following sections, it will be mssary to compute the inferred
measurement Jacobian matri(:?Eqko andIu{Lj,ku, which correspond to the measurement used
for initializing the landmark. For this purpose, by solvif@44) forz; and then substituting
in (4.42), we have:

2, = —A; Axxp,, A, 'pr,— AL D] —A el vy, (4.53)

We thus conclude that thieferred measurement Jacobians corresponding to this measurement
are:

Hp, =—-A;'A,, Hp, =A;! (4.54)

ko J,ko z

4.5 SLAM observability analysis

As discussed in Section 4.3, the UKF carries out recursie ststimation based on a linear
approximation (i.e., using sigma points) of the nonlinegstem model. In this section, we
examine theobservabilityproperties of the UKF linear-regression-based system meifee
they can affect the filter’'s performance. To the best of owwedge, no such analysis has
appeared in the literature prior to [71].
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4.5.1 Background

Our motivation arises from our previous work [66, 70, 72],em it was shown that the ob-
servability properties of the EKF’s linearized system magteatly impact the filter’s consis-
tency in SLAM. Specifically, we have proven in [66, 70, 72]ttiee system model of aideal
EKF, whose Jacobians are evaluated attthe state, has8 unobservable degrees of freedom
(d.o.f.) These correspond to the global position and orientatiod, rmatch the unobservable
directions of the underlyingonlinear SLAM system [72, 105]. Moreover, it was shown that
the ideal EKF exhibits excellent performance in terms ofsistency. By contrast, the system
model of the (standard) EKF, which uses therent state estimates for computing the Jaco-
bians, haonly 2 unobservable d.o.fcorresponding to the global position. As a result, the
standard EKF becomes inconsistent since it acquires nisteakinformation along the direc-
tion of the global orientation. Based on this analysis, #) [®], we derived the First-Estimates
Jacobian (FEJ)-EKF, which, by evaluating the Jacobianbeafitst available state estimates,
achieves the desired observability properties (i.e.yistesn model ha8 unobservable d.o)f.
However, the first state estimates may be inaccurate andt iedarge linearization errors,
thus degrading the filter's performance. To improve the EEF; in [72], we developed the
Observability-Constrained (OC)-EKF which instead saldirtearization points that not only
ensure the linearized system model hascreect number of unobservable d.pbut alsomin-
imize the linearization errorsAs a result, the OC-EKF attains consistency better thanaha
the FEJ-EKF and comparable to that of the ideal EKF.

In this work, we adopt an analogous approach where we firshimeathe observability
properties of the UKF-SLAM system model and compare therndsé of the underlying non-
linear SLAM system. Based on this analysis, we introduceffarient algorithm for computing
the appropriaténferred measurement Jacobians that preserve the dimensions afithearv-
able subspace, thus improving consistency.
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4.5.2 UKF-SLAM observability

To examine the observability properties of the UKF-SLAMtsys model, we form the observ-
ability matrix [112] for the time intervalk,, k, + k| as follows:

Hy,
Hy, @
M — fot 1o (4.55)
_ﬁko+k‘i)ko+k—1 e ‘iko_
where the inferred measurement JacobI?i@(,M, ¢ € {0,...,k}, and inferred state propaga-
tion Jacobian®;, 1, ¢ € {1,...,k}, are computed based on the UKF regression matrices

[see (4.32), (4.38), (4.40), and (4.41)].

Since the UKF approximates the nonlinear SLAM model by agsgjon-based linearized
system [see (4.12) and (4.18)], it is desirable that its sladlity properties match those of the
underlying nonlinear system, and thus those of the ideal. HKERt is, the UKF-SLAM system
model should have 3 unobservable d.o.f., or equivalendlyliservability matrixM, should
have a nullspace of dimension 3.

However, this is generallgiotthe case. In fact, when numerically computing the dimension
of the nullspace oM, we find that it is 3 only at time-stef,, when a landmark is initialized.
At that time, the observability matrix comprises only thaffinferred measurement Jacobian,
e, M = ﬂko, which is a 2x 5 matrix and thus generally has a nullspace of dimension 3.
Later on and as more measurements become available, thasiimeof the nullspace of the
observability matrix decreases fast. Typically, the obeeitity matrix M becomes full-rank
after two time steps of consecutive observations.

A full-rank observability matrix indicates that the linesgression-based system model em-
ployed by the UKF is observable, which contradicts the oladality analysis of the nonlinear
SLAM system [72, 105]. In practice, this implies that the Uilitains “spurious” information,
in all directions of the state space, even in directions whmar information is available, such
as the global position and orientation. This, in turn, lean unjustified reduction of the
state estimates’ covariance matrix, which cannot be cosgied for by the noise covariance
increase that the UKF uses to account for linearizatiorrgfsee (4.36)]. As shown in the sim-
ulation and experimental results in Sections 4.7 and 4e8initonsistency due to the mismatch
between the observability properties of the UKF linearesgion-based system model and the
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nonlinear (or equivalently the ideal EKF) system model sesua significant degradation in the
filter's performance.

4.6 Observability-Constrained (OC)-UKF SLAM

In this section, we introduce a novel OC-UKF algorithm thaipéoys a linear-regression-based
system model with observability properties similar to #tna$the underlying nonlinear SLAM
system. Specifically, we construct the “inferred” Jacobiahthe UKF in such a way that the
resulting system model has anobservable subspace of dimension 3

In particular, the propagation phase of the OC-UKF is idmhtio that of the standard UKF.
The difference arises in the update phase, where, insteamh@bying the unconstrained mini-
mization of (4.4) for computing the regression matrix, wenfalate aconstrainedminimization
problem that enforces the desired observability properpecifically, if the first landmark was
observed at time-stel,, we require that [see (4.55)]:

MN =0 < (4.56)

H;, N=0, for{=0
(4.57)

Hy, o ® 01 &, N=0, forl >0

In the above expressiond is a(3-+2M ) x 3 matrix, whose columns span the desired nullspace.
These constraints ensure that all the block rows of the vhbiity matrix M (4.55) have the
samenullspace, which coincides with thenobservable subspacd the filter's system model.
By ensuring that its inferred system model has an unobsknglbspace of dimension 3, the
OC-UKF avoids the infusion of erroneous information, andngpirically shown to attain sig-
nificantly improved consistency (see Sections 4.7 and 4.8).

In what follows, we show how the nullspace matikis determined, and based on that, we
compute the inferred measurement Jacobians.

4.6.1 Computing the nullspace matrixN

Consider the following partitioning of the matriX:

T
N:[Ng Nﬂ NJL“M] (4.58)
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whereNr is a3 x 3 submatrix corresponding to the robot pose, &d,: = 1,..., M, are
2 x 3 submatrices corresponding to thth landmark. It is important to note that landmarks are
typically observed and initialized at different time insts, and hence the number of submatrices
comprisingN will increase over time, as new landmarks are included iméostate vector.

Initialization of the first landmark

When the first landmark is initialized at time-stép, we chooseN to be a matrix whose
columns span the nullspace of thec 5 inferred Jacobiaitl;, = [ﬂRko f{LMO] [see (4.54)],
ie.,

o o o N
null(Hy,) = span(N) = |Hg, HLMO] [ R] =0 (4.59)

col.

Thus,N can be readily computed via the singular value decompos{&yD) ofﬂko [49].

Initialization of subsequent landmarks

Suppose that thith landmark is detected for the first time at time-stgp-£. This implies that
the state vector already contains the fiyst {) landmarks and thuslp andN,, (: = 1,...,j—

1) have been computed. The nullspace mabixnow will have to be augmented Y,
corresponding to the new landmaik;. To determineN_, we first notice that, based on the
structure of the measurement and state-propagation edfdaicobians [see (4.41) and (4.38)],
the corresponding block row of the observability matrixtas time step, denoted lQyly, .,
can be obtained as [see (4.55)]:

My, 6 = Hy 1, ®ro ot - R, = (4.60)
|:I:‘IRko+k(ukao+kfl T (i)Rko 0 --- 0 ﬁLj,ko+k]

Since this is the newest landmark, it is appended at the ethé state vector. Then, we compute
N, based on the requirement that each block row of the obséityabhatrix M has the same
nullspace, spanned by, i.e.,

null(My, +r) = span(N) = My N =0 (4.61)

col.
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Substitution of (4.58) (using/ = j) and (4.60) in (4.61) yields:

Hr,, i PRypsrr - PR, Nr+Hp (N, =0 =
_ -l - £ £
Nz, = _HLj,ku+kHRko+k(I>Rko+k—1 @R, Nr (4.62)

4.6.2 Computing the inferred measurement Jacobians

We know from Lemma 4.4.1 that we only need to determine theessipn matrixA, in-
stead of the full regression matri, in order to compute the inferred measurement Jacobians
[see (4.40) and (4.41)]. Therefore, once the nullspaceixn®ris available, at each update
step, we formulate the followingonstrainedinear-regression problem with respectAq and

b [see (4.4)]:

10
Ralig ; w; [Z; — (A1 X+ b))V [Z — (A1 X; + b)] (4.63)
st. A®) P N; =0 (4.64)

y P 0 . :
where®) ., £ Bkoe , ¢ =0,...,k — 1, denotes the reduced-size regression ma-

0 I
trix obtained from propagation [see (4.32) and (4.38)]responding to the part of the state

comprising only the robot pose and the obseryeith landmark at time-stef, + ¢; and
N; £ [N% N{j] [see (4.58)] contains the corresponding block rowsNof The sigma
points used in the minimization problem (4.63) are computtedhe procedure described in
Section 4.4.2. The optimal solution Af; is obtained irclosed fornmusing the following lemma:

Lemma 4.6.1. The optimal solution to the constrained minimization perb(4.63)(4.64)is

given by:
A= [kaoJrk I:ILMOM]
=Pty ciren s B (LPooxg, i x L) e’ (4.65)
with
L =L, 0piom] (I - UUTU)1UT) (4.66)
UL & @ N, (4.67)

wherem is the dimension of the measurement vector.
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Proof. See Appendix C.2. O

Lastly, once we construct the full inferred measuremendidian matrixflko+k in (4.41)
from the regression matriA; in (4.65), we update the state estimate and covariance based
on (4.21)-(4.24). In summary, the main steps of the OC-UKRELare outlined in Algo-
rithm 3.

We stress that if multiple landmarks are observed conctlyrehe above process for de-
termining the inferred measurement Jacobians is repeatgakastially for each of the land-
marks. Note also that the maximum dimension of all the medriovolved in (4.65)-(4.66) is 5
[see (4.39)], and thus computing the regression matgixncurs only aconstantcomputational
overhead, regardless of the number of landmarks in the giata result, the overall computa-
tional cost of the OC-UKF update step remains quadratics(éei case for EKF-SLAM).

Algorithm 3 Observability-Constrained (OC)-UKF SLAM

Require: Initial state estimate and covariance
1: loop
2:  Propagation: When an odometry measurement is received,
3 determine sigma points by (4.25) with mean and covarian@9)4
4 produce regression points by passing the sigma pointsghr@u10).
5 compute the state estimate (4.14).
6: compute the regression matrix via (4.32).
7
8
9

compute the propagated covariance via (4.34).

Updat e: When a robot-to-landmark measurement is received,
determine sigma points by (4.25) with mean and covarian@9)4

10: produce regression points by passing the sigma pointsghrthe nonlinear function
in (4.17).

11: compute the regression matrix via (4.65) and (4.40).

12: update the state and covariance via (4.21)-(4.24).

13: Initialization: When anew landmark is detected,

14: determine sigma points by (4.25) with mean and covarianes)4

15: produce regression points by passing the sigma pointsghr@u43).

16: compute the inferred Jacobian matrices via (4.54).

17: initialize the new landmark position (4.47) and update thgescovariance (4.52).

18: if this is the first observed landmark, compute the nullspaedrix N via (4.59), else

augment the nullspace matdx with N, corresponding to the new landmark (4.62).
19: end loop
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4.7 Simulation results

A series of Monte-Carlo comparison studies were conduateléivarious conditions, in order
to verify the preceding consistency analysis and to comyfaeerformance of the proposed
OC-UKF to that of the standard UKF/EKF and the OC-EKF [72] adlas the iSAM al-
gorithm [88], in terms of consistency and accuracy. The icetised to evaluate estimation
performance are RMSE and NEES [14]. The former provides asumeaof accuracy, while
the latter is a standard criterion for evaluating estimatmsistency. Specifically, it is known
that the NEES of anV-dimensional Gaussian random variable followg?adistribution with
N d.o.f.. Therefore, if an estimator is consistent, we exfieatthe average NEES for the robot
pose will be close to 3 for all time steps, and the averagentenk NEES will be close to 2.
The larger the deviations of the NEES from these values, thesevthe inconsistency of the
estimator. Note that when two estimators produce compar@MSE, the one whose NEES
value is closer to the expected is also the one whose estimat@riance is closer to the true
one? By studying both the RMSE and NEES of an estimator, we obtainraprehensive
picture of the estimator’s performance.

4.7.1 SLAM with range-and-bearing measurements

In the simulation tests presented in this section, a robtit aisimple differential-drive model
drove on a planar surface, at a constant velocity ef 0.25 m/sec. The two drive wheels were
equipped with encoders, which measure their revolutiodspanvide measurements of velocity
(i.e., right and left wheel velocities;,. andv;, respectively), with standard deviation equal to
o = 2% for each wheel. These measurements were used to obtaiméa &nd rotational
velocity measurements for the robot, which are given by:

Ur + Uy _ Ur =

2 7 a

wherea = 0.5 m is the distance between the active wheels. The robot redalistance and
bearing measurements to landmarks lying within its sensinge of 5 m. The standard devi-
ation of the distance-measurement noise was equal to 10%e abbot-to-landmark distance,
while the standard deviation of the bearing-measuremeisemnas set td0 deg. It should be

4 It is important to stress that knowing the uncertainty of tbenputed estimates is often as important as the
estimates themselves. An inconsistent estimator thattepovariance values smaller than the true ones can be
unreliable for use in practice.
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noted that the sensor-noise levels selected for the siiongasre larger than what is typically
encountered in practice. This was done on purpose in ordeake the effects of inconsistency
more apparent.

For the results shown here, a SLAM scenario with multiplegplofosures was considered,
where during each run, the robot executed 10 loops on a airttdjectory, and observed 20
landmarks in total. The reported results were averaged 5@dvlonte-Carlo trials. During
the test, six estimators processed the same data, to enfaire@mparisor’. The compared
estimators were: (i) the ideal EKF, (ii) the standard EKiB, ttie OC-EKF [72], (iv) the standard
UKF, (v) the OC-UKF, and (vi) the iSAM algorithm [88]. Noteah as shown in [87], the
performance of iISAM is very similar to (or even slightly letthan) that of iISAM2 in landmark-
based SLAM, which is the case considered in this work. Heircdhis test, we compared
our algorithm to iSAM [88], using version 1.6 of its open-soel implementation [89] with
standard parameters, i.e., solving at every time step amdagng/relinearizing every 100 time
steps. We also point out that, in order to ensure a fair coisqarwe report the current-state
estimates (instead of the final batch estimates) of the iSAjdrithm at each time step, which
are computed by processing the measurements up to the tctimenstep, without using any
future measurements’ information. Clearly, these incraalecausal estimates are of more
practical importance in any real-time robotic operatiomsily, it is important to note that the
ideal EKF isnot realizable in practice since its Jacobians are evaluatdtegunknown) true
values of the state. However, we included it as a benchmarlrisimulations, since it has been
shown to possess tlwerrectobservability properties and exhibit the best performanderms
of both consistency and accuracy [66, 70—72].

The comparative results for all the estimators are predénteig. 4.1 and Table 4.1. Specif-
ically, Figs. 4.1(a) and 4.1(b) show the average NEES and BM&pectively, over all Monte-
Carlo runs for each time step for the robot pose. On the othedhTable 4.1 presents the
average values of all relevant performance metrics for @inéirharks and the robot. For the
landmarks, we computed the average RMSE and NEES by avgrager all Monte-Carlo
runs, all landmarks, and all time steps. For the robot mosiéind orientation RMSEs and the
robot pose NEES, we averaged the corresponding quantite¥sath Monte-Carlo runs and all

® In [72], the OC-EKF was shown to perform better, in terms afumacy and consistency, than both the FEJ-
EKF [70] and the robocentric mapping algorithm [27], whiémsa at improving the consistency of EKF-SLAM by
expressing the landmarks in a robot-relative frame. Tloeegfin this chapter we omitted the comparison between
the proposed OC-UKF and the FEJ-EKF as well as the robocantapping filter.
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Table 4.1: [Simulation Results. Range-and-bearing SLAMb& pose and landmark position
estimation performance

Ideal-EKF  Std-EKF OC-EKF Std-UKF OC-UKF iSAM

Robot Position RMSE (m)

0.6297 1.2664 0.6771 1.1002 0.6635 0.7587
Robot Heading RMSE (rad)

0.0648 0.1070 0.0696 0.0954 0.0680 0.0760

Robot Pose NEES
3.1284 20.6195 4.6896 14.8696 3.9305 4.2649
Landmark Position RMSE (m)

0.6071 1.2552 0.6539 1.0890 0.6325 0.7732
Landmark Position NEES

2.1569 19.5556 4.6150 13.7205 2.8303  10.1408
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Figure 4.1: [Simulation Results. Range-and-bearing SLAM@hte-Carlo results for a SLAM
scenario with multiple loop closures: (a) average NEES@ftibot-pose errors, and (b) average
RMSE for the robot pose (position and orientation). In thelsts, the dotted lines correspond
to the ideal EKF, the solid lines with circles to the standaKF, the dashed lines to the OC-
EKF, the solid lines with crosses to the standard UKF, thi&l dimles to the OC-UKF, and the
dash-dotted lines to the iISAM algorithm. Note that the RM$Ehe ideal EKF, the OC-EKF,
the OC-UKF and the iSAM algorithm are very close, which mattes corresponding lines
difficult to distinguish.

time steps.

Several interesting conclusions can be drawn from thesdtsed-irstly, it becomes clear
that the performance of the proposed OC-UKNesy closeto that of the ideal EKF, and sub-
stantially better than both the standard EKF and the stand#, in terms of both RMSE
(accuracy) and NEES (consistency). The observed perfarengain indicates that the observ-
ability properties of the linear-regression-based systerdel employed in the UKF play a key
role in determining the filter consistency: When these prigediffer from those of the under-
lying nonlinear system, which is the case for the standart BEkd UKF, the filter's consistency
is negatively impacted.

A second observation is that both the OC-UKF and the OC-Ekdnaslightly better per-
formance than the iISAM algorithm, in terms of consistency aocuracy (see Fig. 4.1 and
Table 4.1). This can be justified by the fact that in order thupe its processing requirements,
the iISAM algorithm doesot iteratively update the whole measurement Jacobian matna (
thus the square-root information matrix) at every time stagtead, it reuses partial results from
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the previous time steps and only updates the Jacobian nratrementally by appending to it
new rows corresponding to the most recent measurementsedovihe previously-computed
parts of the Jacobian matrix can be quite inaccurate (eslpedght before a loop closure event
or in the presence of large measurement noise). Moreowaenrental updating process does
not guarantee the appropriate observability propertibgse factors can lead to significant es-
timation errors, which will propagate in time and degrade i®AM algorithm’s performance
for all time steps except the ones where batch relineaniza applied. Clearly, this issue
can be mitigated by performing periodic relinearizationrenfsequently, which, however, will
significantly increase the computational cost.

Lastly, the OC-UKF also outperforms the OC-EKF [72], by a Bemanargin, in terms of
both RMSE and NEES. It is interesting to note that the adgntf the OC-UKF over the
OC-EKF is more pronounced in terms of NEES. This indicates the OC-UKF provides a
more accurate uncertainty measure (covariance) than th&K¥I and also implies that the
filter's inconsistency primarily affects the covariancather than the state estimates. To further
highlight this performance difference, in the next sectiwa also compare these algorithms in
the case of bearing-only SLAM (BOSLAM), whose severe nadiities make the need for a
better linearization scheme, such as the one offered by G#JRF, more evident.

4.7.2 SLAM with bearing-only measurements

In this BOSLAM simulation test, we employed the same simiottasetup as in the preceding
case, with some changes in the parameters. Specificallyplité moved on a circular trajec-
tory at a constant velocity af = 0.5 m/sec, with wheel-velocity measurement noise standard
deviation equal tr = 1%w, while the standard deviation of the bearing-measuremeisen
was set to 2 deg. Note that we doubled the robot velocity i ghmulation, because a larger
linear velocity increases the baseline between two cotisectime steps, leading to a more
reliable triangulation-based landmark initializatio®]1

The comparative resufts of the robot pose and landmark position estimation are shown
in Fig. 4.2 and Table 4.2. As evident, in the case of BOSLAM mehbe measurement non-
linearity is more significant than that of the range-andringaSLAM considered earlier, the
standard UKF performs substantially better than the stangkF, in terms of both consistency

6 Since the current implementation of iISAM [89] does not imeihe bearing-only case, in this test we omit the
comparison of the OC-UKEF to the iISAM algorithm while focugion that to the OC-EKF.
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Table 4.2: [Simulation Results. Bearing-only SLAM] Robaise and landmark position esti-
mation performance

ldeal-EKF  Std-EKF OC-EKF Std-UKF  OC-UKF

Robot Position RMSE (m)
0.0427 0.1132 0.0529 0.0707 0.0455

Robot Heading RMSE (rad)
0.0045 0.0130 0.0055 0.0075 0.0043

Robot Pose NEES
2.6054 12.6715 4.4730 4.8453 2.6917

Landmark Position RMSE (m)
0.1066 0.1770 0.1305 0.1630 0.1471

Landmark Position NEES

1.8964 12.7627 12.6085 6.1927 4.3216
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Figure 4.2: [Simulation Results. Bearing-only SLAM] Mor@arlo results for a SLAM sce-
nario with multiple loop closures: (a) average NEES of thaotepose errors, and (b) average
RMSE for the robot pose (position and orientation). In thelsts, the dotted lines correspond
to the ideal EKF, the solid lines with circles to the standaKF, the dashed lines to the OC-
EKF, the solid lines with crosses to the standard UKF, anddfid lines to the OC-UKF. Note
that the RMSE of the ideal EKF and the OC-UKF are almost idgahtiwhich makes the corre-
sponding lines difficult to distinguish.

(NEES) and accuracy (RMSE). This performance gain is alaceshby the OC-UKF over the
OC-EKF. We thus see that the OC-UKF combines the benefitseofD3-EKF (i.e., correct

observability properties) with those of the UKF (i.e., betinearization), to form an estimator
whose performance is comparable to that of the ideal EKF.

4.8 Experimental results

To further test the proposed OC-UKF SLAM algorithm, we alsaducted real-world experi-
ments in both indoor and outdoor environments. These tesisaow us to examine the algo-
rithm’s runtime, as compared to the OC-EKF and the stativ®fart iSAM algorithm. All the
timing results presented in this section were obtained oma llaptop with an Intel i5 processor
at 2.53 GHz, and 4GB of RAM.
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: — Estimated Trajectory
| O Corner Features =

Figure 4.3: [Indoor Experiment] The batch maximum-a-paste(MAP) estimate of the robot
trajectory during the indoor experiment (solid line), daet on the blueprint of the build-
ing. The boxesl[{]) denote the corners whose exact locations were known frenbuiiding’s
blueprints. The batch MAP estimates of the robot poses am#ribwn corners were used as
ground truth for computing the NEES and RMSE values showraliielr4.3 and Fig. 4.4.

4.8.1 Indoor environment

We first present the results of the indoor experiment cordlict an office building. The robot
was commanded to perform 11 loops around a square with spgeexamately equal to 20 m
(see Fig. 4.3). This trajectory was selected since repeaatedbservation of the same land-
marks tends to make the effects of inconsistency more appaed facilitates discerning the
performance of the various estimators. A Pioneer robotpgmpd with a SICK LMS200 laser
range-finder and wheel encoders was used in this experiffgorh the laser-range data, corner
features were extracted and used as landmarks, while thel wheoders provided the linear
and rotational velocity measurements. In particular, tid@taset was recorded over about 40
minutes, and contains 23425 robot poses and 63 landmarkl 892 measurements to them.
Since no ground truth for the robot pose could be obtainedguekternal sensors (e.g.,
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overhead cameras) in this experiment, we obtained a refergajectory, treated as ground
truth, by utilizing the known map of the area where the experit took place. Specifically, the
exact locations of 20 corners were known from the bluepiifitthe building. Measurements
to these corners, as well as all other measurements obtajndte robot (including those to
corners whose locations were not knowipriori), were processed offline using a batch MAP
estimator [91] to obtain an accurate estimate of the entijedtory. This estimate, as well as
the locations of the known corners, are shown in Fig. 4.3.s Toinstitutes the ground truth
against which the performance of the following five estimatwas compared: (i) the standard
EKF, (ii) the OC-EKF, (iii) the standard UKF, (iv) the OC-UKE&nd (v) the iSAM. Clearly,
due to the way the ground truth is computed, the estimaticoreare expected to have some
correlation to the errors in the ground truth. However, sitiiese correlations are the same for
all estimators, we can still have a fair comparison of thelative performance.

The comparative results for all estimators are presentddgs. 4.4(a) and 4.4(b), while
Table 4.3 shows the averaged NEES and RMSE of the robot pasktmark position, re-
spectively. We point out that during the experiment the taleiected a number of landmarks
that werenotincluded in the set of 20 known corners (e.g., movable objsath as furniture).
Since no ground truth was available for these objects, we as#d the 20 known corners for
computing the landmarks’ error statistics. From the expenital results, it becomes evident
that the OC-UKF outperforms both the standard EKF and UKH, @so achieves better ac-
curacy than the OC-EKF. This agrees with the simulationltegqresented in the preceding
section. It should be noted that the reported NEES in Figajtwas computed only from a
single run (i.e., this is not an average over many Monte€Carhs as in the simulations). To
evaluate an estimator’s consistency, the average NEEShoaey Monte-Carlo runs is a suit-
able metric, while the NEES values in a single experiment atodictate which estimator is
consistent or not. Regardless, we show these results ntaidigmonstrate the large difference
in performance between the OC-EKF/UKF and the standard BKF/ These experimental re-
sults, along with those from the simulations, further suppar conjecture that the mismatch in
the dimension of the unobservable subspace between tistictédly-linearized SLAM system
and the underlying nonlinear system is a fundamental caufléeo inconsistency.

As evident from Fig. 4.4(b) and Table 4.3, the OC-EKF/UKFiaeh similar accuracy to,
and better consistency than, the iISAM algorithm. As meiiibim the previous section, one
possible explanation for this is that the iSAM algorithm slowt iteratively update the whole
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Table 4.3: [Indoor Experiment] Robot pose and landmarktjposestimation performance and

runtime

Std-EKF  OC-EKF Std-UKF OC-UKF iSAM
Robot Position RMSE (m)
0.7323 0.5896 0.7268 0.5384  0.6108
Robot Heading RMSE (rad)
0.0512 0.0392 0.0508 0.0349  0.0388
Robot Pose NEES
6.0939 3.4575 6.0307 45442  9.1270
Landmark Position RMSE (m)
0.9929 0.8438 0.9894 0.8183  0.6528
Landmark Position NEES
7.3180 6.0354 7.2928 7.0123  9.6627
Total CPU Execution Time (sec)
304.761 304.251 306.689 307.930 350.379
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Figure 4.4: [Indoor Experiment] Experimental results: NBES of the robot-pose errors, and
(b) estimation errors of the robot pose (position and oaiton). In these plots, the solid lines
with circles correspond to the standard EKF, the dashed lioehe OC-EKF, the solid lines
with crosses to the standard UKF, the solid lines to the OG=LH(d the dash-dotted lines to
the iISAM algorithm. Note that the NEES and estimation eradugs of the standard EKF and
the standard UKF are almost identical, and the estimatimrepf the OC-UKF, the OC-EKF
and the iISAM algorithm are also very close to each other, lvmeakes the corresponding lines
difficult to distinguish.

measurement Jacobian at each time step, which may incuer liaggarization and thus estima-
tion errors. Inaccuracies in the measurement Jacobiaragabg into the covariance estimated
by the iISAM algorithm, which results in significantly higheEES values as compared to the
OC-EKF/UKF. Interestingly, as seen from Table 4.3, the OKFlhas a lower computational
cost than the iISAM in this experiment, although all the athpons attain faster-than-real-time
performance. This can be justified by the fact that the coatjmuital cost of the iISAM algorithm
increases as the robot trajectory grows. Moreover, the di-tdosing events occurring along
the robot trajectory in this experiment significantly irese fill-in in the square-root information
matrix and thus the computational complexity for solving flystem.

At this point we should note that in this indoor experimers &ll as the outdoor experi-
ment presented in the next section) the measurement con@spces were known. If not, then
to solve the data association problem, the iISAM algorithnuld/meed to recover marginal co-
variances, which will significantly increase its procegsiaquirements [88]. By contrast, since
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Table 4.4: [Outdoor Experiment] Estimation accuracy andinue

ISAM OC-EKF OC-UKF

Robot Position RMSE (m)

4.2111 5.9069 3.8084

Total CPU Execution Time (sec)

31.5482 35.6811 34.6138

the covariance matrix is maintained in the OC-EKF/UKEF, thergimal covariances are imme-
diately available and hence the maximum-likelihood dasaeisition incurs minimal overhead.

Lastly, it is very important to observe from Table 4.3 thag tivo UKFs (i.e., the stan-
dard UKF and the proposed OC-UKF) have similar timing penfance as the two EKFs (i.e,
the standard EKF and the OC-EKF). This is attributed to tlep@sed sampling strategy (see
Lemma 4.4.1), which results in the UKF having computatiarmahplexity of the same order as
that of the EKF.

4.8.2 Outdoor environment

To further examine the performance of the proposed OC-UKd-tegted our algorithm on a
publicly available SLAM dataset, the Sydney Victoria Pagtaset. The experimental platform
was a 4-wheeled vehicle equipped with a kinematic GPS, a f&sesor, and wheel encoders.
The GPS system was used to provide ground truth for the raisitign. Wheel encoders were
used to provide odometry measurements, and propagatiocamdsd out using the Ackerman
model. In this particular application, since the most comrfeatures in the environment were
trees, the profiles of trees were extracted from the lasex, @atd the centers of the trunks
were then used as the point landmarks. It should be pointethatiin this test, to ensure a
fair comparison with the iISAM algorithm, we employed thepzessed dataset which is also
available in the iISAM package [89]. This preprocessed @ata@ntains 6969 robot poses and
151 landmarks with 3640 measurements, recorded over 2@esinu

Since the OC-EKF and the OC-UKF were already shown in thegpliag simulations and
experiment to perform significantly better, in terms of aacy and consistency, than the stan-
dard EKF and UKF, in this test, we omitted the comparison ¢ateo latter filters for clarity of
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Figure 4.5: [Outdoor Experiment] Experimental results) Rabot trajectory and landmark
estimates as compared to the GPS data, and (b) robot posgtonation errors. Note that,
since in this test the GPS satellite signals were not alwegitadle, we computed the estimation
errors only when GPS was available. In these plots, the datké lines and stars correspond
to the iISAM estimates of the trajectory and the landmarkspeetively, the dashed lines and
triangles to the OC-EKF, and the solid lines and circles &@C-UKF, while the dots denote
the sparse GPS data points.

presentation. Instead, we focus on the accuracy compaoisine OC-UKF with the OC-EKF
and the iISAM algorithm. In this experiment, true landmarkifions and true robot orientations
were not available. We hence only compared the positiameatibn performance of the three
approaches (i.e., the OC-EKF, the OC-UKF, and the iISAM dtigar). Note also that, as men-
tioned in Section 4.8.1, the NEES computed from a single raxygmtal run is not well-suited
for analyzing the consistency of the estimators, and thubeveafter focus on the comparison
of accuracy and processing requirements. Specifically, 4g(a) depicts the trajectory and
landmark estimates produced by the three estimators asazethpo the GPS ground truth,
while Fig. 4.5(b) shows the corresponding estimation srairthe robot position. Table 4.4
shows the average estimation errors (i.e., RMSE) of robsitipa as well as the total CPU
runtime for the three estimators compared. Clearly, theldXE-achieves better accuracy than
both the OC-EKF and iISAM, while incurring comparable conapioinal cost. In particular, the
OC-UKF attains 36% and 10% reduction in robot position eatiom errors as compared to the
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OC-EKF and iSAM, respectively, while at 3% lowér and only 10% higher computational
cost. We repeat that the timing result for iISAM does not ideldhe runtime of computing
marginal covariances for data association. These resyiez avith what we have observed in
the indoor experiment presented in Section 4.8.1.

4.9 Summary

This work focuses on UKF-based SLAM, and in particular oni$isees of computational com-
plexity and filter inconsistency. The first contribution bfs work is the formulation of a novel
UKF-based SLAM algorithm that has computational compiexit the same order as that of
EKF-based SLAM. In particular, we have proposed a new saimg@cheme in which the un-
scented transformation employed by the UKF is only applietih¢ subset of states that appear
in the nonlinear process and measurement models, instadhéd ehtire state. Thus, by adopt-
ing this new sampling scheme, the UKF-based SLAM requir@speding the square root of
small, constant-size matrices, which leads to computatioomplexitylinear during propa-
gation, andquadratic during update. Furthermore, we have shown that a mismatoteba
the observability properties of the linear-regressioseobsystem model employed by the UKF,
and those of the underlying nonlinear SLAM system, causesnisistency. To address this
issue, we have introduced a novel Observability-Constchi(OC)-UKF, which ensures that
the UKF system model has an unobservable subspace of ajgpeogimensions, by enforc-
ing observability constraints on the filtefigferred Jacobians. Through extensive Monte-Carlo
simulations and real-world experiments, the OC-UKF is gintmvachieve comparable or better
performance, in terms of consistency, accuracy and cortipuoigh complexity, as compared to
other state-of-the-art SLAM algorithms such as the OC-EK& i&AM.

” Note that in this experiment, the OC-UKF has lower cost therQC-EKF, primarily because the Mahalanobis-
distance test [14] in the OC-UKF rejects more outlier measients than that in the OC-EKF.



Chapter 5

Observability-Constrained SWF for
SLAM

In this chapter, we study the consistency issue of smootlapgroaches, in particular,
the sliding-window filter (SWF) when applied to the SLAM pleim. By adapting our
observability-based methodology that was presentedmiiia filtering framework, we develop
a novel Observability-Constrained (OC)-SWF. Part of tinapter has been published in [67].

5.1 Introduction

As discussed before, among the existing approaches fot lotalization, the EKF is one of
the most popular methods, which is primarily due to its eddmplementation and relatively
low processing requirements. However, the EKF, as well gsliaaarization-based filtering
approach, may suffer from the accumulation of linearizatorors. This is because once lin-
earization points are selected at a given time step for ctingpthe filter Jacobians, they cannot
be updated at later times, when more measurements becoitabla/éor improving them. In
contrast, a batch-MAP estimator [91] can improve the estonaaccuracy by computing con-
sistent state estimates for all time steps based on albdaimeasurements. Under a Gaussian
prior and measurement noise assumption (which is commoraittipe), finding the MAP es-
timates requires solving a nonlinear least-squares profdee Section 5.2), whose counterpart
in computer vision is known as bundle adjustment [163]. Aetgrof iterative algorithms have
been employed for solving this problem. For example, thasgoot SAM method [36] solves

126
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the SLAM problem efficiently by using variable reorderingyall-known technique for sparse
linear systems. However, since the size of the state vattbeibatch-MAP estimator increases
continuously over time, the processing and memory requirgsnlbecome too high for real-time
operation in large-scale problems (e.g., a robot explagiteyge environment with millions of
landmarks).

To overcome this limitation, a sliding-window filter (SWF)42] (also called a fixed-lag
smoother (FLS) [38,111, 132]) can be used to estimate thesst&er a sliding time window at
a fixed computational cost. The SWF concurrently procesiséiseameasurement constraints
between states in the window, and better addresses thaearity of the problem by iteratively
relinearizing the process and measurement equations.appi®ach is resource-adaptive: de-
pending on the available computational resources, it cale $om the iterated EKF solution if
only a single time step is maintained, to the optimal batohF\solution if the sliding window
spans the entire time horizon.

The key characteristic of the SWF is the marginalizationldfstates from the sliding win-
dow, a process that appropriately models the uncertainthiese states [132,142,163]. How-
ever, due to marginalizatiordifferent estimatesf the same statesire used asinearization
pointsin computing the Hessian matrix during estimation (seei®e&.3 and [38]). This re-
sults in different parameter observability properties @glcompared to the batch-MAP estima-
tor. Specifically, the Hessian (Fisher information matokthe standard SWF has a nullspace
of lower dimension than that of the batch-MAP estimator.sTihiplies that the estimator erro-
neouslybelievest has information along more directions of the state sphagn those contained
in the measurements. This leads to inconsistent estimatgsestimates whose accuracy and
uncertainty measure are worse than the actual ones. Thisagish inconsistency is a serious
problem, since when an estimator is inconsistent, the acguof the produced estimates is
unknown, which in turn makes the estimator unreliable [14].

In order to improve the consistency and accuracy of the SWHis chapter we propose
an Observability-Constrained (OC)-SWF as a general snmapframework. In particular, we
postulate that by ensuring the Hessian matrix has a nuksspbappropriate dimension, we can
avoid the influx of spurious information in the unobservatiilections of the parameter (state)
space, thus improving the consistency of the estimatesedas this insight, the OC-SWF
extends the observability-based methodology for desigeimnsistent EKFs (see Chapter 2
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and [72]). The key idea behind our approach is to select ti@ltization points for comput-
ing the Jacobians, and thus the Hessian, so as to ensurésthatlspace dimension does not
arbitrarily decrease.

It should be pointed out that a prior-linearization (PL)-BWér motion estimation was
proposed in [38]. In particular, the PL-SWF computes thesiégsusing the prior, instead of
the current, estimates, for the states connected via merasuaits to marginalized states. This
ensures the same estimates for the same states are uselde apgitopriate dimension of the
Hessian’s nullspace is preserved. However, if the pridgmedes are inaccurate, the linearization
errors will be large and may degrade the estimator’s pedioga. In contrast, the proposed
OC-SWEF selectgptimallinearization points for computing the Hessian, in the sehsat they
not only ensure the correct dimension for the nullspace efHbssian, but also minimize the
linearization errors. We stress that apart from the SLAMbjam treated in this work, the
proposed OC-SWF is applicable to a large class of nonlinstamation problems in robotics
and computer vision, such as visual odometry [126] and rigided inertial navigation [120].

5.2 SLAM batch-MAP formulation

In this section, we describe the batch-MAP formulation a&f 8LAM problem, which forms
the basis for the ensuing derivations of the SWF. In padicwlie aim at estimating the entire
robot trajectory up to the current time-stepas compared to the only current robot pose in the
filtering approaches, as well as the positions of all obskteedmarks [see (2.1)]:

— [T T T T T
X0:k = |Xp, Xp, ‘° Xp, Pp, --- pLM] (5.1)

In what follows, we start by presenting the general motiod areasurement models that
are similar to the ones used in the EKF-SLAM (see Section &8hsequently, we describe the
batch-MAP estimator.

5.2.1 Motion model

Consider a robot equipped with an odometry sensor movingmaree. The odometry serves
as the control input to propagate the robot pose, accorditigetfollowing motion model [also
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see (2.2) and (2.3)]:

PR, =Pr,_, + C(br,_,) ™ 'pr, (5.2)
ORr, = bRy, + 1R, (5.3)

whereC(-) denotes the x 2 rotation matrix, andy, ; = -1xp, = [fs-1pf  fr-1¢p 7

is the true odometry (control input), i.e., the robot’s roatibetween time-steps — 1 and

k, expressed with respect to the robot’s frame at time-ktepl, { R;_1}. The corresponding
odometry measurement,,, ., is assumed to be corrupted by zero-mean white Gaussiag, nois
Wg_1 = Ug_1—Uy, ,, With covariance;_;. This motion model is described by the following
generic nonlinear function:

g(x0:k, Uk—1) = Xp, — f(Xp,_,, Wm, , +Wir_1) =0 (5.4)

To employ the batch-MAP estimator, it is necessary to lizeg(5.4) and compute the Jacobians
with respect to the state vector (5.1) and the noise, respbgti.e.,

Og
P B 5.5
N S ) [03X3 Pr, , Iz 03x2 0352 (5.5)
C(o% 0
OW -1 15,10} 01x2 1
with
I J(pt —p*
q)Rk,l = - 2 (ka ka—1> (57)

012 1

wherexg,, denotes the linearization point for the state (5.1), whikee vector is used as the
linearization point for the noise. Clearly, the values af thacobian matrices depend on the
choice of linearization points, which is the key fact our aqgezh relies on.

5.2.2 Measurement model

As discussed before, the robot-to-landmark measuremei®sAM are a function of the rela-
tive position of the observed landmark with respect to thmtdalso see (2.10)]:

zij = hyj(x0.) + vij =h ("pL,) + vy (5.8)
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wherefip;, = CT((;SRj)(pLi — Prg,) is the position of the-th landmark with respect to the
robot at time-steg, andv;; is zero-mean Gaussian measurement noise with covaridgnce
In this work, we allowh(-) to be any measurement function (e.g., a direct measurement of
relative position, a pair of range and bearing measurembatging-only measurements, etc.).
In general, the measurement function is nonlinear, anaéshlian matrix is computed as:

oh,;
H, & —L = B B 59
v o Hpy, 0 H,, 0 0| (5.9)
with
Hy, = (Vh,)C"(67) [T 35, — b} (5.10)
Hr, = (Vhy)CT(¢%,) (5.11)

whereHp,, andH_, ; are the Jacobians with respect to the robot pose at timejsaepl the
i-th landmark position, respectively, aich;; denotes the Jacobian hf; with respect to the
robot-relative landmark positioi p;,,, evaluated at the linearization poimdy., .

5.2.3 Batch-MAP estimator

The batch-MAP estimator utilizes all the available infotioa to estimate the state vector (5.1).
The information used includes: (i) the prior informatioroabthe initial state, described by a
Gaussian pdf with meaR|, and covariancéq, (i) the motion information (5.4), and (jii)
the sensor measurements (5.8). In particular, the batcR-E#imator seeks to determine the
estimatex,,. |, that maximizes the posterior pdf:

k
p(XO:k‘ZO:k) X p(xRo )Hp(xR,i ‘XRN71) H p(zZ] ‘XR]' 5 pLZ) (512)

k=1 zi €Z0:1
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whereZ.;. denotes all the available measurements in the time int@rv). For Gaussian state

and measurement noise [see (5.4), and (5.8), respectitielypdf (5.12) can be written as:

p(XO:k|ZO:k) X (513)
1 s 112
exp _§HXRO_XO\OHPO‘O X
(2m)" [P0l
k
1 1
[[ ———ew (—;erh. — E(xr )y ) x
k=1 (27T)3|QH_1|

1 2
11 \/TR'J p { —3llzi; — hij(xox)llg,,
JEZO k 2

wheren = dim(xg,) is the dimension of the prior stater,, andm = dim(zg) is the di-
mension of the measuremexjt. In the above expression, we have also employed the nasation
la|l3; = a"MaandQ), = Gg,Q,GF, [see (5.4)]. Hence, maximizing (5.13) is equivalent
to minimizing the following cost function:

1 5
e(xo) =5 1xr0 = Xojollby,+ (5.14)
k
Z_"XRh_f(XRK 17umli 1 HQ + Z HZZ] 7«7 XO k)HR
r=1 Z'LJGZO}c

The cost function:(xg.;) is nonlinear, and a standard approach to determine its mmim
is to employ Guass-Newton iterative minimization [163].eSifically, at thel-th iteration of
this method, a correctiorzf,xé?c, to the current estimat&,é?glk, is computed by minimizing the
second-order Taylor-series approximation of the costtfanavhich is given by:

R xh) = ()b axl) + Soxd) AL ox) (5.15)
where
by 2V, ,c()] L (5.16)
{XO:k Ok\k}
AP A2 ()] o (5.17)
{XO:k Ok\k}
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are the gradient and Hessian «f) with respect tox., evaluated at the current state esti-

matexé LW 1.8, X5, = (())‘ Specifically, at theé-th iteration, b is [see (5.5) and (5.9)]:

4 — ~ (0 P
bl(7) = HTPolé (Xg%())\k —X0|0> - (518)

k
(¢ OT 1 (¢ <t
> HY RS (2 —hy (&) + >0 Qi (Kf), —f&E )
Zij EZ0.k k=1
wherell = [In o - 0}. On the other hand, the Hessian matnz&{f), is approximated in
the Gauss-Newton method by [see (5.5) and (5.9)]:

AY ~m'pimy S B RE] 4 Z o' 8", (519
2 €Z0:1 k=1
which is a good approximation for small-residual problet®3]. Due to the sparse structure
of the matricesHE ) and<I> [see (5.5) and (5.9)], the matrux( ) is also sparse, which can
be exploited to speed-up the solution of the linear syste(b.20) [163]. The valuéx(():L that
minimizes (5.15) is found by solving the following linearstgm:

A5 — b (5.20)
Onceéxé‘l is found, the new state estimate is computed as:

RS0 = &5+ X0 (5.21)

(0)
Given an initial estlmatef:0 Kk

this iterative algorithm will compute the global minimume(i, MAP estimate) for the entire

that resides within the attraction basin of the global optim

state given all measurements up to time-step

5.3 SWF-based SLAM

It is clear from the preceding section that, as the roboticoously moves and observes new
landmarks, the size of the state vector of the batch-MARMedtr, x.;,, increases. Conse-
quently, the computational cost of obtaining a state esérnantinuously grows, and at some
point it will inevitably become too high for real-time opécm. In order to adapt to the avail-
able computational resources, marginalization [38, 182] tan be used to discard old, ma-
tured states. This results in a constant-cost SWF which taiaBa constant-size window of
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states [142, 143]. In this section, we describe the effeCthe marginalization used by the
standard SWF on the system’s observability propertiess @halysis forms the basis for our
proposed algorithm (see Section 5.4). For more details ®@d¢hivation of the marginalization
equations, the interested reader is referred to [38].

We consider a general scenario where marginalization oftatks is carried out at time-
stepk,, when all the measurements during the time intej¥at,| are available. Subsequently
the robot keeps moving and collects new measurements irntieeinterval [k, + 1, k], and
estimation takes place again at time-stefT he old states that are marginalized out at time-step
k, are denoted by: .

XM 2 Xﬁo:km p%Ml . pJL“Mm]
Note that it is not necessary to sequentially marginalizgheiold robot poses g, ; instead,
we can selectively discard the most matured (i.e., acdyratimated) ones. The remaining
states that stay active in the sliding window after marggadion are denoted by:

T
T T

A
km—+1:ko Rq Ry

Upon marginalization, all the statesin, as well as all the measurements that involve these
states (denoted bgnr) are discarded. In their place, we maintain a Gaussian hdif, de-
scribes the information that the discarded measurememigegabout the active statesgy.

The information matrix of this Gaussian is given by:

A, (ko) = Arr (ko) — ARM (ko) Ay (Fo) AMR (Ko) (5.22)

where the matrices appearing in the above equation are definthe partitions of the following
matrix:

km—1
A(ko) =TUPITT+ Y @1 (ko) Q' ®uho) + > HY (k)R Hyj(ko)  (5.23)
k=0

ZUEZM

_ | Amm(ky)  Amr(Fo) (5.24)

[ Arm(k,)  Arr(ko)
Close inspection reveals that,, (k,) is the matrix describing the information contained in all
the discarded measurements (odometry, robot-to-landraackprior). ThusA,,(k,), which is
the Schur complement dinm (ko) in A, (k,), describes the information that the discarded
measurements give us abot. We also note that, in the above, the time indgx) has been
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added to denote the fact that all the Jacobians are compated the estimat&,.;, ., as the
linearization point.

After marginalization the robot continues moving in its gomment, and new states are
added to the state vector durifig, + 1, k|. These are denoted by:

T
a [T T T
XN = |:XRkO+1:k pLN1 pLNn

Now, at time stepk, the “active states” ararg andxy. In order to compute estimates for
the active states, the SWF employs the “active” measuremétt = 2. \ 2m, along
with the motion model and the information from the margipedi states [expressed By, (k)

in (5.22)] [38].

As described above, the key idea in the SWF is that the infoomaf all the marginalized
measurements is represented using a single Gaussiabutisini While this entails an approx-
imation, it also enables the SWF to maintain constant coatjautal complexity, that depends
only on the number of currently active states, and not on &t Ipistory of marginalized states.

5.3.1 Parameter observability properties

We now examine the parameter observability propertiesdiithe standard SWF-based SLAM,
which, for the time being, is considered as a parametere@asof state) estimation problem.
The study of parameter observability examines whetherrfogmation provided by the avail-
able measurements is sufficient for estimating the parameitghout ambiguity. When param-
eter observability holds, the Fisher information matrie (i the Hessian matrix) is invertible.
Since the Fisher information matrix describes the inforamativailable in the measurements,
by studying its nullspace we can gain insight about the toes in the parameter (state) space
along which the estimator acquires information. In whalofes, we will compare the param-
eter observability properties of the standard SWF with ehofsthe batch-MAP estimator, to
draw conclusions about the estimator’s consistency.

We first notice that the nullspace of the Hessian matrix ofoieh-MAP estimator (5.19)
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at time-stepk, is given by?!

I,  Jbr,
O1x2 1
I Jp
null (Ap(k)) = span | 2 P (5.25)
col. 012 1
12 Jf)Ll‘k
L I2 Jf)LA“k_

which is of dimension three. This agrees with the fact th&LiAM, three d.o.f. corresponding
to the global translation and rotation are unobservable Geapter 2 and [72]). However, as
shown below, this is not the case for the standard SWF.

In the standard SWF, the matrix that describes the infoomdtr theentirehistory of states,
X0 = [XK/I xk xg}T, is given by [38]:

km—1
Ak) =Y @I (k)Q @y (ko) + > H (ko) Ry Hj (ko)
k=0

Zij EZMm

A (ko)

k—1
+ > @I(k)Q @ (k) > HJ (k)R H;;(k) (5.26)

rk=km Zij EZA

As(k)

where the matriXA (k,) contains all the information pertaining to the marginalizstates, and
A, (k) the information pertaining to the active states at tim@-éte Again, we note that the
time indices(k,) and (k) indicate the state estimateg(,, ., andxo.y ., respectively) used as
linearization points in computing each of the above ternte Messiam (k) in (5.26) has the

1 Since we are interested in the information contained in vadable measurements, the case without prior (i.e.,
Pyjo — oo) is considered here.
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following interesting structure:

Avmi(ko) Ammr(ks) 0] [0 0 0
A(k) = | Arm(k,) Arr(k,) 0|+ |0 Agrr(k) Arn(k)
0 0 o [0 Anr(k) Ann(k)
Aq (ko) As(k)
[ Anima (ko) Anr (ko) 0
= | Arm(k,) Arr(ko) + Arr(k) Arn(k) (5.27)
0 Anr (k) Ann (k)

It is clear now that different estimate®gr (k,) andxg (k), are used in computing the Hessian
matrix. This occurs because some of the statesgnare involved in measurements both in
Zwv and Z4. As a result of the above structure, it can be shown that tsteclslumn of the
matrix in (5.25) doesot belong in the nullspace dk (k) [38]. Instead, the nullspace & (k)

is spanned by only the first two columns of (5.25), which imtshows that the rank of the
Hessian in the SWF ikigher than the rank of the Hessian of the batch MAP. Clearly, this
difference is not desirable, since both estimators pratessame measurements, and thus have
access to the same amount of information.

5.4 Observability-Constrained (OC)-SWF SLAM

As seen from the preceding section, due to marginalizatios standard SWF possesses dif-
ferent parameter observability properties from the baié&PR estimator, since its Hessian has
a nullspace of lower dimension than that of the batch-MARegbr. This implies that the
standard SWF acquires spurious information along one tireof the state space (the one
corresponding to global orientation), which can lead toirsistency. To address this issue, we
adopt the idea of observability-based rules for choosingdiization points that was originally
proposed in our previous work [72] (also see Section 2.5), develop a new Observability-
Constrained (OC)-SWF within the smoothing framework.

The key idea of the proposed approach is that the lineasizaioints used in computing
the Hessian matrix are selected so as to ensure that theaHdsss$ a nullspace of the same
dimension as that of the batch-MAP estimator [see (5.25)ffei2nt approaches for selecting
linearization points are possible to satisfy this obsditimglrondition. For example, the prior-
linearization (PL)-SWF proposed in [38] employs a simpleedrization scheme to achieve
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this goal based on [70]. Specifically, when computing theskées it uses the prior estimates,
xr(ko), instead of the current estimatés (k), for the states inkgr that are connected to
marginalized states. By doing so, it is guaranteed that sineesestimate is used as the lin-
earization point for each of these states. However, evamgththe PL-SWF typically performs
substantially better than the standard SWF (see Sectigntbedprior estimateig (k,) used as
linearization points could be inaccurate, and thus cantreslarge linearization errors, which
can degrade the estimator's performance. Therefore, iprhgosed OC-SWF, we select the
linearization points for the statesz andxy (i.e., the states that are still “active” in the mini-
mization), in a way that not only ensures the correct dinmmg&ir the nullspace of the Hessian
matrix, but also minimizes their difference from the cutrkast available estimates (see [72]).
This can be formulated as the following constrained minaticn problen?

min ||xg — Kr(E)|” + [|x% — %~ (k)[]? (5.28)
XRXN
subject to A(k)N; =0 (5.29)

In this formulation,N, is a design choice that defines the desired nullspace witleator
dimension. ldeally, we would like to have the same nullspaeé5.25). However, this is not
possible, as in the SWF some of the old states have been ralizgih and thus we do not
maintain the up-to-date estimates for them. We next desenils choice of estimates used for
constructingN, and denote these estimates by the symbbl Specifically, during thé/+1)-
th Gauss-Newton iteration, we use the following estimadesonstruct the matri®N,: (i) For
the new statesxn, as well as those statesstk for which no prior exists, we use the estimates
from the/-th iteration, i.e.x; = %x;(k); (ii) For all marginalized statesys, as well as for states
in xg for which a prior exists, we use the prior estimate, 8.~ %;(k,). By replacing tThe
pertinent state estimates in (5.25) by the estimates seletiovexo. = |xi; %% il{I] :
we obtain the desired nullspadsy, = Ny (Xo.x)-

By construction, the nullspad¥y (X,.;) always satisfies the equality; (k,) Ny = 0. Thus,

2 For the clarity of presentation, hereafter the supers¢fipts dropped, since, without loss of generality, we
consider thg? + 1)-th iteration in Gauss-Newton given that the results from¢tth iteration are available.
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the conditionA (k)N (Xo.x) = 0 can be written as [see (5.26)]:

Ay(k)N, =0
k—1
=| > @®lqQ'®.+ ) H/R;H;|N,=0
k=km ZijEZA

PN, =0, Ve =kp,...,k—1
(5.30)
Hiij =0, VZU € ZA
Using the structure of the Jacobiads, andH;; [see (5.5) and (5.9)] and that of the matrix
Ny, (5.25), the above constraints (5.30) can be written asvislio
¢ .N.=0= 1;)4}3'{—IT)RN-i-I_)RK+1 —pj{znﬂ =0 (5.31)
Hiij =0= p}}j — I_)Rj + f)LZ- — pzi =0 (532)

Therefore, the problem (5.28)-(5.29) can be simplified as:

min |[xg — Kr(k)|* + [|x§ — (k)| (5.33)
XRAN
P% —DPr.+DPR..,—Pn . =0,V =kpy,...,k—1
subject to R. PR fet1 ™ PRty " (5.34)

Pk, —Pr;+PL,—P1, =0, Vzij € Za
We now derive an analytical solution to the constrained mization problem (5.33)-(5.34).

In particular, the approach of Lagrangian multipliers [(s68mployed. The Lagrangian function
is constructed as follows:

L= |xf — xR (k)]* + [[xx —*n (k)] (5.35)
k-1
+ 3wl (P, Pr. +Bron PR, )+ D G (PR, ~Br, + B —pi,)
k=km (ivj)vzijeZA

By setting the derivatives with respect to the state anddamgjan-multiplier variables equal to
zero, we have:

2(pY, — PRy ) et X Ain=0, ifr=ky

ivzinezA
oL . .
<~ = 2(p)}k{,i _pRn\k)_lj'li—l‘F Z Ain =0, ifk=Fk (5.36)
P, i.2in€ZA

2(PR, —PR.) THe—He—1+ > Xix =0, else

1,Zik€EZA




139

oL
5 = 2(PL,—Pr)— D A =0 (5.37)
pLZ Js ZZJEZA
oL N a B .
.~ Phe PR + PRt — PRy, =0 (5.38)
oL N a B .
ox. — Pr; ~Pr; +Pr, — P, =0 (5.39)
ij
oL X
Ox* = 2(X2thor - Xother(k)) =0 (5.40)

other

wherex e denotes all the state variables except the ones involve.86)-(5.39). Solv-
ing (5.36), (5.37), and (5.40) yields the following optinsalutions:

. 1
Ph. = DProe —5 [0kt D Aw (5.41)
ivziﬁezA
. . 1
PL =Pr,t5| X N (5.42)
J,2i; €EZA
thher = iother(k) (5.43)
where
l»ll,L; 5 lf KR = km
6MH: —Mr—-1 ifk==k

Wy — Me—1 , else

Substituting (5.41)-(5.43) into (5.38) and (5.39) yields following linear equations in terms
of the Lagrangian multipliers:

Apy + Z Air — Z Ai(k+1)

1,Zik€EZA 4,Zi(xt1) EZA

=2 (Bt — PRo + Phocs — Phty e ) O + 3 Xt D Ay (5.44)

1,Zik€EZA J\Zij€EZA



140

where
2 — Prt1 s if k =k,
204 — M—1 frk=k—-1
A[j,,i _ 127 Mr—1
—HMk-1 itk =~k
2p — Pk—1 — P15 else

In order to determine the Lagrangian multipliegs, and\;;, we stack equations (5.44)-(5.45)
for all the measurements (constraints) into matrix-veébom and solve the resulting linear
system. Once the Lagrangian multipliers are specifiedpftienal linearization points can be
obtained based on (5.41)-(5.43). Subsequently, the Jatalid Hessian matrices are computed
using the optimal linearization points, and then the stesh@auss-Newton steps are carried out
(see Section 5.2.3). It should be pointed out that, as cosdparthe standard SWF and the PL-
SWEF, the OC-SWF only requires an additional computationatizead of linearly solving for
the Lagrangian multipliers, which in general is cubic in thenber of active proprioceptive and
exteroceptive measurements.

5.5 Simulation results

A series of Monte-Carlo simulations were conducted undferéint conditions, in order to
validate the capability of the proposed OC-SWF to improvéretion performance. As be-
fore, the metrics used to evaluate the estimator’'s perfocmavere RMSE and NEES [14]. In
simulation tests presented in this section, we conductéddfie-Carlo simulations, and com-
pared four different estimators: (1) the batch-MAP estimaf2) the standard SWF, (3) the
PL-SWF [38], and (4) the proposed OC-SWF. In the simulatietuis, a robot with a simple
3-wheel (2 active and 1 caster) kinematic model moves onreaplsurface, at a constant ve-
locity of v = 0.5 m/sec. The two active wheels are equipped with encoderghwhiasure
their revolutions and provide measurements of velocisgy,(right and left wheel velocities,.
andw;, respectively), with standard deviation equabte= 1%wv for each wheel. These mea-
surements are used to obtain linear and rotational velooggsurements for the robot, which
are given byv = ”T”l andw = ==, wherea = 0.5 m is the distance between the active
wheels. The standard deviation of the linear and rotatigaekcity measurement noise is thus
equal too, = % ando,, = @, respectively. We considered a SLAM scenario where a robot

a



Batch-MAP
M= = = Std-Swr N
—+— PL-SWF - N ) ~
—6— OC-SWF - N -’

.

200

Batch-MAP
- - - Std-SWF
180 —+— PL-SWF
—O6— OC-SWF

160

1401 #

Robot position RMSE (m)
E N ow s o o o~

e

5

S
T

Robot pose NEES
g =z 8

8
7

N
S
T

T n T T T n T T
100 200 300 400 500 600 700 800
Time (sec)

) ! n N 1 ) f n " )
100 200 300 400 500 600 700 800 900 1000
Time (sec)

(a) NEES of robot pose (b) RMSE of robot pose

Figure 5.1: Monte-Carlo simulation results. It is clearttbath the PL-SWF and OC-SWF
perform significantly better than the standard SWF, in teofisoth consistency (NEES) and
accuracy (RMSE). Note also that the OC-SWF attains betrfoipeance than the PL-SWF.

moves along a circular trajectory of total length of aboud B0, and measures bearing angles
to landmarks that lie within its sensing range of 10 m. These5 landmarks in total which
are randomly generated along the robot trajectory. Thisacee, for example, in the case in
which a robot moves inside corridors and tracks its posiéind corners (landmarks) using a
monocular camera. At each time step, approximately 10 lanklsrare visible. In the SWFs we
chose to maintain a sliding window comprising 20 robot p@sesat most 10 active landmarks.
To ensure a fair comparison among the SWF algorithms, adktlof them process the same
data and maintain the same states in their windows. In thsilation, the landmarks to be
marginalized are chosen such that at least two “old” lan@&salways remain in the window, to
ensure that the uncertainty does not continuously incrédsebatch-MAP estimator processes
all measurements, and is used as the benchmark.

For the results presented here, we considered a case vaitivef large measurement noise,
compared to what is typically encountered in practice, esitagger noise levels can lead to
larger estimation errors, and thus less accurate lingamzawhich will make the effects of
inconsistency more apparent. Specifically, the standavihiilen of the bearing measurement
noise was set to 10 deg. Fig. 5.1 shows the results for tha pase based on the compared
estimators, while Table 5.1 depicts the average NEES andBRfdSthe landmark positions
(averaged over all the landmarks). First notice that asa®gpethe batch-MAP estimator attains
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Table 5.1: Landmark position estimation performance

Batch-MAP Std-SWF PL-SWF OC-SWF

RMSE for Landmark Position (m)
0.5184 2.7449 2.6713 2.6235

NEES for Landmark Position
3.7769 42.1306 12.3615 9.5719

the best performance, since it utilizes all the availablermation, while the SWFs discard the
measurements belonging to the inactive measuremengggtdue to marginalization. More
importantly, the two observability-constrained smooshge., PL-SWF and OC-SWF) perform
substantially better than the standard SWF, in terms of botisistency (NEES) and accuracy
(RMSE). This is attributed to the fact that the appropriadeameter observability properties
are preserved in the proposed observability-based snmgpftamework. We also note that the
OC-SWF achieves better performance than the PL-SWF. Thisegto the fact that when the
noise is large, the prior estimates used as linearizationtom the PL-SWF are inaccurate
(i.e., the linearization errors become significant), whiglgrades the estimator’s performance.
In contrast, the OC-SWF employs, by construction, the ogitiimearization points and thus
yields better estimation accuracy.

5.6 Experimental results

To experimentally validate the performance of the OC-SWE, dstimator was tested on the
original Victoria Park dataset courtesy of Nebot and Guivan The experimental platform

was a 4-wheeled vehicle equipped with a kinematic GPS, a t&sesor, and wheel encoders.
The GPS system was used to provide ground truth for the raimitign. Wheel encoders were
used to provide odometric measurements, and propagatisicavaed out using the Ackerman
model. In this particular application, since the most comrfeature in the environment were
trees, the profiles of trees were extracted from the laser;, tta centers of the trunks were then

3 Itis available atht t p: // ww« per sonal . acfr. usyd. edu. au/ nebot/victoria_park. htm
Note that, to ensure the comparison to the batch MAP estima&ohere considered the first half of the dataset.


http://www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm
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Figure 5.2: Experimental results: (a) The robot trajectesyimates as compared to the GPS
data, and (b) estimation errors of robot position. It is clist the OC-SWF performs more
accurately than the standard SWF and the PL-SWF.

used as the point landmarks, and distance and bearing reessuis to them were used for
estimation [56].

In this test, we compared the same four estimators as in #eeging simulation: (1) the
batch-MAP estimator, (2) the standard SWF, (3) the PL-SWF, [@8nd (4) the proposed OC-
SWF. Since in this experiment, both true landmark posit@nd true robot orientations were
unavailable, we only compared the robot position estimatierformance, which is shown in
Fig. 5.2. Specifically, Fig. 5.2(a) depicts the trajectastimates produced by the four estimators
as compared to the GPS ground truth, while Fig. 5.2(b) shtvsestimation errors of the
robot position over time. Note that since the GPS satellijead was not always available,
we computed the estimation errors only at the times when 8 ®Gas available. As evident
from Fig. 5.2, the OC-SWF performs significantly better thlaa standard SWF and the PL-
SWEF [38]. These results, along with those of the simulatjpresented in the previous section,
show that it is essential for an estimator to ensure apatgpabservability properties in order
to improve its performance.
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5.7 Summary

In this chapter, we addressed the consistency issue ofghdastd SWF. Even though the SWF
is an appealing smoothing algorithm well-suited for realet applications where the effects of
nonlinearity of the measurements are significant, it cafestifom inconsistency. In partic-
ular, due to marginalization, the standard SWF uses diffezstimates for the same states as
linearization points when computing the Hessian matrixiciwhiesults in its Hessian having
a nullspace of lower dimension than the batch-MAP estimalbis implies that the standard
SWF acquires spurious information and thus may become &istemt. To address this issue,
we have introduced an observability-based smoothing frerie which extends the methods
presented in Chapter 2 for EKFs to the case of the SWF. Syadhjfieve select the linearization
points at which the Hessian is evaluated, so as to ensurghihatullspace of the Hessian is
of the same dimension as that of the batch-MAP estimatoidewhinimizing the linearization
errors. Both simulation and experimental results have shibzat the proposed OC-SWF per-
forms better than the standard SWF as well as the PL-SWFif8&rms of both accuracy and
consistency.



Chapter 6

Towards General Nonlinear Systems
with Partial-State Measurements

In this chapter, we study filter consistency for a broad ais®nlinear systems, i.e., observable
nonlinear systems with partial-state measurements fréferelint sources (sensors). In particu-
lar, we discover that despite the observability of such a&gdrsystem, the standard EKF often
become inconsistent due to the fact that it acquires spaiffdarmation from the measurements
of each source. To address this issue, we adapt the obdiyvbhsed methodology presented
in the previous chapters, and develop new EKF algorithmsifmave consistency by enforcing

the filter to gain information from each source’s measurdgmenly along the correct directions

of the state space. Part of this chapter has been publistjéd]in

6.1 Introduction

Nonlinear filtering problems arise in numerous science argineering fields, such as eco-
nomics [34], statistical signal processing [91], radackiag [17], and navigation and guidance
systems [158]. These problems consist of estimating the sefea nonlinear stochastic system
from noisy measurements. Although the EKF has been suctigsspplied to many nonlinear
filtering problems, if the nonlinearities are significaits,variants are often used to improve per-
formance. For example, the IEKF [14] iterates the filter upd#dl convergence, by iteratively
relinearizing the measurement function. Alternativee UKF [84] deterministically samples
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the nonlinear function around the current state estimhtes improving the linear approxima-
tion by linear regression. Nonlinear filtering problems elnallenging for a number of reasons,
and one patrticular difficulty is the inconsistency issuepdrticular, no provably consistent filter
can be constructed for a nonlinear system, and the consjstérvery filter has to be evaluated
experimentally. As defined in [14], a state filter is congisi€the estimation errors are zero-
mean and have covariance smaller or equal to the one cadubgtthe filter. Consistency is
one of the primary criteria for evaluating the performantany filter; if a filter is inconsistent,
then its estimation accuracy is unknown, which in turn makesfilter unreliable. In effect,
significant empirical evidence shows that the standard E&d®imes inconsistent in nonlinear
filtering problems such as robot localization [12, 27, 72,/8585] (also see Chapters 2 and 3).
The lack of understanding filter consistency and of algorighfor improving consistency is
clearly a significant limitation.

In this chapter, we revisit the problem of filter consisterfioy a broad class of discrete-
time nonlinear systems, by examining the directions oestgice along which information is
available from measurements of each source (sensor). Bes#ds analysis, we propose a
novel methodology to improve consistency by ensuring thefitter acquires information from
each source’s measurements only along the correct dinsatibthe state space.

In particular, the Fisher information matrix (FIM) [14] fgiven measurements encapsulates
all available information about the entire state of a stetihaystem. By marginalizing all but
the initial state, we obtain the corresponding FIM that aorg all information available in the
measurements for determining the initial state. StudytiregRIM’s structure reveals the direc-
tions along which information is (un)available from the m@@ments. These can be exploited
in the design of nonlinear estimation algorithms, i.e.pecihg estimators to gain information
from measurements only along correct directions. Moreaveishow that the FIM of the initial
state can be factorized in terms of the observability matfithe corresponding deterministic
system, and that these two matrices have same rank prapeBiased on this key finding,
in order to ensure consistent estimation, we impose thetmmis of acquiring information
along the correct directions on a novel decomposition (a@leg to the different measurement
sources) of the observability matrix, instead of the FIMtHis end, we introduce two different
EKF algorithms that compute the appropriate filter Jacahiaither directly (i.e., by project-
ing the best-available Jacobians onto the informatiorilaa subspace) or indirectly (i.e., by
first finding the optimal linearization points for computitige Jacobians). As a result, only
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information actually available from each source’s measer@s is gained, which substantially
improves the estimation consistency and accuracy, as egdgoghe standard EKF.

6.2 Methodology
We consider a general discrete-time nonlinear system dbttmving form:

X1 = F(xp, ug) + Wy, (6.1)

Zik = h(Xk, Si,kz) + Vik, 1€ {1, ce ,8} (62)

wherex;, € R™ denotes the state of the system, € R" is the control input, andv;, €

R" is zero-mean white Gaussian process noise, wg.,~ N(0,Qy). z;; € R™ is the
measurement taken from theh (i € {1,...,s}) measurement source (e.g., sensor), and is
generally (although not necessarily) loiver dimension than the state vector, i.e2, < n,
which is the case of partial-state measurements we conisideis work. The parametey; j,
denotes the known parameters of tith measurement source, such as the sensor’s location or
a binary indicator of the availability of theth measurement. The random variablg, € R™

is zero-mean white Gaussian measurement noiseyj.g+ N(0,R; i).

We employ the EKF to recursively compute the state estimadeseror covariance. Specif-
ically, we linearize the nonlinear system at the Iinea'rtimalpoints,x;‘k_1 and xzm (i.e., the
linearization points before and after the update at tinreg-k} [see (6.1), (6.2)] and obtain the
following linearized error-state system:

ik+1\k = q)kik\k + Wy, (6.3)
Zi,k\k—l = Hi,kik\k—l + Vik 1€ {1, - ,S} (64)
where
P, =V, f , Hi . =V h 6.5
T ey T T T g ) (65

The standard choice of linearization point is the current(thus best) state estimate, which,
however, as will be shown is not necessarily the best chalo&e the propagation and mea-
surement Jacobians are computed, we propagate and upeatati estimate and covariance,
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respectively, as follows [14]:

Rpooape = F(Rgjo Up) (6.6)
Piiip = S1Pyp®f + Qy (6.7)
Xk = Xpjh—1 + KgTg (6.8)
Py = Pyt — KiSiKf (6.9)

whereK;, = Pk|k_1H'ka;1 is the Kalman gainy;, = z; ;. —h(%;—1, si x) is the measurement
residual, an®s, = Hi,kPk‘k_lH?k + R, ;; is the corresponding residual covariance.

6.2.1 Observability and Fisher information

Since the EKF is constructed based on the linearized systeen(p.3) and (6.4)], it is impor-
tant to study the observability properties of the correslimn deterministic system (i.e., noise
free). Observability examines whether the informationvjated by the available measurements
is sufficient for estimating the initial state without ambity. In particular, the observability
matrix [30,112] for the linearized system (6.3)-(6.4) dgrthe time intervalo, k] is defined by
[see (2.22)]:

Hy

H,®,
M = _ (6.10)

| Hi®p—1--- Po|

If the system is observable, then the corresponding obisiéityamatrix M is full-rank.

The FIM [14] is closely related to the system observabilityd grecisely describes the
information available in the measurements. Thus, by shglits properties, we can also gain
insight about the directions in the state space along whifdhrnation is actually available. To
this end, we examine the structure of the Hessian (infoonatinatrix of the corresponding
batch-MAP estimation over the time intenjal k], which is known to be optimal [91]. In what
follows, we show that the FIM of the initial statg (obtained by marginalization) has the same
properties as the observability matrix, which motivatesaugmistead examine the observability
matrix in our analysis.

As discussed in Section 5.2.3, the optimal batch-MAP estimatilizes all available infor-
mation to estimate thentire state trajectory that is formed by stacking all states intiime
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interval [0, k]:
X0k = |x¢ xT ... XT] ! (6.11)
: 0o X1 k

Specifically, the batch-MAP estimator seeks to determieectitire state-space trajectory esti-
matex.;, by maximizing the following posterior pdf (assuming prior is available):

k—1 k
p(XO:kJ|ZO:k) X Hp(xn+1|xﬁ) H p(zi,n|xn) (612)
k=0 k=0

wherez.;. denotes all the sensor measurements in the time intgrvdl In the above expres-
sion, we have employed the assumption of independent stdteneasurement noise and the
Markovian property of the system dynamics [see (6.1) arig) (Eespectively]. Moreover, using
the assumption of Gaussian noise, the above posterior fdf)(6an be written as:

p(xO-k!zO-k) o (6.13)

- 1
H T @ (e~ e maly, )
; 1
H \/W <_§Hzi7ﬁ - h(xmsiﬁ)H%{i_’N)

Due to the monotonicity of the negative logarithm, the mazation of (6.13) is equivalent to
the minimization of the following cost function under mildsumptions:

k—1 k
1 1
) = 3 Slheeer — Foee il + 3 Hllzis - Blxesiolh,  (614)
k=0 k=0

The Hessian (information) matrix is computed as [see ($.19)

k—1
A=) FIQ.'F +Z7—LTR‘1H (6.15)
k=0 k=0
with
}‘H:[o e =B, I, - 0} (6.16)
an[o e _H, .- 0] (6.17)

whereH,. = H; , andR,. = R, .., if the i-th source provides the measurement at time-step
i.e.,z, = z;, (note that hereafter we will use these notations intercéably). It is important
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to note that due to the sparse structure-pfand?,; [see (6.16) and (6.17)], the FIM (6.15) has
banded structure:

o]Q, '@, + HJ R, 'Hy -3r'Q,! 0 0
-Q;'®, Q'+ 2fQ;'® +H{R{'H, -&{Q;" 0
A= ' ' . . .
0 T 7Q;_712q>k72 Qkilz + ‘I)Z—lQI:—lI‘I)k*l + HZ—lR;LHk*l 7¢Z—1Q;~—11
] 0 -Q 1 ®r Q! + HIR, 'H,

We now show that the Schur complement of the full FIM with exdo the initial statex
(i.e., the information matrix okq, denoted byA ), has the following relation to the observabil-
ity matrix M:

Lemma 6.2.1. The FIM of the initial statex, i.e., the corresponding Schur complement of the
full FIM, can be factorized as:

Ay =M"'SM (6.19)

whereM is the observability matrix an& is a nonsingular (full-rank) real symmetric block-
diagonal matrix.

Proof. See Appendix D.1. O

From this lemma as well as the linear algebra theory [49éhg the FIM of the initial
state is equivalent to examining the observability maffiserefore, the FIM essentially can be
seen as the “observability gramian” for the correspondioghastic system. Note also that the
stochastic system (6.1)-(6.2) is observable if and onlygf¢orresponding deterministic system
is observable. In the following, we will exploit this res@hd decompose the observability
matrix in a novel way (i.e., based on the measurement sgunssch inspires the proposed
approaches for improving filter consistency.
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6.2.2 Algorithms

Due to the additive property of the measurement informatmdecompose the FIM according
to the measurements originated from each ofstseurces [see (6.15)]:

k—1 sk
A= FIQ'F+ > > ML R M,
k=0 i=1 k=0

s k—1 k
= (Z FiQ Fat Y Hz—T,HR;in—,H> (6.20)
k=0

i=1 \k=0

A;

whereQ’. £ sQ, denotes the inflated state-noise covariance for the eatte efsources, used

in order to compensate for the decomposition. Hentgjs the full FIM constructed using
measurementsnly from thei-th source. Based on Lemma 6.2.1, the corresponding FIMeof th
initial stateA(, can be written as:

Ay, = MM, (6.21)

Itis important to note that in (6.21M; is the “observability matrix” which is constructed using
the measurements only from thh sourceput padded with zeros for the measurements from
the other sources, in order to match the dimension of theohslervability matrixM [e.qg.,
see (6.23)]. This immediately results M?Mj = 0 for i # j. Note also that we directly
useX in (6.21), since zeros iVI; will cancel out the corresponding submatricesirto the
measurements from theth source { # i) [see (D.14)]. Therefore, this result (6.21) leads to
the following decomposition of the observability matrix:

Lemma 6.2.2. The observability matrix is decomposed as:
M=) M, (6.22)
i=1
Proof. Using the fact thaM}FMj = 0for: # j, we have [see Lemma6.2.1, (6.20) and (6.21)]:

MIEM = Ag = ZS:AOZ. = Zs:MiTZMi = M= ZM
i=1 =1 =1
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We thus see that based on the decomposition of the FIM of ttial istate according to the
measurement sources, the observability matrix caadserdinglydecomposed. For instance,
if the i-th source provides measurement intermittently at evee steps only, then théth
decomposition of the observability matri¥];, assumes the following form (by assumihgs

even):
_ H, -
0
M; = : (6.23)
H; o®p_3---Pg
0
| H; x®p_1--- Po |

It is interesting to note that in many cases (e.g., see 3e6ti®) the decomposition of the
observability matrix (6.23)M;, is rank-deficientalthough the observability matrix (6.10Y],
is full-rank, i.e., the linearized system (6.3)-(6.4) is observable.e Tight nullspace of the
matrix, M;, and thus the decomposition of the FIM (6.28),,, dictates the directions of the
state space along which no information is available fromntleasurements of thieth source.
If these directions are incorrect, the filter acquires spugiinformation from the-th source’s
measurement, and hence is expected to become inconsiStestefore, to ensure consistent
estimation, the filter should hawe;, and henceA,, of correct nullspace, far=1,...,s, so
that no nonexistent information is gained from the measergsavailable from each source. To
this end, in computing the filter Jacobians at each time stepexplicitly enforce the following
constraint on the decompositions of the observability imate., eachVl; has correct nullspace
denoted byN; [see (6.23)]:

H,; (N; =0 Lif k=0
M;N; =0 & ’ (6.24)
H, ,®,_1---®N; =0 ,ifx>0

In particular,N; is a design choice which defines the desired nullspace farttheneasure-
ment source, and one practical choice will be the nullspdid¢keofirst measurement Jacobian
H,,,i.e.,,H;oN; = 0. OnceN; has been selected, the next design decision is to compute the
filter Jacobians appropriately, so that (6.24) is satisfied.

We first propose to compute the Jacobiantirectly, i.e. to find optimal linearization points
that minimize the linearization errors of the poimék andx;H‘k used in computing the filter
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Jacobians®; andH,. ., at time-stepk + 1, subject to the constraint that ensures ehh
to have the correct nullspace (6.24). Similarly to the OCFEKn Section 2.5.2, this can be
formulated as the following constrained minimization gdeob:

min / Ik — x| *p(xk|20:0 ) dxy, + / 1%y 1k — Xkl P %k g1 20:0)dxk 11 (6.25)

*
Xl X k411K

subject to H; j®_1---PoN; =0, Vi=1,...,s (6.26)

In general it is intractable to solve this problem analyljcaHowever, whenp(xx|zo.r) and
p(Xk+1]20.x) @are Gaussian which is the assumption employed in the EK$-ptisblem can be
simplified based on the following lemma, and then solveditally by using Lagrangian
multipliers:

Lemma 6.2.3. Whenp(xx|z0.x) andp(xx11|20.x) are Gaussian, the constrained minimization
problem(6.25)and (6.26)is equivalent to the following problem:

cmin (g = Rl 4 K — Rengel? (6.27)
Xk Xk 1]k
subject to H; j®_1---®oN; =0, Vi=1,...,s (6.28)
Proof. Analogous to the proof of Lemma 2.5.3. O

Alternatively, we can compute the desired filter Jacobidinsctly. Similarly to the OC-
EKF3in Section 2.5.3, we compute the propagation Jacabjatx = 0, ..., k—1) in the same
way as in the standard EKF, while enforcing the informationstraint (6.24) for computing
the measurement Jacobian:

min |[H;, — Ho|[% (6.29)
subject to H; ;®y_1---®oN; =0, Vi=1,...,s (6.30)

In the above expressioH,, ideally is the measurement Jacobian computed using thettutes,
which, however, is not realizable in any practice. Henceemeloy the latest, and thus the best,
state estimates for computing this Jacobian as in the stusdkF, i.e., H, = H, (X ;,_1). The
optimal solution to the above problem (6.29)-(6.30) is oted inclosed formby application of
the following lemma:
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Figure 6.1: lllustration of the application of the two-radarget tracking: A target (robot)
moves on a plane and two radass.andss, alternate between measuring distance to the target.
For example, at time-step= 1, the first radars;, measures distance to the target; at time-step
k = 2, the second radasy, measures distance to the target; at time-gtep 3, s; measures
distance again; and so on so forth.

Lemma 6.2.4. The optimal solution to the constrained minimization pesb(6.29)(6.30)is:
H, ;= H, (I, - U;(U]U;)"'U7]) (6.31)

whereU; = &, --- ®oN;.

Proof. Analogous to the proof of Lemma 2.5.4. O

Note thatU; in (6.31) is the propagated nullspace of thh source at time-step, and
(I, — U;(UTU;)~'U7) is the subspace orthogonal @, i.e., the subspace at time-stép
where information is available. Hence, as seen from (6 H1), is theprojectionof the best-
available measurement Jacobian onto the informationadnlai subspace.

6.3 Example: Two-radar target tracking

In order to verify the preceding analysis and validate tlsppsed methodology, in this section,
we consider a particular application of two radars trackingrget. Consider a target (robot) that
moves on a plane and two radars alternatively provide distameasurements to the target (see
Fig. 6.1). Using such intermittent distance measurementseadl as odometry measurements,
we employ the EKF to estimate the target’'s pose (positioncgigshtation) in a global frame of
reference, denoted by, = [pfkr gzbkr = [mk Yk ¢k]T. In what follows, we describe the
motion and measurement models of this system in the contéxé standard EKF.
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In the propagation step, the target (robot) is assumed toghgmed with an odometer
that provides measurements processed to obtain an estiintite pose change between two
consecutive time steps, and then employed in the EKF to gaipdhe state estimate. The EKF
propagation equations are identical to (2.2)-(2.3), i.e.,

Brs 1k = Pk + Clorp)  Prta (6.32)
Orr1lk = Pk + "Dt (6.33)

whereC(-) denotes the x 2 rotation matrix, and'x;.1 = [*p}., *¢;1]7 is the odometry-
based estimate of the target's motion between time-dtepslc + 1. This estimate is corrupted
by zero-mean white Gaussian noise = *x;; — ¥%;,1, with covariance matrixQ;. The
linearized error-state propagation can be derived in gyaio (2.6), i.e.,

ikz-ﬁ-l\k = (I’kik:\k + Gpwy, (6.34)

where the state and noise Jacobians are given by

(1, J(p — 7

B, — 2 (Pk+1\k Pk\k) (6.35)
012 1
[C(dyis) O

G, = (Pk|k) 2><1] (6.36)
| O1x2 1

The distance measurement provided byititie radar at time-step + 1 is given by:

Zi k41 = ||Pht1 — Ps;|| + Vigr1 = \/($k+1 —28,)% 4+ (Yk+1 — ¥s;)? + Vigg1, 1 =1,2
(6.37)

whereps, £ [zs, ys,]? is the known position of thé-th radar expressed in the global frame
of reference, and, ;.. is zero-mean white Gaussian measurement noise, with W@QH,
i.e.,v; k41 ~ N(0, aﬁkﬂ). Due to the nonlinearity of this measurement function, linisarized
for the use of EKF, which is given by:

Zik+1 ~ Hi o1 X1k + Uikt (6.38)

where the measurement Jacobian is computed as:

Brr1is—ps.)T (Prt1jk — Ps,)”
H. kt+1 = [(plwrl\k pSz) ] = -~ 12 J® — ps. ] (639)
b [[Brrije—Ps;ll ||Pk+1|/<; — pg,|| (pk+1|kz pPs;)

&G 1
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6.3.1 Observability analysis

We now examine the observability matrix (and thus the infation matrix), and show that in
the standard EKF the decompositions of the observabilittyirnaith respect to different radars
have different nullspace than the ideal case where the tatessare used in computing filter
Jacobians and which is expected to have correct obsetygtitiperties.

Ideal EKF linearized system

To facilitate the ensuing analysis, we begin with feal case of a single radar providing
distance measurements. Proceeding analogously to Sextidh the Jacobians of the ideal
EKF are evaluated using theie values of the state variables, i.g;‘k = lek—l = xy, for all

k. Note that all matrices evaluated using the true state sadue denoted by the symbot .

In this case, by noting that [see (6.35) and (6.39)]

9] 9

H.®, 1 &)= |l J(py— ps)] (6.40)

the observability matrix is computed as [see (6.10)]:

I, J(po—ps)

¥ I, J —

NI = Diag (6, i) |2 00 P (6.41)
I J(po —ps)]

Using the theorem of the rank of the matrix product [113], g show tharank(1\7[) =2and

v J(po — ps)
1

null(M) = (see Lemma 2.4.3). This implies that the distance measuntsé

single radar provide information only abaduto d.o.f., which agrees with our intuition.
Now we extend this analysis to the ideal case wiwoaadars alternatively provide distance
measurements to the target. Specifically, by proceedingasiynto Section 2.4.2, we can
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compute the observability matrix of the ideal-EKF lineadzsystem in this case as follows:

I, J(po—ps))
I, J(p1—ps,)

M = Diag (&1,0, &1, , &1 41, F2k)
D I, J(po—psi)
I J(p1 —ps,)
I, J(po—ps) 0252 0251
0252 0241 L, J(p1—ps)
=D| : : +D| : ; (6.42)
I, J(po—ps) 022 02x1
022 O2x1 | | I J(p1 — PSQ)_
1\7[1 1\\'/12

whereM; and M, are the decompositions of the observability maivix with respect to the
first and second radar, respectively. It is not difficult te featrank(M;) = rank(My) = 2,
which agrees with the preceding result in the single-radaeceven though the observability

o

matrix is full-rank, i.e.rank(M) = 3, and thus the ideal-EKF linearized system is observable.

Standard EKF linearized system

However, the ideal EKF is not realizable in practice since tilue states are generally not
available. Therefore, we now consider the standard EKF hvbamputes the Jacobians using
the current state estimates, and show that the precedintisre® not hold for the standard
EKF linearized system. Specifically, the observability mxafior the two-radar scenario under
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consideration can be computed as [see (6.10)]:

I, J(Dojo — Psy)
I, J(D10 — Psy)
M = Diag (10,21, , G p—1,80) | :
- ~ k—2 ~
D Io JBr-1jp—1+ D n=] APx — Psy)
~ k—1 ~
Io J(Dype + 25— ADx — Ps»)
I J(Bojo — Psy) 02x2 0251
0252 0251 I J(D10 — Psy)
=D | : j +D | : :
L JBr_1p1+ >0 i APx — Psy) 0252 0251
| 0252 021 | | L2 J(Drpr + Zi;i Ap, — psz)_
M] M2

(6.43)

whereAp, £ Dxjx — Prjn—1 IS the correction in the target position due to the EKF update
time-stepx, and in general does not vanish. As a result, the decompositf the observability
matrix becomes full-rank, i.erank(M;) = rank(Msy) = 3, although the observability ma-
trix is still full-rank, rank(M) = 3. This implies that the standard EKF acquires nonexistent
information along one direction of the state space from @adhr's measurements, which may
lead to inconsistency and thus confirms our preceding aigalext, we apply the algorithms
presented in Section 6.2.2 to this system so as to improvedskFistency.

6.3.2 Application of the algorithms

In particular, we choose the desired nullspace of the deositipns of the observability matrix
for the two radars as follows (i.e., using the correspondirgj state estimates when the two
sensors provide their first measurements):

J(D _

J(I31|0 - pSz)
1

We first describe thandirect algorithm for computing EKF Jacobians, which finds optimal
linearization points by solving the problem (6.27)-(6.28) this case, the constraint (6.28) can

N, = (6.45)
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be simplified as [see (6.43)]:

H;  ®p_1---PoN; =0

& i L I (ph+ Xho Ap; —ps, )| Ni =0

k
€ Pk = Piji—1 — Z Apyj, (6.46)

k=1

where we have employed the definition similarAgp,,, i.e., Ap: = p;m — p;m_l. Simi-

larly to the OC-EKF2 (see Section 2.5.2), using the methodagfrangian multipliers, we can
analytically solve for the optimal solution to the proble®27)-(6.28):

Pk = Phjk—1 = Prjk—1 ke = Pkl » Phjp—1 = Phjk—1 (6.47)

Alternatively, we can use thdirect algorithm for computing EKF Jacobians. Specifi-
cally, we directly apply the optimal solution of the measueat Jacobian (6.31), i.e., pro-
jecting the best-available measurement Jacobian ontatheriation-available directions (see
Lemma 6.2.4), while computing the propagation Jacobiatissisame way as the standard EKF
[see (6.35)].

It is important to point out that in the both proposed EKF ailfpons, once the filter Ja-
cobians are computed, the state estimates and covariamqeaagated and updated in the
same way as in the standard EKF. Note also that the proposéd Ete causal and realizable
in practice, since they do not use any information abouttheé or true states.

6.3.3 Numerical results

To demonstrate the capability of the proposed algorithnisprove filter consistency, we con-
ducted 100 Monte-Carlo simulations under various conaticand as before, employed the
RMSE and NEES [14] as the metrics to evaluate the filters’goerénce. In this numerical
simulation test, a target (robot) with a simple differehtledve model moved on a planar sur-
face, at a constant velocity ef = 0.25 m/sec. The two-drive wheels were equipped with
encoders, which measure their revolutions and provide uneaents of velocity (i.e., right and
left wheel velocitiesp, andv;, respectively), with standard deviation equalto= 1%uv for
each wheel. These measurements were used to obtain thediméaotational velocity mea-
surements for the target, which are givemby: “T*”l andw = ===, wherea = 0.5 m is the
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Figure 6.2: Monte-Carlo results of two-radar tracking. histsimulation, a target moves on a
circular trajectory and two radars with known positioneaiate between providing distance
measurements to the target. Note that in these plots, theERMIBies of the ideal EKF and the
two proposed EKFs are very close, which makes the corregapgpiides difficult to distinguish.

distance between the active wheels. The standard desatiiotme linear and rotational veloc-
ity measurement noise were thus equabto= % ando,, = @ respectively. Two radars
with known positions alternatively provide distance measents to the target. The standard
deviation of the distance-measurement noise was equalltoaf@he radar-to-target distance.
It should be noted that the sensor-noise levels selectatidosimulations are larger than what
is typically encountered in practice. This was done on psggda order to make the effects of
inconsistency more apparent, since larger noise leadsgerlastimation errors, and thus less
accurate linearization.

Fig. 6.2 shows the Monte-Carlo results of the average NEERAMSE for the robot (target)
pose. It becomes clear that the proposed EKFs (i.e., theetrtdind direct EKFs) perform much
better than the standard EKF, and very close to the benchrherlideal EKF, in terms of both
consistency (NEES) and accuracy (RMSE). This is attribtaete fact that the proposed EKFs

acquire the information only along the correct directiofishe state space fromachradar’s
measurements.
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6.4 Summary

In this chapter, we have studied the filter inconsistenayeiss discrete-time nonlinear systems
where only partial-state measurements are available. \¢@eshthat despite the system ob-
servability, the linearized filters such as the EKF still t@tome inconsistent. To understand
the causes of the inconsistency, we examined the FIM of itielistate (by marginalizing all
but the initial state) and showed that it is closely relatethe observability matrix. Moreover,
we proposed a novel decomposition of the observability imafrthe linearized system with
respect to different sources of measurements, and proeedvtien using the standard EKF,
each decomposition of the observability matrix has highakthan that of the ideal case. This
implies that the filter gain spurious information from theaserements of each source, which
leads to inconsistency. To address this issue, we proposenfrtpute the filter Jacobians in such
a way that ensures that each decomposition of the obsdtyahétrix has nullspace of correct
dimension. We applied the proposed algorithms to the pnoliétwo-radar target tracking,
and demonstrated the superior performance of the propdsad tiver the standard approach.



Chapter 7

A Bank of MAP Estimators for Target
Tracking

In this chapter, we study the consistency of nonlinear egtins from a perspective different
than the system observability used in the previous chagtersfinding and tracking multiple
modes of the posterior pdf, and present a general framewoikprove consistency for es-
timation problems with polynomial (nonlinear) measuretrifeimctions. The key idea of our
approach is to analytically select and track state hypethéthe modes of the posterior pdf).
We apply our proposed approach to the particular problenargfet tracking, i.e., estimating
the kinematic state of a moving target using only range oribganeasurements from a single
mobile sensor (robot) whose position and orientation acevkn Parts of this chapter have been
published in [76, 77].

7.1 Introduction

Nonlinear estimation problems such as target tracking fiee @ddressed using linearized es-
timators (e.g., the EKF [14, 17]). These estimators suffemf linearization errors and the
inability to track multimodal pdfs, which often arise in dimear estimation problems. Several
methods have been proposed to reduce linearization efForgxample, the IEKF [14] iterates
the filter update till convergence, by relinearizing the sugament function at each iteration;
The UKF [84] deterministically samples the nonlinear fumctaround the state estimate, thus
improving the linear approximation. However, any (explici implicit) linearization-based
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filtering approach marginalizes all but the current stae, lasence is unable to refine past lin-
earization points. In contrast, a batch-MAP estimator [@ithputes the estimates for the states
at all time steps using all available measurements. Thisvallcontinuous relinearization of
the entire state trajectory, which greatly reduces lirzzgion errors. However, just as the EKF
and its variants, the batch-MAP estimator can only track ofi¢che potentially many, modes
of the posterior pdf. Only a few estimators, such as the pmyjtiothesis EKF (MHEKF) [99]
and the PF [8,41, 58], are specifically designed to treatimattal distributions by simultane-
ously tracking a set of different state estimates. Howedwmemost cases these hypotheses are
generated randomly, thus wasting a considerable portitineafomputational resources.

In this chapter, we presentparametric linearizedstimation framework that provides both
relinearization and multi-hypothesis tracking, togethvth a highly efficient hypothesis gen-
eration scheme. ldeally, the optimal approach to the bist&l* estimation problem would be
to compute all modes of the posterior pdf, thus ensuring badlp optimal estimate. However,
as our analysis will show later, this approach is computaliy intractable due to the grow-
ing size of the state vector. We therefore relax the probkmd, optimize only for the current
state at each time step, treating the state history of eapbtlhgsis as a constant prior. We
first convert the nonlinear cost function of this subproblieno polynomial or rational form,
and subsequently employ algebraic geometry techniqudsd3halytically compute all local
minima and thus all modes of the pdf. Each mode is used taliaéi a new MAP estimator in
the bank, thus allowing to track the most probable hypotheéhe state trajectory, and in turn
greatly improving the accuracy and consistency of the MAfitmede. At the same time, we
achieve low, resource-adaptive computational cost thrqugning and marginalization. The
former controls the exponential growth of hypotheses, evttile latter limits the size of the
state vector. We successfully apply the proposed bank of M@foach to both range-only
and bearing-only target tracking. We stress that apart ttmmparticular application of target
tracking treated in this work, the proposed framework idiapple to a broad class of nonlinear
estimation problems in robotics and computer vision thatteexpressed in (or converted into)
polynomial form.
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7.2 Related work

The problem of target tracking has been studied for decaagsreny different estimators of
both batch and recursive types have been proposed in thatlite [14, 17]. Among these
algorithms, the EKF is one of the most widely used methodsvever, due to the fact that the
EKF is unable to refine the past linearization points when maasurements become available
and thus can result in large linearization errors, it givesatisfactory performance. This has
given rise to refinements of the EKF developed specificalhbfaring-only tracking, e.g., the
modified polar coordinates EKF [1] and the shifted Rayleidferfi31]. However, these EKF
variants can only track a single mode (more precisely, meftte posterior pdf of the target
state and thus suffer from the same problem as the EKF, ey, ¢an potentially track an
inaccurate mode of the pdf and hence become inconsistemenrdiverge.

To mitigate the aforementioned issue, a MHEKF was propogedifically for bearing-only
tracking in [99] to track multiple hypotheses of the targats. The MHEKF makes an assump-
tion about the minimum and maximum distances between theosemd target and partitions
this range interval to a number of subintervals, each reptésy a hypothesis regarding the true
range of the target. A bank of independently operating ragegameterized EKFs are thus cre-
ated, each designed for one of the hypotheses and recdidrsgime bearing measurement. The
MHEKF determines a fixed number of EKFs at the first availab&asurement, and this idea
was extended in [122] so that the filter bank can dynamicdibnge its size at each time step
based on the current measurement likelihood. Since noifiltee MHEKF can guarantee com-
puting the globally optimal estimate (due to the multimadaiure of the distribution as well as
its inability to relinearize the nonlinear measurementtiom), this approach can also become
inconsistent and diverge. Note that this method assumeslgrowledge about the range inter-
val, while this might not always be available in real apgiimas of bearing-only tracking (e.g.,
using cameras). More importantly, this approach does rwftigee a measurable criterion about
how many partitions are needed in the assumed range inndaWwhere to choose them. In
contrast, our proposed bank of MAP estimators selects nmobaple hypotheses of the target
trajectory based on local optimality at each time step.

Considerable attention has recently been paid to the Potbiidearing-only and range-only
target tracking [8, 28, 50,57, 58, 134], because of its cifipabf solving nonlinear estimation
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problems with multimodal pdfs. In the standard (bootsti@p) each particle represents a hy-
pothesis of the target state, weighted by its measurenatihibod. If the particles sample the
state space sufficiently, the PF will converge to the trugitdigion. However, the particles are
usually initialized randomly, and if far from a mode of thef ptheir weights can decay quickly
and lead to particle depletion and thus inconsistency, #seresampling scheme is employed.
This is due to the fact that the very few surviving particlesymot be sufficient to represent the
underlying multimodal pdf. Therefore, in order to convetgegjood estimates, the PF requires
to use a large number of particles, thus exacerbating itpatational demands. In contrast, the
proposed estimator analytically computes all modes of dstgpior pdf at the current time step
and efficiently focuses the available computational resesion the most probable hypotheses
of the state.

7.3 Problem formulation

Consider a single sensor (robot) moving in a plane and etighthe state (position, velocity,
etc.) of a moving target, by processing the available rangeearing measurements. In this
work, we study the case @flobal tracking, i.e., the position of the target is expressed with
respect to a fixed (global) frame of reference, instead oflaive sensor-centeredne. We
hereafter assume that the pose (position and orientatfaiedracking sensor is known with
high accuracy in the global frame of reference (e.g., fronB@Rd compass measurements).
The state vector of the target at time-steig defined as a vector of dimensi2v, whereN — 1

is the highest order of time derivative of the target ponitiescribed by a known stochastic
target motion model, and can include components such asgugsielocity, acceleration, etc.:

X = [wTk yr, 1, Yr, Tm, Uty }T =: [P%C d%c]T (7.1)
wherepr, £ [ka ka]T is the target position, andy, = [g’ng Ur, AT, im, !
denotes all the higher-order time derivatives of the tapgsition.

In the following, we present the target stochastic motiomaiand the sensor measurement
model that will be used throughout this chapter. Subsetyjent describe the batch-MAP
formulation of target tracking, which is similar to that df &M presented in Section 5.2.3.
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7.3.1 Motion model

We consider the case where the target moves randomly bunhasthat the stochastic model
describing the motion of the target (e.g., constant acatter or constant velocity [14]) is
known. In particular, the discrete-time state propagaéquoation is generically given by the
following linear form:

Xp = ®p_1xXp1 + Gro1 Wit (7.2)

wherew;,_1 is zero-mean white Gaussian noise with covaria@ge ;. The state transition
matrix, ®,_1, and the process noise Jacobiék,_;, that appear in the preceding expression
depend on the motion model used [14]. We will make no furtlssumptions on these matrices
other than that their values are known.

7.3.2 Measurement model

In this work, we are interested in the case in which a singtes@emeasures its distance or
bearing angle to the target. The corresponding measuresgeations are described below.

Range-only measurement The range-only measurement at time-stap given by:

2k = \/(% —x5,)% + (y1y, — ¥s,)? + 1y, (7.3)
£ hp(xk) + np, (7.4)

wherexs, = [pl ¢s,]" £ [zs, ys, ¢s,]" is the known sensor pose expressed in the global
frame of reference, and,, is zero-mean white Gaussian measurement noise, with carian

2 2
orie,ny ~N(0,07 ).
Bearing-only measurement Similarly, the bearing measurement at time-stép given by:

zp = atan2 ((yr, — vs,), (z1, — Ts,)) — ¢s,, + Ny, (7.5)
£ hg(xi) + ng, (7.6)

wherenyg, is zero-mean white Gaussian measurement noise, with wmj}l i.e., ng, ~

N(O,agk).
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7.3.3 Batch-MAP optimization

Similar to the SLAM batch-MAP formulation (see Section 3)2.the batch-MAP estimator
utilizes all available information to estimate thgtiretarget trajectory that is given by stacking
all states in the time interval, k| [see (7.1)]:

T
X0k = xg x{ xg] (7.7)

Specifically, the batch-MAP estimator seeks to determieectitire state-space trajectory esti-
matex,.y,, by maximizing the posterior pdf which is equivalent to miiging the following
cost function [see (5.14)]:

k k
1 . 1 1
clso) = §||X0 ~ Syl + 30 I~ el + D Sl - x| (7.9
r=1 k=1

whereQ/_; = G, 1Q,1G/_;.

A standard approach for minimizing (7.8) is to employ NewReaphson iterative mini-
mization [163], which relies on the Jacobian and Hessiamioest [see (5.15)]. Hence we first
examine their structure that will be useful for the ensuinglgsis. Specifically, at thé-th
iteration, the Jacobiah(®) can be obtained as:

T (O RPN
b = TIPGL (%) — %) + (7.9)
0T ¢ - ¢
SR (5 ) + e (s k)
whereIl = [IQN 0o --- 0} is used to adjust the dimension of tBé&/-dimensional prior

estimate to the dimension of the entire stage.. In the above expressmd{( )1 and”Hfi) are

the Jacobians of the motion and measurement models [s@ed{7dX7.4) or (7.6), respectively],
with respect to the entire statg.,, evaluated aié L| .
motion model and the measurement function involve only adtates, i.e., the target motion

Itis important to note that both the target

only depends on two consecutive states, while the measunteomdy depends on the target
position where it is observed. Thug,,_; andH, have the following sparse structure (for
concise notations, the iteration indeX is dropped here):

Fr—1= [02N><2N e =P Doy oo 02N><2N} (7.10)

%K:[OMN e CH, - 01><2N] (7.11)
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whereH,, is the measurement Jacobian matrix at time-stegiven by [see (7.4) and (7.6)]:

-(f’TN‘k—PS,i)T
| 1Pz, ), —Ps.ll
H, — (7.12)

01><(2N—2)] ,if 2 is range—only

(Br,_ |, —Ps.)" J
K|k K . . .

a0 if z, is bearin —only

HPT,{V_‘,C—PS,@-||2 X(2N=2) | > ® &

On the other hand, the Hessian mati, is approximated in the Gauss-Newton method by:

k k
A~ TTPUT+ Y Foa Qo o + Y 0, HEH,, (7.13)
k=1

k=1
which is a good approximation for small-residual problet&3].

Note that the Hessia’A has dimensioR2N(k + 1) x 2N (k + 1) [see (7.1) and (7.7)].
However, due to the sparse structure of the matri¢gand F,._1, the matrixA is also sparse,
and more importantly, it has a banded structure with uppdrlewer bandwidth ot N (due
to the Markov motion model and the range or bearing measureordy depending on the
target position where it is observed). We can exploit tharse banded structure to reduce the
computational complexity of solving (5.20) @(N>k), instead of0 (N?£?) [49].

7.4 Incrementally solving the batch-MAP optimization problem

We know that iterative algorithms such as Gauss-Newton @lgeaible to converge to one local
minimum, while the nonlinear batch-MAP problem of mininmigi(7.8) potentially has multi-
ple local minima. In order to guarantee global optimalitieally we would like to analytically
compute all the stationary points of the batch-MAP problddmfortunately, in general, it is
computationally intractable to do so. In this section, wespnt an incremental (approximate)
solution to the batch-MAP problem by intelligently genérgtmultiple high-quality estimates
used as initial guesses for an iterative algorithm. Spedificwe relax the problem by fix-
ing the past state estimates and analytically solving aste@-minimization problem for the
current state estimate, at every time step when a new measntdecomes available. This
analytic optimization is carried out by converting the rio@ar cost function into polynomial
or rational form which is then solved using algebraic geasyn&tchniques. We then use the
analytically-computed local minima corresponding to therent state along with the fixed past
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state estimates as highly accurate initial guesses, whe&hefined through the iterative algo-
rithm used to solve the batch-MAP problem.

7.4.1 Relaxation of the batch-MAP problem

As will become clear, by transforming the nonlinear measigm function into polynomial or
rational form, we can convert the KKT optimality conditioothe batch-MAP problem into a
polynomial system (see Section 7.4.2). The number of viesalbcreases linearly with respect
to the time horizork. However, since the complexity of solving multivariate ypamial sys-
tems is exponential in the number of variables [45], it igémeral, computationally intractable
to solve the batch-MAP problem analytically.

For this reason, we relax the batch-MAP problem and solvecieimentally. In particular,
at time-stepk, by fixing the past state estimateg;._ . (i.e., assuming they are optimal), we
approximate the cost function (7.8) as follows:

R 1 R 1
c(xo:x) = c(Rop—1)5-1) + §||Xk: - Xk|k—1||%k‘k,1 + §||Zk - h(Xk)Hiz (7.14)

whereN (X1, Pyjr—1) is the prior pdf for the current new statg, and is computed based
on the linear motion model (7.2) as follows:

Rifh—1 = Pr—1RXp—1jk—1 (7.15)
Prio1 = ®eProp 1 ®i + Qpy (7.16)
Now the relaxed batch-MAP problem of minimizing (7.14) beas equivalent to solving the
following one-step minimization problem incrementally tbe new state estimate:
|1 . 2 1 2
min §||Xk: = Rpp—1llpy ., + §||Zk - h(Xk)ng (7.17)

Once we find all the local minima of (7.17), we use them aloridp Wie past state estimates as
accurate initial guesses in the proposed bank of MAP estimdsee Section 7.5), while in the

proposed AGS-PF, they are employed to guide sampling fest{see Section 8.2). Therefore,
in what follows we describe the analytic approach to deteimgi all the local minima in detail.

7.4.2 Analytic determination of local minima

Observing that both relative range and bearing measursndepend only on the target position
[see (7.4) and (7.6)], we can decouple the target posiignand the remaining statedy,
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in solving (7.17), so as to simplify the ensuing derivatioi@pecifically, using the following
b)) b))

partitioning of the information matrix]?l;ﬁf_1 £ PPijk—1 Py

] , the cost function
Edpk\k—l dek\kﬂ
of (7.17) can be expanded as:

1 N T . 1 5 . A
C(Xk) = _(ka - ka‘k71) prk\k—l (ka - ka‘k,l) + §(di _di‘kfl) dek\k—l (di _di‘k71)

2
+ (P, — f)Tk\kﬂ)szdk\k—l(di - aTk\kﬂ) + (2k — h(ka))2 (7.18)

We note that

min ¢(pr,,d7,) = min (min c(ka,di)>

Py dry, pPry, \ dr,

Thus, we first solve fod7, based on its optimality condition, i.e., by setting the geatl
of (7.18) with respect tal, to zero, and obtain:

A _1 .
dr, = di\kﬂ - Eddk‘k,l Edpk\kﬂ (p1, — PTy i ) (7.19)

Substitution of (7.19) into (7.18) yields:

1 R _ . 1
c(pr,) = i(ka - ka\kﬂ)TPp;l)k‘k,l (P7, — ka\k—l) + 292 (2 — h(ka))z (7.20)
k

wherePppW1 is the covariance matrix corresponding to the target mositbbtained by par-
P P

PPk|k—1 pdg|r—1

titioning the covariance matrix aBy;—; =

]. In the above expres-
) ) _Pdpk.\k—l Pddk\k—l
sion (7.20), we have employed the following identity:

—1 —1
Pppk‘k,1 = Eppk\kﬂ - Epdk\kflzddk‘k,lzdpk\kq (7'21)

which follows from the block matrix inversion lemma [49].

We thus see that solving (7.17) becomes equivalent to nimigni(7.20). It is important to
note that the size of the nonlinear problem has dramaticityeased fror2a N for (7.17) to a
constant size of 2 for minimizing (7.20). Moreover, the gtialsolution for the target position
is independent of its higher-order time derivatives, rdiges of the stochastic target motion
model. In the following we present our algebraic geometmragches for minimizing (7.20)
analytically, in the cases of range-only tracking and epdnly tracking, respectively.
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Range-only tracking
In the case of range-only target tracking, ilg:) = h,(-) [see (7.4)], by introducing a new vari-

ablep = h,(pr, ), the problem of minimizing (7.20) is equivalent to the feliag constrained

minimization problem:

: 1 . Tp-1 . 1 2
prgkl}lp §(ka _ka\k71) Pppk‘kil(ka _ka\k71) + ﬁ(zk - p) (7.22)
subject to ? = (x5, —21,)° + (s, —yr, ) p > 0 (7.23

which can be solved by employing the method of Lagrange pligts [16]. Specifically, with-
out loss of generality, by assumilil@;‘;gk“H = Diag(si, s2), the Lagrangian function can be
constructed as follows:

S1 R 9 52 N 2
2

M + A (pz_(wsk _wTk)Z_(ySk _ka)2) (724)

+
2
20pk

where ) is the Lagrangian multiplier. Setting the derivatives/if) with respect to the four
optimization variables to zero, and performing simple afgec manipulations, we have:

8£ Sl'@Tk‘k,1 - 2)‘xSk
=0 = 7.25
oz, = T 51 — 2\ ( )
oL $90Ty 1 — 2AYs,
= = 7.26
dyr, 0 53— 2A (7.26)
oL Zk
== =2 7.27
o VTP T 1202 (7.27)
oL 2 2 2
a =0=0= P —(l’sk —LL’Tk) _(ysk_ka) (728)

1 We can always diagonaliZB,} by applying a 2D rotational transformation, which does rftec distance
measurements. Moreover, we here temporarily omit the ipibgitonstraint onp, which will be used later for
determining feasible solutions.
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Therefore, by substituting (7.25)-(7.27) into (7.28) andltiplying both sides of (7.28) with
(14202 X)?(s1 — 2X)%(s2 — 2X)%, we obtain a fourth-order univariate polynomialrf

4
0=Ff\)=> aX (7.29)
1=0
wherea;, i = 0,1,...,4, are the coefficients expressed in terms of the known qiemiit,

82, Zky Opr TTypys UTypyr TSyr @Ndys,. Since f(A) is quartic, its roots can be found in
closed form [76]. Although there exist 4 solutions fdrand thus 4 solutions fotr,, yr,
andp, as they depend injectively ah[see (7.25)-(7.27)], we only need to consider the pairs
(1, ,yr,) that correspond to real solutions foand to a nonnegative[see (7.23)]. Moreover,
since some of these solutions could be local maxima andftdlesgoints, the second-order
derivative test [16] is employed to extract the minima. Hinance we determine all the local
minima for the target position, we compute the correspandistimates for the higher-order
position derivatives via (7.19).

Since the maximum number of local minima for the problem{yutill significantly impact
the computational complexity of our proposed algorithme,seek a tighter upper bound for it.
In particular, based on the finite dimensional Mountain Hdeorem (MPT) (see Theorem 5.2
in [81]), we can show the following lemma:

Lemma 7.4.1. There are at most 2 local minima for the problem of minimiZin@2).
Proof. See Appendix E.1. O

Thus, we see from this lemma that the total number of localmarfor the one-step MAP
problem (7.17) for range-only target tracking, in worstezasan grow exponentially over time,
in an order of2*, instead off*. Fig. 7.1(a) shows a typical example where two local minima
for the current state occur while the MAP estimate erronlgotmnverges to a local minimum
with larger error.

2 Itis important to note that if any of the denominators of 6J-£7.27) becomes zero while the corresponding
numerator is nonzero, the target is at the infinity positard moreover the cost of (7.23) also becomes infinity and
hence attains the global maximum, which is not interestingst On the other hand, there exists the degenerate case
where both the numerator and denominator of (7.25) or (h26pme zeros (i.e%), which can be avoided through
an appropriate coordinate transformation.
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(a) Range-only tracking (b) Bearing-only tracking

Figure 7.1: lllustrative problem for single time step targacking: The crosses indicate the
locations of the analytically-computed local minima. Itiear that the MAP estimate initialized

with the prior estimate converges to the local minimum wattger error with respect to ground
truth. Note that in bearing-only tracking, the MAP estimateomputed based on the original
(not inferred) measurements, and the approximation (1824 in the inferred measurements

introduces a slight offset in the analytic local minima.

Bearing-only tracking

We now consider the problem of minimizing (7.20) in the catbeaaring-only tracking, i.e.,
h(-) = hg(-) [see (7.6)]. In order to use an algebraic geometry approaelcreate an inferred
measurement that hestional form. Specifically, after moving the sensor orientatiomiéo the
left hand side of (7.5), and applying the tangent functiorboth sides, we obtain the following

transformed measurement:

2 =tan(zy, + ¢s,) = tan (atan2 ((yr, — ys, ), (zn, — xs,)) + ne,) (7.30)

By denotingé, = atan2 ((yr, — ys, ), (z1, — zs,)), consideringz; + ¢s, € (—m, ], and
following the standard formulas to compute the pdf of fumaesi of random variables [148], the



174

0.018~

m— Exact pdf
= = Guass. approx.

0.016 -

0.014 -

0.0121-

p(2)

0.008

0.006 -

0.004 -

0.002 -

Figure 7.2: An example of approximating the pdf of transfedimeasurements by a Gaussian
pdf. In this case¢ = 0.5 andoy = 10 deg. In addition, the Kullback-Leibler divergence
(KLD) between these two pdfs is only 0.0447, which indicdtesdifference between the two
distributions is small.

likelihood distribution of the transformed measuremergiven by:

N(tanfl(ik);ﬁkﬁgk )+N(tan71(5k)—ﬁ;5k70§k)

3 1422 ) if Zk 2 0
PEERPXE) = § Nan—1 Gsgnog i lan (30 bmitinod) o (7:31)
1+2£ 5 |f Zk < 0

Clearly, p(Zx|xx) is not Gaussian (which results from the tangent of a Gausaiagiom vari-
able), but it can be well approximated by a Gaussian pdf bghirag the first- and second-order
moments. This is done by linearizing (7.30) around the ebgokcalue of the noise, i.e.,

YTu ~ Y8k + N =S 2k (732)
T, — XS,

ék:

where iy £ sec?(z; + ¢s,)ng,, IS zero-mean white Gaussian noise with variaage =
sec (21, + ¢s,)op, , i-., 7, ~ N(0,67). We term this approximation (7.32) amferred mea-
surement which is in the desired rational form. As illustatn Fig. 7.2, this approximation
is reasonably accurate, particularly for scenarios of Isighal-to-noise ratios. Moreover, the
local minimum of (7.20) attained based on the inferred mesmsant is very close to that using
the corresponding original bearing measurement. This eaebn from Fig. 7.1(b), where one
of the analytic local minima computed using the inferred soe@ment almost coincides with
the MAP estimate for the current state that instead usesriti@a bearing measurement. This
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further confirms that the inferred measurement is a rea$pgalbd approximation to the origi-
nal bearing measurement in solving (7.20)Moreover, the inferred measurement is used only
for finding hypotheses of the trajectory, not for estimating state.

In what follows we use the inferred bearing measuremengf{istead of (7.6)] to com-

pute the analytic solutions for minimizing (7.20). In pediar, with P;;k‘kil £ [81 83].
S3  S9

(7.20) can be written as:

1 . .
C(:L'Tk7ka) = 5 <81($Tk _ka\k71)2 + SQ(ka _ka\k71)2 (733)
1 Y, — s, )~
9 4 i ) 2 (5 YT TYSe
+ 283( 0 = 27300 ) (U7 = D05 ) +25,% (zk ZETk—QESk>

Based on the optimality conditions, i.e., setting the deiwes ofc(zr, , y7, ) with respect to the
two optimization variables to zero, and performing simpteehraic manipulations, we have:

de . X 1 [Z(yn, —vs,)  (yr, —ys,)”
= — - Y - — 0
awTk SI(QETk ZETk\kA) + 83(ka ka\kﬂ) + 5]% |: (ka — $Sk)2 (ka _ $Sk)3

= si(zr, — i'Tk\kfl)(‘fL'Tk - xsk)3 + s3(@n, — :L,Sk)?)(ka - ?ka\kﬂ)_‘_

1
= 3@, —zs)(yn.—ys,) - (yr,—ys,)?] =0 (7.34)
k
aC Y o 1 Zk? (ka - ySk)
= — _ o _ — O
oy, 520 = Utis) F 3(7m = E1) o [ZUTk —xz5,  (vp, —x8,)?

= SZ(ka - wsk)Z(ka - ng\k*l) + S3(£Tk - wsk)2(mTk - ‘%Tk\kfl)_
1

—5 [Zk(ka - ':L'Sk) - (ka - ysk)] =0 (7'35)
Ok

From (7.35), we can compuig,, in terms ofzr, as follows:

_51383(337% _msk)z(mTk _ka\kﬂ)_‘_Zk(mTk —xg,) + 5]%'92(337% _"L'Sk)ngk\kﬂ +Ys,
1+ 5’]%32(wTk — xsk)z

T, =

(7.36)

% The inferred measurement model (7.32) does not considesptial case ofr, = x5, , which however has
low probability of occurrence in practice.
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Substitution of (7.36) into (7.34) yields a rational eqaatiwhose denominator is always non-
zero. Thus, we only need to consider the numerator which é&girth-order univariate polyno-

mial in 7, :
8 .
0= f(zp,) = ZaixZTk (7.37)
i=0
wherea;, i = 0,1,...,8, are the coefficients expressed in terms of the known qigsti,

Ok, 51, 82, 83, iTM,H, gTWH, xg,, andyg, [77]. The roots off(z7, ) can be found from
the eigenvalues of the correspondifigk 8 companion matrix [44]. Although there exist 8 so-
lutions for z7, and thus 8 solutions faoyr,, as it depends injectively onr, [see (7.36)], we
only need to consider the paifsr, , y7, ) that correspond to real eigenvalues of the companion
matrix. Following the same reasoning as in the case of rangyetracking, since some of these
solutions could be local maxima and/or saddle points, tkersorder derivative test [16] is
employed to extract the minima. Finally, once we determih¢ha local minima for the tar-
get position, we compute the corresponding estimates &hitdfher-order position derivatives
via (7.19). Moreover, the following lemma provides a tightg@per bound for the maximum
number of local minima for the case of bearing-only tracking

Lemma 7.4.2. There are at most 7 local minima f¢r.33)

Proof. According to the MPT (see Appendix E.1 and Theorem 5.2 in)[gd} a coerciveC!
function, there exists a third critical point which is notog&l minimum between any two strict
local minima. It can be verified that the cost function (7.83J' (R?\{z7, =g, }) is coercive,
and therefore at least one of the 8 critical points cannotlbea minimum, leaving a maximum
number of 7 local minima. O

Note that due to its rational form, the inferred bearing meament (7.32) is symmetric
with respect to the sensor, while the original bearing mesmant (7.5) is different in different
quadrants. This can result in more local minima of (7.33ntH#se of (7.20). To discard
the spurious local minima resulting from the symmetry of ithferred measurement, we can
employ the Mahalanobis distance test [14]. As a result, we Im@ver observed more than 4
local minima in practice.
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7.5 A bank of MAP estimators

As discussed in the preceding section, due to the nonliyeafrirange and bearing measure-
ments, the incremental one-step MAP problem (7.17), ansl tine original batch (multi-step)
MAP problem (7.8), may have multiple local minima that cepend to the modes of the pos-
terior pdf. Any iterative algorithm (e.g., Gauss-Newtosgd in the batch-MAP estimator only
converges to the global optimum and hence the true MAP efjriidhe initial estimate‘c((]?llw
is within its region of attraction. However, in general, ihexists no systematic method for
determining an initial estimate that can always ensure@gance to the global optimum. As a
result, the standard batch-MAP estimator when used foetargcking can become inconsistent
and even diverge if no good initial estimate is provided. sTikiconfirmed by the simulation
and experimental results presented in Sections 7.6 and 7.7.

To mitigate the aforementioned issue, in this section, vep@se a generdinearizedes-
timation framework for tracking multiple local minima (mes). Within this framework, we
develop a bank of MAP estimators for the particular probldrtamet tracking. The key idea
of this approach is to use the analytically-computed localinma at each time step (see Sec-
tion 7.4.2) as guidance to find and track the most probablethgses of the target trajec-
tory, thus improving estimation performance. Specificalytime-stepk — 1, based on (7.15)
and (7.16), we first propagate the current state estimatesmonding to théth solution and its
covariance matrixfcgf]_l‘k_l andPLf]_l‘k_l,
the bank at time-step— 1). Then, once a new measurement becomes available, thegptepa

1 =1,2,...,m (mis the number of estimators in

state estimate and covarian&f%k_1 andPZHk_l, are used as the prior in (7.17). Next, we use
the algebraic-geometry methods presented in Section t4dtermine all the local minima
of (7.17) analytically, denoted bym, 1<j<am(seelLemma7.4.land7.4@~=2and?7,
respectively). Finally, for each of these solutions, we lemphe Gauss-Newton approach that
uses the latest estimates of the trajectory corresponditigjg solution as the initial value and
all the available original measurements, to refine the estiate estimatekg]k'k
time-stepk [see (7.8)].

This procedure incrementally evolves over time, and atyetiare step, generates at most

up to current

am trajectory estimates. In the end, we will have multiple ¢datks of the MAP estimate,
among which the one with the least cost is selected as thebistate for the global optimum
(and thus for the true state). Algorithm 4 outlines the maps of the proposed algorithm.
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Algorithm 4 A Bank of MAP Estimators for Target Tracking

1. At each time-ste:

2. Propagate the current target state estimate and covanean€é 15) and (7.16).

3: Analytically determine all the local minima of (7.17).

4:  For each of the local minima, refine the corresponding estaie (trajectory) estimates
and covariance, by employing the Gauss-Newton approadhuties the latest state es-
timates corresponding to this solution as the initial guessl also compute the MAP
cost (7.8).

5. In the end, select the estimate in the bank with the leastasotte resulting MAP estimate.

7.5.1 Computational cost reduction

In the worst case, the total number of analytic solutionsl, tans MAP estimators in the bank,
grows exponentially with time. In addition, as the targemntawuously moves, the size of the
state vecton:xg:]k of each MAP estimator increases linearly with time. In orttemake the
algorithm suitable for real-time applications, in whatldals, we present an effective pruning
scheme, as well as the process of marginalization of oldyredtstates, to reduce the compu-
tational cost of the proposed algorithm.

Pruning scheme

In practice, the number of physically different trajecttmypotheses is significantly lower than
the exponential number of hypotheses generated by theadstingsince many different initial
guesses reside within the same basin of attraction. Addiliy we observe that in general,
if two MAP estimators in the bank have similar costs, theetyry estimates are also close.
Therefore, we first aggregate the trajectory estimates aftwthe corresponding costs are equal
within a tolerance, and retain one representative trajgatbeach such group while discarding
the others. In addition, we also employ the K-means algorifh2] to cluster the remaining
estimated trajectories into two groups based on their ezgtsemove the (outlier) group which
has larger costs. These two steps, aggregation and chgstare repeated, until the number of
MAP estimators in the bank is within the threshold denoteady,,.*

4 Simulation results have shown that the aggregation is swtfé that most of the time there is no need to
perform the clustering.
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Marginalization of old states

To further reduce the computational complexity, we alsolegnp marginalization process that
removes the old, matured states from the state vector oftetch-MAP estimator in the bank
(see Section 5.3 and [38,163]). In particular, supposeniaaginalization of old states is carried
out at time-stepk,, when all the measurements during the time intefak,| are available.
Then, as the robot keeps moving and collects new measureinghe time intervalk, + 1, k],

the MAP estimation takes place at time-stepTo facilitate our derivations, we first define the
notations that we will be using. The old states that are matigied out at time-step, are
denoted byxyr = xo.,,,. The remaining states that stay active in the sliding winddter
marginalization are denoted g = x; 11.4,. Finally, the new target states that are added
into the state vector during, + 1, k] are denoted byxn = xj, 41.x. At time-stepk, the sliding
window contains the stategz andxy;, and the estimator computes the batch-MAP estimate by
minimizing a cost function similar to (7.8):

c(xo:.) = c(xM, XR, XN) = cM (XM, XR) + CN(XR, XN) (7.38)

where we have decomposed the cost function into two temgxng, xg ) that contains all
guadratic terms that involve statessii; only, as well as terms involving the last statexigy

and the first state irg; anden (xR, xn) that contains all quadratic terms that involve states in
xg only, states ik only, and terms involving the last statest and the first state iryN. It

is important to note that there is no quadratic term joirmhyolving states inkn andxyg, since
the target states marginalized at time-skgpo not participate in any measurement after that
time. Thus, we have:

min  ¢(xXmM, XR,XN) = min <cN(xR,xN) + min cM(xM,xR)> (7.39)
XM,XR,XN XR,XN XM

We then solve foxjy, = arg min cm(xm,xr) Which only depends oxgr. This results
XM

in an approximately equivalent cost function of (7.38),(xr,xn ), Which doesnot depend
on xp; and whose minimization can be carried out by the Gauss-Newtethod (see Sec-
tion 7.3.3). The approximation in this process is introadlidee to the fact thaty; is perma-
nently approximated by its second-order Taylor series msipa, and the marginalized states
xM, as well as all the measurements that directly involve thesdescarded. Now it becomes
clear that due to the marginalization, each batch-MAP egtimin the bank has constant com-
putational requirements, which depend only on the sizea§liding window. This, along with
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pruning, results irconstantcomputational complexity for the proposed bank of MAP eatim
tors, compared ttinear for the standard (non-marginalized) batch-MAP estimadioe(to the
sparse, banded structure of the Hessian matrix) (see 8ac8a3).

7.6 Simulation results

A series of Monte-Carlo simulations were conducted undeioua conditions, in order to
demonstrate the capability of the proposed algorithm torawg tracking performance. We
used RMSE and NEES [14] as the metrics for evaluating estirsigherformance. In the fol-
lowing simulation tests, we adopted a zero-acceleratiotiomonodel for the target [14]:

x(t) = Fx(t) + Gw(t) (7.40)
where
0 0 1 0] [0 0] e (t)]
000 1 0 0 i
P G- Cx(t) = yr(t)
000 0 10 Fr(t)
0000 0 1 i (t)
T . . . - . .
and w(t) = [wx(t) wy(t)] is zero-mean white Gaussian noise with covariance

E [w(t)w(r)T] = ¢I:6(t — 7), whereq = 1 (%)2% and§(t — 7) is the Dirac delta
function. In the implementation, we discretize this contins-time system model (7.40) with
time stepAt = 0.1 sec. The initial true target statextg = [0 0 -5 5]T, while the initial
estimate of the target state is randomly generated from &&au pdf, N (xo, Pgjo), Where
Pyjo = 10314 is the initial covariance of the state estimate. Similar@][ we chose a circular
sensor trajectory with perfectly known poses for this settioh. Fig. 7.3 shows the trajectories
of the target and sensor in one typical realization of MdD&lo simulations.

For the results presented in this section, we performed 166tdACarlo simulations, and
compared four different estimators. During each Montel&Caun, all the estimators process
the same data, to ensure a fair comparison. The comparedagsts are: (1) the standard
EKF, (2) the standard batch-MAP estimator that incremgntedes the EKF estimates (i.e., the
current EKF estimate along with the MAP estimates of the ptes) as the initial value as

well as employs the marginalization process as in (4), (8)stimpling importance resampling
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Figure 7.3: The trajectories of the target and sensor aiddirom one typical realization of the
100 Monte-Carlo simulations.

(SIR)-PF with3000 particles [8], and (4) the proposed bank of MAP estimatorith ywruning
(mmax = 10) and marginalization (sliding window &b time steps). Note that in both MAP
estimators, the maximum number of Gauss-Newton iterat@tiosved was set t@0. In this
simulation, we implemented the standard (bootstrap) SH5B] that uses the prior distribution
as the proposal distribution to draw particles and emplggtesatic resampling at every time
step. Moreover, to alleviate the particle depletion prohleve also dithered the sensor noise
(i.e., increasing noise covariance). We have examineerdifit resampling schemes such as
Ripley’s and stratified resampling [58], but found negligiberformance difference.

In what follows, we present the comparison results for batige-only and bearing-only
target tracking. In the case of range-only tracking, thedadad deviation of the distance-
measurement noise was equal to 10% of the sensor-to-taigjahck, while in the case of
bearing-only tracking, the standard deviation of the lmgapmeasurement noise was equal to
10 deg. Notice that the sensor-noise levels selected for gigsdations are larger than what is
typically encountered in practice. This was done purpdisefsince higher noise levels lead to
larger estimation errors, which can make the effects ofregtir's inconsistency and divergence
more apparent.

Specifically, Fig. 7.4 shows the Monte-Carlo results of therfestimators. As evident
from this figure, the standard EKF estimates are inaccuditerge from the ground truth,
and become inconsistent. The standard batch-MAP estimatoementally using the EKF
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Figure 7.4: Target tracking Monte-Carlo results. Itis cliat the proposed algorithm performs
substantially better than its competitors, in terms of batburacy (RMSE) and consistency

(NEES). Note that for clarity of presentation, only the pmis of the NEES lines that are
within certain thresholds are plotted.

estimate as the initial guess, has significantly improvedopmance compared to the EKF,
mostly due to the continuous relinearization of the pagedtary. As expected, the PF attains
better estimation accuracy than the EKF. This is due to thetfat each particle in the PF
essentially represents a hypothesis of the target stadehaa the PF is more likely to converge
to the optimal solution. However, it does not always work &l as the standard batch-MAP
estimator [see Figs. 7.4(a) and 7.4(c)], in part becauseds dhot allow smoothing the old
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Table 7.1: Computational cost and estimation accuracy

Runtime (sec) Position Est. Err. (m) Velocity Est. Err. (et)s

Range-only tracking

EKF 0.0013 164.5105 20.8169
MAP 0.0764 69.7182 8.7626
PF 0.5036 83.2766 10.6280
Bank of MAP 0.3460 29.8041 5.9631
Bearing-only tracking
EKF 0.0012 254.8551 32.9720
MAP 0.0628 134.4449 18.1967
PF 0.5590 206.6339 24.3979
Bank of MAP 0.5118 41.6355 9.3550

state estimates using newly available measuren?entsNote also that the NEES of the PF
is not necessarily better than that of the EKF, primarily tméhe numerical issue incurred
in the simulation that the covariance matrices of the PF adathfrom particles become ill-
conditioned. Most importantly, the bank of MAP estimatoesfprms substantially better than
its competitors, in terms of both accuracy (RMSE) and coaiscy (NEES). This is attributed
to the good initial estimates attained through the algebrathods (see Section 7.4.2).
Finally, using the same simulation setup as described alesecompared the computa-
tional requirements of the proposed bank of MAP estimatotsiss competitors. We counted
the CPU running time for a complete update of the EKF, thelitFstandard batch-MAP estima-
tor, and the bank of MAP estimators (including the analygtedmination of all local minima,
batch-MAP refinement, pruning, and marginalization). Ouwatlsb implementation running on
a Core2 Quad CPU required an average execution time for edioha¢or shown in Table 7.1.
These results were obtained by averaging the CPU runnirgydirar all Monte-Carlo runs and
over all time steps. As expected, the EKF and the standard Egifhator which only track
single hypothesis of the target trajectory, are much moreptaationally efficient than both
the PF and the proposed bank of MAP estimators which instea#t tnultiple hypotheses of

5 Although particle-based smoothers exist, their compuomaii requirements are significantly higher [58].
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TARGET SRART

Figure 7.5: Experimental setup: (a) Calibrated image of Rianeer Il robots (one acts as
the target while the other is the sensor) with tracking pastenounted on top of them. (b)
Trajectories of the two robots (target and sensor) that nrside a 4 mx 2 m arena during the

indoor experiment.

the target trajectory. However, their tracking perfornaigsubstantially worse than the pro-
posed algorithm. Moreover, as compared to the PF, the pedploank of MAP estimators not

only is less computationally demanding, but also achieigrsfcantly better performance [see
Figs. 7.4(a) and 7.4(c), and Table 7.1]. Specifically, in ¢hse of range-only tracking, the
bank of MAP estimators achieves on average 60% higher posiid 40% higher velocity es-

timation accuracy compared to the PF, at 30% less compuétemst; similarly, in the case

of bearing-only tracking, it achieves on average 80% higlosition and 60% higher velocity

estimation accuracy than the PF with comparable (8% lesspatational cost.

7.7 Experimental results

In this section, we present a real-world experiment peréatrio further validate the proposed
algorithm. During the test, two Pioneer-IIl robots, ondragias the target and the other serving
as the sensor, moved in a rectangular area of-d2m, within which the positions of the robots
were being tracked by an overhead camera. For this purpest@ngular tracking patterns
were mounted on top of the robots and the vision system wasradd in order to provide

ground-truth measurements of the robots’ poses in a glabaidinate frame. The standard
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Figure 7.6: Target tracking experimental results. It isacldat the proposed bank of MAP
estimators performs better than its competitors. Noteftiratlarity of presentation, only the
portions of the NEES lines that are within certain thresbalce plotted.

deviation of the noise in these measurements was appralym@t deg for orientation and
0.01 m, along each axis, for position. The target robot wascanded to move along a straight
line at a constant velocity of = 0.1 m/sec, and thus a zero-acceleration motion model with
g = 0.01 (%)Zé was used to describe this motion [see (7.40)], while themwembot was
operated to move on a circle. Fig. 7.5(a) shows the expetaheatup, and Fig. 7.5(b) depicts
the trajectories of the target and the sensor.

In this experiment, the initial estimate of the target states set to bexg, =
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[1.2 0.95 0.7 —O.S]T with covarianceP,, = I;. Relative distance and bearing mea-
surements were produced synthetically using the differgnic the positions of the target and
the sensor, as these were recorded by the overhead camiérghevaddition of noise. For the
experimental results shown in the following, the distance laearing measurements were cor-
rupted by zero-mean white Gaussian noise, with standatdtt®vo, = 0.1 m andoy = 5 deg,
respectively.

The same four estimators as in the previous simulation wepteimented, and the compar-
ative results are presented in Fig. 7.6. From the experahegsults, it becomes clear that the
bank of MAP estimators outperforms the standard EKF, theaRéthe standard MAP estima-
tor, in terms of both accuracy (RMSE) and consistency (NEERs agrees with the simulation
results presented in the preceding section. Most impdytardth the experimental and simu-
lation results confirm the significance of correctly findinglaracking multiple modes of the
posterior pdf as well as reduced linearization errors iflinear estimation problems.

7.8 Summary

In order to improve consistency, nonlinear estimators khba able to track multimodal pdfs
which often occur in nonlinear problems. However, this i$ the case for many existing es-
timators (e.g., the EKF, and the MAP estimator). In this worke have introduced a general
estimation framework, a bank of MAP estimators, that siamdbusly allows tracking multiple
modes of the posterior pdf, and reduces linearization €tlsough relinearization of past mea-
surements. We have applied it to the problems of both ranfjeamd bearing-only target track-
ing. Due to the computational intractability of analytigasolving the batch-MAP problem,
we have employed a relaxation scheme that keeps past diatates temporarily constant and
incrementally solves a one-step minimization problem lfer ¢urrent state at every time step.
This minimization is solved analytically using algebraeognetry methods. The analytically-
computed local minima are then used to find accurate initiales for the bank of MAP esti-
mators, thus focusing the available resources on trackiagrost probable hypotheses of the
target trajectory. Additionally, to reduce the computagibcost of the proposed algorithm, we
have employed hypothesis pruning along with marginalizatif old states. Simulation and ex-
perimental results have shown that the proposed algoritnifisantly outperforms the EKF,
the batch-MAP estimator, as well as the PF, in terms of bathracy and consistency.



Chapter 8

Analytically-Guided Sampling-Based
PF for Target Tracking

In this chapter, we adapt the idea of analytically selechipgotheses presented in the previous
chapter to PFs. Within the PF framework, one critical desigaoice that greatly affects the
filter’s performance is the selection of the proposal distibn from which particles are drawn.
We hence advocate the proposal distribution to be a Gaussidnre-based approximation of
the posterior pdf after taking into account the most recegasurement. The novelty of our
approach is that each Gaussian in the mixture is determanadjtically to match the modes
of the underlying unknown posterior pdf. As a result, péescare sampled along thmost
probableregions of the state space, hence reducing the probabilifgrécle depletion. Part of
this chapter has been published in [69].

8.1 Introduction

Particle filtering has become an increasingly populanparametricnonlinear estimation ap-
proach used in a wide range of applications such as targdinica[8, 39, 41, 58, 134]. A par-

ticle filter (PF) seeks to approximate the posterior pdf bytacs random samples (particles)
and updates its estimate recursively in time. Within theusatjal importance sampling (SIS)
framework, one critical step is to design an appropriat®osal distribution(or importance

density), which is used to draw particles for the next tinepsiClearly, from the Bayesian fil-
tering perspective, the best choice of the proposal digtdb is the posterior pdf itself, which,
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however, in general is intractable to evaluate analytic#fi this chapter, we focus on formally
designing a proposal distribution that better approxim#te posterior pdf so as to improve the
PF’'s performance.

Since, in general, it is also difficult to sample from thgtimal proposal distribution, which
minimizes the variances of the particles’ weights condiid on the trajectory and all available
measurements [40], many, oftad hog choices of the proposal distribution are described in the
literature. Typically, the prior pdf is used, which resuttgshe standard (bootstrap) PF weighted
by the measurement likelihood [50]. If, however, the pruninformative, the generated par-
ticles may not be able to sample the state space sufficiéhigcifically, when far from a mode
of the posterior pdf, the weights of the particles decay kiyiand lead to particle depletion
(i.e., only a few particles have significant weights) [8]. &sesult, the very few surviving par-
ticles are unable to appropriately represent the undeylyosterior pdf, which may cause filter
inconsistency In general, in order to converge to meaningful estimates,standard PF
requires using a large number of particles, and thus hasgnmgessing requirements. In cases
where the posterior pdf is closer than the prior to the megmsant likelihood, then using the
likelihood, instead of the prior, as the proposal distiitnoften improves performance [8]. Al-
ternatively, a Gaussian proposal distribution can be obthby local linearization [40], based
on which the unscented PF (UPF) [166] was introduced. The &faploys the UKF or the
EKF to generate the proposal distribution that takes intmait the latest measurements and
thus better approximates the posterior pdf. Similar ideaevalso exploited in [115, 139, 168].
However, often due to the multimodal nature of the posteauitf; the particles sampled from
the UKF/EKF posterior pdf do not necessarily capture alltthe posterior modes, which may
degrade the UPF's performance.

The closest to the work presented in this chapter is the Gaussm PF (GSPF) [98] —
which essentially is a bank of Gaussian PFs (GPFs) [97] — bes Herived based on the con-
cept of the Gaussian sum filter (GSF) [3]. Specifically, byuatiag that the prior pdf can be
represented as the sum of Gaussian distributions, the Gdas each distribution using the
particles that are sampled, for example, from the corredipgnprior pdf and weighted by the
measurement likelihood. However, the GSPF does not prawdeasurable criterion about how
many Gaussian distributions are needed and most impaostaviiere to choose them. These

1 Consistency is one of the primary criteria for evaluating plerformance of an estimator. As defined in [14],
an estimator igonsistentf the estimation errors are zero-mean and have covariamedles or equal to the one
calculated by the estimator.
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critical issues are addressed in the Analytically-Gui@edanpling (AGS)-PF introduced in this
chapter.

In particular, the proposed AGS-PF efficiently utilizes #ivailable computational resources
by employing a small number of particles drawn from thest probablehypotheses about the
estimated state, i.e., the AGS-PF samples the most likgipme of the state space. The key
idea behind our approach is to employ a Gaussian mixture googjmate the posterior pdf,
where each Gaussian is determimathlytically and corresponds to a mode of the posterior pdf.
Specifically, we first formulate and convert the nonlineatdonction of the MAP optimization
problem for the current state infimlynomialform, and then employ algebraic-geometry tech-
nigues [33] to analytically compute all the modes of the @ast pdf. Subsequently, we use a
Gaussian mixture as the proposal distribution to approténttae posterior distribution. Each
Gaussian component matches one mode of the posterior pHitsazovariance is computed as
the inverse of the Hessian matrix of the MAP problem. Thiditally-determined proposal
distribution provides a better approximation to the pastgurdf, because it not only takes into
account the current measurement but also matches all theswdthe posterior pdf. Therefore,
the particles drawn from this proposal distribution santptemost probable regions of the state
space. Simulation and experimental results demonstratéd AGS-PF significantly improves
the performance in the cases of range-only and bearingtarggt tracking. We stress that apart
from the particular application of target tracking treakeste, the proposed analytically-guided
sampling scheme is applicable to a broad class of nonliremnation problems in robotics and
computer vision that can be expressed in (or converted paiynomial form.

8.2 Analytically-guided sampling-based particle filtering

In this section, we present a novel analytically-guided garg scheme that consists of a
Gaussian-mixture-based proposal distribution whose si@te determined analytically to
match those of the posterior pdf. As a result, the new AGS{R¥eterely focuses the avail-
able computational resources on the most probable regfdhe state space. In what follows,
we begin with a brief overview of the generic PF, and then idesour novel sampling scheme
which can readily be integrated into the PF framework.
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8.2.1 Particle filtering

A PF seeks to approximate the posterior distribution of thige state trajector;p(xo k| 20: k)

sequentially in time, using a set 8f weighted samples (partlcles:{)x0 % wherexO =

1
[XOT e sz] denotes all the states up to time-sig@andz.;, denotes all tjhe measurements in
the time interval0, k]. To this end, relying on sequential importance resampiBig), the PF
generally requires three sequential steps to update itsast(see [8,41,58], and Algorithm 5):
Firstly, it draws particles for the next time step from a psgl distribution;r(xg.x|20.% ), which
is a critical design choice. Secondly, it assigns a weigletith particle in order to account for
the fact that the proposal distribution is usually diffaréom the true posterior pdf. Lastly, it
performs resampling to multiply (or discard) particleshhitigh (or low) weights.

As mentioned before, one of the main challenges in PFs igiliegj an appropriate proposal
distribution. Even though numerous choices can be madetypielly requires that the pro-

posal distribution has the following form in order to be amlgle to recursive computation [41]:

7(X0:]20:6) = T (X |X0:k—15 20:1 )T (X0:k—1|20:6—1) (8.1)

It is well known that the curse of dimensionality can quickigke the particles too sparse to
represent the posterior pdf (i.e., particle depletion)ptactice, it is common to approximate
the proposal distributionr (xg.x|20.x), by fixing the past trajectory,.,_; and only sampling
the current statey, i.e., usingm(xx|xo.x—1, z0:x)- It has been proven in [40] that tloptimal
proposal distribution for the current state, with respeatinimizing the variance of the parti-
cles’ weights, is in the form of a conditional pdf conditiachen the past trajectory and all the
measurements:

Topt (Xk[X0:k—1, 20:k) = P(Xk|X0:k—1, 20:k) (8.2)

Based on (8.1) as well as the common assumptions that th@matbdel is a Markov
process and that the measurements are conditionally indepegiven the states, the (unnor-
malized) importance weight of theth particle is computed recursively as follows [41]:

byl (Xo k\Zo k) 4] p(xk |X )P (Zk|xi[3])

Wy = Wy~ q

(8.3)
(Xo k’ZO k) 7T( ‘xok 1> 20: k)

To summarize, a generic PF is outlined in Algorithm 5.
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Algorithm 5 A generic particle filtering algorithm
1. loop ‘
2. Draw particles{x,[j]}j-vﬁl ~ T (XE|X0:k—15 20:k)

3:  Compute weights via (8.3), and normalize weights
4:  Resample particles based on weights
5. end loop

In general, the optimal proposal distribution (8.2) is n@ikable analytically or in a suitable
form for efficient sampling, and one may choose (infinitelynyjaother possible distributions
to approximate it. As mentioned before, a common choice saitople from the state-transition
prior distribution (motion model), i.ex(xx|X0.k—1, 20.x) = P(Xk|Xk—1). Inthis case the weight
is simply proportional to the measurement likelihogd;;|x;) [see (8.3)]. However, such a
choice may easily lead to filter inconsistency (see SecBohand 8.5). To address this issue, in
the following, we design an analytically-determined pregdadistribution by taking the current
measurement into account as well as matching all the modbe @osterior pdf.

8.2.2 Analytically-guided sampling scheme

Our choice of Gaussian-mixture-based proposal distobts motivated by the following Gaus-
sian sum theorem (see Theorem 4.1 of [3], p.214):

Theorem 8.2.1. For a measurement model with additive Gaussian noise [s&g,(7.4),
ie., zr = h(xg) + vk, wherev, ~ N(O,a,f,), and a prior pdf given by(xg|z0.k—1) =
St N (Xk;ilizi\)k—l’Pl(c?k—l)’ the posterior pdi(x|zo.,) approaches the Gaussian sum

S N (xk,ig‘)k,Pg@ uniformly inx; and z; asP,(ij,_1 — 0fori =1,...,m, where
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Figure 8.1: lllustration of the proposed analytically-etaiined proposal distribution that uses
a Gaussian mixture to approximate the posterior distidioutiThe modes of the posterior pdf,
which are analytically computed, are also used as the mddes proposal distribution. Note
that for visualization the plotted Gaussians of the mixtae scaled so that their modes also
coincide along y-axis with those of the posterior pdf.

the mean, covariance and weight are computed as follows:

%0 =% + K <zk - h(i,gj;_l)) (8.4)

Pl(si|)k = Pl(ci\)k—l - Klg)Hl(j)Pl(j\)k—l (8.5)

A AT e

H =V,h (8.7)
xo=x

of = anliﬁaﬁ (8.8)

Bi =N (z (&) HPPY, 1Y +of) (8.9)

Based on this theorem, under mild assumptions, the Gaussidare can provide a good
approximation to the posterior pdf. Hence, we propose toauSaussian mixture as the pro-
posal distribution in the AGS-PF, while the novelty herenattwe employ tools from algebraic
geometry to analytically determine the modes of the pastgrilf, which are then used as the
modes of the proposal distribution (see Fig. 8.1).
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In particular, given that the prior pdf in the PF is approxieth by a set of particles
[see (8. 10)]{xk®, k}@ =1, we find a Gaussian mixture to approximate this distribytainich
can be achieved, e.g., by clustering theparticles intom groups and then fitting a Gaussian

to each group.

0
N (% P ) (8.11)

M
p(Xk|z0:k—1) = Zw,[jéé(xk - Xg]@) (8.10)
7j=1

P (xp]20:5-1)

wherea; = > w,[j]@, andd(-) is the Dirac delta function. Using Bayes’ rule and the above
xg]eegroup %

Gaussian mixture approximation of the prior pdf (8.11), psterior pdf can be approximated
as follows:

P(Xk|20:1) < p(2r|XK)p(Xk]20:6—1)

m

Z p(zklxr) P (k| 20:0-1)

o< pO (xp|z0:1)

NZZO%N (ka k|k:’ k|k:)) (8.12)

i=1 4=1

It is important to point out that due to the nonlinearity of tneasurement model, for each
Gaussian distribution in the prior mixturg(”) (x;|zo.—1), the corresponding posterior pdf,
p® (x| 20.), very often is a multi-modal, rather than a unimodal, distiion. To take this fact
into account, in (8.12) we use, Gaussian distributions to approximate thih posterior pdf,
p® (x| 20: ), Whose weightsagl, are computed based on (8.8) but with appropriate normaliza
tion, i.e.,a = % Note thatn; is analytically determineds the number of modes
of thei-th posterlor pdf, rather than arbitrarily chosen as in ntagtissian sum filters such as
the GSPF [98]. Here the indgx denotes thé-th Gaussian of the-th posterior pdf. Thus, a
mixture ofn = """ | n; Gaussian distributions is used to approximate the postedt which
is then used as the proposal distribution in the proposed- RES

We now aim to analytically compute all the mod |k, Vi = 1,...,m and¥/ =

1,...,n;), of the i-th posterior pdf,p()(x;|z0.1.), i.€., to solve the foIIowing one-time-step
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MAP problem analytically:

max P9 (xx|20.0) o< PP (x4 | 2001 )P (21 |X1) (8.13)

Exploiting the Gaussianity of the measurement noise aladtiythve Gaussian approximation of
thei-th elementp®) (x,|zo.,_1), of the approximate prior (8.11), the MAP problem (8.13) is
equivalent to the following nonlinear least-squares mob[76]:
1 1 )
min 5 [x — Xk\k 1HP<> B +5llzn = hixk)ll52 (8.14)
where we have employed the notatifa||2, = a’M~'a. Note that for a broad class of
nonlinear estimation problems arising in robotics and ast@pvision, we can transform or
convert (8.14) into polynomial form and then solve for akk thhcal minima (corresponding to
all the modes) analytically using algebraic geometry temples [33].
Once we analytically find all the modesg“,g, of the i,-th Gaussian component of the
posterior pdf (proposal distribution), we compute the esponding covarlanceE’,(Wg , from
the inversion of the Hessian matrix of (8.14) as follows:

p() = (P()

i) vv(ie))
K|k k|k—1+0k_2Hl(e[) Hi(/)) (8.15)

where the measurement .Jacobi]affj‘Z is evaluated at th&-th analytically-computed mode,
k|k: [see (8.7)]. Based on the matrix inversion lemma [49], itas difficult to see that (8.15)
is precisely the standard EKF covariance update equatigidlso see (8.5)].

8.3 AGS-PF for target tracking

We now apply the AGS-PF presented in the previous sectidmetparticular problem of target
tracking, to illustrate in detail the key idea ahalytically determining the proposal distribu-
tion for sampling particles. In particular, in order to firftetproposal distribution (Gaussian
mixture), we first determine all the modes of the posteridr(ptbposal d|str|but|on)xk| s by
employing our analytic approaches presented in the prewibepter (see Section 7.4.2) to ana-
Iytically solve the problem (8.14). On the other hand, inesri obtain the covariancP,S@, of
thei,-th Gaussian component of the proposal distribution (8 \/&)compute the measurement
JacoblanH(“ asin (7.12), using the found modééc,“g
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Since the analytically-determined proposal distributitemived in the previous section not
only takes into account the current measurement but alschesall the modes of the posterior
pdf, it provides a better approximation to the posterior, @aifd thus the AGS-PF is expected
to perform better than the standard PF as well as the GSPEifiSply, at time-stepk — 1,
we cluster the particles intow groups, e.g., using the K-means algorithm [42]. Hereis a
design choice selected based on the available computhtes@urces. We compute the sam-
ple mean and covariance of tli¢h group ¢ = 1,...,m), and approximate this group by a
Gaussian () £ N(xk_l;&lgiluk_l,P,Ql‘k_l), i = 1,...,m. Then, based on thinear
motion model (7.2), we propagate each Gaussian to obtaiprthe A/ (xk;ig‘)k_l,Pl(fﬁk_l)
[see (7.15) and (7.16)]. When a new measurement becomdakdeaive analytically com-
pute all the modes of the posterior pdf for each of theGaussiansV'(¥), by solving (8.14)
(see Section 7.4.2). Once all the modes of the posterior guutfl (hus the proposal distri-
bution) are determined, we compute the corresponding @m@e based on (8.15) for each
Gaussian component of the proposal distribution. Finalfter all the Gaussian components
(modes and covariances) are specified, we use them as a @rdfgdsbution to draw particles,
! o~ N (xk;fclfflg, P,(jfk) ), where M, is the number of particles drawn from theth
Gaussian. For simplicityM;, is set equal to the number of the particles originating from t

i-th group after clustering, i.eM;; = M;, though a more adaptive scheme (e.g., based on the

particles’ weights) may be used. In summary, the main steffeAGS-PF target tracking are
outlined in Algorithm 6.

Algorithm 6 Analytically-Guided-Sampling (AGS)-PF for Target Traagi
Require: Initialize particles by sampling from(xg)
1: loop
2. Cluster patrticles inten groups using K-means, and fit a Gaussian to each group

3: Propagate each of thex Gaussians (means and covariances) to obtain the priors

via (7.15) and (7.16)

4:  For each group, given a new measurement, analytically méterthe proposal distribu-
tion as a Gaussian mixture [see Sections 7.4.2 and (8.15)]

5.  Draw particles from the analytically-determined propodmtribution (Gaussian mix-
ture)

6: Compute weights via (8.3), prune particles, and normaliegglts

7:  Resample particles based on weights

8: end loop
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Note that as seen from Section 7.4.2, we may find multiple maod¢he posterior pdf for
each group at each time step. Hence, the number of Gaussiapooents of the proposal
distribution may be larger than the original number of @ust This can result in an unbounded
growth of particles over time in the worst case, since moceraare particles may be generated
for each group in the subsequent time steps. In order to keepumber of particles constant
and reduce the computational cost of the AGS-PF, at evegystap weruneout particles with
low weights (see Algorithm 6). As a result, the AGS-PF can sugestantiallyfewerparticles
while achieving significantlpetterperformance than the standard PF (see Sections 8.4 and 8.5).
This is attributed to the fact that the particles drawn fréva &analytically-determined proposal
distribution that captures all the modes of the posteridr ack effectivelysampled from the
most probableegions of the state space.

8.4 Simulation results

A series of Monte-Carlo simulations were conducted undeoua conditions, in order to val-
idate the capability of the proposed AGS-PF to improve traglperformance, using the per-
formance evaluation metrics of NEES and RMSE [14]. In thisudation, we performed 100
Monte-Carlo simulations and compared three different RE}$:the standard (bootstrap) PF
with 1000 particles, which uses the prior as the proposal distributdraw particles from
and employs the systematic resampling strategy [50]; 38PF [98] using the same number
of particles as the standard PF and= 10 Gaussians to represent the underlying distributions,
which are initialized by clustering the initial particles®® m groups and then fitting a Gaussian
to each group; and (3) the proposed AGS-PF &ifld particles, which uses the analytically-
determined proposal distribution as well as systemat@mgding. In the AGS-PF, at each time
step, we clustered the particles into= 10 groups, equal to the number of Gaussians used in
the GSPF. Note that in order to validate the effectivenefisadnalytically-determined proposal
distribution employed by the AGS-PF, significantly fewertfzdes were used in the AGS-PF,
as compared to the standard PF and the GSPF. Despite thiagasttown below, the AGS-PF
attains substantially better performance than both thedstal PF and the GSPF.

For the results presented in this section, we adopted aamaeleration motion model for
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the target [14] [also see (7.40)]:

x(t) = Fx(t) + Gw(t) (8.16)
where
r7(t) 0010 0 0
t 0001 0 0
&r(t) 0000 10
yr(t 0000 01
T
and w(t) = [wx(t) wy(t)} is zero-mean, white Gaussian noise with covariance
21

E [w(t)w(r)"] = qI20(t—7), whereg = 1 (225)"1;, andd (¢t — ) is the Dirac-delta function.
In our implementation, we discretize this continuous-tisyetem model (8.16) with time step
At = 0.1 sec. The initial true target statexig = [0 0 -5 5]T, while the initial estimate of
the target state is randomly generated from a Gaussian\p@dfy, Pyy), whereP, = 10014

is the initial covariance of the state estimate. Similaolj47], we chose a circular sensor trajec-
tory with perfectly known sensor positions for the simuwas. Fig. 7.3 shows the trajectories
of the target and sensor in one typical realization of the tddaDarlo simulations. The stan-
dard deviation of the distance-measurement noise was &mugl= 0.5 m, while the standard
deviation of the bearing-measurement noise was sej te 3 deg.

Fig. 8.2 shows the Monte-Carlo results of the three PFs. dtdar that the standard PF
provides inaccurate estimates which are diverging fromgtieeind truth and become incon-
sistent. As explained before, the poor NEES performancleostandard PF is primarily due
to the ill conditioning of the covariances computed fromtigdes whose weights are small or
particles that do not span all directions of the state sp@seexpected, the GSPF performs
more accurately than the standard PF. Most importantlyAte8-PF performs better than both
the standard PF and the GSPF, in terms of accuracy (RMSE)arsistency (NEES). This is
attributed to the analytically-determined proposal dbsttion which matches all the modes of
the posterior pdf while taking into account the most receatsurements. It is interesting to
note that the superior performance of the AGS-PF over theFd&Bearing-only tracking, is
not as pronounced as that in range-only tracking [see Fig&)8and 8.2(c)]. This is due to the
approximation incurred in the AGS-PF using the inferrediéad of original, bearing measure-
ments (7.32) to determine the Gaussian-mixture-basedopabmlistribution, which, however,
is not the case in range-only tracking.
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Figure 8.2: Target tracking Monte-Carlo results: The psgabAGS-PF algorithm performs
substantially better than its competitors, in terms of batburacy (RMSE) and consistency
(NEES). Note that for clarity of presentation, only the pm$ of the NEES lines that are
within a certain threshold are plotted.

Finally, using the same simulation setup as described aheeecompared the computa-
tional requirements of the proposed AGS-PF and its congpstlly measuring the CPU run-
time for a complete update of all filters. Our Matlab implernagions running on a Core i7
CPU of 2.67 GHz required an average execution time for eatel §hown in Table 8.1. These
results were obtained by averaging the CPU running time alV&tonte-Carlo simulations and
over all time steps. As compared to the standard PF and thé- Gl proposed AGS-PF is
not only computationally more efficient by using fewer paées but also achieves significantly
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Table 8.1: Computational cost and estimation accuracy

Runtime (sec) Pos. Est. Err. (m) Vel. Est. Err. (m/sec)

Range-only tracking

Std-PF 0.2273 92.3522 9.1060

GSPF 0.1801 51.4123 6.5045

AGS-PF 0.1813 10.3799 2.5885
Bearing-only tracking

Std-PF 0.2757 51.5319 6.3499

GSPF 0.2283 23.2511 4.4451

AGS-PF 0.1956 20.7163 4.4377

better tracking performance [see Figs. 8.2(a) and 8.2(u), Table 8.1]. Specifically, in the
case of range-only tracking, as compared to the standarch®fha GSPF, the AGS-PF at-
tains on average 89% and 80% reduction in position estimaticor, 71% and 60% reduction
in velocity estimation error, while at 20% lower and sameeoraf computational cost, respec-
tively. Similarly, for bearing-only tracking, it achieves average 60% higher position and 30%
higher velocity estimation accuracy than the standard BB%t less computational cost; while
attaining compatible estimation accuracy as the GSPF atlé§8«computational cost.

8.5 Experimental results

In this section, we conducted the same real-world expetiragin Section 7.7 to further val-
idate the proposed AGS-PF. Specifically, during the tesb, Rioneer-IIl robots, one acting
as the target and the other serving as the sensor, moved atamgealar area of 4 nx 2 m,
within which the positions of the robots were tracked by aerbead camera. For this purpose,
rectangular tracking patterns were mounted on top of thetsadnd the vision system was cali-
brated in order to provide ground-truth measurements afabets’ poses in a global coordinate
frame. The standard deviation of the noise in these measumtsmvas approximately 0.5 deg
for orientation and 0.01 m, along each axis, for positione Tdrget robot drove along a straight
line at a constant velocity af = 0.1 m/sec, and thus a zero-acceleration motion model with
q=0.05 (2 )2% was used to describe this motion [see (8.16)], while thewandot moved

sec?
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on a circle. Fig. 7.5(a) shows the experimental setup, agd ®b(b) depicts the trajectories
of the target and the sensor. In this experiment, the iniséiimate of the target state was set
to X0 = [2.5940 1.7374 0.0003 —0.0001}T with covarianceP,, = 1. Relative dis-
tance and bearing measurements were produced synthetisailg the differences in the true
positions of the target and the sensor, as these were recbydbe overhead camera, with the
addition of noise. For the results shown in this sectiondis&ance and bearing measurements
were corrupted by zero-mean white Gaussian noise, witldatdndeviationr, = 0.1 m and
og = 2 deg, respectively.

The same three PFs (i.e., the standard PF, the GSPF, andbthesed AGS-PF) as in the
preceding simulation were implemented, and the comparatisults obtained from this single-
run experiment are presented in Fig. 8.3. From the expetahessults, it becomes clear that
the proposed AGS-PF outperforms the standard PF and the,@SfeFms of both accuracy
(RMSE) and consistency (NEES), which agrees with the sitimmaesults presented in the
previous section.

8.6 Summary

In this chapter, we have introduced a new AGS-PF, which usésaussian mixture as the pro-

posal distribution, each Gaussian corresponding to onkeo@malytically-computed modes of
the posterior pdf. Using such proposal distribution, theSABF draws its particles within the

most probable regions of the state space. As a result, asazethfo the standard PF and the
GSPF, the AGS-PF attains better performance while requfewer computational resources.
We applied this algorithm to the particular problems of mogly and bearing-only target

tracking. Simulation and experimental results have demnatesl that the proposed approach
outperforms the standard PF and the GSPF, in terms of agca@tsistency and efficiency.
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Figure 8.3: Target tracking experimental results: The psed AGS-PF algorithm performs
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Chapter 9

Concluding Remarks

9.1 Summary of contributions

The work presented in the preceding chapters has focusedvestigating the fundamental
causes of estimation inconsistency in the applicationslobtrlocalization and target tracking,
and providing methodologies for improving estimator cet@icy. The main contributions of
this work can be summarized as follows:

e Observability-constrained estimators for robot localizgion

In Chapters 2 and 3, we studied in depth the EKF inconsistehoybot localization in-
cluding SLAM and CL and proved for the first time ever that ttendard linearized EKF
system has an observable subspadagiierdimension than the corresponding nonlinear
system. This indicates that the standard EKF gamgiousinformation from the avail-
able measurements and erroneously reduces the unceitgyestimates, which leads
to inconsistency. Based on this key insight, in order to eslthis problem, we proposed
an observability-based methodology. The underlying idethis approach is computing
the EKF propagation and measurement Jacobians so as te ¢nauthe linearized EKF
system model has an observable subspaceméctdimension. To achieve this goal, we
developed three different Observability-Constrained JXB&Fs, which compute the ap-
propriate Jacobians either indirectly (i.e., by first firglappropriate linearization points
used for computing Jacobians) or directly (i.e., by prajgcthe best-available measure-
ment Jacobian onto the observable directions).

202
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Proceeding similarly, we showed in Chapter 4 that the limegression-based SLAM sys-
tem model used by the UKF has the same observability issuethe linear-regression-
based system has observable subspace of higher dimenaioththactual nonlinear sys-
tem. Hence, we adapted the previous observability-basd¢tdoa@ogy and introduced
a novel Observability-Constrained (OC)-UKF for SLAM. Inrpeular, the observabil-
ity constraints are enforced when constructing the optimahr regression matrices in
the LRKF framework. Moreover, in Chapter 5, we generalizesl dbservability-based
methodology from the filtering framework to the smoothingnfiework and developed
an Observability-Constrained (OC)-SWF for SLAM. In thisseadue to the marginal-
ization used in the SWF, the standard SWF possesses diffeaesmimeter observability
properties from the optimal batch-MAP estimator. To adsltbss issue, we impose the
observability constraint in computing the Jacobian and the Hessian matrices, when
employing Gauss-Newton to iteratively solve the nonlingatimization problem.

Besides theinobservablesystems such as SLAM and CL considered in Chapters 2-5,
Chapter 6, we generalized the observability-based metbggdo a broad class of ob-
servable systems, i.e., discrete-time nonlinear systeitispartial-state measurements.
In particular, a novel decomposition of the observabilitgtrix according to the measure-
ment sources (sensors) reveals that the standard EKF esquanexistent information
from each source’s measurements, which degrades the marfoe (in terms of consis-
tency and accuracy). Therefore, we adapted the obsetyafdsed idea and computed
the EKF Jacobians so that the filter only acquires infornmatibcorrect d.o.f. from the
measurements @achsource.

Analytically-selected multi-hypothesis target tracking

In Chapter 7, we studied the inconsistency issue of rangeand bearing-only target
tracking, which are highly nonlinear estimation problenithwion-convex cost functions
and often withmultiple local minima (corresponding to the modes of the posterid). pd
In such cases, we found that a standard linearized estir@tpr the EKF) becomes in-
consistent primarily because it is able to find and track amiglocal minimum, without

guarantee of global optimum. To address this issue, we gedva formal methodology
for designing linearized estimators that analytically famdl track multiple local minima.

Within the category of linearized estimators, a bank of MARmeators was developed.

n
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By converting the nonlinear cost function into polynomiatrh, the bank of MAP al-
gorithm analytically computes all the modes of the postapidf for the current state at
each time step, and then uses these modes as high-quaiey eéstimates for the batch-
MAP estimators in the bank to refine the entire trajectoryitti@rmore, in Chapter 8 we
adapted this analytic idea to nonparametric estimationdaveloped the Analytically-
Guided-Sampling (AGS)-PF. The key idea of the AGS-PF is tpleynan analytically-
determined Gaussian mixture as proposal distribution kvhit only takes into account
the most recent measurement but also matches all the modbke pbsterior (optimal
proposal) distribution. As a result, the AGS-PF can effittyefocus its particles on the
most probable region in the state space.

With this work, we provide a solid theoretical framework fianproving consistency of
nonlinear estimators that will enable long-term consis&itonomous navigation even in GPS-
denied environments, and will offer significant benefitsrfyots employed in various practical
application domains.

9.2 Future research directions

Building upon the theoretical foundations developed is thork, in the future we will focus
on developing efficient state estimation algorithms to ém&ding-term consistent autonomous
navigation under various practical constraints, as wedbganding the same theoretical frame-
work to distributed teams of reconfigurable arrays of nekedr(mobile) sensors or intelligent
embedded systems. Although there are many open interagiiggtions along these lines, the
following two research directions are particularly of inmamce and interest:

e Resource-aware consistent vision-aided inertial navigain

In Chapters 2, 3, 4 and 5, we have primarily focused on robawigating in 2D. Even

though this assumption is satisfied when robots operate gt man-made environments
(e.g., indoors, and on paved roads), an increasing numbagrpications require robots
moving in 3D and thus estimating their 6 d.o.f. poses (pms#tiand orientations). For
example, the full 3D pose estimation is necessary for spaftd¢59], unmanned aerial
vehicles [103], autonomous underwater vehicles [107]pt®loperating on rugged out-
door terrain [156], and in some cases, robots moving indddr8]. Therefore, it will be
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of practical importance to extend this work to 3D.

Over the past few decades, inertial navigation systems)(ld&e been extensively used
for estimating 3D robot pose in GPS-denied areas (e.g.,ruader, indoor, in the urban
canyon, and on other planets). Most INS rely on an inertisdsneement unit (IMU) that
measures the 3 d.o.f. rotational velocity and 3 d.o.f. lireceleration of the robot on
which it is rigidly attached. Unfortunately, simple inte¢gjon of IMU measurements that
are corrupted by noise and bias, often results in pose dssnuareliable for navigation
purposes. Although high-accuracy IMUs do exist, they remabhibitively expensive for
widespread deployment. For this reason, it is common tomiiN& with an alternative
sensor, such as a laser scanner, sonar, radar, or cames® mbasurements can be used
to determine the robot motion with respect to the surroupdinvironments. Of these
possible aiding sources, camera is an appealing choice girig small, light-weight,
inexpensive, and passive (energy efficient), while proygdiich information. Hence,
vision-aided INS (V-INS) is emerging as an important aggiian [120].

Even though state-of-the-art V-INS algorithms can prowddeurate pose estimates over
short periods of time, they are not ready for long-term dgplent in critical scenar-
ios. This is due to certain limitations, includimgconsistenstate estimates arrdsource
(sensing and processing) constraints that are not apptelyriaddressed and often result
in short mission duration. Therefore, to address thesesssaur future research efforts
will focus on: (i) investigation of the fundamental causé8D pose estimation incon-
sistency and approaches to mitigate these problems; grdie(ielopment of new state
estimation algorithms to optimally allocate often limitegstem resources. An immedi-
ate impact of this research will be to advance the currem¢ sththe art, by improving
the cost efficiency as well as the estimation consistencyaandracy.

Estimation and control in mobile sensor (robot) networks

Sensor networks — a typical cyber-physical system — arerhi@gpincreasingly popular,
since they can measure and estimate quantities of intergstally distributed locations.
Static sensor networks are useful for applications suchaagat monitoring [131] or
terrain surveillance [2], while the additional mobilityfefs a sensor network an even
broader spectrum of applications. Teams of mobile sensom1s), for example, have
been used for inspection of nuclear power plants [35], hsteveillance [15], search
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and rescue [152], and underwater or space exploration E&ough these application
domains are quite dissimilar, a common requirement is teesal statistical inference
problem. For instance, we may seek to determine the posesngbis (localization),
estimate the trajectory of a moving target (tracking), dailmap of the area where robots
operate (mapping), or find the spatio-temporal paramefexsatural process (learning).

Within the expansive list of inference problems, two largaegories are interesting:
model-basedestimation such as EKF, where an analytical model of thega®deing
tracked is available, angonparametricestimation such as PF, where such a model does
not exista priori. The latter has become increasingly popular, but its insterscy is
not sufficiently studied, which hence will be one of our f@uesearch efforts. In both
classes, an important distinction can be made betwepftralizedapproaches, which as-
sume the presence of a fusion center in the network where (moall) of the processing
takes place; andecentralizednes, where no such special node exists, and all the pro-
cessing takes place in the sensor platforms. The latter & mppealing and will be
within our research focus, since requiring a fusion cergterot desirable in many cases
due to reliability and/or scalability concerns. Furthermanobile sensor networks often
need to operate under stringent constraints on their dlaikensing, processing, com-
munication, and power resources. These, however, are pob@ately addressed by
most existing inference algorithms and hence make themaiatipaeble. For this reason,
our future research efforts will also focus on: (i) perfongrioptimal inference under re-
alistic resource constraints; (ii) studying the effectdhw key properties of the sensor
system — such as the size of the sensor network, the type anisipn of the sensors,
the frequency of the observations, and the availability ahmunication and process-
ing resources — on the attainable estimation accuracy; iantk&rning optimal motion
strategies for each robot in the team so as to aid estimaiikstand vice versa. This
research will promote robot (sensor) coordination fortinfation acquisition, communi-
cation, and management, by providing adaptability to chrngonditions and increasing
the reliability of networks.

As we finish this work, we are excited to find robot systems ditap at the brink of
widespread field deployment in real-world applications. Wipe that our work, which enables
consistent autonomous navigation, serves as a solid #ststvards this goal.
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Appendix A

Appendices for Chapter 2

A.1 Unicycle model

If the unicycle model is used, and we employ the approximatiiat the velocity and heading
are constant during each propagation interval, we otk ., = [vy, 0t 0 wp,, 6t]7, where
W, = [Um, wm,]T are the linear and rotational velocity measurements, otispdy, anddt

is the sampling period. Substitution in (2.2)-(2.3) yietde familiar robot pose propagation
equations:

vm,étc(qASR, )
p =Py, +| (A1)
Ryq1yk Ry UmkétS(QSRk‘k)
ORepae = PRy + Wi, Ot (A.2)

Similarly, the commonly used expressions for the Jacobiatrioes®r, andGpg, can be de-
rived from (2.6), (2.8) and (2.9). Specifically, by substitg the robot displacemefit PR, =

T
[Umkét 0] into (2.8), we have:
—Umk&s(gzng‘k)

10
Pr,= 0 1 vm,dtc(dr,,) (A.3)
0 0 1
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To derive the Jacobian matr%7, with respect to the odometry vectay;, instead of*Xp, ..,
we apply the chain rule of differentiation as follows:

o 8(XRk+1) 5% a(RkXRk+1)

= A.4
Ry, a(RkXRk+1) ka{RkJA auk ( )

Um
The first term is the Jacobian with respect to the robot poaaegs (displacement and orienta-
tion change), evaluated at the estimﬁte‘:Rk .1» and is given in (2.9). The second term is the

T
Jacobian of the robot pose change with respeatktoSince"%fvak+1 = [vkét 0 wkét] ,
this Jacobian is simply given by:

a(Rk ) ot 0
& =10 0 (A.5)
E?uk Winy,
ot

Therefore, substitution of (A.5) and (2.9) into (A.4) yisid

Ste(dry,) 0
%, = |0ts(dr,,) O (A.6)
0 ot

We thus showed how the commonly used expressions for (2.2);(as well as the state and
noise Jacobians can be derived.

A.2 Proof of Lemma2.4.1

The proof is based on mathematical induction, by verifying $tructure of théth order Lie
derivatives. We define the Lie derivative of &° function i on an open subset ¢ R%"(x)
along an analytic vector fielfion S, as:

Leh = (dh)f (A7)
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wheredh is the gradient of, with respect to the state vectar We start by noting the following
identities, which will be useful in the ensuing derivations

[ oy

X
= [—69 —s0 0 cf 89] (A.8)
Z%[sﬂ —c —p —sb c@} (A.9)

wheredz £ x; — xg, 0y 2 yr — yg, andf £ ¢ + ¢p.

We first prove that ify has the special structure shown in (2.15), then the zerothfiest-
order Lie derivatives are functions pfand only.

By applying the chain rule of differentiation, the zerotiver (i.e.,k = 0) Lie derivative is

computed as follows:

dh o
07 A& _ oh  Oh dx
Lht — = [_ap _aw] Llw] (A.10)
Ay

It is important to note that sinck is a function ofp and only, the terms‘g—z and% are also
functions ofp and only. As a result, the matri\, is a function ofp and, whose exact
structure depends on the particular measurement funktion

The first-order (i.e.k = 1) Lie derivatives are calculated according to the definifiary),
and employing the results of (A.8) and (A.9), as:

dp
13 _|0h Oh dx
Lhh=% 4] [@] b

dx

_ A, [ —clcopr — 893¢R)] — A, [_Cd}] (A.11)

1 s
;(896@5}2 — clsppr "

dp 0
1p _[0n Oh| |dx _
Lih= [a_p W} [%] f, = Ag [_1] (A.12)
We thus see that both the zeroth- and the first-order Lie aliras are functions gb and
only. This is the base case for the proof by induction.

Now assume thé-th order Lie derivativesL’fj_h, i = 1,2, are functions op and+ only.!

1 Extension of this analysis to the case of mixeth order Lie derivatives is straightforward, though more
involved in terms of notation; thus, it is omitted to presepresentation clarity.
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Then their gradients can be computed by:

d(LE h) &
B - B Huin] | #19
dx

Ay,

whereA, is a function ofp andi only. Thus, thgk+1)-th order Lie derivatives are computed

as follows:

dp
k+13, _ | & 0 dx
k h_[a_p(L'fflh) W(L’fflh)] [@] £,

dx
—clcor — sOsppr —ctp
=A =A A.14
o [%(390@5}% - cestbR)] . [ L ] (A.14)
4o 0
Lefh = [a%(L'th) %(L’f;h)] [j_;] fo = Ay, [_1] (A.15)
dx

Clearly, the(k + 1)-th order Lie derivatives are also functionsgoénd only, and the proof by
induction is complete.
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A.3 Proof of Lemma 2.4.2

Employing the expressions for the Lie derivatives derivedppendix A.2, we have:

d(Lhy) d(L°hy)
dx R dx
d(L} hy) d(L} hy) (L} hn) d(L} hn)
dg:span dx dx dx dx )
d(L’;lhl) d(L’éhl) d(L’;lhn) d(L’f"th)
dx ) dx 0 dx ’ dx
dp dp
Al dx AP dx
0 Z_’IZJ 5 ey 0 Z_’IZJ 5
X X
(% )] (#)] 0 [(%)
dx dx dx dx
Al Al .., An AT
_ 1 dyp 75 dp ’ ’ 11 dip il O dip )
— span _<K_ |\ ) | |\ ) | |\ ) |
()] 0 [(#)] (#)] 0 [(#)]
1 dx 1 dx n dx n dx
Ay i AL aw\ | AL i AL i
\ L\ dx ) | L\ dx ) | | \dx ) | L\ dx ) |
SR
AO
Ag
1
All
1
A12
dp
AT ax
= span ;1 dz =: span (A M) (A.16)
12 dx
~—_—
. M
1
Akl
1
A,
n
A
n
_Ak2_
——
Ak
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where the superscrigtin A’ refers to the measurement functibn(i.e.,i = 1,2,...,n). We
will now show thatA g is of full column rank for any type of measurements (i.etadise-and-
bearing, distance-only, and bearing-only measurements).

Distance-and-bearing measurements We first consider the distance-and-bearing measure-
ments which are given by:

hi(x) = p=|lpL — PRl (A.17)
ho(x) = ¢ = atan2(yL — yr, T — TR) — Or (A.18)

In this case, we have

Aé:[%_f;; %_’ﬂz[1 0] (A.19)
A= g 8= ] (20
A} .
Hence Ay = |A3| = :2 is full-rank.

Distance-only measurements We now consider the case of distance-only measurement
which is given by:

h(x) = p=|lpL — Prl| (A.21)
In this case, we have
_|on on| _
Ag=[2 2] =1 o (A.22)
The first-order Lie derivatives are computed as:

Lih=Ag [_ff] - [1 o} [_j’] — e (A.23)

P P

0
L, h = Ag H =0 (A.24)
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Then, we computé\ ;, andA, as:

Ay = [E%(L}lh) %(L}lh)} = [a%(—cﬂ)) %(—cw)] = [0 sw} (A-25)
Av, = [Z(LLD) L(LLh)] =0 (A.26)
A 1o

Now we haveA; = [A1, | = |0 sty | which, in general, is full-rank.

Bearing-only measurements We finally consider the bearing-only measurement which is

given by:
h(x) = ¢ = atan2(yr, — yr, T — TR) — PR (A.27)
In this case, we have
_|on on| _
Ag=[2 2] = o 1 (A.28)

And the first-order Lie derivatives are computed as:

_—czZ) —c1p S
Lhh=Ay| ) ] - {0 1} [ o ] - (A.29)
s R
0
Lih= A J = (A.30)
Then, we computé\;, andA,, as:
—_ |0 9 _ |0 (s 9 (sv)] s c
Au=gwkn gk =[505) &)= 2 @
Ay, = L%(L}zh) %(L%Qh)} =0 (A.32)
Ay 0 1

Itis clearthatA = |Ay, | = — @ g, in general, full-rank.

Thus far, we have shown that for all three cades is full-rank. Note that the rank of the
product ofA - andM is given by [see (2.28)]:

rank(A g M) = rank(M) — dim(null(A g) ﬂ rng(M)) (A.33)
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Since we have shown above that in general matrixis full column rank, i.e.null(Ag) = &,
we haverank(A xM) = rank(M). Therefore, the row-span & xM is identical to the row-

span ofM, i.e., %2 and 2.

[—c@ —s60 0 cl 39]

s _c _q _s0 o
2 P PP

o {J Diag (2,1 ¢*(0) [W TOOR TCOROE T SOROY SOk COn
row P cPr  SOR SOROT — COROY —CcoOr —SOR

S¢r —COR —COROT — SPROY —SOR C¢R]
COr  SOrR  SQROT — cOROY —Cchr —SOR

}

= span (A.34)

row

A.4 Proof of Lemma 2.5.3

Under the Gaussianity assumption, ip(r, |zo:x) = N(&Rk\k’PRRk\k)’ wherePgp, , is the
covariance matrix corresponding to the robot pose, obddiyepartitioning the state covariance

PRRk\k PRLk\k

matrix asPy,;, = , andp(xy+1(zo:k) = N (Rg 1) Prgajr)-

Png‘k PLLk\k
The first term of the cost function (2.47) is computed as:

2

*

_ T T *T *

—/ <XRkXRk = 2Xp, XR,, T XRk‘kXRk‘k> P(XR, |Z0:k)dX R,
_ T T * *T *

— $ YA _ ogT * «T

=tr (PRRk\k T XRk\kak\k> 2R R X R T KRy X Ry

o AT - 95T * *1 *
=tr <PRRk\k> + X Ry X B 2XRk\kXRk\k + X Ry X R

- (PRRk\k> R ETE (A.35)

whereE(-) denotes expectation and(-) the matrix trace. Proceeding similarly, the second
term of the cost function (2.47) can be derived as:

/ %k — XZ+1|k‘|2p(Xk+1|Z0:k)dxk+1 = tr (Pape) + [[Rneap — XZ+1|k|‘2 (A.36)

Using (A.35) and (A.36), as well as the fact that the Buer, , andP, |, are independent of
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the linearization points, the following equivalence is ieufiate:

omin ot (Prag, )+t (Prage) + [Reg, =k, |+ (R
Ry’ " kHlk

g « min* H&Rk\k —Xﬁk‘k H2 + Hik“‘l‘k_x;;‘i‘l‘k‘F
Ry Ttk

We now derive the following identities for the observayiltonstraint (2.48) [see (2.35)
and (2.42)]:

H, &), @, N=0

k
& Hpy |1 (pzkﬂk_p%kok[)_. > Ap%j) I ]N: 0
]:ko“l‘l
k—1
* * N * *
= PLiiin — PRy = PLigie, — PRy + Z ApRj
J=ko

This completes the proof.

A.5 Proof of Lemma?2.5.4

The constraint equation (2.55) states that the rowld of lie in the left nullspace of the matrix
V. Therefore, ifLL is a matrix whose rows span this nullspakg,, ; can be written as:

H,., = AL (A.37)

where A is an unknown matrix which we seek to compute. We note thatthee several
possible ways of computing an appropriate makrjxwhose rows lie in the nullspace ®f. For
instance, such a matrix is given, in closed form, by the esgiom:

L= [Idim(z) 0} (Tgimx) — V(VIV)T'VT) = T (A.38)

It is not difficult to see thall := Iy, — V(V? V)~V is an orthogonal projection matrix
(i.e.,II? = IT andII” = II) and hence has the eigenvalues of either 1 or 0, whexheced
SVD can be written a¥I = QQ”. Using this resultL” immediately becomes:

L” =QQ'r” (A.39)
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By substituting (A.39) into the cost function (2.54), we bav

min |[H, - Hy |7 = [|QQTTAT —HJ |7 = [|Q'TTAT —Q"H,"||7  (A.40)
= A=H,QIQ)! (A.41)

Therefore, substitution of the above equation in (A.37)dge

H, 1 = H,Q(I'Q)' IQQ" = H,QQ" = H,II
=H, (Ljimx) — V(VIV)'VT) (A.42)

This completes the proof.

A.6 Observability analysis for robocentric mapping

The robocentric mapping filter [26, 27] consists of thregsteprediction, update and com-

position. In order to construct the system equations tooperfobservability analysis, we

combine the composition and prediction steps into one modiee state vector i§+x; =

T
[kagk Ripl |, wheref*xg, denotes the pose of the origin of the global frame with re-
spect to the robot local frame at time—sﬂepandeka is the landmark position with respect

to the robot local frame at time-stép The propagation equations are given by:

RkaGkH = CT(Rk(bRkH)(Rkka - RkkaH) (A.43)
Berrge, = Tog, —eop, (A.44)
RkaLkH = CT(Rk(bRkH)(Rkak - RkkaH) (A.45)

T
wherefixp, | = [Rkp£k+l Rr¢p,,,| s the robot pose change between time-stepsd
k 4+ 1. This can be obtained from the odometry measureminis, w,, }, which is corrupted
by zero-mean white Gaussian noisg, i.e.,

Upp,, Ot ot 0
Ry, — Rig Ry 5 _
XRip1 = " XRppap 0 XRpgr T 0 — 10 0|wWk

W, 01 0 ot
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By linearizing the above equations (A.43)-(A.45) at therent estimates,kach and
Reg Ryyp WE obtain the error-state propagation equations as fellow

Bige = 6, %a,, + I3, %e, ), (A.46)
Rk+1f)Lk+l\k = (I’Lkka)Lk\k + J2kRkiRk+1\k (A.47)
where
[CT (B g 0
B, = (P0nye) O2a (A.48)
i 01x2 1
[_ T (R TOT (R, Ri 4 Ri 4
Ji, = —CT (" r) ITCH (R OR ) (PG, — PR ) (A.49)
i O1x2 -1
P, = CT(qungH‘k) (A.50)
Stacking (A.46) and (A.47) into a matrix form, we have:
Bt = @6 Ry + G RRy (A.52)
where
K 0
= | (A.53)
0 @,
J
Gy= |° " (A.54)
[J2,

Due to the robot-relative formulation, the relative-piosit measurement at time-stép+ 1
becomes linear, i.e.,

Zjt1 = HIPL L+ Vi (A.55)

wherevy_ 1 is zero-mean white Gaussian measurement noise. The messrerror equation
is given by:

~ Ry~
Zpy1 = Hyp1 ™V Xk + Vi

= |:HGk+1 HLk+1:|

Ryt

15&G
B [02x3 12} [R. e Vi (A.56)
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Proceeding similarly as before, we employ the local obd®litsamatrix to investigate the
observability properties of robocentric mapping. Substig the matrice®,, [see (A.53)] and
H; . [see (A.56)] into (2.22), we obtain the local observabiitgtrix of this particular system

as follows:
_02X3 I |
M- |02 ®Ls, (A.57)
[02x3 @ry oy PLy,
—02><3 I _
_ 02-><3 C™ (ko (%Rko+1\ko) (A.58)
| 02x3 CT(RkO+m71Qngo+7rb\ku+mfl) +- CT (o (ZngoJrl\ko )]

It is not difficult to see that in generalank(M) = 2, and hence the robocentric mapping is
unobservable. Moreover, the right nullspace can be fouridllasvs:

N (M) = span

col.

(A.59)

o O O = O
o O = O O

o O o O =

From the structure of this nullspace, the unobservablestate the ones associated to the origin
of the global frame in the robot'’s local frame, while the piosi of the landmark in the robot’s
local frame (i.e., the robot-to-landmark relative posijiags observable. This agrees with what
we found for the ideal EKF, and thus the robocentric mappitigr femploys a system model
that has the correct observability properties.



Appendix B

Appendices for Chapter 3

B.1 Proof of Lemma 3.4.4

In the general case whefé > 2 robots comprise the team, proceeding similarly to the aigly
of the ideal EKF-CL, the observability matrM can be obtained as follows:
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M

~Diag ((Vhi:”)A(é1,,,, ), -+ (Vh

(NN-1)
ko+m

)A(éNko+7n‘ko+7n*1)) X

D
I, Jopoi(kos ko) —Io 0251 O2x2 021 0252 0251
0152 1 012 =1 O1x2 0 0152 0
Iy J0p31(koy ko) 022 020 —Ip 0251 0252 0251
012 1 0122 0 012 -1 012 0
I, Jopn1(kos ko) Oz 0251 022 021 -I 021
012 1 012 0 O1x2 0 012 -1
I 02x1 O2x2 0251 O2x2 021 I, Jop1n (Ko ko)
012 =1 O1x2 0 O1x2 0 012 1
022 031 —I 0251 O2x2 0251 I Jopan (Ko, ko)
0152 0 012 —1 O1x2 0 0152 1
0252 02x1 0242 02x1 O2x2 0251 I JOpN-1n (ko ko)
012 0 01x2 0 O1x2 0 012 1
I, JAPo (ko+1,k,)  —Iy —JApPx(kot+1, ko) Ox2 021 022 021
012 1 012 =1 Oix2 0 012 0
Iy JADPs1(kot1,ko) 0O2x2 02,1 —Ip —JAPs3(kot1,k) 022 0251
012 1 012 0 Opx2 -1 012 0
Iy JAPN1(kot+1, ko) O2xa 02:1 02x2 0251 —I
012 1 012 0 O1x2 0 012 -1
—I> —JApP1(ko+1,kp) Oaxo 0251 O2x2 0251 L JAPiN(ko+1,ko)
01x2 —1 01x2 0 0O1x2 0 012 1
0252 021 —Ip —JAPx(ko+1,k,) 0242 021 I, JADPoy (ko+1, ko)
0152 0 01x2 =1 012 0 012 1
0252 021 022 02.1 02x2 021 Iy (kot+1,ko)
012 0 O1x2 0 O1x2 0 [UP? 1
I, JApai(kot+m,ko+m—1) —To —JApaa(kotm,kotm—1) 02x2 0251 0252 021
0152 1 0122 —1 O1x2 0 012 0
L JAPsi(ko+m ko+m—1) 0Ozxo 021 —Iy —JApss(ko+m, ko+m—1) 022 0251
012 1 012 0 O1x2 —-1 012 0
L JAPni(kot+m kotm—1) 0Ozyo 02x1 O2x2 0251 ~I, —JApnN(ko+m, ko+m—1)
0152 1 012 0 O1x2 0 0152 -1
I, —JApu(kotm, kotm—1) 02 021 02x2 0351 I,  JApin(ko+m, ko+m—1)
0152 =1 Opx2 0 O1x2 0 0152 1
022 021 —Io —JAPxn(ko+m, ko+m—1) 02y 0251 I, JApPan (ko+m, ko+m—1)
012 0 O1x2 —1 Oux 0 012 1
022 021 0242 0251 02x2 0251 L JApnan(ko+m, ky+m—1)
| O1x2 0 012 0 O1x2 0 012 1]
Vv
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Analogously to the proof of Lemma 3.4.2, we denbie= [ul .-+ usy|, and observe
that

N N
u; = — E uz;—2, U2 = — E usz;—1
i=2 =2

while

N N N
§ uz; # E Qpi—1U3;—2 + § QU3

Q2
1,..., N, become general vectors and hence are no longer linear patidnis of any other

where [a”*] 2 _J5pi (ko ko), Vi = 2,...,N. This is due to that fact thats;, i =

columns. This is in contrast to the case of the ideal EKF-@&e (semma 3.4.2). As a result,
one possible basis of the range of matftiis its column vectorg{u;}3%;, i.e., rng(U) =
span |:1,13 llgN]. Thus,rank(U) = 3N — 2. Analogously, we observe that in general

col.

Du; # 0, fori = 3,...,3N. Moreover, note that any vectare rng(U) \ 0 can be written as
x = Y372 Bu,, for somes; € R, wheref;’s are not simultaneously equal to zero. Thus,
we see that in gener@x = 5?2 3,Du;,» # 0, which implies thaix does not belong to
the null spacenull(D), of D. Thereforedim(null(D) () rng(U)) = 0, and, finally, based on
theorem (4.5.1) in [113] [also see (2.284nk(M) = rank(U) — dim(null(D) () rng(U)) =

rank(U) = 3N — 2.
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B.2 Proof of Lemma 3.5.2

Under the Gaussianity assumption, itpiéxx|zo.x) = N (Xgjk, Prjr)s and p(xp41lzox) =
N(:?ckﬂ‘k, Pj.11x)- The first term of the cost function (3.49) is computed as

/ ka - XZ\kHZP(XMZo:k)ka

:/ (x;‘ka — 2x;‘fxz‘k + XZﬂXzW) p(Xk|Zo.k ) dX

=E (xf xx|z0) — 2E (X7 |20.1) Xk X’,;ﬁxz‘k

~tr (Pk‘k + xk‘kx}gk) — 2%, X+ XX

= tr (Pyjs) + K Ruik — 2800 + X5k Xk

= tr (Pyype) + [Rn— ke (B.2)

Proceeding similarly, the second term of the cost funct®aq) can be derived as

/ %k — XZ_H‘]QH2p(xk—i—1|z0:k)dxk+l = tr (Pppaje) + |Rpeaje — XZH\;@HZ (B.3)

Using (B.2) and (B.3), as well as the fact that the tRyg, and P, are independent of the
linearization points, the following equivalence holds:

omin ot (Pyge) + 0 (Prgage) + [Rige =356 + [ Koo —Xigape”
Xk Xkt |k

e ominfee—xil” + Reas =Xt (B.4)
Xk Xht |k

We now derive the following identities for the observaliltonstraint (3.50) [see (3.39)
and (3.43)]:

H) & &, N=0

k k
= Z (pgT‘T - pg‘r\‘rfl) B Z (p{T\T B p‘i(ﬂffl) +
T=ko T=ko
(pgko\ko—l B p’{ko\ko—l) B (ﬁzko\k(fl - f)lko\ko*l) =0 (B'5)
* * _ * *
= P2, — Pl = (pzk\kfl o plk\k—l) o
k—1 k—1
Z (pgr\r o pg‘r\‘rfl) + Z (p‘)l(T‘T o p‘)l(‘r\‘rfl) (B6)

T=ko T=ko
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where we have used the fact that the linearization pointsnglyropagation at time-stefy,
are the propagated filter estimates, i, =~ = P1, . andp;_, = P2, .- THiS
completes the proof.

B.3 Proof of Lemma 3.5.3

We first introduce the following definition similar to (3.34yhich will be useful for the ensuring
derivations:

¢
* A * * * *
Apl](k7€) = pik‘kfl - pjko‘kofl - Z <p.77"‘r o pjT‘T*l) (B-7)
T=ko
Using this definition as well as (3.8), (3.11), and (3.43), ha@e the following identity [also
see (3.39)]:

HY) @, $, N=0

<~ Ap;l(k + ]., k) - Ap;j(k + 17 k) + I’\)iko\kofl - I’\)jko‘k071 - 0

k k
* * ~ ~
A (p]T\T_ p;ﬂ"ﬂ'fl) - (p:ﬂr_ p?ﬂr—l) + (p;:k:o\kofl_ piko\ko—l) - (pjko‘ko—l_ pikn‘kn—l) = 0
T=ko T=ko
k-1 k-1
* o (pr _pr _ x X
= Pjye ~ Pigy, = <pjk\k71 plk\k—l) Z (pﬂr\f pJT\rﬂ) + Z( ir|r pZT\Tﬂ)
T=ko T=ko
k k
* * * A A~
< Z (piﬂ'\f_ piT‘T*l) —Z (p;ﬂ‘r‘_ pjf\r—l) + (p;ko\kofl— p;ko\ko—l) B (piko\ko—l— pjko\kn—l) =0
T=ko T=ko

g Ap:j(k +1,k) — Apj;(k + 1,k) + f)jko\ko—l - I’\)iko\kofl =0
o H @, &, N=0 (B.8)



242
This equivalence implies that the measuremeii@l andz,(ff?1 produce the same observability
constraint. Moreover, from the above results, we have:

H) @&, N=0
k—1 k—1

* *x * * * *
= Py, ~ Piy, = (pjk\k—l - pik\k—l) - Z (pjf\f - pjf\ffl) + Z (pir\r plf\f 1)
T=ko T=ko
(B.9)
HUW @) &, N=0
k—1 k—1
*x * *
= p:”'k\k_ Py = (p:”'k\k—l_ pjk\k—l) a Z (pmr\f_ p;lﬂrfl) +Z (p;ﬂf_ p}"r\rfl)
T=ko T=ko
(B.10)
By subtracting (B.9) from (B.10), we have the following ealence:
* * * * _
(pmk\k_ pjk\k) o (pjk\k o pik\k) -
k—1 k—1
p:nk\k_ p:k\k = (p:nk\kfl_ pjk\k*l) - Z (p:rLT‘T_ p:nﬂffl) + (pZT\T pZT\T 1)
T=ko T=ko
o H"&,.. &, N=0 (B.11)

This result implies that for the three connected measurtsrmﬁg‘u’l, Zk—i—l) andz,g’fl), the ob-
servability constraint imposed by one measurement (e,ﬁ?]) can be equivalently inferred
from those imposed by the other two measurements (aéjﬁl,andz,(jﬂ)). Therefore, from the
above results (B. 8)—(B 11), given the connected RMG, theepability constraint imposed by
any measureme ) can be equivalently inferred from those imposed by the nreasents

,(flfr)l andz,(iﬂ. We thus have [see (B.1)]:

H, 1 ®, - &, N=0
k
& > e, =Pl )= 2P Pi )~ (Pl Pl ) (Bijes — Pl ) =0

T=ko T=ko
k—1
* * o * * * * * .
= Piy =Pl = (pik\k—l - plk\k—l) Z (plr\ pi-r\ffl) + Z (plrl‘r - plr\ffl) » Vi=2,...,N
T=ko T=ko

Note that the equivalence of the cost function can be pravéltki same way as in Lemma 3.5.2.
This completes the proof.
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Table B.1: Different state estimates used in computing tide gpropagation Jacobian matrix of
roboti (i = 1, 2) at time-stepk for the four estimators (i.e., the standard EKF, the OC-BKFs

[ 1 J <A' o ) 10 —vmi_’ksA(;ASik‘két
Std-EKF/OC-EKF3 ®;, = | Picee “Puie ]| = 10 1 0, iy, Ot

[01x2 1 0 0 ’1
OC-EKF1 <I>; = L J <f)ik+1\k - f)ik\kq)

k
012 1
o - i A

OC-EKF2 <I>;/k = L J <pik+1\k — Piy, + (_1)1716)

012 1

B.4 An example of OC-EKF CL

In the following, we provide a specific CL example to illuseghe implementation of the
proposed OC-EKF estimators, in which a team of two robotsguie unicycle motion model
measure relative distance and bearing to each other. Natéhth same models were used in
our simulations (see Section 3.6).

Suppose that at the first time-stefp,= 0, the robot poses are initialized by—mo and
Pigo for i = 1,2. Following the standard practice, we employ the approxionathat the
velocity and heading are constant during each propagati@nval and thus obtaifix

g1 —
[Vm, . O Wi, ]t 0t, whereu,,, , = [vm,, wm,,]” are the linear and rotational velocity mea-
surements, fof = 1, 2, respectively, andt is the sampling period. Substitution into (3.2)-(3.3)

yields the following common equations for robot pose prejiag:

. ) Ve iy
Pip i = Pig T [ o Alkk] ot (B.12)
U quik\k

Once the propagated states are computed, we now calcutastatie-propagation Jacobian ma-
trix in order to propagate the covariance. It is importanhate that this calculation depends
on the particular filter used, and is one main difference betwthe four filters (i.e., the stan-
dard EKF, the OC-EKF1, the OC-EKF2, and the OC-EKF3) undesiteration in this work.
Table B.1 summarizes how the state-propagation Jacobiixrisacomputed for each estima-
tor. Specifically, in contrast to the standard EKF, the OCFEKequires additional storage
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of the last propagated state estim&jg,_;, and the OC-EKF2 requires an additional variable
Ak, containing a running sum of all previous state correctises (3.53)], while the OC-EKF3
computes the state-propagation Jacobian in the same way Hwefstandard EKF. The noise
JacobianG;, with respect to the odometry vectas, for both robots is computed according
to (3.7) for all four estimators (by noting théicik+1 = [vi, 0 w;,]T6t). The measurement
equations and the corresponding Jacobians for the distamtbearing measurement model are
given by [see (3.11)-(3.13)]:

(ij) \/(xjk+1 - $ik+1)2 + (yjk+1 - yik+1)2 (i) B.14
Z Vit (B.14)
atan2 ((yjk+1 - yik+1)7 (xijrl - xikﬂ)) - ¢ik+1

H©) _ [H(m H) ]

141 2k41

. I, J(p; —Pipyy) —IL 0
= (Vhl(c+)1) (Qbikﬂ‘k) [01 2 Jk+1\k1 kt1]k . 1
« _
(f)ﬂrkﬂ\k_f)aﬂ\k)C(éikﬂ\k)
_ ||ﬁjk+1\k_f)ik+1\k||
a7

- AT _ 3. T
(pjk+1\k pik+1\k C(¢Zk+1\k)']

=~y D 2
Ilpjk+1‘k pzk+1\kH

[ I J(f)jk+1\k - ﬁik+1\k> - 0 ]

0 1

T(5.

O1x2 1 0 —1
T AT
P 1k kaJrl\k 0 P k™ p2k+1\k 0
Hp]kJrl\k p%+1 Al B3y 1 ~Pige1s
= or o7 (B.15)
Jk+1\k Lk+1\k 1 Tk+1|k k+1|k 0
= - ~Ta; — 3
1Bdy 41 —Piprpil? XS

which hold fori, 7 = 1,2 andi # j, and are identical for the standard EKF and the OC-EKF1
and the OC-EKF2. In contrast, the OC-EKF3 obtains the cpomding measurement Jacobian
by projecting (B.15) onto the observable subspace [se8)[3.6&iven these expressions, we
proceed to use the standard EKF propagation and updatdatpuat
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Appendices for Chapter 4

C.1 ProofofLemma4.4.1

We start with the linearization error in the linear regressi
e(x) =y —(Ax+b)=y—-Aix; —Axxs - b (C.1)

Substituting (C.1) in the expression of the expected valtiesosquared linearization error (4.1),
the cost function we seek to minimize becomes:

+o0
/ ly — Aix1 — Agxy — b|*p(x)dx =

+o0
// Hy—A1x1—A2x2—bHZp(XQ\xl)p(xl)dxlchQ (C.2)

where we have employed the notatiper||> £ o’ «, and the property(x) = p(x,xs) =

p(x2]x1)p(x1). Now using the standard sample-based approximapion,) ~ >\, w;d(x1 —
AX1,), where the samples are selected to match the mean and coeanép(x;) [see (4.2)

245
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and (4.3)], we rewrite the cost function (C.2) as follows:

T —+o0
ci= sz/ || Vi — A1 X1, — Agxy —b||*p(x2]x1 = X1, )dxo
i=0 >
= Z'sz (HJ), - Alei — Aogxg — bHZ)
i=0

= Z wi] (i~ A1, ~b)T Vi~ As i, —b) (C.3)
=0
2(Vi— A Xy, —b)T A2E(xz)} +tr [AsE(xox]) AT
where have used the following identity:
E(x) Ay Agxy) = tr [AsE(xox5 ) A7 | (C.4)

Note that the expectation operaf6(-) is with respect to the pdbf(xz|x; = Xj,). For the
Gaussian case, this pdf can be expressed analyticallylas/$ol

p(x2’X1 - Xlz) :N (/?2“13&25(2) = (CS)

N )22 +PX2X1P_1 (Xli_&1)7PX2X2_PX2X1P_1 Px1x2

X1X1 X1X1

.)22. 155(25(2

Based on (C.5), we have:

E (XQXg) =E (X2) E (X2)T + P5<25<2 =

o
[3<>

N3
+
i

Ro%o (C.6)
SubstitutingE(x,) = QEQ,L. from (C.5) andE(x2x2) from (C.6) in (C.3) and performing alge-

braic manipulations, we obtain:

c = Z w2||yZ—A1X12 —AQ.)(?QZ. —b||2 + tr (A2pﬁ2)}2Ag) (C?)
i=0

Our goal is to minimize the cost function in (C.7) with resptcb and A = [Al Az}-
To do so, we first compute the optimal solution twr by setting the derivative of (C.7) with
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respect td to zero. This yields:

g_lc) = — Q;wl <y2 _AIXIZ- —Ag.)egi —b) =0 =
b= fjwiyi — Ay fjwmi — Ay waz
=0 =0 =0

=y — A1x1 — AaXo (C.8)

where for the last step, we have used (4.6), the equality= >, w;X1,, and the identity
%9 = S.I_, w;Xs,, which stems from (C.5).
Substituting (C.8) in (C.7), we have:

C/ = Z w,HJ}Z — Alﬁ)éli — AQ.XN'Q,L-Hz + tr (AQP;Q;QAg) (Cg)
=0
where
X, 2, —% (C.10)
Vi2Yi—y (C.11)
Xy, 2 Xy, — %3 = Py, Pl X1, (C.12)

Note that (C.5) was used in (C.12). Taking derivatives ofdbst function in (C.9) with respect
to A; andA,, and setting them equal to zero, we obtain:

o . - . S\ op

A ——2; wi (V- Ar®, —Asy, ) AL =0 (C.13)
o :—in(j/—Al)El —Ay X, ))?T+2A215A <, =0 (C.14)
8A2 g ? 2 i i 2; X2X2 '
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At this point, we use the fact that, due to the selection ofigea points, we have:

Y wi VX = Pyx, (C.15)
=0
Zwl)ellif; = PX1X1 (C16)
=0
D widy, A = Poy, P, Y widy, X = Py, (C.17)
=0 =0

T T

S T S ST p—1
E w YKy, = g wi Vi1, Py 5, Pxixo
i=0 i=0

= Pyle_11X1 PX1X2 (C18)
r L r o
ZwiXQiXZ - Px2x1 P;llxl (ZMZXLXE> P;11x1 PX1X2
i=0 i=0
= Px2x1 P):11x1 PX1X2 (Clg)

where (C.12) was used for deriving these relations. Suitistif the above results in (C.13)
and (C.14) yields:

Pyx, — A1Pyx x, — AoPyyx, =0 (C.20)
Pyx1 P;llxl PX1X2 - AlPx1x2_
A2PX2X1P;11X1 PX1X2 - AQP)ZQ)ZQ =0 (C21)

It is easy to verify (e.g., by substitution) that the solotito the above system of equa-
tions (C.20)-(C.21) isA; = Pyx, Py, andA, = 0. This completes the proof.

X1X1

C.2 Proofof Lemma4.6.1

Using (4.67), we write the equality constraint &n (4.64) asA,U = 0. This equation states
that the rows ofA lie in the left nullspace of thé x 3 matrix U. Therefore, ifL is a2 x 5
matrix whose rows span this nullspace, we can wAiteas:

A, =BL (C.22)

whereB is anm x 2 unknown matrix that we seek to compute. We note that thereeareral
possible ways of computing an appropriate makrjxvhose rows lie in the nullspace Bf. For



249
instance, such a matrix is given, in closed form, by the esgom (4.66). Substituting (C.22) in
the original problem formulation [see (4.4) and (4.63)], erain:

10

min > w; (2 — (BX] + b)) 2 — (BX] +b)] (C.23)
) =0
where we have definett! = LX;,i = 0,...,10. This becomes an unconstrained minimization

problem with respect to the design variablesindb, and has exactly the same structure as that
in (4.4). Thus, by analogy, the optimal solutionBfis computed by [see (4.5)]:

B =P,P;,} (C.24)
Y74

where

10
Po =) wi(Z—2)(LX; — Lx)T = Py L7
i=0

10
Po = > wi(LX; — LR)(LX; — Lx)" = LPy L"
=0
By combining these two identities with those of (C.24) and2@}, we obtain the optimal solu-
tion of A [see (4.65)].



Appendix D

Appendices for Chapter 6

D.1 Proofof Lemma6.2.1

We prove this result by mathematical induction. Specificalle start by the base case of
k = 0, in which since no marginalization is involved and the ofeability matrix is simply the
first measurement Jacobian, i.®I, = H [see (6.10)], the information matrix can be directly
written in the desired form:

A=Ay =HR;'Hy) = M"EM (D.1)

X
We now consider the case bf= 1, in which the state vector igy.; = [ 0] and hence the
X1

full information matrix is given by [see (6.18)]:

A =FIQy Ry + HIRG Mo + HIR'H, (D.2)
B ®/'Q,'®) + HR; ' Hy -®l'Q,!
-Q, '@ Q' +HIR'H,

In order to obtain the information matrix af), we marginalize ouk; by employing the Schur

250
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complement:
Ao = Q'@ + HJ Ry 'Hy — (27Q;") (Qp" + HI Ry 'HY) ' (Qg'®0)

[

1

=3[ Qy'®) + HIRy'Hy — (27 Qy") [Qo — QoH{ (H1QoH] + Ry) 'H Qo] (Q, ' ®0)

= HIR;'Hy + (H,®0)" (H;QoHT + Ry)™! (H, &)

T
H
O . MTsM
H,®,

Hy
(D.3)
H,®,
where we have used the Woodbury matrix identity [49] for catimy =, . It becomes clear that

in this case the information matrix af, is factorized into the desired form.
To better understand the structure, we consider one moeedaas of: = 2, where the full

R’ 0
0 (HlQoH{ + Rl)_l

information matrix of the entire state,.o is given by [see (6.18)]:

1 2
A=Y FIQ'F+ Y IR M,

k=0 k=0
ol Q,'®) + HR; 'Hy -7'Qy! 0
= ~Qy ' ®o Q;' +2{Q;'® +H{R; 'H, —-e{Q;"
0 -Q'®, Q;! +HIR, 'H,
(D.4)

Similarly, by marginalizing ouk; andxs, using the Schur complement, we obtain the informa-

tion matrix of the initial state:

Ao = @} Q,'®) + HI R, 'Hy (D.5)
T -1
Qo'eo| Q' +@fQ e + HIR'H, -o7Q;! Q;'®
0 -Q;'®, Q' + HIR,'H, 0

2

It is clear that due to the structure of the above equationpmhg need to compute the top-
2o(1,1) Ea(1,2
2(11) By )] , correspond-

leftmost submatrixEs (1, 1), obtained by partitionin@, =
E9(2,1) Eo(2,2

—1
P
ing to the nonzero block O[QOO 0] . Hence, using the block matrix inversion lemma [49],
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we have:

[1]

_ _ _ _ _ _ -1 -1
2(1,1) = [Qo '+o7Q'® +HIR 'H, - ®/Q; ' (Q' + HJR, 'Hy)  Q; 1<I>1T}

-1
= [Q! + HIR{'H + 8T H] (HQoH] + Ro) ' Hy &, |

T 1
g [H ] R 0 H,
=9 Qo _
Hy®, 0 (H2QoHI +Ro)™!| [Hy®,
_ _ “1
= [Qy' + H{,RjH).,]
= Qo — QoHI,,(H12QoHT, + Ri2) 'Hi.2Qo (D.6)
. A Hl A . T . .
where we have defineH ., £ - andR.» = Diag (R1, HoQoHY + Ry). Itis im-
2P

portant to notice that, from the first equality of the aboveampns,=; 1(1,1) is the Schur
complement 01'52‘1 with respect tax; (i.e., marginalizing ouks from x;.5). In the second
equality, we have also employed the Woodbury matrix idgntubstitution of (D.6) in (D.5)
yields (by noting again that it is not necessary to computeother submatrices &,):

Ag = ®(Q, ' ®o+H{R;'Hy — 2 Q;" [Qo — QoH»(H12QoHT, + Run) 'Hi2Qo] Qg ' &
= HJRy "Ho + ®( H{,(H12QoHT,, + Ri) "Hy2®o
T ra-1
0 (H12QoH{,+ Ri)™!

H,
H.o®

Hy
Hi.o®

= MM (D.7)

It is clear that in this case we can also factorize the infeionamatrix of x, into the desired
form.

We now consider the general casekof= . Suppose in the case 6f= x — 1, the in-
formation matrix of the initial state, can be factorized into the desired form and in particular
E.—1(1,1) whose inversion is the Schur complemenqui1 with respect tax; by marginal-
izing outxs.,,_1 from x;.,_1, assumes the following form [see (D.6)]:

—_ _ _ -1
E.-1(1,1) = (Qq Lt H{H—1R1:,1§—1H1:n—1) (D.8)
-1
= QO — QOH,{:H—]. (len—lQOH?{;,@—l + Rl:m—l) Rl:n—lQO
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whereH;.,_; andR,.,_ are defined similarly as in (D.6):

H,
Hy, 2 : (D.9)
H, 1P, 2P
Ri.x—1 £ Diag (Ry,- -+, He1Qe 1 HY | + Ry 1) (D.10)
Note that by considering the full state.,. (instead ofx;.._1) and marginalizingks.,. from the

full state, we will have a similar matrix as (D.8) whose timéex is shifted by one and which
is useful for the ensuing derivations.

_ _ _ -1
2.(1,1) = (Q;' + HI,. R, Ha,) (D.11)
-1
= Qi — QH, (H2.,,QHJ, + Ro)  Ro.Qu

Due to the spare banded structure of the full informationrmé®.18), marginalization ok.,
from the full statexy.,. using the Schur complement yields:

SN T
Qo ‘I>O Qo ‘I)O
TH—1 Tp—1 0 —_ 0
Ay = P, QO P, + H, RO Hy - = . (D.12)

As evident, to computé\,, we only need to calculate the top leftmost submatEx,1, 1),
corresponding t(le<I>0. Note that in analogy to (D.8E'(1,1) is the Schur complement
of 21 with respect tax; by marginalizing outk,.,. from x;.,,. Using (6.18) and (D.11), we
compute=,(1,1) as:

—_ — _ _ 1 — _ —1
E.(1,1) = [Qy' + 21Q;'® + HIR'H, — #{Q;'E/(1,1)Q; ' &]
_ _ -1 —1
= |:QO ! + H{RI lHl + ‘I’{Hgn (H2:HQ1H,§:H + RQ:H) H2:H‘I’1]

H,

Q' +
HZ:H(I)l

T -1
R’ 0 H,
0 R;,.| [How®

=: (Qal + Hl:nRi,llezn)_l

1
= Qo — QoHI., (HI:HQOH%—:H +Rix) RixQo (D.13)
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Substituting (D.13) in (D.12), we obtain the the informatimatrix ofxq in the desired form:

Ay =3[ Q ' e+ HIR;'H,

_ -1 7
- q)ng ! {QO - QOH{:/@ (HI:RQOH{H + Rl:/{) Rl:nQO

— -1
= HgRO 1H0 + QgH{n (HI:HQOHC{;,{ + Rl:n) HIZH(I,O

T 1
[ ow ] [R; 0 H,
= -1
H..®o 0 (H1..QoHT, + Ri.) Hi., P
= MM

This completes the proof.

Q,'®

(D.14)



Appendix E

Appendices for Chapter 7

E.1 Proofof Lemma7.4.1

We first note that the following finite dimensional Mountaas8 Theorem (MPT) will be useful
for the ensuing analysis.

Theorem E.1.1.[Theorem 5.2, [81]]Suppose that a continuous functigne C'(RY;R) is
coercive and possesses two distinct strict relative minkmandx,.2  Then f possesses a
third critical point x3, which is distinct fromx; andxs, and characterized by:

f(xs) = inf max f(x) (E.1)

wherel’ = {¥ C RY; 3 is compact and connected, ard, x, € ¥ }. Moreover,x3 is not
a relative minimizer; that is, in every neighborhoodxof, there exists a poink such that

f(x) < f(xs)2

To preserve the clarity of presentation, without loss ofgyelity, we hereafter translate the
global frame of reference to the sensor’s local frame (pg.,= 0), and also drop the time
indices as well as the subscripfl*” denoting target. Thus, the minimization of (7.20) can be

1 Afunctionf : RN — R is coercive iff it is bounded from below and is proper in thassethatf(x) —

oo for ||x|| — oo.

2 T is the class of paths (or curves) connectingand x» (see Theorem 1.1, Ch. II, [151]). Note that, based
on the proof of this theorem (see [81]), such a critical paigt(E.1)also exists forf € C°(R™;R), though, in this
casexs is not necessary to be a non-minimum point. It is also imparta notice that, an isolated inf-max critical
point (i.e., mountain pass point);, is necessarily a saddle point (see Ch. 12, [81]).

255
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written as:

= c1(p) + c2(p) (E-2)

T
Recall thatp = [x y} denotes the target position. In (E.2), given a function eala, y) =

a, c1(z,y) 2 B is an ellipse centered §f = [m Q}T, while depending on the available
measurement value; (z,y) = a — 3 = ~ represents one or two circles centered at the origin,
i.e.,z? +y? = (2 &£ 0,/27)?. For simplicity of analysis, in the following, we assumeyonl
one circle is associated with (x, y), while the analysis readily holds for two circles. Notice
that the cost function(p) (E.2) is coercive bunotC' since it is not differentiable at the origin.
Hence Theorem E.1.1 is not applicable directly.

Nevertheless, in what follows, we will first show that the-mé&x point cannot be the origin.
Based on that, we will use the MPT to show that there are at &losal minima, since(p) is
coerciveandC! in R?\{0}. Subsequently, we will prove that there are at most 2 locainm.

E.1.1 Proof that there are at most 3 local minima

Remember that there are up to 4 distinct critical (statign@oints in R?\{0} (see Sec-
tion 7.4.2). Suppose that they are all strict local minimenated byp;, ¢ = 1,...,4. By
the MPT (Theorem E.1.1) iR?\{0}, we have an inf-max poinp for any pair ofp;. If this p
is different from anyp;, we will have (at least) 5 critical points, which contradithe fact that
there are at most 4 critical points R?\{0}. Therefore, any pair op; must share a common
inf-max point at the origin which is a non-differential écél point. However, we now show by
contradiction that this is not the case.

Specifically, suppose that the origim = 0, is the desired common inf-max point.
From (E.1), we know that(p;) < ¢(0) £ «a, i = 1,...,4. By continuity ofc(-), we de-
fine the following level set:

S=c(a)={p eR*: ¢(p) = ¢(0)}

We now show some important properties of this levelSehat will be useful for our proof.
First of all, from the implicit function theorem (see Lemma#Ch. 2 in [114]),5\(0,0) is a
smooth 1-dimensional manifold. A smooth connected 1-dsiteral manifold is diffeomorphic
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either to a circle or to some interval of real numbers (seeefpjx of [114])3  Thus, from
differential topology [114], a 1-dimensional manifold atiis S\ (0, 0) is aunion of disjoint
smooth curves (lines and circled)his also implies thaf\ (0, 0) has no isolated points.

Secondly,S\ (0,0) hasno closedcurves. To see this, by contradiction, suppose that one
curve component af\ (0, 0) is closed, denoted h§;. By continuity ofc(-) and compactness
of S1, and based on the Weierstrass theorem [138], there will @titeast) one local minimum
inside S;, which has to be one of the poingg since no other critical point exists. Note that
such a local minimum cannot be on the boundarySefsincec(p;) < «. Without loss of
generality, we assumg, is the only local minimum insidé;. Note that there cannot be more
than one local minima insids§,; (see the next paragraph below). Based on continuity-pfind
compactness af;, we can find a sufficiently smadl > 0 so thatS; is contained in one closed
component of:~!(a + €), which is disjoint fromS\S; as they have different function values
(o + € anda, respectively). Clearly, in this case, the inf-max valuen@®np, andp; (i # 1)
will be larger thany and is attained at a point other théh 0), which gives the contradiction.
Therefore, all curves of\(0,0) are open-ended. Moreover, by continuity;) attainsa at
any limit point (i.e., the open-end point) of the curvesdf(0,0). However,(0, 0) is the only
point wherec(-) attainsa except the curves &\ (0, 0), and thus th@nly common limit of all
open-ended curves &\ (0, 0).

Lastly, let us consider the properties of the interiolSofWe first define the following sed
whose boundary i, i.e.,® = {p € R% : ¢(p) < a} = U,;0;, where®; is j-th component
of ®. Itis clear thatp; (¢ = 1,...,4) is contained in®; for somej, sincec(p;) < «. Note
that, ®; cannot contain (more than) twe;, since, otherwise, the inf-max point of these two
p; Will be different from (0, 0) and will have a function value less than On the other hand,
if ®; does not contain anp;, similarly, based on the Weierstrass theorem [138], thelle w
exist a new local minimum in the corresponding clos#g, = ®; U 9©,. This contradicts
the fact that we have only 4 critical points different frgt 0). Therefore, there are exactly
4 connected componen®;, each of which contains ong;. Furthermore, by continuity of
¢(+), thei-th boundaryp®; C S, contains at least one curve of the connected components of
S\(0,0). Since(0,0) is a limit point of all curves(0,0) € 9O, for everyi, and thus,

00; = U1, S;U{(0,0)}

3 Amapf: x — yis called adiffeomorphisnif f carriesz homeomorphically ontg and if both f and f !
are smooth.
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Figure E.1: lllustration of the topological configuratiohfour local minima,p; (i = 1,...,4),
and the level sef. In this plot, the dashed curves represent the levefsand the solid lines
are the paths which connects the local mingpandp; and attains its maximum at the origin.
Note that each of the paths is contained exactly in one ortefithe connected components of
S. Itis clear that the circley(p) intersectsS at 8 different points.

whereS; is one curve ofS\(0,0) andn; is the number of; contained in¥®;. Note that any
two 0©; do not share a common curve, since if they do, by definitioa,stiered curve will
consist of (infinitely many) critical points. As a resultetie are at least 4 distinct open curves
in S\ (0, 0) having (0, 0) as a common limit point (see Fig. E.1).

As seen from Fig. E.1, for a given measurementhe circlecy(p) intersects the level set
S at (at least) 8 intersection points denoteddpyi = 1,...,8. We can show that all these 8
points belong to the same ellipsg(p), by noting that

c(ai) =c1(aqi) + c2(ai)
= ca(qi) =c(qi) —c2(qi) Ta—y =4 (E.3)

This indicates that the 8 intersection poirds, belong to the same ellipsg(p) = 3. This re-
sults in 8 intersection points between the ellipsand the circle:,. However, it is known from
geometry that there are at most 4 intersection points betaeeg ellipse and circle. Therefore,
we conclude that0, 0) cannot be an inf-max point.

By the MPT, there must exist an inf-max point between any weal minima among the 4
stationary points. Therefore, there are at most 3 localmaniby sharing one stationary point
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as the common inf-max point).

E.1.2 Proof that there are at most 2 local minima

We now prove that there are at most 2 local minima by showiagttie assumption of 3 local
minima (i.e.,p;, ¢ = 1,2,3) leads to a contradiction. Denote the inf-max point;, corre-
sponding to the two local minima, andp; (i, j = 1,2, 3 andi # j),

N — inf
clm) = Juf, g c(p)

Recall that we have at most 5 critical points in total (i.enoh-differentiable point at the origin

and 4 stationary points). So, it is clear that there are only possible cases that we need to
examine in terms ofn; (i = 1,2, 3):

e Casel: m;=ms #m3=0
e Casell: m; #my =m3 =0
e Caselll m;i =my =m3 =0
e CaselV:m; =my =m3 #0

Our goal is to prove that all these four cases are impossiedur and thus there are at most 2
local minima. In what follows, we first show that the first threases with a zero inf-max point
(i.e., Cases I, Il and Ill) cannot occur, and then disproveed¥.

We start by considering a special case where the prior egticmncides with the sensor
53

position (i.e.,p = 0). By denotingP_} = "
S3  S9

] , we expand the cost function (E.2) in a
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neighborhood of the origin as follows:
1 ! 1 2
e(z,y) = & [x] [81 53 [31 + = (z 2z ¥ yz)
2y s3 s2| |y 20,

2 2
sio-+1 So0-+1 2
— % 1'2+ % y2+33wy— 22 1’2+y2+z—2
20'p 20p oy 20'p

2 A + By’ + Cay— EN/a2 +y2+ D (E.4)

Ax? + By?
:\/ac2+y2< rAoy +C$y—E>+D

Va2 +y?
< va?+y?(Alz| + Bly|+ |C||z| — E) + D (E.5)

whereFE £ ;—2 > 0, due to the positive distance measuremerin the above expressions, we

P

have employed the inequalitiés| < /22 + y2 and|y| < /22 + y2. Clearly, there exists a
neighborhood of0, 0) such thatd|z|+ B|y|+|C||z|— E < 0 and hence(z,y) < D = ¢(0,0),
if (z,y) # (0,0). By definition, (0, 0) becomes alocal maximum and thus cannot be an inf-max
point? This is the contradiction, and therefore Cases I, Il, anddtinot happen wheh = 0.
Now consider the general case whgreZ 0. First, in Case lfn; = my # m3 = 0),
as in the previous proof of at most 3 local minima (see Sedfidnl), we can show that there
are at least 4 intersection points between the citgle) for a givenz and the level sef (see
Fig. E.2). If the circlec, collapses to a single point (i.e., with zero radius), cletirere is only
1 intersection point between the circle and the level sef, and hence 1 intersection point
between the circle, and the ellipse;.° Importantly, by continuity of:, and compactness
of S, if perturbingce by an arbitrarily small number in the neighborhood of orjgimere are
always at least 4 intersection points between the circlnd the level sef, and thus at least 4
intersection points between the cireleand the ellipse:; [see (E.3)]. This perturbation results
in the dynamics of the number of intersection points betwhbertircle and the ellipse, changing
from 1 to 4. However, this is not the case, since we know froonggtry that by continuity of
the circle and ellipse, if applying a small perturbation @ tircle, 1 intersection point between
the circle and ellipse can only dynamically change 0, 1 on&téad of 4) intersection points.

4 Note that ifz = 0, then (E.4) becomes quadratic and has a unique global miniattthe origin (by noting
that A > 0), which clearly contradicts the assumption of three lociima.

5 Although depending on the measuremenanother circle possibly exists and thus may result in mioter-
section points between the cirale and the ellipse:;, we here consider the dynamics of the intersection point in a
neighborhoodf the origin.



261

\
p |
\\E/

Figure E.2: lllustration of the circle;(p) = « intersecting the level s& as well as the ellipse
c1 by a small perturbation op. In this plot, the dashed curves represent the level sesdiie
lines are the path which connects the local minimaand p, and attains its maximum at the
origin, and the solid circle representsafter perturbation.

Moreover, as compared to Case |, in Case Il there will be &t ledinstead of 4) intersection
points between the circle,(p) for a givenz and the level sef, and thus we can show in a
similar way that this case is also impossible.

In Case Ill (m; = my = mg = 0), interestingly, no matter whethgr = 0 or p # 0,
proceeding similarly as in Cases | and Il and as in SectiorilEwle can derive the contradiction
that there will be 6 intersection points between the cirgl@and the level sef (and thus the
ellipsecy), and hence show that this case is also impossible to occur.

At this point, we have ruled out Cases I-lll. We will now dispe Case IV. Specifically, to
simplify notations, we denote the common inf-max pointlay= m; = my, = ms. Then,
we first consider a special case where the prior estimateideis with the inf-max point, i.e.,
p = m. In this case, we know thafc(p) |p=m= 0, Sincep = m is a critical (inf-max) point.
Therefore, we have:

0 — VC(p) |p:m - VCl (p) |p:m +V02(p) |p:m
1 m
=—=kZ—-—|m||)7— = z=|m|| = cm)=0
%( I ||)|| i ||m]| (m)

which clearly shows thgd = m is a global minimum (by noting the quadratic and nonnegative
cost function (E.2)). This contradicts the assumption that m is an inf-max point.
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Figure E.3: lllustration of the circle;(p) = «’ intersecting the level s&’ by a small pertur-
bation onc,. In this plot, the dashed curves represent the level segdli@ lines are the path
which connects the local minima andp; and attains its maximum @t = m, the dash-dotted
arcs (of the circles) represent before and after perturbation, and the solid circle denthtes
neighborhood op = m.

We finally consider the general scenario of Case IV wifete m. We define the following
level set:
S'={p eR?:¢(p) =c(m) 2 '}

Similar to Case IIl and Section E.1.1 (where instead thel ls®eS is considered), the corre-
sponding interior® = {p € R? : ¢(p) < '}, has three curve components, each of which
contains exactly one; (see Fig. E.3). Consider the scenario whpre- m is an intersection
point between the circle and the ellipse (by notifigh) = ¢; (m) + c2(m)). In a neighborhood
of p = m, if perturbing the circlecy(p) = c2(m) 2 +' by an arbitrarily small (positive or
negative) value, the circle will either shrink or expanda® there are 6 branches belonging to
the level setS’, by continuity and compactness af andS’, in the neighborhoodof p = m,
there will exist at least 3 intersection points between theecand the level set, and thus at least
3 intersection points between the circle and the ellipse (Ee3)], either when the circle shrinks
or expands. Thus, there exists an (arbitrarily) small pbétion oncy so that the number of
intersection points between the circle and the ellipsehénrteighborhood op = m, dynam-
ically changes from 1 to (more than) 3. However, we know fraorgetry that this is not the
case since 1 intersection point between a circle and arse]llpy perturbation, can change to at
most 2 in itsneighborhood

Thus far, we have proven that all four cases are impossibtectar if there are 3 local
minima. As a result, there are at most 2 local minima. Thispetes the proof.
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