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1. Introduction

The Internet enables a wide variety of devices to commu-
nicate with one another, but both the distributed adminis-
tration of the Internet and the complex interactions among
failures make problems difficult to diagnose. To address
this problem, we propose an architecture for distributed
network fault diagnosis that allows data providers, diag-
nosis providers, and users to exchange information in a
standard way. We see this diagnostic architecture as one
aspect of the Knowledge Plane (KP)(Clark et al., 2003), a
platform which will enable automated network diagnosis,
management, configuration, and repair. A general architec-
ture for distributed diagnosis will allow different diagnosis
providers, such as intrusion detection systems and domain-
specific failure diagnosis systems, to interoperate and ex-
change data from different sources such as network moni-
tors and Internet tomography systems. Designing such an
architecture is difficult because it must be able to support a
wide range of data and diagnostic methods as well as scale
to large networks with unpredictable network faults poten-
tially affecting millions of users. In this paper we describe
an approach for addressing these challenges using an exten-
sible ontology and a scalable routing protocol and present
the results of some preliminary experiments.

There has been some related work in networks for exchang-
ing diagnostic information. Wawrzoniak et al. developed
Sophia, a system for distributed storage, querying, and pro-
cessing of data about networks (Wawrzoniak et al., 2004).
Thaler and Ravishankar describe an architecture for diag-
nosing faults using a network of experts (Thaler & Ravis-
hankar, 2004). Gruschke describes how an event manage-
ment system can use dependency graphs for diagnosis (Gr-
uschke, 1998). Unlike previous work, we consider how to
handle large volumes of diagnostic requests by reasoning
about the effects of individual network failures.

2. An Agent Architecture for Fault Diagnosis

Our goal is to design a network architecture that allows dis-
tributed diagnosis for a wide range of faults. As a start-

ing point, we consider how to diagnose reachability faults
in which a user cannot complete a network task because
they cannot reach some destination. Reachability faults
may result from a variety of causes, including physical net-
work cable disconnection, network misconfiguration, ac-
cess provider failures, routing failures, and software fail-
ures.

In order to automatically collect data about faults, perform
diagnosis, and convey diagnoses to users affected by faults,
we developed a diagnostic architecture comprising a net-
work of intelligent agents. Each agent may request infor-
mation from other agents and respond to such requests. In
this network architecture, user agents make requests for
diagnosis, and diagnosis agents request data from data
agents in order to respond to user agent requests.

3. Scalable Routing Using Aggregation

Our architecture must address the issue of scalability. In
large networks such as the Internet, a single serious net-
work fault may affect millions of users. To successfully
diagnose such faults, our architecture uses aggregation to
greatly reduce the number of messages required for diag-
nosis. Instead of performing a full diagnosis for every re-
quest, an agent may determine that multiple requests may
be aggregated and answered using existing knowledge.

In order to maximize the effectiveness of aggregation,
agents route requests and responses according to the Inter-
net autonomous system (AS) topology. For each AS, there
exists a diagnostic agent that knows about failures within
that AS. A diagnostic request from a user agent first trav-
els to the diagnostic agent for the user’s access provider
AS. If the diagnostic agent does not have enough informa-
tion to respond, then it forwards the request to the agent
for the next AS along the AS path towards the unreachable
destination. When an agent has enough information to pro-
duce a diagnosis, it sends a response that travels along the
reverse path of the request, allowing each agent along the
path to store the data in the response. Routing along the
AS path ensures that if a fault occurs somewhere along the
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Figure 1. Inferring failures using a dependency graph

AS path, data is collected from every agent with informa-
tion about a fault while minimizing the average number of
requests each agent handles.

In order to aggregate effectively, however, an agent must be
able to determine whether it can satisfy multiple requests
using existing knowledge. To address this problem, we pro-
pose an ontology that allows agents to describe the depen-
dencies between different network components and infer
all the network failures that may result from a failed com-
ponent. This ontology defines components and dependen-
cies, where components may require multiple dependen-
cies. A dependency is satisfied if and only if there exists
a component that provides that dependency. A component
functions if and only if it has not failed and all the depen-
dencies it requires are satisfied. This dependency graph is
distributed: each diagnostic agent may define its own local
dependency model and incorporate additional dependency
information from other agents.

Figure 1 depicts a simple example of how an agent might
use a dependency graph for aggregation. The shaded and
unshaded ellipses represent components and dependencies,
and the solid and dotted lines indicate required and pro-
vided dependencies, respectively. To reach their destina-
tions, users U1 and U2 must be able to reach their ISP,
and their ISP must be able to reach their respective des-
tinations. Since both users share the same ISP, if their
ISP fails, then a diagnostic agent can infer that neither user
can reach their desired destinations. An actual dependency
graph would also model dependencies among many other
types of networking components, including DNS, network
applications, and link-layer components.

To illustrate the potential benefit of aggregation, we con-
ducted simulations of our routing protocol using an ac-
tual AS topology consisting of 8504 nodes using data from
Skitter1. Figure 2 plots the average number of requests an
agent receives based on its distance from the agent of the
AS responsible for the failure, where the point “0 hops”
represents the responsible agent. In this simulation, the
failure affects 1,000,000 users, each of whom makes a diag-
nostic request. Without aggregation, the responsible agent

1http://www.caida.org/tools/measurement/skitter/
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Figure 2. Message Distribution

receives one request from every user agent. With perfect
aggregation, if agents can accurately respond to requests
using existing knowledge, the agent for the responsible AS
only receives at most one request from each of its neighbor-
ing agents. The benefit of aggregation diminishes farther
away from the responsible agent because the distant agents
receive fewer requests and hence have fewer opportunities
for aggregation. This plot shows that an effective ontology
and intelligent aggregation can greatly reduce the average
number of requests agents process.

4. Conclusion and Future Work

In this paper we proposed an architecture for distributed
network fault diagnosis that represents data using an ex-
tensible ontology and routes requests and responses using
aggregation to reduce the average number of requests an
agent must process. We are currently developing a proto-
type of this architecture and plan to conduct more experi-
ments to determine how well it performs under a variety of
realistic failure cases.

References

Clark, D. D., Partridge, C., Ramming, J. C., & Wroclawski,
J. T. (2003). A knowledge plane for the internet. Pro-
ceedings of SIGCOMM ’03.

Gruschke, B. (1998). Integrated event management: Event
correlation using dependency graphs. Proceedings of
DSOM ’98.

Thaler, D. G., & Ravishankar, C. V. (2004). An architecture
for inter-domain troubleshooting. Journal of Network
and Systems Management, 12.

Wawrzoniak, M., Peterson, L., & Roscoe, T. (2004).
Sophia: an information plane for networked systems.
SIGCOMM Comput. Commun. Rev., 34, 15–20.


