
Efficient Matching in a Context-Aware
Event Notification System for Mobile Users

George J. Lee
Computer Science and AI Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139 USA
gjl@mit.edu

Takefumi Naganuma Shoji Kurakake
Network Laboratories

NTT DoCoMo R&D Center
Yokosuka, Kanagawa 239-8536 JAPAN

{naganuma,kurakake}@netlab.nttdocomo.co.jp

Abstract

As the amount of information accessible to mobile users
increases, the need for an effective system to deliver rele-
vant information to users also increases. Event-based sys-
tems can help users deal with vast amounts of changing in-
formation, but existing approaches do not adequately ad-
dress the needs of the growing number of mobile users.
To address these needs, we built an automatic, personal-
ized, context-aware event notification system that efficiently
and flexibly matches users and events while automatically
learning individual user preferences for the current context.
We developed a concise and expressive multi–content graph
event model for describing events and user interests, and a
fast and efficient algorithm for matching events according
to this model. In this paper we describe our event model
and matching algorithm and present evaluation results il-
lustrating the performance of our system.

1. Introduction

The amount of information available to Internet users
today is increasing rapidly, but users lack effective tools
for obtaining accurate, up-to-date, and relevant informa-
tion. This problem is especially acute for mobile users, who
could greatly benefit from context-specific event notifica-
tions but are constrained by the limited input, display, and
processing capabilities of mobile devices.

Furthermore, existing event-based systems demand too
much user interaction to specify accurate, personalized sub-
scriptions and are not designed for extremely complex and
descriptive event models. In addition, the set of events in
which a user is interested may depend on their context, such
as their location and task. These two problems are com-
pounded for mobile users due to the input and display lim-
itations of mobile handsets and the frequency with which

mobile users may change their location and tasks.
To address this problem, we built an automatic, person-

alized, context-aware event notification system for mobile
users. This system automatically delivers personalized in-
formation to users based on individual preferences for the
current context. Figure 1 illustrates the architecture of this
system. An event fetcher retrieves raw event data from
event producers, converts them into event descriptions, and
sends these event descriptions to a matching engine. A user
agent learns user interests, stores user events, and transmits
matching events to the client application running on a mo-
bile handset. This user agent also makes context-aware sub-
scriptions based on user interests and context information.
The matching engine then matches event descriptions with
user interests and delivers events to interested users. For
this system to be useful, the event fetcher and user agent
must be able to accurately describe a wide range of realis-
tic events and user interests, respectively. Therefore, this
system must support an expressive language for specifying
event descriptions and user interests.

��� � �����
	�
�
Event

Producer

�� � ����� ���
� ����� ���

��� ���
	 �������

User
input

Event
descriptions

User
interests

��� �����
� ��� �������

��� � �����
	�
�

��� � �����
	�
�

Raw
events

Event
Producer

Event
Producer

Figure 1. System Architecture

Two major challenges of developing such a system are 1)
compactly representing a detailed, expressive event model,
and 2) efficiently matching subscriptions and notifications
according to such a model. To address these challenges,
we developed a compact multi–content graph event model
representation and a fast matching algorithm optimized for
such event models. This matching algorithm is faster than
regular graph search algorithms and allows more concise

subscriptions and notifications than content list approaches.
In section 2 we describe our method for compactly rep-

resenting expressive graph-structured event models using
multiple content graphs. Next we present an adaptive ap-
proach for multi–content graph matching in section 3. In
section 4, we present an optimized content graph matching
algorithm and compare it with other approaches. We de-
scribe our system implementation in section 5. Finally, in
section 6 we conclude with evaluation results showing that
our system can efficiently match new events to many users
according to a multi–content graph event model.

2. Event Model Design

In our system, event descriptions (notifications) and user
interests (subscriptions) are described according to an event
model. This event model determines what information users
can use to filter subscriptions and what attributes can be
described in notifications. Our system must allow a wide
range of realistic events and user interests, and so requires
a concise and expressive event model. In order to support
such event models, we developed a method for compactly
and efficiently representing complex graph-structured event
models.

Most event notification systems in use today take one
of two approaches to matching: matching based on sim-
ple flat or hierarchical topic-based event models that is fast
but does not allow expressive subscriptions, and sophisti-
cated content-based matching based on detailed subscrip-
tions but requiring more processing time. In our system we
choose to use an intermediate approach based on a graph-
structured event model that has more flexibility than simple
topic-based matching and is faster than content-based ap-
proaches.

In a graph-structured event model, the relationships be-
tween different subscriptions are represented as a directed
acyclic graph in which the set of nodes in the graph is the
set of possible subscription and notification categories [8].
This graph is called a content graph. An edge (u, v) in this
graph means that v is a subcategory of u. A subscription to
a category s covers a notification in category t if and only if
there is a path from s to t in this graph. Figure 2 shows an
example of such a graph-structured event model.

Abstractly, a content graph can compactly represent the
relationship between any two categories in the graph by
joining them with an edge, but the size of this graph can be
prohibitively large for event models that allow subscriptions
composed of multiple parts, such as a subscription based on
both a topic and a location. If there are x topics and y loca-
tions, then there are x×y combinations of topic and location
to which users can subscribe. For such complex event mod-
els, this graph may contain billions of nodes, or more. This
combinatorial explosion means that it is infeasible to repre-

������� � �

	�
 �
���
�� �

� ��������� �
���� �����

� �����

	 ����� � � ������� � �

Figure 2. Graph-structured event model

sent the entire event model in a single data structure such as
an adjacency list or adjacency matrix.

In order to efficiently deal with such complex event mod-
els, we developed a more compact representation of this
graph. In our system we represent the event model using
a vector of content graphs G = (G1, G2, . . . Gk), where k

is the number of content graphs in the event model. We rep-
resent a subscription using a vector s = (S1, S2, . . . , Sk)
and a notification as a vector t = (T1, T2, . . . , Tk), where
each Si and Ti is a set of categories in the content graph Gi.
Then a subscription s matches a notification t if and only if
for all i, there exists a path from a node s ∈ Si to a node
t ∈ Ti in Gi. This type of event model allows events and
user interests to be efficiently described and matched along
multiple dimensions. For example, if the event model con-
sists of two content graphs describing topics and locations,
respectively, then a subscription may be something like
({Baseball, Weather}, {MIT, Boston}). Then this user
will receive all notifications that have a topic Baseball
or Weather and a location MIT or Boston.

3. Multi–Content Graph Matching

Matching according to this multi–content graph event
model requires more time to match than simpler flat or hier-
archical models. In a flat or hierarchical model, the system
can store subscriptions in a table indexed by category and
efficiently look up all matching subscriptions, but using our
event model the system must search each content graph sep-
arately to determine whether a notification matches a sub-
scription.

3.1. Notification-oriented Content Graph Search

The simplest matching algorithm for this event model is
to find the set of users that match a notification for each con-
tent graph and then compute the intersection of these sets.
This is a notification-oriented approach because it starts
from a notification and searches until it finds all matching
users. This approach is constant in the number of subscrip-
tions, but polynomial in the number of notifications.

3.2. Subscription-oriented Content Graph Search

For simple event models a notification-oriented method
may work well, but in many situations, a subscription-
oriented approach starting from the user may be much
faster. For instance, if the notification category is the root
of a dense tree and the user subscription category is a leaf
node in this tree, searching starting from the subscription
may be exponentially faster. This approach is constant in
the number of notifications, but polynomial in the num-
ber of subscriptions. In a system that supports event his-
tory, a subscription-oriented approach may be more suitable
for new users or users whose subscription changes due to
changing context since only one user needs to be matched
to many subscriptions [4].

Which approach is faster depends on the structure of
the graph, the number of subscriptions, the number of no-
tifications, and the distribution of subscriptions and noti-
fications. Searching starting from a subscription works
especially well for content graphs that resemble a tree
when reversed, since searching a tree going from a leaf
towards the root only requires O(h) steps where h is the
height of the tree; whereas searching from the root to a
leaf requires O(dh) steps, where d is the degree of each
node. Subscription-oriented searching requires one search
per subscription category, however, so the overall time com-
plexity is O(h × |S|), where |S| is the number of distinct
subscription categories.

Figure 3 illustrates the difference between the two ap-
proaches. In this example, there are four user subscrip-
tions s1, s2, s3, and s4 to two distinct categories, and one
notification t1. The dots represent categories in the con-
tent graph, the dashed lines indicate edges in the content
graph, and the solid lines indicate the edges traversed in
the graph search. The notification-oriented search on the
right must traverse six edges in this content graph, while
the subscription-oriented search on the left only needs to
traverse two edges twice. In more realistic and complex
content graphs, the difference may be much greater.

Figure 3. Subscription- vs. Notification-
oriented Search

3.3. Adaptive Multi–Content Graph Search

To improve the performance of our system, we de-
veloped an adaptive approach that searches each content
graph using either a notification-oriented approach or a
subscription-oriented approach, depending on the structure
of the content graph. The optimal matching plan depends
on many factors including the number of subscriptions, the
number of notifications, the size of the event model, the dis-
tribution of subscriptions and notifications in the system,
and the structure of the event model. In our implementation
we empirically determined whether to use a subscription-
or notification-oriented search for each graph, but a more
sophisticated system may choose a search method dynami-
cally for each search depending the factors listed above.

For example, in a two content graph event model, this al-
gorithm may choose to first perform a subscription-oriented
search on one content graph and then a notification-oriented
search on the other graph. In this case, the algorithm
first finds all notifications that match a subscription based
on the subscription-oriented content graph, and then elim-
inates non-matching notifications using the notification-
oriented search. In general other matching plans are pos-
sible as well. For example, the system could start with
notification-oriented searches first, or it could alternate be-
tween subscription- and notification-oriented approaches in
some order. If the system performs more restrictive searches
first, it can drastically reduce the number of searches re-
quired. For a complex event model, this method may re-
quire polynomial time in the number of users, but may be
much faster than a constant time algorithm that searches the
entire content graph.

4. Content Graph Matching

Adaptive content graph searching can greatly im-
prove matching time over pure notification-oriented or
subscription-oriented approaches, but if the content graphs
are complex, searching these individual graphs can still be
costly. There are several ways to perform these searches.
We describe two existing approaches, unoptimized graph
search and content lists, and an optimized matching ap-
proach we developed that is faster than an unoptimized
graph search and allows more concise subscriptions and no-
tifications than content lists.

4.1. Unoptimized Content Graph Search

A content graph search is a simple depth-first or breadth-
first search of a content graph starting from a given node. If
the content graph is represented using an adjacency list, this
requires O(|V |) time, where |V | is the number of matching
categories.

������� � �

�
	 ����
 	�� �

����������� ��	���� �����

� �� !�

� ���"� � � ������� � �

Figure 4. Unoptimized content graph search

Figure 4 shows an example of matching a notification
with topic Red Sox using unoptimized content graph search,
where the shaded boxes are subscription topics that should
match the notification topic Red Sox. Using this method,
the system recursively searches the content graph to find
matching topics. Searching the entire graph can be very
costly if the event model is complex, however.

4.2. Content List Matching

The content list method described by Kulik greatly im-
proves matching speed by including lists of matching cate-
gories in notifications and subscriptions [8]. Using content
lists, a notification includes a list of all matching categories
for notification-oriented content graphs, and a subscription
includes a list of all matching categories for subscription-
oriented content graphs. Matching is done by looking up
subscriptions that match one of the notification topics and
that have a location that matches the notification coverage.
This approach is much faster than a content graph search,
but in a complex event model it may be impractical to in-
clude all matching categories in a subscription or notifica-
tion.

4.3. Optimized Content Graph Matching

We developed an optimized algorithm to perform match-
ing more efficiently than an unoptimized content graph
search but requiring less space to represent subscriptions
and notifications than content list matching. This optimized
matching approach precomputes the categories that match
each possible notification. As mentioned in section 2, deter-
mining whether a subscription to category s matches a noti-
fication category t is equivalent to the question of whether a
path exists from s to t in the content graph. In order to im-
prove matching performance, the transitive closure G∗ of a
content graph G can be computed so that a path from s to t

exists in G iff (s, t) ∈ G∗. This makes it possible to find all
matches with just a single table lookup in O(1) time instead
of the O(|V |) time required for the unoptimized approach.
Computing this transitive closure can be costly, but if the
content graph is static it only needs to be done once. Us-

#�$�%�& ' (

)
* (�+�, *�- -

.�/1032�4�5 6�*�7�8 +�+
(

9 +�:;(

) %�("' % 7 #�$�%�& ' (

Figure 5. Optimized content graph matching

ing this approach, even extremely complex content graphs,
such as the ODP structure containing over 600,000 nodes
and over 1,200,000 edges can be used for matching.

Figure 5 shows an example of matching a notification
with topic Red Sox using optimized content graph match-
ing. Using optimized matching, the system can retrieve all
matching subscription topics with a single lookup.

5. System Implementation

We developed a prototype context-aware event notifica-
tion system for mobile that uses the event model and match-
ing algorithms described above. The event fetcher, user
agent, and matching engine were implemented in Java on
Intel Pentium 4 systems running the GNU/Linux operating
system. The matching engine stores and retrieves events
and subscriptions in a MySQL database. We developed a
client application for NTT DoCoMo mobile handsets that
displays events and transmits user input to the user agent.
This system represents a user’s context as their task and lo-
cation and automatically changes their subscription when
this context changes.

In our system our event model consists of two content
graphs, a topic graph based on the The Open Directory
Project (ODP), and a location graph based on the Getty
Thesaurus of Geographic Names (TGN) [12, 15]. ODP
classifies web sites by topic and the TGN provides an ex-
tensive database of relationships between geographic lo-
cations. The ODP structure is a directed acyclic graph,
while the TGN structure is a tree. The detailed structure of
these models allows complex subscriptions to be expressed
very intuitively and compactly. In addition, the XML-based
RSS, RDF, and DC standards support topic and coverage
attributes in events, making it easy to adapt existing RSS
feeds to use this event model.

In our event model, a notification matches a subscrip-
tion if and only if the notification contains a subtopic of a
subscribed topic and if the notification has a location that is
a superset of the user’s location. This allows users to sub-
scribe to many subtopics by subscribing to a high level cate-
gory, while receiving all events that pertain to their location
or any superset of their location. To more efficiently search

 1

 10

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000

M
at

ch
in

g
T

im
e

(m
s)

Users

Unoptimized Matching
Optimized Matching

Content Lists

Figure 6. User scalability

this event model, our system uses a notification-oriented ap-
proach for the topic graph and a subscription-oriented ap-
proach for the location graph.

6. Evaluation

To evaluate the ability of our system to support a com-
plex multi–content graph event model, we consider several
event models that differ in complexity. We evaluated our
system using subgraphs of the ODP graph containing be-
tween 4,000 and 45,000 nodes. These contained all topics
within 4, 5, and 6 links, respectively, from the ODP root
topic, including symbolic links. For the location graph, we
used a subset of the TGN database, consisting of 6,905 lo-
cations.

To evaluate the ability of this system to scale to a large
number of users, we evaluated this system with 100 to
100,000 simulated users. Each user randomly subscribed
to 5 topics and 3 locations. In our evaluation we measured
the amount of time to match a random event to these sub-
scriptions. We averaged the matching time of 10 random
events, each with 3 topics and 2 locations.

Figure 6 shows the amount of time it takes to match a
single random event given some number of users in the sys-
tem and 44,506 topics. Optimized matching using transitive
closure is 20 to 30 times faster than unoptimized matching.
The simulation for the unoptimized content graph approach
for 100,000 users requires too much time to perform and so
is not plotted here. Unoptimized content graph matching
takes about 1000 times longer than content list matching
due to the complexity of searching the topic graph.

Content list matching is about 30 times faster than the
optimized matching approach, but this speed comes at a cost
in disk space and subscription and notification size. On av-
erage, the number of locations in a subscription increases
by a factor of 4.0 and the number of notification topics
increases 75 times in the medium size event model. This

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

M
at

ch
in

g
T

im
e

(m
s)

Topics

Unoptimized Matching
Optimized Matching

Content Lists

Figure 7. Event Model scalability

means that content list matching substantially increases the
time required to parse and store new subscriptions and no-
tifications, which was not measured in these simulations.

Figure 7 shows the relationship between matching time
and the number of topics in the event model. As the number
of topics increases, matching time also increases. Matching
time for unoptimized content graph matching and content
list matching increase fairly rapidly with the number of top-
ics, while the time required for the optimized content graph
approach remains relatively constant, showing that our op-
timized approach scales well to very complex event models.

These results show that optimized matching is much
faster than an unoptimized approach while enabling much
more compact representation of subscriptions and notifi-
cations than a content list approach. Each algorithm has
its tradeoffs, however. Optimized matching is much faster
than unoptimized matching but requires that the transitive
closure be precomputed and stored. Unoptimized match-
ing is much slower than other matching methods, but does
not require computing transitive closure or storing content
lists. The best approach to use depends on the complexity
of the event model, the importance of matching speed, and
the amount of memory and storage available.

Note that although all the algorithms we evaluated are
polynomial time in the number of users, a constant time al-
gorithm that searches the full event model to match users
would require far more time than these polynomial match-
ing algorithms. Also, though every effort was made to im-
plement these matching algorithms efficiently, further tun-
ing and optimization of this system may result in improved
performance. We do not expect this to significantly change
the relative performance or time complexity of the algo-
rithms, however.

7. Related Work

There is a large amount of research in the design of event
notification systems. Filho, et al. give a detailed descrip-
tion of the design of such systems [5]. There has been re-
search in using event notification in context-aware systems
and how to notify users in a context-aware manner [10, 3].
Huang provides a good overview of the network architec-
ture design challenges of publish/subscribe in mobile envi-
ronments [7]. Cilia designed a system for matching past
events in a distributed event notification system for mobile
users [4].

There has also been a great deal of research in efficient
matching algorithms for distributed event notification [13].
The NaradaBrokering system efficiently implements several
matching methods, including XML and SQL based match-
ing, but does not consider event models with complex graph
structures. Kulik describes some techniques for efficient
matching for such complex event models, but does not fo-
cus on how to optimize content graph searches [8]. There
has also been work on distributed matching [13, 2].

The techniques we use in our optimized matching algo-
rithms are related to methods for database query plan op-
timization. Graefe provides a good overview of query op-
timization [6]. Avnur developed a method for dynamically
reordering a query plan [1].

Our event notification system incorporates context
awareness to provide more relevant information to users.
Schmidt discusses various types of information that may be
considered part of a user’s context [14]. Lieberman gives an
overview of context-aware systems [9]. Naganuma models
a mobile user’s context using a task ontology [11].

8. Conclusion and Future Work

In this paper, we presented an compact, expressive
multi–content graph event model and a fast algorithm for ef-
ficient and scalable matching according to this event model.
We showed how we used this event model and matching
algorithm to develop a context-aware event notification sys-
tem for mobile users. We presented an adaptive method for
searching multiple content graphs and an optimized match-
ing approach for individual content graphs. Our evalua-
tion results suggest that our optimized content graph ap-
proach greatly improves matching performance over an un-
optimized content graph approach for complex event mod-
els while allowing more compact subscriptions and notifi-
cations than content list approaches. Areas of future work
include further matching optimizations, designing a dis-
tributed event notification system based on this framework,
and more performance evaluations.

References

[1] R. Avnur and J. M. Hellerstein. Eddies: continuously adap-
tive query processing. In SIGMOD ’00: Proceedings of the
2000 ACM SIGMOD international conference on Manage-
ment of data, pages 261–272. ACM Press, 2000.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[3] P. Chou, M. Gruteser, J. Lai, A. Levas, S. McFaddin, C. Pin-
hanez, and M. Viveros. Bluespace: Creating a personalized
and context-aware workspace. Technical Report RC22281,
IBM Research Division, Thomas J. Watson Research Cen-
ter, Dec. 2001.

[4] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann.
Looking into the past: enhancing mobile publish/subscribe
middleware. In Proceedings of the 2nd international work-
shop on Distributed event-based systems, pages 1–8. ACM
Press, 2003.

[5] R. S. S. Filho, C. R. B. de Souza, and D. F. Redmiles. The
design of a configurable, extensible and dynamic notifica-
tion service. In Proceedings of the 2nd international work-
shop on Distributed event-based systems, pages 1–8. ACM
Press, 2003.

[6] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, June 1993.

[7] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mo-
bile enviroment. In Proceedings of the 2nd ACM interna-
tional workshop on Data engineering for wireless and mo-
bile access, pages 27–34. ACM Press, 2001.

[8] J. Kulik. Fast and flexible forwarding for internet subscrip-
tion systems. In Proceedings of the 2nd international work-
shop on Distributed event-based systems, pages 1–8. ACM
Press, 2003.

[9] H. Lieberman and T. Selker. Out of context: Computer sys-
tems that adapt to, and learn from, context. IBM Systems
Journal, 39(3&4):617–631, 2000.

[10] S. Mitchell, M. D. Spiteri, J. Bates, and G. Coulouris.
Context-aware multimedia computing in the intelligent hos-
pital. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop, pages 13–18. ACM Press, 2000.

[11] T. Naganuma. A task oriented approach to service re-
trieval in mobile computing environment. In Proceedings of
IASTED International Conference on Artificial Intelligence
and Applications (AIA 2005), 2005.

[12] Netscape Communications. About the Open Directory
Project. http://dmoz.org/about.html.

[13] S. Pallickara and G. Fox. On the matching of events in dis-
tributed brokering systems. In Proceedings of IEEE ITCC
Conference on Information Technology, volume II, pages
68–76, April 2004.

[14] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to
context than location: Environment sensing technologies for
adaptive mobile user interfaces. In Proceedings of the Intl.
Workshop on Interactive Applications of Mobile Computing
(IMC98), volume 23, pages 893–901, November 1998.

[15] The J. Paul Getty Trust. About the TGN. http:
//www.getty.edu/research/conducting_
research/vocabularies/tgn/about.html.

