
CAPRI: A Common Architecture for Autonomous, Distributed Diagnosis of
Internet Faults using Probabilistic Relational Models

George J. Lee
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139 USA

gjl@mit.edu

Abstract

Internet fault diagnosis today is slow, costly, and
error-prone because it requires humans to run diag-
nostic tests and interpret their results. A fully au-
tonomous self-diagnosing network could greatly im-
prove diagnostic accuracy and efficiency, but such a
network requires a common language for expressing
diagnostic knowledge and data, and a protocol for dis-
tributed probabilistic diagnostic reasoning. In this pa-
per I show how the Common Architecture for Proba-
bilistic Reasoning in the Internet (CAPRI) can satisfy
these requirements using probabilistic relational mod-
els (PRMs). Preliminary results indicate that CAPRI
agents can diagnose HTTP proxy connection failures
with over 80% accuracy using TCP failure data col-
lected using an updated version of Planetseer[11].

1. Introduction

Internet fault diagnosis requires the application of
diagnostic knowledge, performing diagnostic tests,
and distributed diagnostic reasoning. When a user re-
ports a network fault such as an IP reachability failure
to a network administrator, the administrator diagnos-
ing the fault uses their diagnostic knowledge to iden-
tify the data they need for diagnosis. Then they per-
form diagnostic tests to collect data about the fault, us-
ing tools ranging from simple ping and traceroute mea-
surements to sophisticated SNMP network manage-
ment consoles. Next they interpret the results of these
tests to infer possible causes of failure. Due to the dis-

tributed administration of the Internet and dependen-
cies among network components, frequently the ad-
ministrator may also need to coordinate with users and
administrators in other domains to diagnose the fail-
ure. Finally, the administrator identifies the root cause
of failure and informs the user.

Today, humans perform all of the steps of diagno-
sis manually, but as the Internet grows in size and
complexity this will become increasingly impractical.
Though we have many tools for data collection[9, 11]
and sophisticated diagnostic reasoning[4, 6], unfortu-
nately we do not have a way to automate distributed
Internet fault diagnosis using these tools. To address
this problem we need a common architecture for dis-
tributed diagnosis of Internet faults using autonomous
agents. This architecture must provide a common lan-
guage for expressing diagnostic knowledge and data,
and a protocol for distributed probabilistic reasoning.

In this paper I present the Common Architecture
for Probabilistic Reasoning in the Internet (CAPRI),
which uses probabilistic relational models (PRMs)[3]
to support autonomous diagnosis of IP reachability
and other failures. The primary research contribution
of this paper is to show how to apply recent AI research
in PRMs to provide a general yet expressive frame-
work for autonomous distributed probabilistic diagno-
sis of Internet faults.

2. Requirements of a Diagnostic Architecture

A diagnostic architecture must provide a language
for expressing diagnostic knowledge and data, and a
protocol for distributed probabilistic reasoning.
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2.1. A Language for Diagnostic Knowledge

Accurate diagnosis of network failures requires
knowledge of the properties of both the classes of net-
work components that might fail and the classes of
tools available for testing these components. Network
components include both processes such as TCP con-
nections and devices such as Ethernet switches; diag-
nostic tests include both passive observations as well
as active measurements. For example, to diagnose an
IP path failure, one needs to know that an IP path fail-
ure results from a failure in one of the links along that
path, and that a failed traceroute along an IP path can
indicate a path failure. Today such knowledge mostly
resides in the heads of network administrators; in order
for autonomous agents to make use of such informa-
tion we need a common language for expressing this
diagnostic knowledge.

Furthermore, this language must be extensible be-
cause the set of network component and diagnostic test
classes in the Internet is constantly expanding. In or-
der for agents to diagnose new components and take
advantage of new diagnostic tests, developers need the
ability to specify new diagnostic knowledge and share
this knowledge with existing agents.

Most previous architectures for exchanging diag-
nostic information in the Internet do not support the
communication of such high-level diagnostic knowl-
edge. Existing ontologies for representing information
about network components such as the Common Infor-
mation Model (CIM)[7] and architectures for exchang-
ing network data such as Sophia[10] primarily deal
with low-level knowledge of network components, and
do not model the high-level problem-solving knowl-
edge necessary for diagnosis. The high-level approach
to diagnosis that I take in this paper fits with the con-
cept of the Knowledge Plane[1], which aims to provide
a common framework for exchanging and reasoning
about network knowledge.

2.2. A Language for Diagnostic Data

Diagnostic agents also need a common language for
expressing the diagnostic data produced by diagnostic
tests and reasoning. A common language for express-
ing diagnostic data can unify the incompatible array of
diagnostic tests and reasoning methods available to-

day. Each class of diagnostic tests produces output in
a different format, complicating automated reasoning.
In addition, automated reasoning methods for diagno-
sis abound, ranging from Bayesian inference to case-
based reasoning, each producing mutually unintelligi-
ble output. Having a common language for expressing
the output of diagnostic tests and reasoning would en-
able autonomous diagnostic agents to combine infor-
mation derived from multiple diagnostic tests and rea-
soners and exchange these results with other agents.

This language must provide enough generality to
support the wide range of diagnostic tests and reason-
ing methods today while retaining enough expressive-
ness to permit agents to infer a diagnosis from data
by applying diagnostic knowledge. Simply exchang-
ing low-level measurements such as packet round trip
times or TCP traces is neither general nor expressive;
instead, we need to translate such information into a
meaningful high-level diagnostic language that can ex-
press statements such as “The link betweenA andB is
down,” or “A ping along the path fromA toC failed.”

2.3. Distributed Probabilistic Reasoning

Diagnosis requires distributed probabilistic reason-
ing. Reasoning must be probabilistic because many di-
agnostic tests only indicate a probability of failure, and
in many situations complete and accurate data is not
available. Many researchers have studied probabilis-
tic models for fault diagnosis[5, 2, 8, 4], but no com-
mon architecture for sharing diagnostic knowledge
across administrative domains for distributed proba-
bilistic reasoning exists. Probabilistic systems that use
centralized reasoning are inadequate because diagnos-
tic knowledge and data may be distributed across mul-
tiple administrative domains. For example, a network
administrator may not have the data or knowledge nec-
essary to diagnose failures in their upstream ISP.

In addition, an architecture for Internet-scale fault
diagnosis must deal with the huge volume of diagnos-
tic requests that may result from a serious high-impact
failure that simultaneously affects a large number of
users at a time when the network is already stressed.
Thus a protocol for distributed reasoning must mini-
mize the communication cost of both diagnostic tests
and the message passing involved in reasoning.



3. CAPRI: Common Architecture for Proba-
bilistic Reasoning in the Internet

In order to address the requirements above, I pro-
pose a Common Architecture for Probabilistic Reason-
ing in the Internet (CAPRI) that provides a framework
for distributed probabilistic diagnostic reasoning. Un-
like previous architectures for Internet fault diagnosis,
CAPRI represents diagnostic knowledge and data us-
ing probabilistic relational models (PRMs)[3], com-
bining the strengths of probabilistic Bayesian infer-
ence with the descriptive power of first-order logic.
PRMs provide diagnostic agents with a language for
expressing probabilistic diagnostic knowledge, while
Bayesian networks enable agents to share probabilis-
tic diagnostic data and perform distributed inference
using belief propagation.

3.1. Expressing Diagnostic Data using

Bayesian Networks

Bayesian networks compactly represent the condi-
tional probability of related events and enable efficient
inference based on available evidence[5]. A Bayesian
network is a directed acyclic graph in which nodes
represent variables, and edges fromparent nodes to
children nodes represent dependence relations. Each
node X has a conditional probability table (CPT)
P(X|parents(X)) that encodes the conditional proba-
bility of X given evidence about its parents.

In CAPRI, the variables in the Bayesian network
represent component status and test results. A compo-
nent status node in this Bayesian network represents
the functional status of a component:True if func-
tioning, False if malfunctioning. A test result node
represents the output of a diagnostic test,True if suc-
cessful,False otherwise. Edges in the Bayesian net-
work represent dependencies among component status
and diagnostic test results. The CPT for a component
status node represents the probability that it is func-
tioning given the status of its parent components. The
CPT for a test node indicates the probability of a suc-
cessful test given the status of its parent components.

Bayesian networks have several important features
that make them especially suitable for reasoning about
failures in the Internet. Firstly, Bayesian networks can
model both deterministic and probabilistic dependen-
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Figure 1. A Bayesian network for IP path di-
agnosis

cies among many types of Internet components and
diagnostic tests. For example, an IP path functions
if and only if the first hop link functions and the rest
of the path functions. A ping along that path will al-
ways fail if the path has failed, but may fail 5% of
the time even when the path is functioning. Individ-
ual links function 99% of the time. Figure 1 illustrates
a Bayesian network that encodes this information for
the pathA → B → C. Using this network, a diagnos-
tic agent can infer, for example, the probability that
Link B-C has failed given evidence that PingA → C
has failed and LinkA-B is functioning. To take into
account evidence from active probing or changing net-
work conditions, an agent can rebuild this Bayesian
network from a PRM when new information becomes
available (see Section 3.2).

Another advantage of Bayesian networks is that
they provide an abstract high-level representation for
diagnostic data suitable for reasoning. Representing
diagnostic data in terms of variables, evidence, and de-
pendencies rather than passing around low-level mea-
surements such as packet traces allows an agent to
reason about the causes and consequences of failures
without any deep knowledge of the behavior and char-
acteristics of components and diagnostic tests. This
allows the architecture to support a wide range of
components and diagnostic test classes, including new
classes that researchers develop in the future.

The conditional independence assumptions of a
Bayesian network facilitate distributed reasoning. For



example, an agent can infer that an IP path has failed if
that agent has evidence that a link along that path has
failed without knowing the cause of the link failure.
This structure minimizes the number of other agents
with which an agent needs to communicate to infer a
diagnosis. Thus each agent can maintain only a local
dependency model and perform distributed inference
using a variation of loopy belief propagation[2], re-
questing updated beliefs from other agents when new
evidence becomes available.

Probabilistic inference can greatly reduce the num-
ber of diagnostic tests required to infer the root cause
of a failure compared to active probing methods such
as Planetseer[11]. When high-impact failures occur
and an agent receives many failure requests with the
same root cause, Bayesian inference enables an agent
to infer the root cause with high probability without
additional tests. When an agent does not have enough
information for diagnosis, an agent can determine
which tests will provide the maximum amount of di-
agnostic information and perform only those tests[8].

Probabilistic inference also enables agents to pro-
vide diagnosis even when they cannot obtain accurate
data due to failures or lack of information. For exam-
ple, if the agent responsible for diagnosing IP connec-
tivity failures in an Internet autonomous system (AS)
X is unreachable, another agent can still infer the most
probable explanation for a failure in ASX based on
historical IP link failure probabilities.

3.2. Expressing Diagnostic Knowledge us-

ing PRMs

Probabilistic Relational Models (PRMs) provide a
language for expressing the shared diagnostic knowl-
edge of component and test classes in a way that sup-
ports automated diagnostic inference while enabling
the definition of new component and test classes in
terms of existing classes. A PRM defines classes and
properties of individuals belonging to each class, to-
gether with parent relationships and CPTs for those
properties. Figure 2 illustrates the PRM represent-
ing the diagnostic knowledge for IP path failures. The
boxes in the figure represent classes, the entries within
a box represent properties of individuals of that class,
dotted lines represent foreign key relationships relat-
ing individuals of two classes, and arrows represent
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Figure 2. A PRM for IP path diagnosis

parent relationships. Using this PRM, an agent can
construct a Bayesian network such as the one in Fig-
ure 1 using runtime dependency analysis and local in-
formation. For clarity Figure 2 only shows part of the
PRM for IP path diagnosis; other factors that a diag-
nostic agent might take into consideration include the
properties of links, the time a diagnostic test is per-
formed, the cost of diagnostic tests, the administrators
of network components, and so on.

Diagnostic knowledge may come either from hu-
man experts or from Bayesian learning. For many
component classes such as IP paths, CPTs simply de-
terministically encode truth tables for AND or OR. In
such cases application developers or other experts can
easily specify the CPT. Even if the exact conditional
probabilities are unknown, however, agents can learn
them collectively using Bayesian learning[3].

For extensibility to support new classes, CAPRI al-
lows subclassing where each subclass may have a dif-
ferent CPT. For instance, rather than modeling all indi-
viduals belonging to theLink class as having the same
probability of failure, for increased accuracy we can
distinguish between two subclassesWired Link and
Wireless Link. This captures the diagnostic knowledge
that individuals of theWireless Linkclass have a much
greater probability of failure thanWired Linkindividu-
als. Subclassing provides a mechanism for introducing
new classes of components and tests while retaining
compatibility with existing diagnostic agents.

In addition, defining component classes in terms
of a PRM enables agents to use previously learned
knowledge to diagnose new classes of components.



For example, if someone develops a new application
classNewAppthat depends on twoHTTP Connections,
then given diagnostic knowledge about the dependen-
cies of NewApp, any agent that can diagnoseHTTP
Connectionscan diagnoseNewAppfailures. Agents
can share knowledge of new classes to create a dis-
tributed, extensible ontology using the Web Ontology
Language (OWL)1.

4. Experimental Evaluation

To evaluate the effectiveness of probabilistic diag-
nosis for real-world Internet connectivity failures, I
trained and tested a Bayesian network for diagnosis
on an artificial set of HTTP proxy connections us-
ing data on 28.3 million TCP connections observed
over 196 CoDeeN nodes using an updated version of
Planetseer[11]. I find that when an HTTP proxy con-
nection failure occurs, knowing only the AS numbers
of the source, proxy, and destination a CAPRI agent
can determine which TCP connection has failed (either
user/proxy or proxy/server) with over 80% accuracy,
compared to 62% accuracy for a deterministic diag-
nostic agent. In addition, the probability of TCP fail-
ures between ASes stays relatively constant over time;
the accuracy of diagnosis remains greater than 76%
after nine hours, indicating that the TCP failure proba-
bilities learned in this experiment are useful for the di-
agnosis of future failures as well. These initial results
show how an architecture for probabilistic reasoning
using Bayesian networks enables agents to accurately
learn about and diagnose failures in the Internet.

5. Conclusion and Future Work

In this paper I show how CAPRI can support au-
tonomous fault diagnosis by using PRMs to provide
a common language for expressing diagnostic knowl-
edge and data and provide a protocol for distributed
probabilistic diagnostic reasoning. I am currently con-
ducting additional experiments to quantify the accu-
racy and communication cost of distributed TCP path
diagnosis in the Internet using CAPRI. In future work
I plan to investigate the use of dynamic probabilistic
relational models (DPRMs) for modeling temporal de-
pendencies among components and diagnostic tests.

1http://www.w3.org/TR/owl-ref/
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