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ABSTRACT
We present a divide-and-merge methodology for clustering
a set of objects that combines a top-down “divide” phase
with a bottom-up “merge” phase. In contrast, previous
algorithms either use top-down or bottom-up methods to
construct a hierarchical clustering or produce a flat clus-
tering using local search (e.g., k-means). Our divide phase
produces a tree whose leaves are the elements of the set.
For this phase, we use an efficient spectral algorithm. The
merge phase quickly finds an optimal tree-respecting par-
tition for many natural objective functions, e.g., k-means,
min-diameter, min-sum, correlation clustering, etc.. We
present a meta-search engine that uses this methodology
to cluster results from web searches. We also give empiri-
cal results on text-based data where the algorithm performs
better than or competitively with existing clustering algo-
rithms.

1. INTRODUCTION
The rapidly increasing volume of readily accessible data

presents a challenge for computer scientists: find methods
that can locate relevant information and organize it in an
intelligible way. This is different from the classical database
problem in at least two ways. First, there may neither be
the time nor (in the long term) the computer memory to
store and structure all the data (e.g., the world-wide web
or a portion of it) in a central location. Second, one would
like to find interesting patterns in the data without knowing
what to look for in advance.

Clustering refers to the process of classifying a set of data
objects into groups so that each group consists of similar
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objects and objects from different groups are dissimilar. The
classification could either be flat (a partition of the data set
usually found by a local search algorithm such as k-means
[14]) or hierarchical [16]. Clustering has been proposed as a
method to aid information retrieval in many contexts (e.g.,
[9, 31, 28, 21, 12]). Document clustering can help generate
a hierarchical taxonomy efficiently (e.g., [6, 35]) as well as
organize the results of a web search (e.g., [33, 32]). It has
also been used to learn (or fit) mixture models to data sets
[15] and for image segmentation [30].

Most hierarchical clustering algorithms can be described
as either divisive methods (i.e., top-down) or agglomerative
methods (i.e., bottom-up) [2, 16, 17]. Both methods create
trees, but do not provide a flat clustering. A divisive algo-
rithm begins with the entire set and recursively partitions
it into two (or more) pieces, forming a tree. An agglom-
erative algorithm starts with each object in its own cluster
and iteratively merges clusters. We combine top-down and
bottom-up techniques to create both a hierarchy and a flat
clustering. In the divide phase, in principle we could apply
any divisive algorithm to form a tree T whose leaves are the
objects. This is followed by the merge phase in which we
start with each leaf of T in its own cluster and merge clus-
ters going up the tree. The final clusters form a partition
of the data set and are tree-respecting, i.e., each cluster is
the complete subtree rooted at some node of T . For a large
class of natural objective functions, the merge phase can
be executed optimally, producing the best tree-respecting
clustering. Figure 1 shows a depiction of the methodology.

For the divide phase we use the spectral algorithm studied
in [18]. There, the authors use a quantity called conductance
to define a measure of a good clustering based on the graph
of pairwise similarities. They prove that the tree constructed
by recursive spectral partitioning contains a partition that
has reasonable worst-case guarantees with respect to con-
ductance. However, the running time for a data set with
n objects could be O(n4). We describe an efficient imple-
mentation of this algorithm when the data is presented in
a document-term matrix and the similarity function is the
inner product. For a document-term matrix for n objects
with M nonzeros, our implementation runs in O(Mn log n)
in the worst case and seems to perform much better in prac-
tice (see Figure 2(a)). The data need not be text; all that
is needed is for the similarity of two objects to be the inner
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Figure 1: The Divide-and-Merge methodology

product between the two vectors representing the objects.
The class of functions for which the merge phase can find

an optimal tree-respecting clustering include standard ob-
jectives such as k-means [14], min-diameter [8], and min-
sum [24]. It also includes correlation clustering, a formu-
lation of clustering that has seen recent interest [3, 7, 11,
13, 29]. Each of the corresponding optimization problems is
NP-hard to solve for general graphs. Although approxima-
tion algorithms exist for these problems, many of them have
impractical running times. Our methodology can be seen as
an efficient alternative.

We show promising empirical results for the methodology.
The first application is a meta-search engine, EigenCluster
[1], that clusters the results of a query to a standard web
search engine. EigenCluster consistently finds the natural
clustering for queries that exhibit polysemy, e.g., for the
query monte carlo, EigenCluster finds clusters pertaining
to the car model, the city in Monaco, and the simulation
technique. We describe EigenCluster and show results of
example queries in Section 3. We also apply the methodol-
ogy to clustering text-based data whose correct classification
is already known. In Section 4, we describe the results of a
suite of experiments that show that a good clustering exists
in the tree built by the spectral algorithm.

2. DIVIDE-AND-MERGE METHODOLOGY
As mentioned in the introduction, there are two phases in

our approach. The divide phase produces a hierarchy and
can be implemented using any algorithm that partitions a
set into two disjoint subsets. The input to this phase is a
set of objects whose pairwise similarities or distances are
given (or can be easily computed from the objects them-
selves). The algorithm recursively partitions a cluster into
two smaller sets until it arrives at singletons. The output
of this phase is a tree whose leaves are the objects them-
selves; each internal node represents a subset of the objects,
namely the leaves in the subtree below it. Divisive algo-
rithms that can be applied in the divide phase are known
for a variety of data representations such as graphs [12] and
high-dimensional vectors [6]. In Section 2.1, we use a spec-
tral algorithm for the divide phase when the objects are
represented as a document-term matrix and the similarity

between the objects is the inner product between the corre-
sponding vectors.

The merge phase is applied to the tree T produced by the
divide phase. The output of the merge phase is a partition
C1, . . . , Ck of the set of objects and each Ci is a node of T .
The merge phase uses a dynamic program to find the opti-
mal tree-respecting clustering for a given objective function
g. The optimal solutions are computed bottom-up on T ;
to compute the optimal solution for any interior node C,
we merge the optimal solutions for Cl and Cr, the children
of C. The optimal solution for any node need not be just
a clustering; an optimal solution can be parameterized in a
number of ways. Indeed, we can view computing the optimal
solution for an interior node as computing a Pareto curve; a
value on the curve at a particular point is the optimal solu-
tion with the parameters described by the point. A specific
objective function g can be efficiently optimized on T if the
Pareto curve for a cluster can be efficiently computed from
the Pareto curves of its children. In Section 2.2, we describe
dynamic programs to compute optimal tree-respecting clus-
terings for several well-known objective functions: k-means,
min-diameter, min-sum, and correlation clustering.

2.1 Divide phase
The spectral algorithm given here deals with the common

case in which the objects are given as a sparse document-
term matrix A. The rows are the objects and the columns
are the features. We denote the ith object, a row vector in
A, by A(i). The similarity of two objects is defined as the in-
ner product of their term vectors: A(i) ·A(j). The algorithm
can easily be applied to the case when the pairwise similar-
ities are given explicitly in the form of a similarity matrix.
However, when the similarity function is the inner product,
computation of the similarity matrix can be avoided and the
sparsity of A can be exploited.

The algorithm constructs a hierarchical clustering of the
objects by recursively dividing a cluster C into two pieces
through a cut (S, C \ S). To find the cut, we compute v,
an approximation of the second eigenvector of the similarity
matrix AAT normalized so that all row sums are 1. The or-
dering of the objects in v gives a set of cuts, and we take the
“best” one. The algorithm then recurses on the subparts.
To compute the approximation of the second eigenvector, we



Input: An n×m matrix A.
Output: A tree with the rows of A as leaves.

1. Let ρ ∈ Rn be a vector of the row sums of AAT , and
π = 1

(
P

i ρi)
ρ.

2. Let R = diag(ρ), and D = diag(
√

π) be diagonal
matrices.

3. Compute the second largest eigenvector v′ of
Q = DR−1AAT D−1.

4. Let v = D−1v′, and sort v so that vi ≤ vi+1.

5. Find t such that the cut

(S, T ) = ({1, . . . , t}, {t + 1, . . . , n})

minimizes the conductance:

φ(S, T ) =
c(S, T )

min(c(S), c(T ))

where c(S, T ) =
P

i∈S,j∈T A(i) ·A(j), and

c(S) = C(S, {1 . . . , n}).

6. Let ÂS , ÂT be the submatrices of A. Recurse (Steps

1-5) on ÂS and ÂT .

Table 1: Divide phase

use the power method, a technique for which it is not neces-
sary to explicitly compute the normalized similarity matrix
AAT . We discuss this in Section 2.1.1. The algorithm is
given in Table 1.

In Step 5, we consider n−1 different cuts and use the cut
with the smallest conductance. This itself is an approxima-
tion to the minimum conductance of the entire subgraph at
this point [18]. Why should the ”best” way to divide the set
of objects be a cut of small conductance? Imagine a graph
where the nodes are the objects and the edges are weighted
according to the similarity between two objects. One might
think that if the weight crossing a cut is small, the parti-
tion induced by the cut is a good candidate. However, just
looking at the weight across the cut hides too much informa-
tion. Indeed, consider two cuts, C1 and C2, with the same
weight crossing them. Suppose C1 partitions the set into
two subsets of equal size, both of which hold high weight
while C2 partitions the set into a singleton and the rest of
the set. Then C1 seems to be a more effective cut than C2;
the measure of conductance formalizes this idea by normal-
izing a cut by the smaller weight of the two parts it induces.
More intuition for why conductance is a good measure for
clustering can be found in [18].

The cut (S, T ) we find using the second eigenvector in
Step 5 is not the cut of minimum conductance; finding such
a cut is NP-hard. However, the conductance of (S, T ) is not
much worse than the minimum conductance cut.

For a document-term matrix with n objects and M nonze-
ros, Steps 1-5 take O(M log n) time. Theoretically, the worst-
case time to compute a complete hierarchical clustering of
the rows of A is O(Mn log n). Empirical experiments, how-
ever, show that the algorithm usually performs much better
(see Section 2.1.2) and seems to be almost linear in M .

2.1.1 Details
Any vector or matrix that the algorithm uses is stored us-

ing standard data structures for sparse representation. The
main difficulty is to ensure that the similarity matrix AAT

is not explicitly computed; if it is, we lose sparsity and our
running time could grow to m2, where m is the number of
terms. We briefly describe how we avoid this in Steps 1 and
3.

Step 1: Computing row sums. Observe that

ρi =

nX
j=1

A(i) ·A(j) =

nX
j=1

mX
k=1

AikAjk =

mX
k=1

Aik

 
nX

j=1

Ajk

!
.

Because
Pn

j=1 Ajk does not depend on i, we can compute

u =
Pn

i=1 A(i) so we have that ρi = A(i) · u. The total run-
ning time is θ(M) and the space required is θ(n + m).

Step 3: Computing the eigenvector. The algorithm
described in [18] uses the second largest eigenvector of B =
R−1AAT , the normalized similarity matrix, to compute a
good cut. To compute this vector efficiently, we compute
the second largest eigenvector v of the matrix Q = DBD−1.
The eigenvectors and eigenvalues of Q and B are related; if
Bv = λv, then Q(Dv) = λDv.

The matrix Q is symmetric; it is easy to see this from
D2B = BT D2. Therefore, we can compute the second
largest eigenvector of Q using the power method, an iter-
ative algorithm whose main computation is a matrix-vector
multiplication.

Power Method

1. Let v ∈ Rn be a random vector orthogonal to πT D−1.

2. Repeat

(a) Normalize v, i.e. set v = v/|v|.
(b) Set v = Qv.

Step 1 ensures that the vector we compute is the sec-
ond largest eigenvector. Note that πT D−1Q = πT D−1 so
πT D−1 is a left eigenvector with eigenvalue 1. To eval-
uate Qv = v in Step 3, we only need to do four sparse
matrix-vector multiplications, since Q = (DR−1AAT D−1),
and each of these matrices is sparse. Note that we do not
form Q explicitly. The following lemma shows that the
power method takes Θ(log n) iterations to convert to the
top eigenvector. Although stated for the top eigenvector,
the lemma and theorem still hold when the starting vector
is chosen uniformly over vectors orthogonal to the top eigen-
vector πT D−1; in this case, the power method will converge
to the second largest eigenvector. The proof is given in the
Appendix.

Lemma 1. Let A ∈ Rn×n be a symmetric matrix, and
let v ∈ Rn be chosen uniformly at random from the unit
n-dimensional sphere. Then for any positive integer k, the
following holds with probability at least 1− δ:

||Ak+1v||
||Akv|| ≥

„
n ln

1

δ

«− 1
2k

||A||2.



(a) Time vs. input size

(b) Space vs. input size

Figure 2: Performance of spectral algorithm in ex-
periments

The next theorem follows directly from the lemma and
quantifies the number of steps to run the power method to
find a good approximation.

Theorem 1. If k ≥ 1
2ε

ln(n ln( 1
δ
)), then with probability

at least 1− δ, we have:

||Ak+1v||
||Akv|| ≥ (1− ε)λ1.

2.1.2 Time and space requirements
In practice, our algorithm seems to be quite efficient. Fig-

ures 2(a) and 2(b) show the results of a performance exper-
iment. In this experiment, we computed a complete hier-
achical clustering for N newsgroup articles, where N ranged
from 200 to 18,000, in the 20 newsgroups data set [20] and
measured the running time and memory used. When we
clustered 18, 000 documents (for a total of 1.2 million nonze-
ros in the document-term matrix), we were able to compute
a complete hierarchical clustering in 4.5 minutes on com-
modity hardware (a 3.2 Ghz Pentium IV with 1 gigabyte of
RAM).

2.2 Merge phase
The merge phase finds the optimal clustering in the tree

T produced by the divide phase. In this section, we give
dynamic programs to compute the optimal clustering in the
tree T for many standard objective functions. The running
time of the merge phase depends on both the number of
times we compute the objective function and its evaluation
time. Suppose at each interior node we compute a Pareto
curve at t points from the Pareto curves of the node’s chil-
dren. Let c be the cost of evaluating the objective function.
Then the total running time is O(nt2 +ntc), linear in n and
c with a small polynomial dependence on t.

k-means: The k-means objective function seeks to find a
k-clustering such that the sum of the squared distances of
the points in each cluster to the centroid pi of the cluster is
minimized:

g({C1, . . . , Ck}) =
X

i

X
u∈Ci

d(u, pi)
2.

The centroid of a cluster is just the average of the points
in the cluster. This problem is NP-hard; several heuristics
(such as the k-means algorithm) and approximation algo-
rithms exist (e.g. [14, 19]).

Let OPT(C, i) be the optimal clustering for C using i clus-
ters. Let Cl and Cr be the left and right children of C in T .
Then we have the following recurrence: when i = 1,

OPT(C, i) = C

since we are constrained to only use 1 cluster. When i > 1,
we have:

OPT(C, i) = argmin1≤j<i g(OPT(Cl, j) ∪ OPT(Cr, i− j)).

By computing the optimal clustering for the leaf nodes first,
we can determine the optimal clustering efficiently for any
interior node. Then OPT(root, k) gives the optimal cluster-
ing. Note that in the process of finding the optimal cluster-
ing, the dynamic program finds the Pareto curve OPT(root, ·)
that describes the tradeoff between the number of clusters
used and the “error” incurred.

Min-diameter: We wish to find a k-clustering for which
the cluster with maximum diameter is minimized:

g({C1, . . . , Ck}) = max
i

diam(Ci).

The diameter of any cluster is the maximum distance be-
tween any pair of objects in the cluster. A similar dynamic
program to that above can find the optimal tree-respecting
clustering. This objective function has been studied in [8].

Min-sum: Another objective that has been considered is
minimizing the sum of pairwise distances within each clus-
ter:

g({C1, . . . , Ck}) =

kX
i=1

X
u,v∈Ci

d(u, v).

We can compute an optimal answer in the tree T by a similar
dynamic program to the one above. Although approxima-
tion algorithms are known for this problem (as well as the
one above), their running times seem too large to be useful
in practice [10].



data set Spectral p-QR p-Kmeans K-means
alt.atheism/comp.graphics 93.6 ± 2.6 89.3 ± 7.5 89.6 ± 6.9 76.3 ± 13.1

comp.graphics/comp.os.ms-windows.misc 81.9 ± 6.3 62.4 ± 8.4 63.8 ± 8.7 61.6 ± 8.0
rec.autos/rec.motorcycles 80.3 ± 8.4 75.9 ± 8.9 77.6 ± 9.0 65.7 ± 9.3

rec.sport.baseball/rec.sport.hockey 70.1 ± 8.9 73.3 ± 9.1 74.9 ± 8.9 62.0 ± 8.6
alt.atheism/sci.space 94.3 ± 4.6 73.7 ± 9.1 74.9 ± 8.9 62.0 ± 8.6

talk.politics.mideast/talk.politics.misc 69.3 ± 11.8 63.9 ± 6.1 64.0 ± 7.2 64.9 ± 8.5

Table 2: 20 newsgroups data set (Accuracy)

Correlation clustering: Suppose we are given a graph
where each pair of vertices is either deemed similar (red)
or dissimilar (blue). Let R and B be the sets of red and
blue edges, respectively. Correlation clustering seeks to find
a partition that minimizes the number of blue edges within
clusters plus the number of red edges between clusters:

g({C1 . . . Ck}) =
X

i

|{(u, v) ∈ B ∩ Ci}|

+
1

2
|{(u, v) ∈ R : u ∈ Ci, v ∈ U \ Ci}|.

Let C be a cluster in the tree T , and let Cl and Cr be its two
children. The dynamic programming recurrence for OPT(C)
is:

OPT(C) = argmin {g(C), g(OPT(Cl) ∪ OPT(Cr)).

If, instead, we are given pairwise similarities in [0, 1], where
0 means dissimilar and 1 means similar, we can define two
thresholds t1 and t2. Edges with similarity greater than t1
are colored red and edges with similarity less than t2 are
colored blue. The same objective function can be applied to
these new sets of edges R(t1) and B(t2). Approximation algo-
rithms are known for this problem, although the techniques
used (linear and semidefinite programming) incur large com-
putational overhead [3, 7, 11, 13, 29].

3. APPLICATION TO WEB SEARCHING:
EIGENCLUSTER

In a standard web search engine such as Google or Ya-
hoo, the results for a given query are ranked in a linear
order. Although suitable for some queries, the linear order
fails to show the inherent structure of the results for queries
with multiple meanings or contexts. For instance, consider
the query mickey. The query can refer to multiple peo-
ple (Mickey Rooney and Mickey Mantle) or even a fictional
character (Mickey Mouse).

We have implemented our methodology in a meta-search
engine that discovers the clustered structure for queries and
identifies each cluster by its three most significant terms.
The website can be found at http://eigencluster.csail.
mit.edu. The user inputs a query which is then used to find
400 results from Google, a standard search engine. Each
result contains the title of the webpage, its location, and a
small snippet. We construct a document-term matrix rep-
resentation of the results; each result is a document and the
words in its title and snippet make up its terms. Standard
text pre-processing such as TF/IDF and removal of too fre-
quent/infrequent terms is applied. The similarity between
two results is the inner product between their two term vec-
tors.

The divide phase was implemented using our spectral al-
gorithm. For the merge phase, we used the correlation clus-
tering objective function with a threshold. A number of
other natural objective functions seem to do comparably
well. For instance, we have seen similar performance for
minimizing the following objective function (for appropriate
choice of α, β):

X
i

α

0@ X
u,v∈Ci

1−A(u) ·A(v)

1A+β

0@ X
u∈Ci,v /∈Ci

A(u) ·A(v)

1A .

One advantage of using these objective functions is that they
do not depend on a predefined number of clusters k. This is
appropriate for our application, since the number of mean-
ings or contexts of a query is not known beforehand.

Sample queries can be seen in Figure 3; in each example,
EigenCluster identifies the multiple meanings of the query
as well as keywords corresponding to those meanings. Fur-
thermore, many results are correctly labeled as singletons.
In Figure 3, the pictures on the left are screenshots of Eigen-
Cluster. The pictures on the right are before and after de-
pictions of the similarity matrix. In the before picture, the
results are arranged in the order received from Google. In
the after picture, the results are arranged according to the
cuts made by the spectral algorithm. Here, the cluster struc-
ture is apparent. EigenCluster takes roughly .7 seconds to
fetch and cluster results on a Pentium III 700 megahertz
with 512 megabytes of RAM.

4. EXPERIMENTS ON TEXT-BASED DATA
The appropriate objective function for an application will

naturally depend on the specific application. To show the
applicability of our methodology, we show experimental ev-
idence that a good clustering exists in the hierarchical clus-
tering constructed by the spectral algorithm. Finding this
clustering in the merge phase amounts to determining the
right objective function to use. We used our spectral algo-
rithm to create a hierarchical clustering for different data
sets of text-based data. In each of the data sets, there was
a pre-defined correct classification. We found the partition
in the hierarchy that “agrees” the most with the correct
classification. The amount of agreement was evaluated us-
ing three standard measures: F -measure, entropy, and ac-
curacy. Descriptions of the measures can be found in the
Appendix.

We performed experiments on the Reuters, SMART and
20 newsgroups data sets as well as data sets that were used in
experiments for other clustering algorithms [6]. We compare
the performance of the spectral algorithm in these experi-
ments with known results of other algorithms on the data
sets. In all of the experiments, we perform better or compet-



(a) Query: pods (b) Before/after: pods

(c) Query: mickey (d) Before/after: mickey

Figure 3: EigenCluster search examples



itively with known results. The rest of this section describes
the data sets and results.

4.0.1 20 newsgroups
The 20 newsgroups resource [20] is a corpus of roughly

20,000 articles that come from 20 specific Usenet newsgroups.
We performed a subset of the experiments in [34]. Each ex-
periment involved choosing 50 random newsgroup articles
each from two newsgroups.1 The results can be seen in Ta-
ble 2. Note that we perform better than p-QR, the algorithm
proposed in [34] on all but one of the experiments. We also
outperform k-means and a variation of the k-means algo-
rithm, p-Kmeans. In each of these experiments, the measure
of performance was accuracy. Since the experiment involved
choosing 50 random newsgroup articles, the experiment was
run 100 times and the mean and standard deviation of the
results were recorded.

4.0.2 Reuters
The Reuters data set [22] is a corpus of 8, 654 news articles

that have been classified into 135 distinct news topics. We
performed same two experiments on this data set as were
conducted in [5, 21, 23]. The first experiment, performed
by [5, 21], constructed a complete hierarchical tree for a
document-term matrix that includes all 8, 654 news articles.
In the second experiment, a complete hierarchical tree was
produced for a document-term matrix containing only 6, 575
news articles from 10 of the 135 largest news topics. This
experiment was conducted by [23]. Our algorithm outper-
formed the results of prior experiments under the F -measure
(see Table 3).

data set Spectral BEX02 LA99 NJM01
8,654 articles .713 .57 .63 N/A
6,575 articles .733 N/A N/A .665

Table 3: Reuters data set (F-measure)

4.0.3 Web pages
Boley [6] performs a series of experiments on clustering

185 webpages that fall into 10 distinct categories. In each of
the 11 experiments (J1-J11), the term vector for each web-
page was constructed in a slightly different way (the exact
details can be found in [6]). A comparison of results under
the entropy measure can be found in Table 4(a). In 7 of the
11 experiments, our algorithm performs better.

4.0.4 SMART data set
The SMART data set is a set of abstracts originating

from Cornell University [25] that have been used extensively
in information retrieval experiments. The makeup of the
abstracts is as follows: 1,033 medical abstracts (Medline),
1,400 aeronautical systems abstracts (Cranfield), and 1,460
information retrieval abstracts (Cisi). We performed the
same four experiments as those found in [12]. In the first
three experiments, the data sets were the mixture of ab-
stracts from two classes. In the fourth experiment, the data

1We used the BOW toolkit for processing the newsgroup
data. More information on the BOW toolkit can be found
on http://www-2.cs.cmu.edu/~mccallum/bow.

set was the set of all abstracts. We perform competitively
in the entropy measure (see Table 4(b)).

data set Spectral B97
J1 .77 .69
J2 .81 1.12
J3 .54 .85
J4 1.12 1.10
J5 .81 .74
J6 .81 .83
J7 .63 .90
J8 .84 .96
J9 .65 1.07

J10 1.77 1.17
J11 .90 1.05

(a) Webpage data set (En-
tropy)

data set Spectral Dhillon 2001
MedCran .032 .026
MedCisi .092 .152
CisiCran .045 .046
Classic3 .090 .089

(b) SMART data set (Entropy)

Table 4: SMART and Webpage data sets

5. CONCLUSION
We have presented a divide-and-merge methodology for

clustering, and shown an efficient and effective spectral al-
gorithm for the divide phase. For the merge phase, we have
described dynamic programming formulations that compute
the optimal tree-respecting clustering for standard objective
functions. Some questions for future work include: are there
algorithms for the divide phase such that the tree-respecting
clusterings found in the end are provably good approxima-
tions to the optimal clusterings? Does the tree produced
by the spectral algorithm contain a provably-good cluster-
ing for some standard objective functions? Questions also
arise from our experimental work. In Section 4, the exper-
iments suggest that for text data, a good clustering exists
in the tree constructed by the spectral algorithm. Is there a
general objective function that can be used to get the right
clustering for this data in the merge phase? Formulating a
dynamic program for this objective function would guaran-
tee that the merge phase finds the desired clustering.
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7. APPENDIX

7.1 F -measure, Entropy, and Accuracy
For a data set, let the correct classification be C1 . . . Ck.

We refer to each Ci as a class. Let the nodes of a hierarchi-
cal clustering be Ĉ1 . . . Ĉl. We refer to each Ĉi as a cluster
– the subset of nodes in the tree below it.

F -measure: For each class Ci, the F -measure of that class
is:

F (i) =
l

max
j=1

2PjRj

Pj + Rj

where:

Pj =
|Ci ∩ Ĉj |
|Ĉi|

, Rj =
|Ci ∩ Ĉj |
|Ci|

The F -measure of the clustering is defined as:

kX
i=1

F (i) · |Ci|
|C|

The F -measure score is in the range [0, 1] and a higher
F -measure score implies a better clustering. For a more in-
depth introduction and justification to the F -measure, see
e.g. [31, 21, 5, 23].

Entropy: For each cluster Ĉj , we define the entropy of Ĉj

as:

E(Ĉj) =

kX
i=1

−

 
|Ci ∩ Ĉj |
|Ĉj |

!
log

 
|Ci ∩ Ĉj |
|Ĉj |

!
The entropy of a cluster is a measure of the disorder within
the cluster. As such, a lower entropy score implies that
a clustering is better; the best possible entropy score is 0.
Entropy was first introduced in [26] and has been used as a
measure of clustering quality in [6, 12, 4].

The entropy of a k-clustering Ĉ1 . . . Ĉk is the weighted
sum of the entropies of the clusters. The entropy of a hi-
erarchical clustering {Ĉ1 . . . Ĉl} is the minimum entropy of
any choice of k nodes that partition C.

Accuracy: The accuracy of a cluster Ĉj is:

A(Ĉj) =
k

max
i=1

|Ci ∩ Ĉj |
|Ĉj |

.

As before, the accuracy of a k-clustering C1 . . . Ck is the
weighted sum of accuracies. The accuracy of a hierarchical
clustering is the maximum accuracy of any choice of k nodes
that partition C. Note that the range of an accuracy score is
between 0 and 1; the higher the accuracy score, the better.

Accuracy, which has been used as a measure of perfor-
mance in supervised learning, has also been used in cluster-
ing (see [27]).

7.2 Convergence Proof

Proof (of Lemma 1). Since A is symmetric, we can write

A =

nX
i=1

λiuiu
T
i ,

where the λi ’s are the eigenvalues of A arranged in the
order - |λ1| ≥ |λ2| . . . |λn| and the ui are the correspond-
ing eigenvectors. Express v in this basis as v =

P
i αiui,

where
P

i α2
i = 1. Since, v is random, we have that with

probability at least 1 − δ, α2
1 ≥ 1/(n ln(1/δ)). Then, us-

ing Hölder’s inequality (which says that for any p, q > 0
satisfying (1/p) + (1/q) = 1 and any a, b ∈ Rn, we haveP

i aibi ≤
`P

i |ai|p
´1/p `P

i |bi|q
´1/q

), we have

||Akv||2 =
X

i

α2
i λ

2k
i ≤

“X
α2

i λ
2k+2
i

”k/(k+1)

where the last inequality holds using Hölder with p = 1 +

(1/k) q = k + 1 ai = α
2k/(k+1)
i λ2k

i bi = α
2/(k+1)
i . Note

that:“X
α2

i λ
2k+2
i

”k/(k+1)

≤
“X

α2
i λ

2k+2
i

”
/λ2

1α
2/(k+1)
1

from which the lemma follows.

8. EIGENCLUSTER EXAMPLE SEARCHES
We give a few more EigenCluster example searches on the

next page.



(a) Query: trees (b) Before/after: trees

(c) Query: bears (d) Before/after: bears

Figure 4: EigenCluster search examples


