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Introduction
Resource optimization and scheduling is a costly, challeng-
ing problem that affects almost every aspect of our lives.
One example that affects each of us is health care: Poor sys-
tems design and scheduling of resources can lead to higher
rates of patient noncompliance and burnout of health care
providers, as highlighted by the Institute of Medicine (Bran-
denburg et al. 2015). In aerospace manufacturing, every
minute re-scheduling in response to dynamic disruptions in
the build process of a Boeing 747 can cost up to $100, 000.
The military is also highly invested in the effective use of
resources. In missile defense, for example, operators must
solve a challenging weapon-to-target problem, balancing
the cost of expendable, defensive weapons while hedging
against uncertainty in adversaries’ tactics.

Researchers in artificial intelligence (AI) planning and
scheduling strive to develop algorithms to improve resource
allocation. However, there are two primary challenges.
First, optimal task allocation and sequencing with upper and
lower-bound temporal constraints (i.e., deadlines and wait
constraints) is NP-Hard (Bertsimas and Weismantel 2005).
Approximation techniques for scheduling exist and typically
rely on the algorithm designer crafting heuristics based on
domain expertise to decompose or structure the scheduling
problem and prioritize the manner in which resources are
allocated and tasks are sequenced (Tang and Parker 2005;
Jones, Dias, and Stentz 2011). The second problem is this
aforementioned reliance on crafting clever heuristics based
on domain knowledge. Manually capturing domain knowl-
edge within a scheduling algorithm remains a challenging
process and leaves much to be desired (Ryan et al. 2013).

The aim of my thesis is to develop an autonomous sys-
tem that 1) learns the heuristics and implicit rules-of-thumb
developed by domain experts from years of experience, 2)
embeds and leverages this knowledge within a scalable re-
source optimization framework, and 3) provides decision
support in a way that engages users and benefits them in
their decision-making process. By intelligently leveraging
the ability of humans to learn heuristics and the speed of
modern computation, we can improve the ability to coordi-
nate resources in these time and safety-critical domains.
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The Role of the Human In-The-Loop
The first step in designing an effective autonomous system to
coordinate a teams’ activities is understanding the respective
roles of the human and robotic (or virtual) team members
within the decision-making loop. I have been conducting a
series of human-subject experiments in which a team of two
human team members, the subject and one confederate, and
one robot team member work together to complete a set of
tasks in an experimental setup analogous to a manufactur-
ing environment. I studied how decision-making authority
over task allocation decisions should be shared between the
team members (Gombolay et al. 2014) and how the team’s
composition, mixed human-robot or strictly human-human,
affected the team’s fluency depending on how decision-
making authority was shared (Gombolay et al. 2015). I men-
tored three undergraduate students to assist me in conduct-
ing the experiments. We found that increasing the robot’s
authority over task allocation decisions decreased the time
to schedule the team and the time to execute and improved
the humans’ perception of their robotic counterpart. Further-
more, subjects’ perception of the team member responsible
for scheduling improved more significantly when that team
member was a robot as opposed to another human. These
studies motivate the development of autonomous systems
for scheduling of human and human-robot teams.

Scalable Methods for Scheduling
The next step in developing an autonomous resource op-
timization mechanism is creating scalable computational
models and techniques. In the key areas of interest, such
as manufacturing, healthcare, and military operations, one
must consider the interplay of tight upper- and lowerbound
temporal constraints, spatial constraints, and heterogeneous
agent and resource capabilities. Approaches in prior work
typically attempt to decompose techniques and heuristics to
reduce the computational search space. However, the best
solvers are only able to scale to approximately 5 agents and
50 tasks within a solution time of approximately thirty min-
utes (Korsah, Stentz, and Dias 2013). In prior work, I devel-
oped a fast, near-optimal sequencing technique for task sets
with complex dependencies (Gombolay, Wilcox, and Shah
2013). The key to the success of the approach is an ana-
lytical schedulability test I developed (Gombolay and Shah
2015; Gombolay, Wilcox, and Shah 2013) that provides an



informative upperbound on the temporal and physical re-
sources required to execute a set of tasks with upper and
lowerbound temporal constraints. I worked with a colleague
to integrate my sequence technique within a task allocation
algorithm to dynamically reschedule human-robot teams. A
demonstration of our algorithm, which we call Tercio, can
be found at http://youtu.be/_qb2_jJID5c.

Learning Implicit Constraints and Goals for
Team Coordination

I have motivated the advantages of autonomous schedul-
ing algorithms in team coordination. The challenge then
remains of how we can learn the heuristics and rules-of-
thumb of human domain experts to automatically schedule
processes. I have personally seen human domain experts
who are able to effectively manage large teams in practice. I
leveraged such domain knowledge to understand how to de-
velop the computational methods used within Tercio. How-
ever, manually encoding experts’ domain knowledge in an
autonomous framework is difficult in practice and leaves
much to be desired. As such, we need to develop a technique
that scales beyond the one-expert, one-apprentice model.

In my thesis, I propose a technique, which I call “ap-
prenticeship scheduling”, to capture this domain knowledge
in the form of a scheduling policy and scale the power of
the expert beyond a single-expert, single-trainee apprentice-
ship model. My approach efficiently utilizes domain-expert
demonstrations without the need to train within an environ-
ment emulator. Rather than explicitly modeling a reward
function and relying on dynamic programming (Zheng, Liu,
and Ni 2015) or constraint solvers, which become computa-
tionally intractable for large-scale problems of interest, my
approach uses action-driven learning to extract the strategies
of domain experts. The key to my approach is using pairwise
comparisons between the actions taken (e.g., schedule agent
a to complete task τi at time t) and the actions not taken
(e.g., unscheduled tasks at time t) to learn relevant model pa-
rameters and heuristics demonstrated by the training exam-
ples. I have submitted to the AAAI-16 main technical track a
paper which presents and validates my approach using both
a synthetic data set of solutions for a variety of scheduling
problems and a real-world data set of demonstrations from
human experts solving a resource optimization problem.

However, there are a number of items I must consider in
future work. First, domain experts may be able to manage
resources equally well but do so in different ways. Prior
work has reled on learning one model for each operator to
account for inter-demonstrator disagreement (Sammut et al.
1992). In future work, I will investigate new computational
methods for reconciling the difference between operators in
a way that does not dismiss disagreement as “noise” so that
the key attributes that make each operator proficient are cap-
tured. Second, creating features to minimally describe the
state space is often a manual process. Convolution neural
networks have been shown to generate compact, visual fea-
tures for dynamic programming; however, feature learning
for scheduling remains an open challenge. In future work, I
want to investigate computational methods that can capture

the features for scheduling problems.
Attending AAAI, the premier conference in artificial in-

telligence, would help me to connect with the top re-
searchers in the field to better understand the latest work in
developing artificial intellgience mechanisms for planning,
scheduling, and control of autonomous systems. Immers-
ing myself within the AAAI community by sharing ideas
and developing collaborations would be invaluable for me
to realize the full potential of an apprenticeship scheduling
approach. Eventually, the collaborations I would develop
at AAAI may grow into long-term projects that improve re-
source management in manufacturing, healthcare, defense,
and so many other domains that affect every area of our lives.
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