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Abstract

Advanced robotic technology is opening up the possibility of
integrating robots into the human workspace to improve pro-
ductivity and decrease the strain of repetitive, arduous phys-
ical tasks currently performed by human workers. However,
coordinating these teams is a challenging problem. We must
understand how decision-making authority over scheduling
decisions should be shared between team members and how
the preferences of the team members should be included. We
report the results of a human-subject experiment investigat-
ing how a robotic teammate should best incorporate the pref-
erences of human teammates into the team’s schedule. We
find that humans would rather work with a robotic teammate
that accounts for their preferences, but this desire might be
mitigated if their preferences come at the expense of team
efficiency.

Introduction
Human-robot teaming offers promise to increase the pro-
ductivity of human labor and improve the ergonomics of
manual tasks. However, the tight choreography required to
safely and efficiently coordinate human-robot teams in time
and space is a challenging computational problem. Task al-
location and sequencing with upper and lowerbound tem-
poral constraints is known to be NP-Hard (Bertsimas and
Weismantel 2005). Fully autonomous solutions to the prob-
lem have been proposed by researchers in academia and by
industry practitioners (Alsever 2011; Bertsimas and Weis-
mantel 2005; Gombolay, Wilcox, and Shah 2013). How-
ever, these solutions require that a human has fully speci-
fied the relevant constraints and optimization criteria for the
joint human-robot schedule. The interface between human
and robotic agents has been long identified as the key bot-
tleneck in the utilization of these advanced robotic systems
(Casper and Murphy 2004). As a result, human factors re-
searchers have sought to design supervisory control inter-
faces to bring the human into the decision-making loop to
improve schedule quality and ease the burden of manually
coding task specifications (Adams 2009; Barnes et al. 2011;
Chen, Barnes, and Qu 2010; Cummings, Brzezinski, and
Lee 2007; Goodrich et al. 2009; Jones et al. 2002; Hooten,
Hayes, and Adams 2011). Some researchers have focused
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on creating interfaces that can solicit feedback in the form
of quantitative, qualitative, hard or soft constraints over var-
ious scheduling options that could be fed into a schedul-
ing algorithm to generate candidate schedules (Ardissono
et al. 2012; Clare et al. 2012; Hamasaki et al. 2004;
Haynes et al. 1997; Macho, Torrens, and Faltings 2000;
Zhang et al. 2012). Yet, the role of humans in collabora-
tive teaming and joint-action is less well-studied from the
point of view of control authority (Gombolay et al. 2014).

We have been conducting a series of experiments to deter-
mine how to best insert the human into the decision-making
loop as a member of a human-robot team (Gombolay et al.
2013; 2014; 2015). We have discovered that human workers
have a strong preference to give more control to robot team-
mates over scheduling decisions when that robotic teammate
is able to generate more efficient schedules (Gombolay et
al. 2014). We also found that human subjects tend to alter
the way they schedule team activities depending on whether
they were responsible for allocating work to the entire team
or only themselves. Subjects tend to decouple their work
from the rest of the team when they have control over only
which tasks they will perform. On the other hand, when sub-
jects can allocate tasks to the entire team, subjects were more
willing to perform tasks that were dependent upon other
team members completing prerequisite tasks (Gombolay et
al. 2014).

Next, we sought to determine how the dynamics of
decision-making authority would change as a function of
team composition. Specifically, we sought to answer
whether subjects would desire a different level of control
over scheduling decisions depending on whether the hu-
man subject was a member of a mixed human-robot team
or if the subject was a member of a strictly human team.
We discovered a key difference for how subjects’ percep-
tion of decision-making authority changes with team com-
position (Gombolay et al. 2015). Subjects inherently view
human teammates as more intelligent and capable regard-
less of whether that teammate is responsible for scheduling
decisions. However, the subjects’ perception of the intelli-
gence, value, and contribution of a robot teammate greatly
increases if the robot is responsible for scheduling decisions
(Gombolay et al. 2015).

Based on this prior work, we posit that robotic teammates
can improve the productivity of human-robot teams and gar-
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Figure 1: This figure depicts a diagram of the laboratory
room where the experiment took place. There are two loca-
tions where the human and robot workers can inspect part
kits during a fetching task, and two locations where the hu-
man workers can build the part kits.

ner the appreciation of human-workers. However, the robot
must also understand the human factors aspects of how hu-
mans wish to perform their tasks. While human teammates
may naturally develop an understanding of how each mem-
ber of his or her team prefers to do individual tasks, a robot
operator would need to manually encode such preferences
into a scheduling algorithm (or rely on more sophisticated
machine learning techniques) for a robot to consider these
preferences. If the robot can produce a schedule that has a
minimum makespan (i.e., shortest overall duration) yet does
not consider the preferences of individual workers (e.g., a
given worker may prefer one type of task over another),
workers may be resistant to working with the robotic team-
mate.

In this paper, we report the results of an initial human-
subject experiment (n = 17) investigating the effect of a
robotic teammate including or ignoring the preferences of
human subjects for which types of tasks they would pre-
fer to perform. Specifically, we hypothesized that subjects
would more highly rate their subjective experience working
on a human-robot team with a robot that allocated tasks to
the team members based on the preferences of the subjects
for which tasks they would prefer to complete. At the con-
clusion of our pilot study, we found that the incorporation
of preferences for task types into the scheduling processes
is important. However, the robotic teammate must also bal-
ance these task-based preferences with human idle time and
team efficiency. To better ascertain the role of preferences
in the scheduling of human-robot teams relative to human
idle time and team efficiency, we propose a follow-on ex-
periment in future work.

We begin in with a formal definition of the scheduling
problem of interest. Next, we describe our experimental de-
sign to study the role of scheduling with and without the
preferences of the human team members. We then present
the results of statistical testing for both objective and subjec-
tive measures of team fluency. Finally, we discuss the impli-
cations of our findings and propose a follow-on experiment
for future work.

Formal Problem Definition
We begin with a formal definition of the problem of schedul-
ing a team of heterogeneous agents to complete a set of tasks
with upper and lowerbound temporal constraints and shared
resources (e.g., spatial locations), as shown in Equations 1-
13.
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In our work, we focus our investigation on the effect of in-
corporating the preferences of human team members when
generating the team’s schedule. Preferences can come in a
variety of forms. For example, humans may have prefer-
ences for the duration of events (e.g., how long it takes to
complete a task) or the duration between events (e.g., the
lowerbound or upperbound on the time between two tasks)
(Wilcox, Nikolaidis, and Shah 2012). In our investigation,
we consider preferences for types of tasks. For example,
a worker may prefer to complete a drilling task rather than
a painting task. These preferences can be included in the
mathematical formulation in Equations 1-13 as an objective
function term where one seeks to maximize the number of
preferred-tasks assigned to the subject as shown in Equation
14). Alternatively, one could incorporate preferences as a set
of constraints to enforcing a minimum or maximum level of
preferred work assigned to the subject as shown in Equa-
tions 15-16). In these equations, klb is a lowerbound on the
preferred task time allocated to the subject and kub is an up-
perbound on the cumulative duration of non-preferred tasks
assigned to the subject.

We chose to model the inclusion of preferences as a set of
constraints guaranteeing that subjects perform at most one
task of the type they do not prefer (Equation 16). For the
purpose of human subject experimentation where one must
control for confounds, this approach offered greater control
over schedule content as opposed to including a preference
term in the objective function. The challenge with using an
objective function model is that one must tune one or more
coefficients (e.g., α in Equation 14) in the objective function
to trade off the contribution of the schedule efficiency (i.e.,
makespan) with the importance of adhering to preferences.
In practice, we found this tuning to be difficult across a va-
riety of subjects with differing task completion times, lbτj

i
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Experimental Design
We conducted a human-subject experiment (n = 17) to
study how a robotic teammate’s inclusion or ignorance of the
preferences of human teammates over scheduling decisions
affects the dynamics of the team. Our human-robot man-
ufacturing team consisted of the human subject, a robotic
assistant, and a human assistant. The human subject was
capable of both fetching and building, and the robot assis-
tant was only capable of fetching. One of the experimenters
played the role of a third teammate for all subjects and was
capable of both fetching and building. The third human
teammate was included to more realistically represent the
composition of a human-robot team in a manufacturing set-
ting. We used a Willow Garage PR2 platform, as shown in
Figure 1, as the robotic assistant for our human-robot team.
The robot used Adaptive Monte Carlo Localization (AMCL)
(Fox 2003) and the standard Gmapping package in the Robot
Operating System (ROS) for navigation.

In our scenario, there are two types of tasks: fetching part
kits and assembling part kits. Fetching a part kit required
walking to one of two inspection stations where the kits were
located, inspecting the part kit and carrying it to the build
area. The architecture of our fetching task is analogous to
what is required in many manufacturing domains: to adhere
to strict quality assurance standards, fetching a part kit re-
quires verification from one to two people that all off the
correct parts are in the kit, and certification from another
person that the kit has been verified.

We imposed a set of additional constraints to mimic an
assembly manufacturing environment. A part kit must have
been fetched before it could be built, and no two agents were
able to occupy the same fetching or build station at the same
time. As shown in Figure 1, there were two fetching and two
build stations. Four part kits were located at one fetching
station, and four kits were located at the second fetching
station.

Agents were required to take turns using the fetching sta-
tions. Allowing workers to sort through parts from multiple
kits at the same location risked mixing the wrong part with
the wrong kit. Furthermore, in manufacturing, if a part or
part kit is missing from an expected location for too long,
work in that area of the factory will temporarily halt until
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the missing pieces are found. As such, we imposed a 10-
minute deadline from the time that the fetching of a part kit
began until that part kit had been built, for similar reasons.

Assembly of the Lego model involved eight tasks τ =
{τ1, τ2, . . . , τ8}, each of which was composed of a fetch
and build subtask τi = {τfetchi , τ buildi }. The time each
subject took to complete each subtask Csubject−fetchi and
Csubject−buildi was measured during an experiment training
round. The timings for the robot Crobot−fetchi and human
assistant Cassist−fetchi and Cassist−buildi (performed by an
experimenter) were collected prior to the experiments.

At the beginning of the experiment, subjects were told
that the robot wanted to know which tasks subjects preferred
to complete: fetch tasks or build tasks. Subjects were then
treated to three experimental conditions in a within-subjects
experimental design:

• Positive - The robot would generate a schedule incorpo-
rating the preferences of the subject.

• Neutral - The robot would ignore the preferences of the
subject.

• Negative - The robot would schedule the team as if the
preferences of the subject were opposite (e.g., subjects
preferring to build would be scheduled as if they preferred
fetching).

Subjects were not informed a priori of the different condi-
tions. As such, subjective evaluations of the team dynamics
in each condition would not be biased by an expectation of
the robot catering to the subjects’ preferences or not. We
established the following hypothesis:

Hypothesis 1: Subjects would rather work with a robotic
teammate that includes their scheduling preferences than
one that is unaware of their preferences, and subjects would
rather work with a robotic teammate ignorant to their pref-
erences than one that actively schedules against their prefer-
ences.

To schedule the human-robot team, we adapted a dynamic
scheduling algorithm called Tercio (Gombolay, Wilcox, and
Shah 2013). To handle the preferences of the subject, we
added a constraint into the Tercio task allocation formulation
as shown in Equation 16. In the positive condition, subjects
could be assigned only one task that did not align with their
preferences. For example, subjects preferring to build could
be assigned at most one fetching task (and vice versa). In the
negative condition, subjects could be assigned a maximum
of one task that aligned with their preferences. For example,
subjects preferring to build could be assigned at most one
build task (and vice versa). In the neutral condition, Tercio’s
task allocation subroutine would run without alteration.

Based on our previous studies showing the importance of
team efficiency (Gombolay et al. 2014; 2015), we sought to
control for how schedule duration would affect how subjects
perceived the team dynamics. As such, we ran Tercio until
an approximately equal makespan schedule would be gener-
ated for all three conditions.

Table 1: Subjective Measures - Post-Trial Questionnaire
Robot Teammate Traits
1. The robot was intelligent.
2. The robot was trustworthy.
3. The robot was committed to the task.
Working Alliance for Human-Robot Teams
4. I feel uncomfortable with the robot. (reverse scale)
5. The robot and I understand each other.
6. I believe the robot likes me.
7. The robot and I respect each other.
8. I feel that the robot worker appreciates me.
9. The robot worker and I trust each other.
10. The robot worker perceives accurately what my
goals are.
11. The robot worker does not understand what I am
trying to accomplish.
12. The robot worker and I are working towards mu-
tually agreed upon goals.
13. I find what I am doing with the robot worker con-
fusing. (reverse scale)
Additional Measures of Team Fluency
14. I was satisfied by the team’s performance.
15. I would work with the robot the next time the
tasks were to be completed.
16. The robot increased the productivity of the team.
17. The team collaborated well together.
18. The team performed the tasks in the least time
possible.
19. The robot worker was necessary to the successful
completion of the tasks.
20. The human worker was necessary to the success-
ful completion of the tasks.
21. I was necessary to the successful completion of
the tasks.

Results
Subjects received post-trial questionnaires after each trial,
consisting of 21 Likert-scale questions, as shown in Table
1. Our questionnaire was inspired by the work of Hoff-
man (Hoffman 2013) and the adaptation of the “Working
Alliance Index” for human-robot teams. We added ques-
tions 14-21 based on our own insight. Subjects also received
a post-test questionnaire after completing the three trials.
This questionnaire gathered demographic information, and
included three additional Likert-scale questions summariz-
ing the experience of the subjects, as well as two open-ended
questions.

We found statistically significant evidence that human
subjects would prefer working with a robot that included
the subjects’ preferences when making scheduling decisions
based on questions 22-24 in Table 2 (p < 0.001). Subjects
would rather work with a robotic teammate that included his
or her preferences rather than if the robot was unaware of the
subjects’ preferences (p < 0.001). Furthermore, subjects
would rather work with a robot that was unaware of his or
her preferences rather than working with a robot that sched-
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Table 2: Subjective Measures - Post-Test Questionnaire
Overall Preference
22. If the robot scheduled me to do the tasks I pre-
ferred, I would want to work with the robot again.
23. If the robot did not know my preferences when
scheduling, I would want to work with the robot
again.
24. If the robot scheduled me to do different tasks
than what I preferred, I would want to work with the
robot again.
Open Response Questions
25. Which of the three scenarios did you prefer and
why?
26. If you were going to add a robotic assistant to a
manufacturing team, to whom would you give the job
of rescheduling the work and why?

uled opposite of his or her preferences (p = 0.001). We also
found that subjects felt that the robot liked them more (Ques-
tion 6) in the neutral condition when the robot was unaware
of the subjects’ preferences than when the robot scheduled
opposite of their the negative condition (p = 0.048). These
results supports our hypothesis that the preferences of hu-
man workers are important for a robotic teammate to include
when making scheduling decisions.

However, we also found that the amount of work allo-
cated to subjects had a strong impact on the subjective per-
ception of team dynamics. Subjects felt more strongly that
the robot did not understand what the participant was try-
ing to accomplish in the positive condition when the robot
included the subjects’ preferences than in the negative con-
dition when the robot scheduled opposite of the subjects’
preferences (p = 0.048). To better understand this result,
we report the amount of work the robotic teammate allo-
cated to the subject in each of the conditions in Figure 2.
We conducted an analysis of variance to determine that the
robot allocated a statistically significantly different amount
of work to the subject as a function of how the robot in-
cluded the subjects’ preferences when scheduling the team
(ANOVA F (2, 48) = 5.16, p = 0.009). Interestingly, we
found that subjects were allocated statistically significantly
more work as measured in seconds in the negative condition
(M= 448, SD= 113) when the robot scheduled the subjects’
work opposite of their preferences as opposed to the positive
(M= 373, SD= 92), t(16) = 1.86, p = 0.04, or neutral
conditions (M= 345, SD= 82), t(17) = 2.14, p = 0.03, as
measured in seconds. In collecting subjects’ preferences for
which types of tasks they would rather complete, we found
that the vast majority of subjects reported they would rather
build Lego part kits than fetch Lego part kits. In the positive
condition, subjects would be given a maximum of one fetch-
ing task, and, in the negative condition, subjects would be
given a maximum of one building task. The third teammate,
the human assistant, was typically more proficient at build-
ing than the average subject. As such, the optimal allocation
of work typically would have the human assistant perform-
ing most of the building tasks and the subject supporting

Figure 2: This figure shows the mean and standard error of
the amount of work in seconds assigned to the subject by the
robotic teammate. Horizontal bars with an asterisk denote
statistical significance (p < 0.01).

with more fetching tasks. we recall that the robot teammate
could only fetch parts kits. As such, the negative condi-
tion actually afforded the teams better overall efficiency and
would have subjects performing more work. Based on this
result, we propose that subjects’ preferences for task types
need to be balanced with an innate desire of human workers
be better utilized.

Contribution and Future Work

We conducted an initial human-subject experiment to bet-
ter understand the role of the workflow preferences of hu-
man workers on a human-robot team. In our pilot study,
we found statistically significant results that subjects would
rather work with a robotic teammate that included the pref-
erences of the subjects for which tasks they would prefer
to complete as opposed to a robot that was unaware of or
scheduled opposite of the preferences of the human team-
mate. However, we also found that a robot prioritizing the
preferences of human workers may decrease team efficiency
and decrease the human workers’ belief that the robot un-
derstands the team’s objectives. Specifically, subjects’ pref-
erence for completing certain tasks decreased the team’s ef-
ficiency and led the subjects to rated their experience more
negatively.

To better understand the role of preferences for robotic
teammates’ scheduling of human-robot co-work, we pro-
pose a follow-on study. In this study, we will consider two
key variables, team efficiency and the degree to which sub-
jects’ workflow preferences are included. By controlling
for how team efficiency might decrease if subjects’ prefer-
ences are counterproductive, we can isolate the individual
effects of team efficiency and the inclusion of human work-
flow preferences for human-robot teaming.
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